K.-J. CHUNG KODAI MATH. J. 7 (1984), 208–210

ON STRONG NORMALITIES

By KUN-JEN CHUNG

In the paper [1], the author asks for an example in a complete K-metric space where K is a strongly normal cone of a reflexive infinite dimensional Banach space. Our main purpose is to present such an example.

Let V be a normed space. A set $K \subset V$ is said to be a cone if and only if (1) K is closed;

(2) If $u, v \in K$, then $au + bv \in K$ for all $a, b \ge 0$;

- (3) $K \cap (-K) = \{\theta\}$ where θ is the zero of the space V, and
- (4) $K^{0} = \emptyset$ where K^{0} is the interior of K.

We say $u \ge v$ if and only if $u - v \in K$. The cone K is said to be strongly normal if there is c > 0 such that if $z = \sum_{i=1}^{n} b_i x_i$, $x_i \in K$, $||x_i|| = 1$, $\sum_{i=1}^{n} b_i = 1$, $b_i \ge 0$ implies ||z|| > c. The mapping $\phi: K \to K$ is said to be lower semicontinuous if $\{u_n\}$ and $\{\phi(u_n)\}$ are both weakly convergent, then $\lim \phi(u_n) \ge \phi(\lim u_n)$. In a finite dimensional space, the weak topology and the strong topology are same, but, in an infinite dimensional space, they are different. Therefore if we can get an example in a complete K-metric space where K is a strongly normal cone of a reflexive infinite dimensional Banach space, the above definition of the lower semicontinuity will be more significant; we also generalize the value of K-metric d(x, y) to an infinite dimensional space and improve [1, 2].

From now on, we assume that $(V, \langle \cdot, \cdot \rangle)$ is an inner product space over R (all real numbers). $\langle \cdot, \cdot \rangle$ is an inner product on V, and $||x|| = \langle x, x \rangle^{1/2}$, $x \in V$.

LEMMA 1 (Parallelogram Identity [4]). Let V be an inner product space over R. Then

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 (x, $y \in V$).

LEMMA 2 (Polarization Identity [4]). Let V be an inner product space over R. Then

$$\langle x, y \rangle = \left\| \frac{x+y}{2} \right\|^2 - \left\| \frac{x-y}{2} \right\|^2 \quad (x, y \in V).$$

Remark. Let 0 < c < 1. From Lemma 1, if $||x - y|| \le c$, ||x|| = 1, and ||y|| = 1.

Received May 25, 1983

we see $\left\|\frac{x+y}{2}\right\| \ge 1 - (c^2/4)$.

THEOREM 1. Let V be an inner product space over R, K be a nonempty cone of V, and K have the following property (P). (P) If x, $y \in K$, and ||x|| = ||y||=1, then $||x-y|| \leq c$, where 0 < c < 1. Then K is strongly normal.

Proof. Let $x_i \in K$, $1 \leq i \leq n$, $||x_i|| = 1$, $b_i \geq 0$, and $\sum_{i=1}^n b_i = 1$. Consider

$$\langle \sum_{i=1}^n b_i x_i, \sum_{i=1}^n b_i x_i \rangle = \sum_{i=1}^n b_i^2 + \sum_{i \neq j} b_i b_j \langle x_i, x_j \rangle.$$

From Lemma 2 and Remark, we have

$$\langle x_1, x_j \rangle \ge 1 - (c^2/2) > 0$$

Therefore, we have

$$\begin{split} \left\| \sum_{i=1}^{n} b_{i} x_{i} \right\|^{2} &\geq \sum_{i=1}^{n} b_{i}^{2} + \sum_{i \neq j} b_{i} b_{j} \left(1 - \frac{1}{2} c^{2} \right) \\ &\geq \left(1 - \frac{1}{2} c^{2} \right) \sum_{i=1}^{n} b_{i}^{2} + \sum_{i \neq j} b_{i} b_{j} \left(1 - \frac{1}{2} c^{2} \right) \\ &\geq \left(1 - \frac{1}{2} c^{2} \right) \left(\sum_{i=1}^{n} b_{i}^{2} + \sum_{i \neq j} b_{i} b_{j} \right) \\ &\geq \left(1 - \frac{1}{2} c^{2} \right) (b_{1} + b_{2} + \dots + b_{n})^{2} \\ &\geq 1 - \frac{1}{2} c^{2} . \end{split}$$

We get $\left\|\sum_{i=1}^{n} b_i x_i\right\| \ge \left(1 - \frac{1}{2}c^2\right)^{1/2} = \delta(c) > 0$. Hence K is strongly normal. This completes the proof.

Let
$$B = \{y; y \in V, \|y - x_0\| \le \frac{1}{8}\}$$
, where $x_0 \in V$, and $\|x_0\| = 1$.

THEOREM 2. Let $K = \{rx ; x \in B, and r \ge 0\}$. Then K is a strongly normal cone.

Proof. We divide the proof into five steps.

(1) K is closed: Let $\{y_n\}$ be a sequence in K, which converges to $y \neq \theta$. There exist two sequences $\{a_n\} \subset R$, $\{z_n\} \subset B$ such that $y_n = a_n z_n$. Since $\{a_n\}$ is bounded, there exists a subsequence $\{a_{n(i)}\}$ of $\{a_n\}$ such that $\{a_{n(i)}\}$ converges to $a \neq 0$, and $\{z_{n(i)}=(1/a_{n(i)})y_{n(i)}\}$ converges to (1/a)y. Since B is closed, we get $(1/a)y \in B$. Hence $y \in K$, and K is closed.

(2) K° is nonempty: It is clear because $x_{\circ} \in K^{\circ}$.

(3) If $u, v \in K$, then $au+bv \in K$ for all $a, b \ge 0$: Let a > 0, b > 0 and let u = rx, v = sy where $r \ge 0, s \ge 0$, and $x, y \in B$. Then if $ar+bs=0, au+bv=0 \in K$. If

KUN-JEN CHUNG

$$ar+bs \neq 0$$
, $au+bv=arx+bsy=(ar+bs)\left[\frac{arx}{ar+bs}+\frac{bsy}{ar+bs}\right] \in K$

(4) $K \cap (-K) = \{\theta\}$: If $t \in K \cap (-K)$ and $t \neq \theta$, then there exist points $x, y \in B$, and positive numbers r, p such that t = -rx = py. Hence we get x = -(p/r)y. Now $\frac{1}{4} \ge ||x-y|| = ||y+(p/r)y|| = ||(1+(p/r))y|| \ge ||y|| \ge 1 - \frac{1}{8}$. We get $\frac{3}{8} \ge 1$, which is a contradiction. Hence $K \cap (-K) = \{\theta\}$.

(5) If $x, y \in K$, and ||x|| = 1, ||y|| = 1, then $||x-y|| \le \frac{4}{7}$: Let $x \in K$, and ||x|| = 1. There exist a positive number a, a point $z \in B$ such that x = az. Since $||z-x_0|| \le \frac{1}{8}$, we get $\frac{7}{8} \le ||z|| \le \frac{9}{8}$. So $\frac{8}{9} \le a \le \frac{8}{7}$. Consider the distance

$$\|az - x_0\| = \|az - ax_0 + (a-1)x_0\|$$

$$\leq a\|z - x_0\| + |(a-1)|$$

$$\leq \frac{2}{7}.$$

Therefore, if x, $y \in K$, and ||x|| = 1, ||y|| = 1, we have $||x-y|| \le \frac{4}{7}$.

Combining (1) through (5) and Theorem 1, we see K is a strongly normal cone. This completes the proof.

The set K in Theorem 2 is an example of a strongly normal cone of a reflexive infinite dimensional Banach space if we let V be a Hilbert space.

l should like to thank the referee for many helpful suggestions which led to improvements in the paper.

References

- [1] K.J. CHUNG, Remarks on nonlinear nontractions, Pacific J. Math., 101, no. 1 (1982), 41-48.
- [2] K.J. CHUNG, Nonlinear Contractions in abstract apaces, Kodai Math. J., 4 (1981), 288-292.
- [3] M.A. KRASNOSELSKII, Positive solutions of operator equations, Noordhoff, Groningen, (1964).
- [4] R. LARSEN, Functional analysis, Marcel Dekker, Inc. New York (1973).

Department of Mathematics	College of Management
Chung Yuanr University	Georgia Institute of Technology
Chung Li, Taiwan	Atlanta, Georgia 30332
R. O. C.	U. S. A.

210