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Introduction.

This paper is concerned with one aspect of the Nevanlinna theory of mero-
morphic functions in the plane C. We shall assume acquaintance with the
standard terminology of the Nevanlinna theory

T{r, f), m(r, a, f), n(r, a, f), N(r, a, f), - .

If f{z) is meromorphic, we define

M(r, / ) = s u p |/(z) | , m*{r, / ) = inf |/(z) | .
U l = r iz|= r

A nonconstant function f(z) of finite order p is further classified as having
maximal, mean, or minimal type according as

lim sup T(r, f)/r?
r->oo

js infinite, positive, or zero, respectively.
Now, let p and δ be numbers with 0^p<l/2, 1—cos πp<δ^l, and let mPiδ

be the set consisting of all meromorphic functions f(z) of order p with the pro-
perty that there is an C G C satisfying f(0)Φa and

(1) N{r, oo, f)<a-δ)N(r, a, /)+O(l) (r -> oo).

The following result is well known.

THEOREM A. Let f{z)^mpj. Then given ε>0, there is a sequence of r->co
such that

(2) logm*(r, / ) > - ^ — ( c o s ^ - 1 + ^ ( 1 - ε ) T { r , f).
sin πp

This result was conjectured by Teichmύller [7], and GoΓdberg [4] obtained (2)
in the weaker form: log m*(r, f)>K T{r, f), where K is a positive constant.
The determination of the exact value of K is due to Ostrowskii [6].
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154 HIDEHARU UEDΛ

At this stage It is convenient to introduce some notations. Let S be the set
consisting of all functions h(r) (r^O) which are positive, decreasing, continuous
and tend to zero as r->oo. We further classify a function h(r)<=S as /z(r)e5L or

/I(Γ)GS 2 according as the integral I h{t)t~xdt is finite or not.

As is easily seen, we may restate Theorem A as in the following manner.

THEOREM A'. Let f(z)<=mp,o. Then there is an h(r)^S such that

( 3 ) log m*(r, /)> ~r^---(cos πp-\Λ-δ){l-h{r))T{r, f)
sin πp

for certain arbitrarily large values of r.

In our previous papers [8], [9] we considered the following problem: Are
there any functions /I(Γ)GS with which the estimate (3) holds for all f(z)^mp>δ?
The answer was no at least for the cases p^(0, 1/2).

THEOREM B. Let ρ^(0, 1/2), <3e(l-cos πp, 1] and h(r)^S be given. Then
there is a function f(z)^ΐHp,δ such that for all sufficiently large values of r

( 4 ) log m*(r, f)^ -τ^~(cos πp-l+δ)(l~h(r))T(r, f).
sin πp

This implies that there are functions f{z)^}flp,d with the property that
log m*(r, f)/T(r, f) tends to (πp/sm πpXcosπp—l+δ) from below arbitrarily
slowly through a sequence of r-^oo. For the proof of Theorem B, an important
role was played by slowly varying functions. A real-valued function L{r) defined
for all r^O belongs to the class of slowly varying functions (at oo) if

(i) L{r) is positive and continuous in 0^r<oo,
and

(ii) lim L(λr)/L(r) = l for every fixed λ>0..

In [8], we showed the following results.

THEOREM C. Let h(r)^S2 be a slowly varying function, and let p, δ be given
as in Theorem B. Then there is a function f{z)^.fnp,d satisfying

T(r, / ) = ̂ exp{T l-Z i^{;-*f->-*}) (r - oo,

for any ε>0, and the estimate (4) for all sufficiently large values of r, where

, r . Γ % τr(l—δ)ϊ&τiπp 2πp—sin2πp
( 5 C(ρf δ) — ' H — r — Ϊ Γ - — —c o s 7zτ̂ o — 1 + ^ psm2πp

THEOREM D. Let h(r)e^S2, p, and δ be given as in Theorem C. Then there
is a function f{z)^ΐH()ίo with the property that
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T(r, f)=o(r> exp {- - ^ - - -^[Jf dt}) (r ^ co)

for any s>0, and that for all sufficiently large values of >•

log m*{r, / ) £ -^— (cos πp-l+δ)(l + h(r))T(r, f).

sm πp

The situation discussed here complements the above Theorems B, C and D.
In § 1, we state Theorem 1 (and Corollary 1) which complements Theorems B
and C. §§2-4 are devoted to the proof of Theorem 1. Our Theorems 2 and 3
are stated in § 5, the former complements Theorem D and the latter corresponds
to Corollary 1. The proof of Theorem 2 is given in §§ 6-7. In § 8 we give two
counterexamples to Theorem 1 and Corollary 1. Finally in § 9 we consider the
case p=0.

In what follows, we use the restrictions such as r ^ r 0 , n^n0, ••• , immediately
after certain relations. It is understood that the quantities r0, n0, ••• which ap-
pear in this way are not necessarily the same ones each time they occur.
Whenever we wish to stress the importance of certain parameters, say a, D, ε, ••*
on which r0, n0, ••• may depend, we write, for instance, ro~rQ{a, D), no =

1. Statement of Theorem 1 and Corollary 1.

Our first result is

THEOREM 1. Let /I(Γ)GS 2 , and let p and δ be numbers with 0<p<l/2.
1 —cos πp<δ^l. If f(z)^mPtδ satisfies the growth restriction

(1.1) T(r, / )=θ(r^exp{ T Ϊ T i y ί ( θ ; T ) -J;- Λ f )_ £ ί ί }) ( r _ co)

with some ε>0, where C(p, δ) is defined by (5), then the estimate (3) holds for a
sequence of r-»co.

This result complements Theorems B and C. From Theorem 1 we immediately
deduce the following fact.

COROLLARY 1. Let h{r), p and δ be given as in Theorem 1. // f(z)^ni(Kr>
is of mean type, then the estimate (3) holds on an unbounded sequence of r.

Remark. Our argument in the proof of Theorem 1 yields the following
result.

Let p^(0, 1/2) and h(r)^S2 be given, and let f(z) be an entire function which
satisfies the growth condition
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log Mr, /) =

S6>m<? ε>0. 77z£?z on βn unbounded sequence of r

logm*(r, /)>cos πp(l—h(r)) log M(r, / ) .

2. Auxiliary functions.

In this section we develop the necessary material to prove Theorem 1. Let
g(z) be a nonconstant entire function of order less than 1/2, all of whose zeros
are real and negative and such that g(0)=l. Assume that, corresponding to
g(z), there is a function H(z) in the whole plane satisfying the following con-
ditions.

(2.1) H(z) is a one-valued positive continuous function in the whole plane,
and is harmonic in | arg z \ < π .

(2.2) maxH(reίθ) is of order less than 1/2.
\Θ\<7C

(2.3) \og g{r)=o(H(-r)) (r -> oo).

L E M M A 1. Let g(z) and H(z) be functions as we stated above. Then there
are two sequences {rn}?->°°, {αra}?->oo such that for \θ\<π

(2.4) log |g (- r , ) |

The proof is quite similar to the one of Lemma 5 on [1]. This lemma will
play an important role in estimating N(r, a, f) from above and log m*(r, /) from
below for a sequence of r—>oo. To realize this, we first prepare the following
lemma.

LEMMA 2. Let A>1 and h(r)^S2 be given. Then there exists a function
satisfying the following (2.5)-(2.7).

(2.5) Λi(r)^Λ(r) (r^O).

(2.6) hλ(r) is differentiate off a discrete set S' {where S' has no finite
accumulation points), and rh[(r) -^ 0 as r($S') —> oo .

constant.

(2.7) [hWΓ'dtKA^h^Γ'dt+B (r>l), where B = B{A, h) is a positive

Proof. Put r o = l and M=Λ(1). Let rn (n = l, 2, 3, •••) be the least positive

number with the property that h{rn)—MA~n. Since Λ(r)εS2, I h(t)t~1dt=co,
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from which we deduce that

(2.8) Σ ^4"* log (r A /r ik-^oo.
k = l

Let / be the set consisting of all positive integers k satisfying rk/rk-il^,2, and
denote all the elements of / by kt (/^l) in order of increasing magnitude.

Then clearly Σ A~k log ( r . / r ^ X l o g 2 Σ A-k = (log 2)/(A-l) = C, and so by (2.8)
k$I k=l

Σ A~k log (rk/rk-i)=<χ>. This implies that #/=oo.
fee/

Now, define hx(r) by h^)=MA-k\ h^r^-^MA'^, h1(rkι)=MA'k^> and
by linear interpolation otherwise. Then hλ{χ) belongs to S and satisfies (2.5).
Further, hx(r) is differentiable off a discrete set S'={rkι-u rkι}ΐ=i. In order to
verify r/ιί(r)->0 as r(&S')-+oo, note that for rkι-1<r<rkι

and use the fact that rkι/rkι-i^2. It remains to prove (2.7). From the defini-
tion of /ii(r), it follows that for rkrl^r^rkj (/=1, 2, 3, •••)

Suppose now that rn^r<rn+1. There are two cases to be considered.
Case 1. Assume that n = kι — l with some /. Then

(2.10) [h(t)Γιdt^ Σ MA~k+1 log (rJrk^+MA-71 log (r/rn)

log ( r , / r έ r l ) + i C M + M ^ - f e ; + 1 log (r/rn).

Incorporating (2.9) into (2.10), we have

(2.11) [r h^r'dtSAJtW^3 h1(J)r1dt+MA-kλ+ACM
Jl j = l Ur^-j J

h1{t)rιdt+2ACM.
l

Case 2. Assume that nφkt-l for all / ( = 1 , 2, 3, •••). Then
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Thus (2.7) with B=2ACM follows from (2.11) and (2.12). This completes the

proof of Lemma 2.

3. Estimates on H{reτθ).

In this and the next section, the letter hx{r) denotes the function which is
constructed from A>1 and /z(r)eS2 according to the procedure in the proof of
Lemma 2. Define

(3.1) L(r)=exp\δ\rh1(t)r1dΐ

with a positive constant δ. Since h^-^Q as t-+oo, L(r) is slowly varying.
Our aim of this section is to give two estimates (See (3.6) and (3.7).) on the

function

(3.2) H(reι(J) =— ϊJϊFΎTTΓn aV~~ds ( r > 0 , \θ \<π),
π Jo s 1 / 2 (s 2 +r 2 +2rs cos θ)

where /?e(0, 1/2) is a constant and L(s) is defined by (3.1). For this purpose,
we need two properties of slowly varying functions.

LEMMA 3. ([5]) Let L(r) be a slowly varying function. Then L{λr)/L(r)->1
uniformly, as r-^oo, m any interval A~1^λ^Ay A>1.

The following Lemma 4 is an easy consequence of Lemma 3.

LEMMA 4. Let L{r) be a slowly varying function. Then given α > 0 and
C>1, there is a number R0=R0(a, C)>0 such that y>x^R0 implies

(3.3) L(y)/L(x)<C(y/x)".

Proof. From Lemma 3 it follows that for any A>1 and ε>0 there is a
number ro = ro(A, ε)>0 such that

(3.4) L(λr)/L(r)<l + s,

whenever Λe(l, ^4] and r^r0. Now, if y>x^r0, choose α e [ 0 , 1) to satisfy
y/x = Am+a, where m is a nonnegative integer. Then iteration of (3.4) gives

Hence, if we take A>1 and ε>0 such that 1 + ε^C, log(l+e) (log AYι^a, we
obtain (3.3) with R0(a, C)=ro{A, ε).

Now, we return to (3.2). From Lemma 4, it follows that for any fixed
αε(0, 1/2—/?), Liχ)—o{ra) (r->oo). Hence H{reiθ) provides a solution of the
Dirichlet problem with boundary values
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(3.5) H(-r) = rPL{r) (r^O)

in the plane slit along the real axis from 0 to —OD. It is clear that H(ret0) Is
an even function of θ. Further, we have the following

LEMMA 5. Let pe(0, 1/2), A>1 and h(r)^S2 be given, and let hλ{r)^S2>

L{r) and H{reiθ) be defined as above. Then we have the following two estimates
on H(reίθ).

(i) H{reiθ) is a monotonic decreasing function of \θ\ for Q^\θ\ =π> in
particular,

(3.6) H{reid)^H{-r) (r>0, | θ\<π).

(ii) For ε>0, there is an R0~R0(ε) such that r^R0 implies

Cπ H(reiθ) XΆwπp S r π2 πtanπp
(3.7) ~γj vdθ< ί-H Λi(r)(l + εM -~L-

Jo H(—r) p π ipcos2πρ p*

Proof, (i) It is convenient to introduce the notation

, , , dφ(r) . , . d2φ(r)
Φι{r)——~τ y φo(r)~- , Λ 9— (r>0)
Y dlogr Y dlog'r

when φ{r) is defined for r > 0 and these derivatives exist. Now, put φ(r) = rf>L(r).
Clearly

By redefining hλ{r) if necessary for small r, we may assume that ψ2(r)^0 for
r&S' (r>0). (In this case, we may assume that also this "modified" hι(r) satisfies
the conditions (2.5)-(2.7).) Hence φx{r) is monotonic increasing, so the argument
in [1, pp461-462] shows that H(reiθ) is a monotonic decreasing function of \θ\
for O^ |0 |^τr .

(ii) Take αe(0, 1/2—p) and O l arbitrarily. Choose ε '>0 and D>i with
the property that

L — V t

and

(3.9)

where
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Since log(l-f VT)(1- y/Ty~2y/T as ϊ->0, ~Iog(l-ί)" 1 as ί-d-, (3.8) and (3.9)
are possible.

Now, we write H(reιβ)=I1(r, Θ)+I2(r, Θ)+It(r, θ), where

7 / ΛW 1 p»r" 2 (r+s)s"L(r) cos (fl/2)
A r ' ; TΓJO s 1 / 2 (s 2 +r 2 +2rscos0) '

, , 1 Γ̂  r " 2 ( r+s)s ' [L(s)-L(r)] cos (g/2)
?Λ ' ; TΓJO s 1 ' 2 (s 2 +r 2 +2rscos^) '

s I / 2(s2+r2+2rscos(9)

Consider first 7/r, θ). Residue calculation gives

(3-10) S Γ d t =

π Jo / 2+2ίcos^ + l sin πβ
Putting s — rt, we have

( 3 J 1 )

Incorporating (3.10) into (3.11), it follows that

(3., 12) 7j(r, θ)=φ(r)

r cos πp

In view of (3.5) and (3.12)

π 7i(r, θ) tan πp(3.i3) j ; . ^ -
H{-r) - p '

Next, we estimate 72(r, 61). It is convenient to introduce the function

(3.14) dCf, θ)=\ -£ξU)U

Jo u2jr2u cos

It is clear that G)(t, θ) is positive and increasing for t>0, and satisfies

(3.15) ^

Putting s=r/, we have

After (3.14) and (3.15) are taken into account, this becomes
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(3.16) /2(r, 0 ) = - — :

π ' ' • " \ 2 /Jo t

This last integral requires further attention. From Lemma 3 it follows thai

(3.17) \Urt)/L(r)-l\<ε' (D-^t^D, r^ro = ro(D, ε')).

Hence

(3.18)

Finally, using (3.15) again, we deduce that

and

Ϊ
D-1 Cr (f β) ΓD-[ Π 4-f)fP~ι/9-

On combining (3.18)-(3.20) with (3.16), it follows that

(3.21) 72(?

Ϊ
D-l

In order to estimate \ I2(reίθ)/H( — r)dθ, we use the Fubini's theorem. Then
Jo

(3.22) AΉΓ~^ dθ<~J- AiW|(l-eO (
Jo H{—r) π I Jo

Further,



J62 KIDEHARU UEDA

C0S(#/2) , . f* COS (0/2) j a fi 2f* cos (0/2) c* cos(fl/2) _ ri
Jo f+2/cos# + Γ ^ Jo (ί+ίj"2-4ίsinW2) Jo

iog(l~ττ)

Substituting this into (3.22), we obtain

h(r, θ) ]n ^ § . ,

)tp~ι log

We turn to I<ό(r, θ). in this case we introduce the function

rt (l4-u)u~p~1J2

2" ? Jo 2^2+2wcos/9+l = = > =

Clearly, G2('ί, θ) is positive and increasing for t>0, and satisfies

(3.26) G2(ί, θ)~--j~—~ ( ί-^0).

In 73(r, #) we put s = ?'Γ1 and integrate by parts to get

(3.27) J λr, θ)= —(cos 4-'

2

G2(f, g)
at

Using ί3.26), we deduce that

(3., 28)

and

(3,29)
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In view of (3.3), L{rΓι)<CL(r)t-a (0</^l, r^R0(a, C)). This and (3.17) give
for r^R0

(3.30)

Combining (3.27M3.30), it follows that

(3.31) U

Using the Fubini's theorem and (3.23) again, we have

Hence from (3.13), (3.24) and (3.32), we obtain

(3.33)

-^rr—log
α Jo

Since
4 r co r 2 7 i - l

log -f^ =2 Σ f- f (0g x < 1),
1 — x Λ=i Zn — l

we easily see that

(3.34)

= 2

_ 9

1
Σ r (
71=1 z n — l Jo

oo 1 f i e fΠ-3/2-p +

y -1 \ J 1 :
2 — 1 Jo I n-l/2-p n-l/2+p

1 1

Λ=i 2n-l I (n-^-1/2)2 (n+^-1/2)2

12 { i ^ _ _ i 1
,0 n = ol (ft — <?
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1 1

Thus (3.7) follows from (3.33), (3.34), (3.8) and (3.9). This completes the proof
of Lemma 5.

Combining Lemma 5 with Lemma 1, we obtain the following result, which
will be used in the next section.

Assume that H{z) defined by (3.2) satisfies (2.3). Then by Lemma 1, (2.4)
holds. Using (3.6), we conclude that the right hand side of (2.4) is nonnegative
for \θ\ <π. Hence

log\g(rne
i9)\ ^ H(rne*θ)

Ίog\g(-rn)\ -~H(^J

It follows from this and (3.7) that

N(rn, 0, g) tznπp δ
log|g(-rj[ < Γ +

for a suitable sequence {rn}^oo.

4. Proof of Theorem 1.

We are now in position to prove Theorem 1. We set

(4 1) F(z)- f(z)-a-cz-*
(4.1) *{z)-Πz) a-cz

cz
z / b n ) ~ c z

 Q { z ) •

where c is a nonzero constant and p is a nonnegative integer. It is convenient
to introduce the notation

(4.2) A*)

Choose ε r >0 and Λ>1 with the property that

(4.3)

and then determine δ>0 by

(4.4)

Let /Zi(r)e52 be constructed in Lemma 2 corresponding to this A and /z(r)eS2.
Then from (4.1), (1.1), (4.3), (4.4), (2.7), (3.1) and (3.5) it follows that

(4.5) T(r, F)=T(r, f) + O(l)

= o(r?L(r)) = o(H(-r)) ( r-oo).
Since
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f°° N(t 0 P)
logP(r) = r\ — ' ' —dt^N(r, 0,

r°° Tit F)
<^T(r F)+r\ dt

' Jr f

we deduce from (4.5) that

Further, it is easy to see that H(z) satisfies (2.1) and (2.2). Hence we may
apply Lemma 1 to the pair of P{z) and H{z). Incorporating (3.6) and (3.7) into
(2.4) with g—P, we deduce that there are two sequences {rn}™—>oo, {an\°ϊ-*oo
such that

(46) - ^ 4 < ^ l l + l ( l + 6 - ) 2 τ̂siπ2^ ,
log|P(—rn)\ πp I psm2πp I

(4.7) _ t o β Λ r . ) S -

Now, we estimate H(r)/H(—r). First, using (3.12), (3.21) and (3.31). we
easily obtain

(4.8)

+ ( + 0 l ( )

cos π^ cos 2 7Γ/?
Next,

J
Γ Γ KCL(rQL(r)]

+ J ί 1 / 2(l+ί)Λ Jo ?1 / 2(l+ί) + π Jo ί 1 / 2(l+ί)

1 γP Cl

T Γ ^ 7Γ J o 1+ί

From (4.9) and (3.17) it follows that

(4.10) / / ( — r ) COS7Γ/?

Substituting (4.8) and (4.10) into (4.7), we have

(4.11)
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+ TΊ -an (w

We proceed to estimate logm*(rTO, F). By (4.2) and (1)

(l-δWt, 0, P)-plogt+O(l)
{t+rf

= {\-δ)\ogP{r)-p\ogr+O{l) (r^

and so we deduce from (4.11), (4.1) and (4.2) that for r=rn

(4.12) log m*(r, F)^log\ P(-r)\-log Q(-r)-p logr-O(l)

O(fln)

log[/>(-ί

Since logm^ίr^, F)>0 for n^n0, miχn, 0, F)=0 (n^n0). Hence by the first
fundamental theorem T(rn, F)=N(rn, 0, F)+O(i) (n->oo). It follows from this
and (4.6) that for r — rn (n^n^

(4.13) Tir, f)^T(r, F) + O(l)£N(r, 0, F)+O(l)

tΆnπp -. . . L t S / 1 . ,λ2πp—s'm2πp
< - l o g \ P - r ) N l + cKl + g) • o -

π^ I /? sm 27Γ/)

^ log |P(-r) | i '

Recall that cn—>oo as n-^co and ^ is defined by (4.4). Then we obtain from

( c o s ^ -

(4.12), (4.13) and (2.5) that for r = rn (n^n0)

log m*(r, /) log m*(r, F)-O(l) πp

--TΪ7TΓ ^7 > ^

> -7-^--(cos πp-\+8){\-h{χ)).
sm πp

This completes the proof of Theorem 1.

5. Statement of Theorems 2 and 3.

Our second result complements Theorem D.
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THEOREM 2. Let / I ( Γ ) E 5 2 and let p, δ be numbers with 0<p<l/2, 1—
cos πp<δSL If f(z)<ΞTnPtδ satisfies

(5.1) T ( r , / ) = (

with some ε>0, then on a sequence of r—>oo,

(5,2) logm*(r, f )> -τ^~(cos πp~lJ

Γδ)(lJ

Γh(r))T(rf f).
s in 7r/>

For /i(r)eS] we have the following result, which should be compared with.
Corollary 1.

THEOREM 3. Let Λ(r)eSi and let p, δ be given as in Theorem 2. Then if
f{z)E:fyiPtδ is of minimal type, the estimate (5.2) holds on an unbounded sequence
of r.

We remark that Theorem 3 is an improvement of Theorem 1 in [8]. The
proof of Theorem 3 is similar to the one of Theorem 2, so we will prove only
Theorem 2.

6., Two lemmas for the proof of Theorem 2.

This and the next section are devoted to the proof of Theorem 2. The
following lemma parallels Lemma 2 in the proof of Theorem 1, and will be used
also in § 8.

LEMMA 6. For each α > 0 and h(r)^S, there is a function /7}(r)eS such that

(6.1) Λi(r)^Λ(r) (r^O),

(6.2) hι{λr)/h1{r)^{2λYa (r^O, λ>\),

while

(6.3) Γ/2 1(OΓ 1c?ί^2αΓΛ(ί)r 1rfί+jB ( r > l ) , while B =B{a, h)
JJ JO

is a positive constant.

Proof. We first put hλ{r) — h{{)) for O ^ r ^ l , and we define hλ(r) for 7n =
{r;2n^r^2n+1} (n=0, 1, 2, •••) by induction. Assume that /^(r) is determined
for r^2n. Then if h1(2n)<2°ίh(2n), we set /z1(r)=/z1(2n) (re/J, and otherwise
/21(r) = /z1(2?ϊ){l-2-7Z(l-2-ΛXr-2n)} ( r e / J . Clearly h1(r)^S and (6.1) holds. To
see (6.2), we note that h1(2r)/h1(r)'^2~a (r^O), and appeal to the reasoning as
in the proof of Lemma 4. It remains to show (6.3). There are three cases to
be considered.
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Case 1. Assume that n satisfies h1{2n)<2ah(2n+L). In this case h^D^
<2ah(t) for ί e / n , so we have

(6.4) Γ h1{t)r1dt<2a[ h^r'dt ( Γ G / J .
J2n J2n

Case 2. Define J1={n;2ah(2n+1)^h1(2n)<2ah(2n)}. If n ε / , then hx(t) =
i^") for ί e / n , /z1α) = /zi(2n){l-2-rι-1(l-2-α)(r-27i+1)} for ίe/ n + 1 . Hence

(6.5) Σ \ h^r'dt^ Σ Λi(2n)log2^Σ2-nαΛ(0)log2==β/2.

Case 3. Define J2={n h1(27l)>2ah(271)}. In this case hι(t) = hί(2n) { [ -2" n (L-
2"α)(r-2n)} for ί e / n . Hence

(6.6) Σ ί hί(t)r1dt<

On combining (β.4)-(β.β), we deduce (6.3). This completes the proof of Lemma 6.

Σ /
nE:J2

Let p and Mf be numbers with 0</o<l/2, 0<M /<l/2+ io. For ε>0, we
choose ε'>0, αe(0, 1/2+/)—Mr) and D>1 with the property that

(6.7)

(6.8)

(6.9)

and

(6.10)

where C^p) is defined in §3. Inequality (6.10) is immediate since log{(l-f-V~0
( 1 - Λ / T ) " 1 } — 2 V T (ί->0) and p-l-a-M'>-Z/2. To see that a pair of ε' and-
a may be chosen to satisfy (6.7), we observe the following facts (i)-(iii).

( i ) For any fixed <*«=[—1/2, 1/2], the function

is Lebesgue integrable in (0, 1), here we interpret {t~a — ϊ)/a for a~0
as logΓ1.
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(ii) For any fixed ίe(0, 1), g(t, a) is a continuous function of a.
(iii) For any α ε [ - l / 2 , 1/2]

) | ^ ( ί , 1/2).

It is well known that under the above conditions (i )-(iii), the function G(a) =

\ g(t, a)dt is continuous in [—1/2, 1/2], in particular G(α)->G(0) (α->0), from
Jo

which (6.7) follows at once. Also, the existence of a pair of ε' and a (a and D)
satisfying the inequality (6.8) ((6.9)) is shown analogously.

Now, we give a lemma, which corresponds to Lemma 5 in the proof of
Theorem 1.

LEMMA 7. Let ^ ( 0 , 1/2), ε>0 and h(r)^S2 be given, and let δ>0 be a
number such that M' = 8h(0)<l/2+p. Choose e'>0, « G ( 0 , 1/2+p—M') and D>1
so that the above inequalities (6.7)-(6.10) hold. Further, let h1(r)^S2 be con-
structed in Lemma 6, and define H(reiθ) by (3.2) with

(6.11) L(r)=exp j - o

Then H(reίθ) satisfies

(6.12) H(reιθ)^H(-r) (r>0, -π^θ^

n{—r) p

Proof. The proof of (6.12) is quite similar to the one of (3.6), so only the
proof of (6.13) need to be given. We define Gk(r, θ) (k=l, 2) and Ij(r, θ)
(/=1, 2, 3) as in the proof of Lemma 5. (Note that L(r) is defined by (6.11) in
place of (3.1).) For I-Sr, θ) we have (3.12). Consider now 72(r, θ). It is easily
seen that

Ur, θ^^rioos^f^ψrllc^ θ)duπ \ I /Jo t

By (6.2), h:(rt)^2ah1{r)ra for 0<f<l , so

(6.14) 72(r, ̂ )^^2 f t/z1(r)r^L(r)(cos--ΛΓ--4τ—-dt
π \ I /Jo t

«, θ)dt,

and the last integral invites further attention. In view of (3.17) and the fact that

L(rt)/L(r)=exip\§[r h1(t)r1dt\st-*him = t-M'
I Jrt J
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Substituting (6.15) into (6.14), we have

(6.16) 7,(r, (9)<-~2αΛi(r>^(

ffl-' dft, fl)

<±^hM^L(r){a+e')\l^^(l+tyt^-,^^τdt
it y Jo a t -j-Zt cos σ-\-l

1 Γ0'1/-. 1/0 M, cos(#/2) ]
-| -\ \\_-\-ι)tP a •—dtf.

Using the Fubini's theorem, we deduce from (3.23), (6.7) and (6.10) that

We turn to h(r, θ). In view of (6.2) and (3.17)

(6.18) /,(r, ff)=- A
7Γ

o α
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l ^ ( ί + 0 r ^ "8 (0/2)' d t
a ί2+2fcos0 + l

Again we use the Fubini's theorem to get

so we deduce from (6.8) and (6.9) that

(β 19) \l^[^dθ<~^hι{r)§\{[og

Thus (6.13) follows from (3.13), (6.17), (6.19) and (3.34). This completes the
proof of Lemma 7.

7. Proof of Theorem 2.

Define F(z), P(z), Q{z), P(z) and Q\z) as in §4, and put

(7.1) ~δ~'={l-e/2)C{p,δ).

Let αe(0, 1/2+^o), to be determined later. Since we are interested in results
for large values of r, we may assume that h(0)<(l/2+p—a)δ~1 by modifying
h(r) if necessary for small values of r. Now, choose α>0, ε ra(0, ε/2) and 0 > ί
such that

(7.2)

(7.3) 2«(1

(7.4)

(7.5) 2-«(

and

(7.6)

where

2 α <(l-ε/2)( l -ε)~ i

;

+ ε ) J o a ί + 1 ί " J o ( θ g ί )

a+M' Jo ί + 1 ^

Γ! χ_fa f-p-1/2 /•!

Jo α ί + 1 " ^ J ^ i o g i )

\ :—dt<(ε/(ί
Jo a ί + 1

f-p-l/2

ί + 1

B)C2(,),
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r2sin πp

Next, let h1{r)<ES2 be constructed in Lemma 6 corresponding to this a and h{r).
Then from (5.1), (7.2), (6.3) and (6.11) it follows that

(7.7) T(r, F)^o(rPL(r)) (r -> oo).

As we saw in §4

so we deduce from (7.7) that log P{r) = o{rpL(r)) = o{H(—r)) (r->oo). This shows
that we may apply Lemma 2 to P(r). Upon incorporating (6.12) and (6.13) into
(2.4), it follows that there are two sequences {rn}T—>oo and {an}™—>oo such that

(7.8) /
Jo

and

(7.9)

Here we need to estimate H(r)/H(-r). In view of (3.12), (6.16) and (6.18)

πp

--2α(l + ε ' ) Γ - ^ , 1 dt-2~a\D * —
jo a ί-j-1 Jo a ί+1

After (7.3)-(7.6) are taken into account, this becomes

(7.10) -ττrK<—1 g(l-ε/2) πsmπP h,(

H{—r) cosπp cos πp

On the other hand,

)-L(r)
r^L(r) yp Γ°° L(rf

t Γ ; COS^p 7Γ Jo ί1/*"

cos πp

so from (3.17) we have

r^fi L(rt)-L{r) ^
π Jo r / 2 p ( ί+l)
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We remark that (7.8)-(7.11) correspond to (4.6)-(4.8) and (4.10) in §4, respec-
tively. Hence similar calculations as in the final part of § 4 give

(7.12) logW*(r
(cos π^ — l + o cos πp

and

(7J3) Γ(rn, / ) < — ~log\P(—rn)\\l — δ(l — εr) r . o —Λi(rn)
7ΓJO I j o s m - - "

4- T—
1)__Ί
-rJ|Γίog |P(-rJ |

Thus (5.2) follows from (7.12), (7.13), (7.1), (6.1) and the fact that e'<ε/2. This
completes the proof of Theorem 2.

8. Two counterexamples to Theorem 1 and Corollary 1.

EXAMPLE 1. Let εe(0, 1) and h(r)^S2 be given, and let p, δ be numbers
with 0<ρ<l/2, 1 —cos7Γj0<d^l. Then there is a function f(z)^mp,δ with the
property that

T(r, D=o

and that for all sufficiently large values of r the estimate (4) holds.

EXAMPLE 2. For given ^e(0, 1/2), δ(=(l — cosπp, 1] and h(r)(=Su there is
a function f(z)etflPίδ which is of mean type and such that for all sufficiently large
values of r the estimate (4) holds.

Since the proofs of the above two examples are essentially the same, we prove
only Example 1.

Let ε>0, |oε(0, 1/2) and h(r)^S2 be given, and let § be a positive constant
such that M'=δh(0)<l—p. Choose α>0, ε '>0 and D>1 with the property that

Γ1 l—ία r ^ pi r α — l
«\ — — dt—2a\

Jo a 1+ί Jo α: sm2πp

(8.2) (l + εoΓdogΓ^-^-^-d-εoΓ
Jo t+1 Jo

,/n m * \~ *- i . ^ r i A \ 7Γ COS ί

π^ COS π/?

(8.4) \ ( logΓ 1 )—-zrdt<(ε/4)— . o ^ ^
Jo ί+1 sm2πio
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(8.5) _ ? L _ < I ± « £ ,
p-a p

(8.6) l-ε'-D-(>>l-ε/2f

(8.7) ( i - β 0 Σ — - L — + 2 - Σ

7 ^ ,
sm2π/>

βp+M'-n-l

(8.9) 2° Σ , , N/ , r +
pf ^o (n + l- / o)(n-hl- i o-MO

<(l + ε/4) . f .

To verify that an a>0 may be chosen to satisfy (8.1), we may note that

and

__ π"2 cos πp
sm2πp

In the same way, (8.7) is immediate from the facts that

and

ô)2

Now, let Λi(r)eS2 be constructed in Lemma 6, and put

Further, we choose r0 so large that r^rQ implies

(8.10) 21ogr+2/iQ+21og4+K(s/3)g π\cfπ

sm πp
(8.11;
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r I ίrK-i-]

(8 12) 2a\ — y

(8.13)

(8.14)

1-2 Y1 π2

—
sιn2πp

^ ,

where K (>1) is a positive constant.

(8.10), (8.11) and (8.14) are possible because

(8.15)

To see this, we use (6.2) with a^p/2, r = l . Then we have Λ1(r)^2"'> / a/ι ι(0)r-/ ϊ / 2,

from which rfh^r^Oir^2) (r->oo). This yields (8.15).

Under the above preparations, we prove the following

LEMMA 8. Le£ ε > 0 , ^ ^ ( 0 , 1/2) and h(r)^S2 be given, and let o be a positive

constant such that M'=δh(0)<l—ρ. Further let a>0, e ' > 0 , and D>1 be chosen

to satisfy (8'.l)-(8.9), and let / i i ( r )eS 2 be constructed in Lemma 6. Define P{z)

as a canonical product with only negative zeros whose zero-counting function

n(r, 0, P) = lrpL(r)Ί. Then we have for r^ro(e),

(8.16)

(8.17)

Mr, 0, P)-( l- 0

p2

sin πp sin πp
U L(r)

4 cos

(8.18)
sin s i n 2 7Γ/?

where θ(r) = π—r~κ with a positive constant K>1.

Proof. We remark that if h^r) is slowly varying, the estimates (8.16)-(8.i8)

have already been proved by Barry [2, pp 55-58]. In what follows, only one-

sided inequality of (8.18) will be proved, since the other inequalities are more

easily seen. The branch of \ogP(z) in | a r g ^ | < 7 r for which l o g P ( 0 ) = 0 may be

represented by Valiron's formula:

o t(t+z)
•dt.

Then
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f™ [tpL(t)Ί—tpL{t) ,

—w^)— d t

, [tP{L{t)L{r)} ^ [i t L ( t ) ^
-\-z\ -7——r at—z\ x. . N at

J t{t + ) J t(t + )
—z\

Jo

+Ur, θ), say.

Here we take θ — θ{r)=π—r~κ. Elementary calculations give

(8.20) ReΛCr, θ) = πr?L^^^-^πrPL(r) C°Sπp +o(l) (r ̂  00),
sin τr/9 sin TΓ̂

(8.21)

(8.22) |/6(r, ̂

Next, we proceed to estimate /2(r, θ). Clearly

Re (z/(t+z))=Re Σ (-l)n(t/z)n= Σ (-l)n(ί/r)n cos 72̂  (ί<r),
71 = 0 7i=0

so we have

(8.23) Re/2(r, ^)=Γ^-M^α)-^(r)} Σ (-l)n(ί/r)n cos n/?dί
JO i 0

(-l)nsncosnθds

{-l)n cos nθ^sp~1+n {L(rs)-L(r)} ds
Jo

r, θ), say.

The estimates of Iλ{r) from below and 72(r, θ) from above are derived by the
same way as we used in § 6:

(8.24) h(r)^ ̂  -^^\L(r)\\p+n-1ds^\1 s^71'1 {L(rs)~-L(r)} ds\
n=o p-f-n { Jo Jo J
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>Λi(r)L(r)Σ{(l-s')7-J^2--τ^^Γ} (r^ro(D, e')),
n=o I (n + jO) (n + jθ) J

(8.25) h(r, θ)£ Σ 1 ~ ( ~ 1 ) " C 0 3 w g (1

o
( 1 (
Jo

- ( - D " cos nff

This last term requires further attention. Since θ — π~r'κy we deduce that
|1—(—I)71 cos nθ\ — |1 —cos nπ cos (n — nr~κ)\ = 11 —cos nr~κ\^nr~κ^r~ι for n :g
[r^" 1 ] . Hence

(8.26) Σ }-(-])n™snθ ^lCr21]--Γ-Γ

1 --
- " i—a) r τι-0 (n-jrp)(n + p —a)

oo 1

+2 Σ

Upon incorporating (8.24)-(8.26) into (8.23), it follows that

(8.27) Re/2(r, θ)^-δrP L(r)hλ(r)\{l-εf) Σ -

1 C Γ J 1 ]

1

n̂ o (n+/))2

r τι=o (n + ̂ Xn + ̂ o—a)

+2
—α)J

The estimate of Re/3(r, <9) is similar to the one of ReJ2(r, θ). The correspond-
ing inequality to (8.27) is

(8.28) Re/3(r, 6>)^- l

n=cwr-i] (n + l - o ) 2 I T̂ O (n + 1-pXn + l - p - M O J 'n^S-i] (n + l-^o)2

After combining (8.20), (8.21), (8.22), (8.27) and (8.28), we deduce the one-sided
inequality of (8.18) from (8.7), (8.8), (8.12), (8.13) and (8.14).

Further we need the following lemma due to Edrei and Fuchs [3],

LEMMA 9. Let f(z) be meromorphic in the plane. For a measurable set
/C[0, 2π), define

m(r, f, I) = ——I log+\f(reiθ)\dθ ( r>0).
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Then

m{r, f, /)^22T(2r, f)\I\

where \1\ is the Lebesgue measure of I.

We are now able to construct a function f(z) which satisfies the conditions
as stated in Example 1.

We first choose α>0, δ>0, and ε '>0 in turn as in the following manner:

KC(p, δ)δ<2-aa-ε)-1, 2δCx{p, ε)ε'<C(p, δ)δ-l,

where Cλ{ρ, δ)=7r(l+(l—d) cos πp)/ {sin πp(cos πp — l+δ)}Λ l/ p. Since we are
interested in results for large values of r, we may assume that /z(0)<(l—ρ)δ~ι.
We next choose α'e(0, a], ε">0 and D>1 with the property that (8.1)-(8.9) hold
with a, ε' and ε replaced by a', ε" and ε'', respectively. Let / I 1 ( Γ ) G 5 2 be con-
structed in Lemma 6 corresponding to α r > 0 and h(r)^S2, and put L{r) —

exp jίΓ/iiCf)*"1*/*}. Now, define

Q(z)=Π(l-z/bn) (an,bn>0),

where n(r, 0, P)=Cr^L(r)] and n(r, 0, ( ? ) = [ ( l ~ β ) | r ^ L ( r ) - l | ] . Then we will
show that f(z)=P(z)/Q(z) is one of the desired functions.

Using (8.17) and (8.18), we have

\og\f(reiθ{r))\^\og\P(reίθ{r))\-\ogQ(-r)>Q> (r>Rλ).

Hence by Lemma 9

(8.29)

π-θir)

Since 7(r, f)^m(r, P)+m{r, Q)^logM(r, P) + logM(r, ζ>), we deduce from (8.17)
that

(8.30) T(r, f) = o(rp>) (r -> oo),

for any fixed ^ o ^ ^ . In view of (8.29) and (8.30) we have m{r, 0, f) = o{l) (r->oo).
From this and (8.16) it follows that

) = 7(r, l/f)=N(r, 0, /)+m(r, 0, /)

V I (l-ε)C(|0, o) J /
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Further,

M?% °°, f)=N(r, 0, Q)—\ dt

^ dί^(i—a)
Jl ί

r > 0, P)=(l—δ)N(r, 0,

It remains to show (4). Using (8.17) and (8.18), we have

logm*(r, f)<\og\P(reiθ(r))\~-\ogQ(-r)

Γ

sin

sin πp I sin TΓ/?

On the other hand, by (8.16)

N(r, 0,

Thus

Iθg7ft*(r, /) ^ πp . i , ^ί-, hλ{r)πo Γ 1 X1 SN^ 7Γ^-<-^— C : (COS7ΓP —l + <3Hl [1 — (1~δ) COS πp
1 (r, f) sin πp I sm πp

9

sm π^

— (cos πp —

sm πp

π p .
—.—'—(cos πp —
sm πp

9. The case ^ = 0 .

In this section we simply make mention of the case p—0. The following
result corresponds to Theorem B in the cases p^(0, 1/2).
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THEOREM 4. Let de(0, 1] and h(r)^S be given. Then there is a function
f(z)&tnOίδ such that for all sufficiently large values of r

logm*(r, f)<δ{l-h{r))T(r, f).

First, we prove the following

LEMMA 10. Given /ι(r)eS, there is a function hi(r)^S satisfying the follow-
ing (9.1)-(9.6).

(9.1) /ii(r)^/ι(r) (r^O) .

(9.2) hx(r) is a slowly varying function which is differentiate off a discrete set
{where Sf has no finite accumulation points).

(9.3) Vhj.ir) log r • oo as

(9.4)

(9.5) h[(r) is continuous off S', and for each r^S', h{(r—Q) and /zί(r+O) exist.

(9.6) // we put Λί(r)=Λί(r+0), then r/ίί(r)/{/z1(r)}3/2^0 as r — oo.

First, define Λ8(r) = Λ(r) ( r θ ) , A2(r)=max{/ι(r), /z(^Xlogr)"1} ( r ^
Then h2(r)(ΞS satisfies

(9.7)

(9.8)

and

(9.9)

h2{r)^h{r) (r^O),

Vh2(r) log r > oo ( r -> oo)

VΛ2(r)eS2.

Next, choose a positive sequence {rΛ}7 such that

(9.10)

and

(9.11)

Now, define hx(r

(9.12) Λ2(r)=

rn+i/rn^e2n (w = l, 2, 3, •••)

Λ2(r)^Λ(0)/2» ( r ^ r j .

) G S as follows:

'Λ(O) (O^r^Γi)

Λ(0)(logrn + 1-logrn)

2 7 i - 1 ( logr+logr n + 1 -21ogrJ

In view of (9.12), h^r^hφ)/!"1 for r ^ r n + 1 , so by (9.11)

(9.13) Λi
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(9.1), (9.3M9.5) are immediate consequences of (9.7)-(9.9), (9.12) and (9.L3).
Assume that rn^r<rn+1 (n = l, 2, •••). Then we have

p . r g Y H = = ft(0)(logrn+1-logrB) < A(0)
lK } 2^ 1 ( logr+logr 7 l + 1 -21ogrJ 2 = 2»- 1(logrn + ι-logr f I)

and Λ1(r)>A(0)/2n. Hence by (9.10)

Γ)^ ' '"^ i ^ ^ Ύ " J ' < ^ (r <r^r )

{h^v^VhiO) log(rn+1/rn) = A(0)(V"2)n V n = " n + ι Λ

from which (9.6) follows. It remains to prove that hx(r) is slowly varying.
Using (9.12), we easily see that for every fixed λ>\

log (rn+1/rn) . . ^

Ai(r) Iog(r n + 1 /r n )+log^

and

1 : > AjUr) > log (rn+a/r^+i) log(rn+1/r7l)-(log/^)/2

Ai(r) = log(r n + 2 /r n + 1 )+log^ logίr^+i/r,,)

These and (9.10) imply that hx{r) is slowly varying. This completes the proof
of Lemma 10.

Theorem 4 is an easy consequence of Lemma 10 and the following

LEMMA 11. Suppose that A2(r)eS satisfies (9.2)-(9.6). Put

(9.14) L(r)=exp\δ[r Vhjt)t-ιdt\
I J i >

with any fixed δ>Q, and define

(9.15) 0(r)=(logr)L(r) (r>l),.

Then, given εe(0, 1) and de(0, 1], ί/ẑ r̂  zs a function f{z)^fΐlo,8 such that

(9.16) T(r, f) = O(ψ{r)) (r -> oo)

(9.17) logm*(r,

Prΰ6>/. For given ee(0, 1), choose ε '>0 with the property that

(9.18) ( l - ε θ [ ^ - ^ - { π 2 + 2 ^ ^ + {̂ (2-̂ )}ε̂ >(l-ε)(7rV2Xl̂

By (9.14) and (9.15)

(9.19) W r ) Ξ r ( 5 / ( r ) = L ( r ) { l + M 1 ( r ) logr},
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so that

(9.20) ^ ) Ξ

From (9.2), (9.3), (9.6), (9.14) and (9.20) it follows that for each fixed λ>l

(9.21) \imψ2(λr)/ψ2(r)=l.

In view of (9.3), we have Vh^r) ^2r1(logr)-1 (r^r o >l). From this and (9.14)
we deduce that

< 9 - 2 2 )

Hence by (9.3), (9.20) and (9.22)

(9.23) φ2(r) >co (r-»oo).

Define P{z) and Q(z) by

(9.24) togP(*)=Γ Iog(l+z/t)dlφ1(t)'],
Jr0

log )=Γ log a-

Then, since (9.21) and (9.23) hold, the arguments in [1, pp 466-469] and [9, Proof
of Theorem 2] show that

(9.25) logm*(r,

and

(9.26) logM(r, P)^

From (9.24) we have

(9.27)

and

(9.28)

Now, put f(z)=P(z)/Q(z). Since T(r, /)gm(r, P)+m(ry Q)^\og M(r, P)+
\ogM(r, Q), we obtain (9.16) from (9.26), (9.27), (9.15) and (9.20). Using (9.16)
and (9.28), we have f(z)^mo,δ. We proceed to estimate logm*(r, /) from above.
By (9.23), (9.14) and (9.15)

-(l-2ε')-y-~^-} logM(r,

, 0,

φ(r)- log r < N(r, 0, P)<ψ(r)

N(r, 0, Q)<(l-δ)N(r, 0, P) .

(,76)(l+ε>2(r)+log2
^(r)-logr -
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We easily see from (9.20), (9.3) and (9.22) that

(9.30) (log rVfWrXε' (r^r o (e ')).

In view of (9.15) and (9.20)

(9.31) ^(r)/^(r)>(l-ε')o 2/z a(r) (r^r o (ε ')) .

Therefore from (9.25)-(9.27), (9.29)-(9.31) and (9.18) it follows that

logw*(r, /) —logm*(r, P)— log M(r, Q)

y} log Mir, P)-(l-δ)\ogM{r, P)

+ (2-<5)log(r+l)

} { r , 0,

+ (2-δ)log(r+l)

}{^)α+ε-yr)+iog1|
( 1 2 e ^ ^ } { 1 + y

+ (2-δ)log(r+l)

, 0, P)

which implies (9.17). This completes the proof of Lemma 11.

Completion of the proof of Theorem 4. Let de(0, 1] and /z(r)eS be given,
and let /ii(r)eS be constructed in Lemma 10 corresponding to h{r). Further,
let f{z)^fH0,δ be constructed in Lemma 11. Then we have from (9.17) that for
any ee(0, 1)

i *(

logra*(r,
^ o h ι {

so if we choose <3(>0) small enough, we deduce from (9.1) that

logm*(r, /)<3(1-Ai(r))g3(l-Λ(r)) ( r ^ r 0 ) .

This completes the proof of Theorem 4.

Finally, without proof we state the following result, which should be com-
pared with Lemma 11.

THEOREM 5. Let OG(0, 1] be given, and suppose that //j(r)eS satisfies (9.2)-
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(9.6). // f{z)^ΐyio,δ satisfies the growth condition'

TV. />=

with some ε>0, then for a suitable sequence of r->oo

logm*(r,

Although the proof is more complicated than the one of Theorem 1, they are
essentially the same.
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