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Introduction.

This paper is concerned with one aspect of the Nevanlinna theory of mero-
morphic functions in the plane C. We shall assume acquaintance with the
standard terminology of the Nevanlinna theory

T(r, f), mr, a, f), nr,a f), N, a, f), .
If f(z) is meromorphic, we define

M(r, l=sup| @],  m*r, )= inf | /()]

A nonconstant function f(z) of finite order p is further classified as having
maximal, mean, or minimal type according as

lim sup T'(r, f)/r?

is infinite, positive, or zero, respectively.

Now, let p and 0 be numbers with 0=p<1/2, 1—cos np<d=1, and let 72, ;
be the set consisting of all meromorphic functions f(z) of order p with the pro-
perty that there is an a<C satisfying f(0)#a and
(1) N(r, oo, f)<(1=08)N(r, a, f)+01)  (r — o).

'

The following result is well known.

THEOREM A. Let f(z)em, 5. Then given ¢>0, there 15 a sequence of r—co
such that

o _ _ ,
(2) log m*(r, f)> sin 70 (cos mp—1+0)1—e)T(r, f).

This result was conjectured by Teichmiiller [7], and Gol’dberg [4] obtamed (2)
in the weaker form: log m*(r, f)>K T(r, f), where K is a positive constant.
The determination of the exact value of K is due to Ostrowskii [6].
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At this stage it is convenient to introduce some notations. Let S be the set
consisting of all functions A() (r=0) which are positive, decreasing, continuous
and tend to zero as r—co. We further classify a function A(r)S as A(r)ES, or

h(r)eS, according as the integral gwh(t)t‘ldt is finite or not.
1

As is easily seen, we may restate Theorem A as in the following manner.

THEOREM A’. Let f(z)=m, 5. Then there 1s an h(r)=S such that
n¥( F ﬁf)" =0 —1-M1— h( )
(3) log m*(r, f)> $in 7p (cos wp—1-+0)1—h(rNT(r, f)

for certain arbitrarily large values of r.

In our previous papers [8], [9] we considered the following problem: Are
there any functions h(»)eS with which the estimate (3) holds for all f(z)emt,,s?
The answer was no at least for the cases p=(0, 1/2).

THEOREM B. Let p=(0, 1/2), 6=(1-cos zp, 1] and h(r)eS be giwen. Then
there 1s a function f(z)&m, ; such that for all sufficeently large values of v

* o _ _
(4) log m*(r, f)= —gﬁpf(cos rp—1-+0)1—h(r)T(r, f).
This implies that there are functions f(z)&m, ; with the property that
log m*(r, f)/T(r, f) tends to (zp/sin wp)(cos rp—1+0) from below arbitrarily
slowly through a sequence of r—co. For the proof of Theorem B, an important
role was played by slowly varying functions. A real-valued function L(») defined
for all »=0 belongs to the class of slowly varying functions (at o) if

(1) L(r) is positive and continuous in 0=<r <o,
and

(ii) &1{2 L(Ar)/ L(r)=1 for every fixed 1>0.

In [8], we showed the following results.
THEOREM C. Let h(r)ES, be a slowly varying function, and let p, 0 be given
as in Theorem B. Then there 1s a function f(z)em, ; satisfying

e =l ooy g, o)

for any >0, and the estimate (4) for all sufficiently large values of v, where

r(l—d)tanzp  2rp—sin2zp
costp—14+6 ' psin2zp

(5) Clp, 9)=

THEOREM D. Let h(r)eS,, p, and 6 be given as in Theorem C. Then there
s a function f(z)Em, ; with the property that
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T(r, f):o(r"exp {__ (1+e)1C(pf'5)“g: h;’-‘) dt}) (r — o0)

for any >0, and that for all sufficiently large values of r

* _Tp —
log m*(r, /)< Sin 7p (cos mo—1+0)1+h(rNT(r, f).
The situation discussed here complements the above Theorems B, C and D.
In §1, we state Theorem 1 (and Corollary 1) which complements Theorems B
and C. §§2-4 are devoted to the proof of Theorem 1. Our Theorems 2 and 3
are stated in § 5, the former complements Theorem D and the latter corresponds
to Corollary 1. The proof of Theorem 2 is given in §§6-7. In §8 we give two
counterexamples to Theorem 1 and Corollary 1. Finally in §9 we consider the

case p=0.
In what follows, we use the restrictions such as r=r,, n=n,, ---, immediately
after certain relations. It is understood that the quantities #,, n,, -~ which ap-

pear in this way are not necessarily the same ones each time they occur.
Whenever we wish to stress the importance of certain parameters, say «, D, ¢, ---
on which 7, n,, --- may depend, we write, for instance, r,=r,a, D), n,=
no(s), - .

1. Statement of Theorem 1 and Corollary 1.

Our first result is

THEOREM 1. Let h(r)€S,, and let p and 6 be numbers with 0<p<1/2.
l—cosmp<d=<l. If flz)em, ; satisfies the growth restriction -

wn 1o n=0(re e ot ) e

with some >0, where C(p, 0) is defined by (5), then the estimate (3) holds for a
sequence of r—co,

This result complements Theorems B and C. From Theorem 1 we immediately
deduce the following fact.

COROLLARY 1. Let h(r), p and 6 be gwen as in Theorem 1. If f(z)em, ;
15 of mean type, then the estimate (3) holds on an unbounded sequence of r.

Remark. Our argument in the proof of Theorem 1 yields the following
result.

Let p<(0, 1/2) and h(r)E S, be gwen, and let [(z) be an entire function which
satisfies the growth condition
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log M(7, f)zO(rP exp{ TE) nltan p— 5; hit) dt}) (r — o)

with some €>0. Then on an unbounded sequence of r

log m*(r, f)>cos wp(l—Ah(r))log M(r, f).

2. Auxiliary functions.

In this section we develop the necessary material to prove Theorem 1. Let
g(z) be a nonconstant entire function of order less than 1/2, all of whose zeros
are real and negative and such that g(0)=1. Assume that, corresponding to
g(z), there is a function H(z) in the whole plane satisfying the following con-

ditions.

(2.1) H(z) is a one-valued positive continuous function in the whole plane,
and is harmonic in |argz|<r.

(2.2) max H(re'?) is of order less than 1/2.
(2.3) log g(ry=o(H(—r))  (r — o0).

LEMMA 1. Let g(z) and H(z) be functions as we stated above. Then there
are two sequences {r,}5—o0, {a,}T—0c0 such that for |0|<=
H(”“"nl A _ H('_‘rn)

o aias 108 | glrae'®) | Zan{l—pr ~Ti )

The proof is quite similar to the one of Lemma 5 on [1]. This lemma will
play an important role in estimating N(r, a, f) from above and log m*(», f) from
below for a sequence of r—oo. To realize this, we first prepare the following
lemma.

(2.4) log | g(—7y)|—

LEMMA 2. Let A>1 and h(r)ES, be giwen. Then there exists a function
h(r)eS, satisfying the following (2.5)-(2.7).

(2.5) h(n=h(r)  (rz0).

(2.6) hy(r) 1s differentiable off a discrete set S’ (where S’ has no finite
accumulation points), and rhi(r) — 0 as r(&S’) — 0.

2.7) S:h(t)t“dt<AS:hl(t)t‘ldt—l-B (r>1), where B=B(A, h) 1s a positive
constant.
Proof. Put ro=1 and M=h(1). Let r, (n=1, 2, 3, ---) be the least positive
number with the property that A(r,)=MA-" Since h(r)ES,, Sih(t)t'ldt———oo,
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from which we deduce that
2.8) kﬁ]:lA'k I0g (74/7s-1)=00 .
Let I be the set consisting of all positive integers k satisfying r»,/r,-,=2, and
denote all the elements of I by %; (!=1) in order of increasing magnitude.
Then clearly k%)IA"’ log (71 /7r-1)<log 2;‘1 A~*=(log 2)/(A—1)=C, and so by (2.8)
k;}A‘k log (r4/¥r-1)=cc. This implies that #]=oco.

Now, define h,(#) by h,(0)=MA=*1, hy(ry,-))=MA*, hy(r,)=MA-*+1, and
by linear interpolation otherwise. Then k() belongs to S and satisfies (2.5).
Further, h.(r) is differentiable off a discrete set S'={r,,-;, r¢,}i=:. In order to
verify rhi(r)—0 as r(&S’)—oco, note that for r,,., <r<r,

0> 7hy(r)> — 75 MA (1= AR F03) [(ry = ,-) > —MA™ /(L= -1 /74,

and use the fact that »,,/r,,-1=2. It remains to prove (2.7). From the defini-
tion of hy(r), it follows that for r,,-.=r=r:, (j=1,2,3, )

2.9) S:k_hl(t)t'ldt_zST M 1=t dt
]1

%
k)1 A Te, Vi1 1

= f]l\/{] {rk]:krjkj: log( r:j-l )—l}> %{leg( 7’;:.-1 )—1}.

Suppose now that r,<r<r,+;. There are two cases to be considered.
Case 1. Assume that n=F%,—1 with some /. Then

2.10) S:h(t)t'ldtg kz:‘,]MA"”“ 10g (Fo/7 1)+ MA=" log (/7

<ASMA5 108 (1, /s, )+ ACM+MA™% log (r/r.)
P

Incorporating (2.9) into (2.10), we have

rk]

@.11) S:h(t)t"ldt§A§{S IO dt-+ MA™*3} + ACM

Thp -
kJJ

r

+4|

hl(t)t“dz<AS:h,(t)t“dt+2ACM.

Tky=1

Case 2. Assume that n#k;—1 for all / (=1, 2, 3, ---). Then

2.12) [ rrar= A S A tog (4, /ey )+ ACM
2

<AS:h1(t)t‘]dz+ACM.
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Thus (2.7) with B=2ACM follows from (2.11) and (2.12). This completes the
proof of Lemma 2.

3. Estimates on H(re?).

In this and the next section, the letter h,(r) denotes the function which is
constructed from A>1 and A(»)ES, according to the procedure in the proof of
Lemma 2. Define

3.1 Lr)=exp {5S:;z,<t)rldz}
with a positive constant 6. Since h,(t)—0 as t—oo, L(r) is slowly varying.

Our aim of this section is to give two estimates (See (3.6) and (3.7).) on the
function

(3.2) Hret')= kS

Sw 712 4-5)s? L(s) cos (6/2)
T

o sYA(s247242rs cos 6) ds  (r>0,101<m),

where pe(0, 1/2) is a constant and L(s) is defined by (3.1). For this purpose,
we need two properties of slowly varying functions.

LeEmMA 3. ([5]) Let L(r) be a slowly varying function. Then L(Ar)/L(r)—1
uniformly, as r—oo, 1n any interval A7'<A<A, A>1.

The following Lemma 4 is an easy consequence of Lemma 3.

LEMMA 4. Let L(r) be a slowly varying function. Then given a>0 and
C>1, there 1s a number Ry=R,(a, C)>0 such that y>x=R, implies

(3.3) L(y)/ L(x)<C(y/x)*.

Proof. From Lemma 3 it follows that for any A>1 and ¢>0 there is a
number r,=7,(A, ¢)>0 such that

(3.4) L(QAr)/L(r)<l+e,

whenever 2€(1, A] and r=r,. Now, if y>x=r, choose a<[0, 1) to satisfy
y/x=A™*% where m is a nonnegative integer. Then iteration of (3.4) gives

L()/ L(x)<(14&)m < (14¢)m+et=(14¢)(14¢)loe v/ -dog )1
:(1+8)(y/x)log(1+e)~(logA>—1 .

Hence, if we take A>1 and >0 such that 1+¢=C, log(l+¢)-(log A)'=Za, we
obtain (3.3) with Ry(a, C)=7(A4, &).

Now, we return to (3.2). From Lemma 4, it follows that for any fixed
as(0, 1/2—p), L(r)=o(r*) (r—oo). Hence H(re'?) provides a solution of the
Dirichlet problem with boundary values
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(3.5) H(—r)=reL(r) (r=0)

in the plane slit along the real axis from 0 to —oo. It is clear that H(re*?) is
an even function of #. Further, we have the following

LEMMA 5. Let p&(0, 1/2), A>1 and h(r)€S, be given, and let h(r)ES,,
L(r) and H(re'’) be defined as above. Then we have the following two estimates
on H(re'9).

(i) H(re'%) 1s a monotomic decreasing function of || for 0=]9| sm, mn
particular,

(3.6) Hret=H(—r) (r>0,10]| <x).
(ii) For €>0, there 1s an Ry=R,(¢) such that r=R, unplics
= H(re?) tanztp | 6 7® Ttanzp
an | (o 40 ) (1+5){pcosz R

Proof. (i) It is convenient to introduce the notation

_dg(r). _ 490
dlogr’ 7 Glogir

i(r)= (r>0)
when ¢(r) is defined for »>0 and these derivatives exist. Now, put ¢(r)=s0L(r).
Clearly

Oi(r)=re L(r){o+dchi(r)},
Do) =712 L(r)[{o-+6hy(r)} 2 +orhi(r)]
=re L(n{p*+orhi(n}  (r&S).

By redefining h,(r) if necessary for small », we may assume that ¢,(r)=0 for
reS’ (r>0). (In this case, we may assume that also this “modified” £,(») satisfies
the conditions (2.5)-(2.7).) Hence ¢,(r) is monotonic increasing, so the argument
in (1, pp461-462] shows that H(re'’) is a monotonic decreasing function of | 4|
for 0= 10|=m.

(i) Take a<(0, 1/2—p) and C>1 arbitrarily. Choose ¢’ >0 and D >1 with
the property that

3.8) | tog e 1-0) log (%fj—l Yt} <(s/2C ()
and
(3.9) gf_lt“f’“(Ca"‘t‘“.—log £ log (%{{;)dt <(e/2)Cp)
where

Clpy= T TENTO ()

pcos*mp o*
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Since log(14++/1)1—=/1)'~2+4/ T as i—0, ~log (1—1t)"! as t—1—, (3.8) and (3.9)
are possible.
Now, we write H(re'®)=1I,(r, 8)+1,(r, 6)+1,(r, ), where

r*(r+s)s? L(r)cos (6/2)
sY2(s?+r2+2rscos ) S

)

) _ 1 %(r+5)sP[L(s)— L(r)] cos (6/2)
Tlr, 0)= bis So st3(s?~4r2+2rscos 6) ds,
1 e rV¥(r+s)s?[L(s)— L(r)]cos (6/2)
Tslr, 6)= T Sr sY2(s* 2275 cos 0) ds-
Consider first 7,(r, ). Residue calculation gives
1 (= tPsind __ sin 4P
(3.10) 750 t2+2tcos @+1 " sin zf (=1<B<D.

Putting s=v1, we have
1 o0 tp+1/2+t‘0-1/2

" _ AN SN Sl e A
31D (7, 0)=gr)cos )| fiotcos 641 4

Incorporating (3.10) into (3.11), it follows that

o\ 1 1 .
(312)  Iytr, 6)=g(r)cos 7) Sind cos g (S0 0lo+1/2)—sin 0(p—1/2)

— 4(r) cos 6 p

coswp

In view of (3.5) and (3.12)

(3.13) S" Ii(r, 6) d6— tan o .

o H(—r) 4
Next, we estimate I,(r, §). It is convenient to introduce the function

p-1/2
(3.14) Gl(t, :9):5:—1!;(—_}_—%?177(114 (Oétél, 0§0<7T) .

1t is clear that G,(¢, #) is positive and increasing for ¢>0, and satisfies
tp+l/2

Putting s=v1, we have

(e ;
2 +2tcos +1

After (3.14) and (3.15) are taken into account, this becomes

I,(r, 6)= %(cos %)S:[um— L]
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- 5 G\t h(rt)L(rt)
(3.16) I(r, 6’)——7r"<cos T)S‘),—t___

(cos——) W(r )S Lirt) G(t, @)dt

G(t, 8)dt

=— 2 g cos 7>S: G (ft 2

+ ;_ 1(r)(cos —)S LL(rn—Lt)]—"—~ ([ 0)

This last integral requires further attention. From Lemma 3 it follows thai
3.17) [L(rt)/L(r)—1]| <&’ (D'<tED, r=ry=r,D, ).

Hence

(1; 8) +S0‘1 Gy, 9) dt}.

@18 ['rLe-Le01 8D s pinle|’ .

Finally, using (3.15) again, we deduce that

(3.19) [ =% ol 9 % ar={ (og:™ % !

and

(3.20) (7D gy (7 (og iy O,

On combining (3.18)-(3.20) with (3.16), it follows that

(3.21) I, 0)<—i;h1(r)¢<r)(cos %){(1—5’)5:(10@“)%

In order to estimate S:Iz(re”)/H(——r)dﬁ, we use the Fubini's theorem. Then

= Iy(ret?) 0 N -1 -1/2

(3.22) [ a0 <= nnfa—){ dogetorm
= cos(6/2) bl -1 ) 172
(0 oaroossr 40)te=], oseitenr

(Sn cos(6/2)

) 1
o t24+2tcos 641 dﬁ)dtf (rzro).

Further,
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T cos(@/z) . (7 cos(6/2) ! 2
(3.23) .So 1°+21cos 641 _Su (t+1)*—4tsin?(6/2) S (t+1)2—4tu® 9 —dpe 4%
I 1 1
S So( t+1—24/1tu + t+14+24/ 1t u )du
_ 1 1+
=T %8 (i VT )-
Substituting this into (3.22), we obtain

= 17, 6) 6 N -t I+vt
G20 | 0 <= hm{a-en| og e log (17 )at

—S:_l(logt‘l)tﬂ-‘ log ( ii:;;: )dt} (r=ry) .

We turn to f.(r, ). In this case we introduce the function

(3.25) Gutt, ﬁ):S:%du (0=1=<1, 0=0<x).
Clearly, G.(t, 6) is positive and increasing for >0, and satisfies
t1/2—p

In 747, €) we put s=ri"' and integrate by parts to get

(14-p)t-p-112
t?42tcos +1

0 e N PaGt DLt
=Zr (cos 5 )S t Ga(t, 0)dt

@2 0= (cos ) TLor )~ L0

5 o Lirt)
<—7r—r”/11(r)<0057>50 LGt )t

=2 pomin(eos ) O

+—Zrthr)cos TH)S:EL(n-w—L(r)jQ%(’;’—ﬁldt

Using (2.2€), we deduce that

2 1 Golt, 6) _(t -1 ,,Ht)t e
(2.28) J o= og e g o oy
and

Gg\t 0) ) D-1 <1+t)t p-1/2-a
. Gad, O A
(3.29) SO 41+n dr<- “ S "2—|—21‘ cos 0+1
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In view of (3.3), Lt )<CL() « (0<t=1, r=R(ea, C)). This and (3.17) give
fOr T%RO

z‘ﬁ)

330 (r20t9- L1 dt< Lin|c S Gult, 0) |- G(t 4 9) i}

t1+a

Combining (3.27)-(3.30), it follows that

5 7 N L (LFppe-ie
B3 L, H)<-2 hl(r)¢(r)(cos»—2-){(1+e)So(logt ) b e T

)

>
o 142t cos 01 (rzRo).

Using the Fubini’s theorem and (3.23) again, we have

Ls(r, 0) B A g oyt g (LT
Gz Hy d0< khl(r){(l%—e)go(logt et log (2 )t
CP e vt
+~ S g-o-1 1og(1 e )itp =Ry,
Hence from (3.13), (3.24) and (3.32), we obtain
= H(re') » 5 T OIS
@33 | oy 40 mar{+en] dlog - log ()t
, L 1+t N 1+4/1
m(l—s)S (log 1)1+~ log (5 = )dt+g (log £)¢¢~" log (> W,)dz
Coot 14t
+7S0 t=e log(l_\/,t,)dt}.
Since
I+x & le‘l
g =23y, oy O=x<l,
we easily see that
_— 1T
(3.34) So(logt He-i(eme—t0) log (5 \/T>dt
S r—v—Sl(logt‘l)t”‘a’z(t“"’—tv")dt
n:12n~1 0
oo 1 1 tn—3/2-p tn- 3/2+p
'ZECW—TSO{?—’I/Z—,; T a—1/210 Jat
« 1 1 1
"2,:2”25—’1'{@;,)—1/2)2 B (n+p—1/z>z}
i‘“{*ﬁl o1
o 2 ot 12 T (ntp+l/2y7)
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1l = 1 1

— o Sl i G-

Thus (3.7) follows from (3.33), (3.34), (3.8) and (3.9). This completes the proof
of Lemma 5.

Combining Lemma 5 with Lemma 1, we obtain the following result, which
will be used in the next section.

Assume that H(z) defined by (3.2) satisfies (2.3). Then by Lemma 1, (2.4)
holds. Using (3.6), we conclude that the right hand side of (2.4) is nonnegative
for |#|<z. Hence

log|g(rne'®)| _ H(rse)
log|g(—ry)| = H(—ry)

It follows from this and (3.7) that

(10 <m).

N(r‘nr Oy g) tan 7fp 3
log | g(—74)] o T mmEaCle)  (nznle)

for a suitable sequence {r,}—oo.

4. Proof of Theorem 1.

We are now in position to prove Theorem 1. We set

A g g M (A—2/00) __ P(2)
b FR=/@-a=c" iy =" 06

where ¢ is a nonzero constant and p is a nonnegative integer. It is convenient
to introduce the notation

(4.2) P)=I1(+z/la.l), Q@=II1(1—z/|b.]).
Choose ¢’>0 and A>1 with the property that
(4.3) (I4+eHA<l+e,

and then determine §>0 by
(4.4) 5'1=(l+5’)C(p, d).

Let h,(r)e S, be constructed in Lemma 2 corresponding to this A and A(r)eS.,.
Then from (4.1), (1.1), (4.3), (4.4), (2.7), (3.1) and (3.5) it follows that

(4.5) T, F)=T(r, /)+0(1)
—o(rf exp {—Z—Sl h(t)z-ldt}»)

=o(r*L(r)=o(H(—r))  (r—o0).
Since
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R o N P
log P(r)ero ——~<(tt’_£;)2 )

m————T(tt’zF) dt,

= N, 0, P)

P

dt=N(r, 0, P>+rj di

<T(, F)-f-rS

r

we deduce from (4.5) that
log P(r)=0(H(—7))  (r—o0).

Further, it is easy to see that H(z) satisfies (2.1) and (2.2). Hence we may
apply Lemma 1 to the pair of P(z) and H(z). Incorporating (3.6) and (3.7) into
(2.4) with g=P, we deduce that there are two sequences {r,}7—co, {a,}T—00
such that

N, 0, P) _tanzmp . .. , 2;mp—sin2zp
(4.6) log| P(—7,)| o 11+5(1+5) psin2rp hl(r>}’
@n  —log Praz—nog| P—rl +{ s <1lan.

Now, we estimate H(r)/H(—r). First, using (3.12), (3.21) and (3.31). we
easily obtain

Hr) 15, N P C PN Tl
49 5y < ~ 1+ | og ) de—{ (log t) -t}
1 5 , SRR 1 1

= wosap T AT Z (=1 {(n+l/2-—p)2 (n+1/2+p>2}

1 < , msin zp ,

~cosrp +o(l+e )hl(r>—cos2 p (r=Ry(e).
Next,

re (e toL(rt)

4.9) H(r)= _7?—50 m dt

dt

G 7o (= DL~ L))
=z So g Y S A0

1 po (1 pomire
cos o —750 14t

>(r) CL(r)—L(rt)ldt.

From (4.9) and (3.17) it follows that

H(r) 1—¢’
H(—r) = cosmp

(4.10) (r=Ri(").

Substituting (4.8) and (4.10) into (4.7), we have

1D —logP<rn>;—{c LS () SRR

p'—’n
0S T cos® o }logl (=ral
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1—coszp

> ’
TS cos 7p a, (nzne)).
‘We proceed to estimate log m*(r,, F). By (4.2) and (1)

log Q(—r)zrgj%%;&dt

S (1—8&)N(, 0, P)— plogt—i—O(l)
0 (t+7)?

=(1-0d)log P(r)—plogr+0(1)  (r—o0),

=7

and so we deduce from (4.11), (4.1) and (4.2) that for r=r, (n=n,)

4.12) log m*(r, F)=log| P(—7)|—log Q(—-r)—-p logr—0O(1)
log Pr) 0@ }
log| P(—7r)|  log|P(—7)]

+5(1+e 9—-——”‘“ "L gy}

=log| (=) {1-(1-0)

zlog1P<—r>1[1—<1—5>{

~ O(as) ]
log| P(—7)|

Since log m*(r,, F)>0 for n=n,, m(r,, 0, F)=0 (n=n,). Hence by the first
fundamental theorem T(r,, F)=N(r,, 0, F)+0(1) (n—o0). It follows from this
and (4.6) that for r=r, (n=n,)

cos 7 p

@13) T, NETG, F+OMENG, 0, F)+0(1)
tan 7p 5 5 N2mp— sm2n-p
<R 0g | P {1 01+) LR )
o)
*Togl Pl |

Recall that @,—co as n—co and J is defined by (4.4). Then we obtain from
(4.12), (4.13) and (2.5) that for r=r, (n=n,)

log m*(r, f) _ logm*(r, F)—0() S _ TP

T, f) — T(r, f) sin 7

; (cos mp—1+0)(1—h,(r)

o _
<in s —(cos zp—14+0)1—h(r)).

This completes the proof of Theorem 1.

5. Statement of Theorems 2 and 3.

Our second result complements Theorem D.
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THEOREM 2. Let h(r)€S, and let p, 6 be numbers with 0<p<1/2, 1—
cos tp<o=l. If f(z)em, ; satisfies

r h
G.1) T(r, f):O(rf’exp{~ (1—e>1c<p 5 S Ez) dz}) (r — o0)

with some €>0, then on a sequence of r—co,

e * o 1S
(5.2) log m*(r, f)> sin 7p (cos wo—1+0)1-+h(r)T(r, f).

For h(r)eS, we have the following result, which should be compared with
Corollary 1.

THEOREM 3. Let h(r)€S; and let p, 0 be given as in Theorem 2. Then 1f
fyem, s is of minimal type, the estimate (5.2) holds on an unbounded sequence
P q

of r.

We remark that Theorem 3 is an improvement of Theorem 1 in [8]. The
proof of Theorem 3 is similar to the one of Theorem 2, so we will prove only
Theorem 2.

6. Two lemmas for the proof of Theorem 2.

This and the next section are devoted to the proof of Theorem 2. 'The
following lemma parallels Lemma 2 in the proof of Theorem 1, and will be used
also in §8.

LEMMA 6. For each a>0 and h(r)€S, there 1s a function hy(r)ES such that

6.1) hy(r)zh(r) (r=0),

6.2) hy(Ar)/ hy(r)=(22)~« (rz0, 2>1),

while

(6.3) S:h1<z>z-1dz§2“5;h(z>rldt+B (r>1), while B=B(a, h)

1S a positive constant.

Proof. We first put h,(r)=h(0) for 0=r=1, and we define h,(r) for I,=
{r;2°n<r<2™1} (n=0, 1, 2, ---) by induction. Assume that h,(r) is determined
for »<2". Then if h,(2™)<2%h(2™), we set h,(r)=h,2") (rel,), and otherwise
h(r)=h,2"){1—-2""1—2"*)(r—2")} (rel,). Clearly hy(r)=S and (6.1) holds. To
see (6.2), we note that h,(2r)/h,(r)=2"% (r=0), and appeal to the reasoning as
in the proof of Lemma 4. It remains to show (6.3). There are three cases to
be considered.
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Case 1. Assume that n satisfies h,(2%)<2%h(2"*"). In this case A (t)=h,(2")
<2%h(t) for t<1,, so we have

(6.4) [ mrar<ee| noear ver.

Case 2. Define J,={n;2*h(2"*)<h,(2")<2%h(2")}. If ne/, then h(t)=
h.2™) for tel,, h(t)=h,2™{1—2"""Y(1—2"*)(r—2"*")} for t=I,,,. Hence

(6.5) ZS h(Ottdt= X hy(2") log2= iZ‘"“h(O) log2=B/2.
nET I, nedy n=0

Case 3. Define J,={n; h,(2")>2h(2™)}. In this case h,(t)="h,(2") {L—2""(L —
2-)(r—2™)} for t=l,. Hence

(6.6) »d S m(OFdi< 3 127 log 25 B/2.

nEJg JIp
On combining (6.4)-(6.6), we deduce (6.3). This completes the proof of Lemma 6.

Let p and M’ be numbers with 0<p<1/2, 0<M’'<1/2+p. For >0, we
choose ¢'>0, a=(0, 1/2+p—M’) and D>1 with the property that

6.7) 2e(1+){ L e llog(Hy )dt
<S;(log =10 log ii://; Ydt+(e/4Ci(p)
6.8) 2oe(t—e)|' A e tog (T )ar
S(logt Ht-e- 1log( +\/t dt—(e/4)Ci(p),
(6.9) [T e (itjé)dt<(e/4)cl(p)y
and
(6.10) i, e og (TR dr<e4Cp),

where C,(p) is defined in §3. Inequality (6.10) is immediate since log {(L++/7)
(I1=A/t)}~2+4/1 (t—0) and p—1—a—M’'>—3/2. To see that a pair of ¢’ and
« may be chosen to satisfy (6.7), we observe the following facts (i)-(iii).

(i) For any fixed ac[—1/2, 1/2], the function

=1, 1+4/1

. te log(l_\/?)
is Lebesgue integrable in (0, 1), here we interpret (¢t *—1)/a for a=0
as logt-t.

gt, a)=
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(i1) For any fixed t=(0, 1), g(t, a) is a continuous function of a.
(iii) For any es[—1/2, 1/2]

lglt, )| =g(t, 1/2).
It is well known that under the above conditions (i)-(iii), the function G(a)=
szg(z, a)dt is continuous in [—1/2, 1/2], in particular G(a)—G(0) (a—0), from

which (6.7) follows at once. Also, the existence of a pair of ¢’ and a (« and D)
satisfying the inequality (6.8) ((6.9)) is shown analogously.

Now, we give a lemma, which corresponds to Lemma 5 in the proof of
Theorem 1.

LEMMA 7. Let p<=(0, 1/2), >0 and h(r)ES, be given, and let 6>0 be a
number such that M'=6h(0)<1/2+4p. Choose ¢'>0, a<(0, 1/2+p—M’) and D>1
so that the above inequalities (6.7)-(6.10) hold. Further, let h,(r)eS, be con-
structed in Lemma 6, and define H(re'?) by (3.2) with

6.11) L(r)=exp {—Egrhl(z‘)t‘ldt} .
Then H(re'?) satisfies
6.12) HoezH(—r) (>0, —z<0=7),
and
= H(re') tan 7 ) -
613 | a0 T (10 Gk ZR(e)).

Proof. The proof of (6.12) is quite similar to the one of (3.6), so only the
proof of (6.13) need to be given. We define G.(r, §) (k=1, 2) and I(r, )
(j=1, 2, 3) as in the proof of Lemma 5. (Note that L(») is defined by (6.11) in
place of (3.1).) For I.(r, 8) we have (3.12). Consider now [I,(r, ). It is easily
seen that

) 6 N\(t h,(rt)L(rt)
1.7, 0)—7rﬁ<cos T)So_— SR G, 0)dt
By (6.2), h;(r1)=2%h,(»)t=« for 0<¢t<1, so
(6.14) 17, )= -2-20hy(ryre Lir)(c s—g)g’cz(t@ dt

0 o , g \(r Lrt)—L(r)
220 ()7 cos T)SO——T— Git, 0)dt,

and the last integral invites further attention. In view of (3.17) and the fact that

L('r‘z)/L('r):exp{55:h](t)t‘ldt}gt‘s’”(”’:t"”' 0<t<1),
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(6.15) SO—LL”%L—QGIQ 0)dt
<L(r>{e'5: G;Eé&‘f’rldwg""%ﬁ;g? di}  rzre, D).
Substituting (6.15) into (6.14), we have
6.16)  Lyr, 49)<-% 2hy(r)re Lir)(cos —){(1+ '>Sn G;(f;f) dt
o2 )
< Lo Le{ar ] T wro- v RO
o e it )
Using the Fubini's theorem, we deduce from (3.23), (6.7) and (6.10) that
O a0 D amiofas o (L
(T
i:’r— m(){{ Gogt-1yee- llog(H‘/ )dt-+(e/2C )}
(r=r).
We turn to I,(», ). In view of (6.2) and (3.17)
6180 Iy(r, B)=— > " ro((cos - )S: hl(”i)tLL) Galt, B)dt
<-i;2-ahl(er(r)<cos %)S t(f %) 4
+ :’r “hy(r)re(cos 7)S(}—Lir%)--cz(z, 0)dt
<—L;2-ah1(r)rﬂL(r)(cos %)( /)So tﬂ  0) 4
+ %2‘“h,(r)r"L(r)(cos %)S:'lf(;;(f_’f) dt
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1—¢* /2
+—2 “hy(r)ro L(r )S (L fﬁ;%ﬂ

(r=vo).

dt

Again we use the Fubini’s theorem to get

o N RS B N E v
|y do <=2 hna )| = rrtiog (1 V)t
I N T Ve 3
+= 2t log (17 )de

so we deduce from (6.8) and (6.9) that

) )

619 72800 ap<—Zonoff tog-e-e-tog (YL

Jdi—(e/2)C o)}

(r=zry).

Thus (6.13) follows from (3.13), (6.17), (6.19) and (3.34). This completes the
proof of Lemma 7.

7. Proof of Theorem 2.
Define F(z), P(z), Q(z), P(z) and Q(z) as in §4, and put
(7.1) 6'=(1—¢/2)C(p, 8)

Let a=(0, 1/2+p), to be determined later. Since we are interested in results
for large values of », we may assume that 2(0)<(1/2+4p—a)5~' by modifying
h(r) if necessary for small values of ». Now, choose a>0, ¢’=(0, ¢/2) and D>
such that

(7.2) 22 <(1—¢/2)(1—e)t,
7.3 ge+en{ T T L ( og e di+(s/8)C
7.3) 1+, i< og ) £ diH(s/81Cp)
a D-1 tp-!/2-a—M’
(7.4) - i o So T dt<(/3Cp)
P o-1/2 pmo-le
75  2%(l—¢ )501—0}1? dr>§ (log -9 """ 4t —(e/3)C(p),
and
D-1 l_ta L‘ p-1/2
(7.6) | <o,

where
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_ w®sinmp
Cilp)= cos®mp

Next, let h,(r)e S, be constructed in Lemma 6 corresponding to this a and A(r).
Then from (5.1), (7.2), (6.3) and (6.11) it follows that

(7.7) T(r, F)=o0(r*L(r)) (r — o).

As we saw in §4

log P(}’)gT(r’ F)+r§w'T(tt’2F)

dt,

so we deduce from (7.7) that log P(r):o(rPL(r)):o(H(—r)) (r—oc0). This shows
that we may apply Lemma 2 to P(r). Upon incorporating (6.12) and (6.13) into
(2.4), it follows that there are two sequences {r,}T—oo and {a,}$—oo such that

N, 0, P) _sinzpy . . 2mp—sin2np i
T8 gl BT < xp A=) L hra} (=)
and
5 H(ry,) A H(r,)
g — ! _ _ _
7.9) log Plr,)z— gy o5 08| P—r) au] oy =1}
Here we need to estimate H(r)/H(—r). In view of (3.12), (6.16) and (6.18)
Hr) =1 4 N O e A A
H(—r) <7cosn'p T h](r){Z d 6)80 a t+l di
" , ll_a_l tp-l/Z e D-1 l_ta t—-p-l/z
—2ee| R 1

1 1 tp-l/2—(x—M’
a+M’So’ i+1 "”}

After (7.3)-(7.6) are taken into account, this becomes

Hn 1 5y =Sinze _
H(—7r) ~ cosmp ol—e/2) cos*7p hy(¥) (r=r,).

—u (r=vroa, €, D)).

(7.10)

On the other hand,

N r*L(r) _rf(e L(rt)— L(r)
Hr)= cos 7 p T So tiE-e(t+1) dt
> re L(r) _isl Ll(n‘_)—L(r) dt,

cos Tp T Jo V2 P(t+1)

so from (3.17) we have

_H() 1 So-l 1

o _ > ’
H(—7) >{1=¢) cosmp Jo  1MEe@E41) i r=RdD, €).

(7.11)
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We remark that (7.8)-(7.11) correspond to (4.6)-(4.8) and (4.10) in §4, respec-
tively. Hence similar calculations as in the final part of §4 give

log| P(—7,)] 5(1—d)z sin zp
* > =2 - "' — —
(1.12) logm(ry, )z 2R (cos g 1+0){1+ oo Ltd)cos s
__Ola)
A=/ T pte b>0 iz,
and
tanmp 5 %1, 2mp—sin2zp
(7.13) T(r,, f)<~*~—ﬂp log | P( rn)l{l a(l—¢") Tosnoze hy(72)
_,,,;_OALL_}
- log | P(—74,)]

Thus (5.2) follows from (7.12), (7.13), (7.1), (6.1) and the fact that ¢’<e/2. This
completes the proof of Theorem 2.

8. Two counterexamples to Theorem 1 and Corollary 1.

ExaMPLE 1. Let e<(0, 1) and h(r)ES, be gien, and let p, 0 be numbers
with 0<p<1/2, 1—coswp<0=1. Then there is a function f(z)Em,,; with the
property that

T(r, f):o(r” exp {

T

) oo,

and that for all sufficiently large values of v the estimate (4) holds.

EXAMPLE 2. For given p€(0, 1/2), 6€(l—cos zp, 1] and h(r)ES,, there s
a function f(z)Em,, ; which is of mean type and such that for all sufficiently large
values of r the estimate (4) holds.

Since the proofs of the above two examples are essentially the same, we prove
only Example 1.

Let >0, p=(0, 1/2) and h(r)eS, be given, and let § be a positive constant
such that M’Egh(0)<l——p. Choose a>0, ¢’>0 and D>1 with the property that

8.1) 252 1;” l%dt—zagz f_;“l %%dt>—(l+26/3)%%p“y

8.2) <1+s'>S:<1ogz-l)%dt—u—s’)ﬁ(loy—l) tfill.dt<—(l—e/4) fgi_iozsfp& :
(8.3) i H;t—)lﬁ,,— dt<<s/4)%p’# :

(8.4) Sj_l(logt")%dtds/@ir;%s—:pi,
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(85) _gi__<_1__ti/_2_,
p—a P
8.6) l1—e'—D-*>1—¢/2,
R R S P : S
’ (n—l—p)2 = (n+1—p)n+l—p+a) iz (n+p)*
>(1—e/4) o
oo Dp+M -n-1 2

®8) iZ (n+1—p)n+1—p—M") <165 sin®zp '

0 1 o 1+¢’ o De+M -n-1
8.9)
(8.9 Z(p+n)(p+n —a) T A 1=y T At 1= p)nt1—p—M)

<(14-¢/4) sintrp

To verify that an «>0 may be chosen to satisfy (8.1), we may note that

1—z ~ e —
—Q logt™! (a—0),

— logt™ (a¢—0)

and

1 t—l. _ 3 —1) 1 -— L
S(logt ) 1+t dt=—%(=1) {(rH—p)2 (n-H“P)z}

?cos o
sin®*mp

[n the same way, (8.7) is immediate from the facts that

> 1 = 1
Bl pnil-pta) & mii—pr @70
and
d 1 1 r?
Eo{ (n+p) +’(r}+1—p)2 }_ sin*zp
Now, let h,(r)S, be constructed in Lemma 6, and put
Lir=exp {5 g h(o)dt]
Further, we choose 7, so large that »=r, implies
(8.10) 2 log r+2/p+2log 4+1<(c /3)5”—“’§ﬂ’ hy(r)re L(r),

8.11 p L(r)+p?log r<(e/2)5h\(r)re L(r),
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RS S . T _ T
@.12) 2 {r nz=)0 (n+p)n+p—a +2n=1+‘tv11f—‘1(n+p)(n+p a} (/)sm np

2

813 (1 L SRS D S b
®13 ( +E){ nzjo (n+1—p)* + n=1+%:'<-11w(;t+l—p)2}<(/ sin?; rcp ’

2

(8.14) 214+K+¢") log r+2/p < (/45— ———h,(r)r* L(r)
sin®zp

where K (>1) is a positive constant.
(8.10), (8.11) and (8.14) are possible because

log
(8.15) ) 0 (r — c0).
To see this, we use (6.2) with a=p/2, r=1. Then we have h,(r)=2-"2h,(0)r-r7?
from which 7°h,(r)=0(r?’?) (r—o0). This yields (8.15).
Under the above preparations, we prove the following

LEMMA 8. Let ¢>0, p=(0, 1/2) and h(r)&S, be given, and let 6 be a positive
constant such that M'=G5h(0)<1—p. Further let a>0, &' >0, and D>1 be chosen
to satisfy (8.1)-(8.9), and let h,(r)ES, be constructed in Lemma 6. Define P(z)
as a canonical product with only negative zeros whose zero-counting function
n(r, 0, P)=[r*L(»)]. Then we have for r=rye),

(8.16) IN(r, 0, P)~(1—ih1(r)) reL(r) '<ei2 h(Pre L(r),
o 0
N ﬂCOSi?.‘p 5 TEC0S TP

8.17) |log P(") = T iy nnfre L) <e St M LP),
and

0y | FTCOSTO =~ i 0
(8.18) lloglP(re )| { inae " sinems hl<r>}r« L(r)!

<eb —~vh,(r)r”L(F)
Sl

where @(r)=m—r~% with a positwe constant K>1.

Proof. We remark that if h,(r) is slowly varying, the estimates (8.16)-(8.18)
have already been proved by Barry [2, pp55-58]. In what follows, only one-
sided inequality of (8.18) will be proved, since the other inequalities are more
easily seen. The branch of log P(z) in |argz| <z for which log P(0)=0 may be
represented by Valiron’s formula :

= [P L@)]

log P(Z):S:: log (1+Z/f)d[t”L(f)]:ZS0 Ht+2) dt.

Then
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(=L@ . (= t°L@) [P L(t)]—tP L(2)
(8.19) logP(z)—zSI ~—~t(t+z) dt—zgo ardite S Sy

rif {L(t)— L(r)}

<t+ y itz I s &
w 0 {L(t)— L(r)} 1 L)

ZST’ Ht+2) dt_zgo Hi+z)

zL(r)S

[t L=t L@)
o it WSRO Ot L, 0, say.
Here we take §=60(r)=r—r ¥%. Elementary calculations give

820)  Re Ji(r, )=mreL(r) On Pﬁ are L(r )“f”” o)  (r— o),
(8.21) [ Jir, )1 <2/p  (rz2),

(8.22) [Js(r, )| =2(14+K+¢')logr (rzro(e’)).

Next, we proceed to estimate J,(r, ). Clearly
e (z/(t+2))=Re g}o(—l)”(t/z)": nz°=°30<—1)n<t/r>n cosnf  (t<r),

so we have

(8.23) Re J(r, 6)= Sf” HL(t)— L(r>}2( D™(t/r)" cos nfdt
:7»PS:sP—1{L(rS)~_L<r)} 2:0(——1)”3%05 néds
=y i:‘,o(—l)" cos nﬁS:s”'”" {L(rs)—L(r)}ds

%—ﬂitsf’*"“h](rs)L(rs)ds

Ms

—ore

I
<

n

8

=—45re Z=) p_{l_

Sls“""hl(rs)L(rs)ds

Qn
3
1M

+orf

t(——l)"cosnﬁ U pinea
e Sos hy(rs)L(rs)ds

=—8rel (r)+rely(r, 6), say.

The estimates of I;(») from below and I,(r, ) from above are derived by the
same way as we used in §6:

®24) LNz z“j fulr) {ng s 1ds+5 e+ =1 {L(rs)— L( r)}ds}
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Lo 200 2o, o,

(n+p)  (n+p)
1—(—1)"cos nf
p+n

> k() L(r) né){(l-s’)

(8.25) L(r, )= 3 L) hutr)serrds

1

0

l—(——l)"cosnﬁ_

(p+n)pt+n—a)’

This last term requires further attention. Since §=r—r %, we deduce that
[I—(=1*cosnf|=|1—cosnmwcos(n—nrX)|=|1l—cosnr X |<nr£<p-! for n=
[7%-1]. Hence

S2MLN E,

o 1—(—1)"cosnd 1 k-0 1
8.26 L P < S S
(8.26) 7z2=0 (n+p)Xnt+p—a) = r iz (n+p)nt+p—a)
+2 3 !

n=Er§’1]+1m—7aj ’
Upon incorporating (8.24)-(8.26) into (8.23), it follows that

) 1 ’~ D—n—p
=0 (n+p)° _n?:‘o (n+p)? }

B.21)  Re J(r, O)=—dre Limn{1-¢)

. 1 rK-13 1
+5r-"L(r)h1(r)2“{7 DI G

z 1
2 T N TN .
* ﬂ=ET§‘1]+1 (n+p)n —I—p——a)}

The estimate of Re Ji(r, @) is similar to the one of Re J,(», #). The correspond-
ing inequality to (8.27) is
» 1

828 ReJi(r, ) —3re L2 B g ey

1 rE-13-1 1
P! (ntl—p)

o 1 } oo De+H-n-1 ]

n=[§{'1] (n+1—p)* nz=:0 (n+1—p)n+1—p—M)

After combining (8.20), (8.21), (8.22), (8.27) and (8.28), we deduce the one-sided
inequality of (8.18) from (8.7), (8.8), (8.12), (8.13) and (8.14).
Further we need the following lemma due to Edrei and Fuchs [3].

+5r”L(r)h1(r)[(l+s’){

+2

LEMMA 9. Let f(z) be meromorphic in the plane. For a measurable set
IC[0, 27), define

mir, f, I):—Z—ln—gllog’flf(re”)fdﬂ (r>0) .
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Then
1

m(r, f, N=22T(2r, f)|1|{1+log+|—T},

where |1| 15 the Lebesgue measure of 1.

We are now able to construct a function f(z) which satisfies the conditions

as stated in Example 1.
We first choose >0, §>0, and ¢’>0 in turn as in the following manner :

2¢(1—e)<l, 1<Cp, 0)d<27*(1—e)™t, 26C,(p, €)'’ <C(p, d)6—1,

where Cy(p, 0)=n(1+(1—0) cos xp)/ {sin mp(cos rp—1+0d)}+1/p. Since we are
interested in results for large values of », we may assume that A(0)<(1—p)i~'.
We next choose a’=(0, a, ¢”>0and D>1 with the property that (8.1)-(8.9) hold
with «, ¢’ and e replaced by «’, ¢” and ¢/, respectively. Let h,(r)=S, be con-
structed in Lemma 6 corresponding to «’>0 and A(r)=S,, and put L(r)=

exp {5S:hl(t)t"1a’t}. Now, define

P(z)=I1(1+z/a,), Q)=II(1—z/b,) (a, b,>0),

where n(r, 0, P)=[»?L(r)] and n(r, 0, Q)=[(1—0)|r*L(r)—1|]. Then we will
show that f(z)=P(z)/Q(z) is one of the desired functions.
Using (8.17) and (8.18), we have

log| f(re'™)| zlog | P(re’’ ™)| —log Q(—1)>0  (r>Ry).

Hence by Lemma 9

T

1 N 1
(8.29) mir, 0, f)= TSO(r) log W a0

7

<44T(2r, 1/f>(rr—0<r>){1+10g“"lam}

T—

<44T2r, fir ¥{1+Klog r} (r>Ry).

Since T(r, f)=m(r, P)+m(r, Q)<log M(r, P)+log M(r, Q), we deduce from (8.17)
that

(8.30) T(r, fl=o(r")  (r—c0),

for any fixed p’>p. In view of (8.29) and (8.30) we have ni(r,0, f)=0(1) (r—o0).
From this and (8.16) it follows that

(r, N=T(r, 1//)=N(r, 0, f)+m(r, 0, )

S:h(z)t-ldt

< IO 5“;‘” m}=0w Lin=o(rresp{ % o).
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Further,

Ner, 0, fy=Nr, 0, @)= HL=ALLO= 4

égr (1—5)(tﬂtL(t)—1) dr=(1— 55 [trL)] L(t)]

:(1'—5)N(7’, 0.' P):(l_a)N(ry 0’ f) .
It remains to show (4). Using (8.17) and (8.18), we have
log m*(r, f)<log|P(re!?™)| —log Q(—7)

n(cos 75‘0—1+5) . o’ A "Nl
<= =~ sy (A= )=+ea 5) cos zphs(r)}

Xre L(r)+0(1)

(cos mp— 1+5){1—

1—
5in 7o [ (I—0)coszp

—26’(1+(l~5)cosnp)](cosnp—l—!—é)"hl(r)}r"L(r) (*>Ry).
On the other hand, by (8.16)
N(r, 0, f)>m{1—-(l+€’)—§—hl(r)} (r>R)).
14 p
Thus

log mtr, /) G
T(r, ) Slnn ~(cos mp— 1+5)‘{ sin 70 [1—(1—d)cosmp

—2¢/(14-(1—0) cos 7 p)](cos zp—-1+5>-1}{1+(1+2e')—%hl<7>}

< m—»(cos 7o—1+8){1—(Clp, 8)—2¢'Ci(p, 0o h:(r)—O(h¥(r)))

o
sin

5 (cos wp—1-+0)1—h,(r))

< TP (cosmp—148)1—h(r)  (r=r.).
sin wp

9. The case p=0.

In this section we simply make mention of the case p=0.

The following
result corresponds to Theorem B in the cases p<(0, 1/2).

179
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THEOREM 4. Let 0<(0, 1] and h(r)eS be gwen. Then there s a function
f(z)em,,; such that for all sufficiently large values of »

log m*(r, f)<o(1—h(r)T(r, f).
First, we prove the following

LEMMA 10. Guven h(r)ES, there is a function h,(¥)ES satisfying the follow-
g (9.1)-(9.6).

9.1) hrzh(r)  (r=0).

(9.2) hy(r) 1s a slowly varying function which is differentiable off a discrete set S’
(where S’ has no finite accumulation points).

(9.3) Vh(r) logr — 00 as r—oo.

©.4) Vhy(r)€S,.

(9.5) hi(r) 1s continuous off S’, and for each r<S’, hi(r—0) and hi(r+40) exist.
9.6) If we put Ri(r)=h,(r+0), then rii(r)/ {h,(r)}**—0 as r—oco.

Proof. First, define h,(r)=h(r) (r<e), hy(r)=max{h(r), h(eXlogr)™} (r=e).
Then h,(r)=S satisfies

9.7 ho(r)Zh(r)  (rz0),

9.8) Vhy(r) logr — o (r > 0c0),
and

9.9) Vhy(r) €S,

Next, choose a positive sequence {r,}T such that

(9.10) Fre/taze®  (n=1,2,3, )
and
9.11) ho(r)=h(0)/27 (r=va).

Now, define h,(r)S as follows:

h(0)  (0=Zr=ry)

(©.12) hi)=1" p(0)(log 7ns1—log r,)
2" Ylog r+log 1 —21og vy,)

In view of (9.12), h(r)=h(0)/2" for r=7,41, S0 by (9.11)
9.13) hy(r)Z ho(r) (r>0).

(FaSrEras) .
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9.1), (9.3)-(9.5) are immediate consequences of (9.7)-(9.9), (9.12) and (9.13).
Assume that 7,<r<r,s; (n=1, 2, ---). Then we have

h(0)(log ¥y, —log 7,) < h(0)
2" Ylogr+logr,s1—2logr,)? = 2" Y(log #pe—10g 70)

and h,(r)>A(0)/2". Hence by (9.10)
—rhi(r) 2V 2) -2
{Pa(r)}* v h(0) log (rass/7a) = h(O)(V 2)"

from which (9.6) follows. It remains to prove that 4,(») is slowly varying.
Using (9.12), we easily see that for every fixed A>1

0< —rhi(r)=

(FaZr<rasl),

0<

hiAr) _ log (7y+1/72)

<
hi(r) = log (#pe/72)+log 2 (FaSr<rps/A)

1>

and
hi(r) log (¥ n42/Tas1) log (rp+1/7n)—(log 2)/2
hy(r) = log (rnie/Tasr)+log log (ras1/74)

(Fret/ASr<rps).

1>

These and (9.10) imply that h,(r) is slowly varying. This completes the proof
of Lemma 10.

Theorem 4 is an easy consequence of Lemma 10 and the following

LEMMA 11. Suppose that h,(r)ES satisfies (9.2)-(9.6). Put

(9.14) Ln=exp {3 v At}

with any fixed §>0, and define

(9.15) d(r)=(log »)L(r) (r>1).

Then, given e¢<(0, 1) and 0<(0, 1], there 1s a function f(z)EM,, s such that
(9.16) T(r, N=0((r)  (r—0)

and

(9.17) log m*(r, f)<0—(1—e)(1—3/3)(n*/2)5*h\(r)  (r=role)).

Proof. For given ¢=(0, 1), choose ¢ >0 with the property that

2 5 2 5 2 l ’
(9.18) (1—5/)[%“%_{”2+ 2(125/) + lti

By (9.14) and (9.15)
(9.19) oM =rd’(P=Lr) {1+ h,(») log 7},

(2—5)}8’]>(1—s)(7r2/2)(1—5/3) )
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so that

O20)  GlI=rgilr+0=3h(r) log 7L 1+ F oy |

From (9.2), (9.3), (9.6), (9.14) and (9.20) it follows that for each fixed A>1
9.21) 11}}01 Po(Ar)/Pa(r)=1.

In view of (9.3), we have VA,() =26-'(log7)™! (r=7,>1). From this and (9.14)
we deduce that

(9.22) L(x)>exp {S—L‘%gt dt}:( l:)"ggrz ) r=r).

Hence by (9.3), (9.20) and (9.22)
9.23) Po(r) —> 0 (r—00).
Define P(z) and Q(z) by

(9.24) Jog P(z)=SZ log (1+2/0)d[¢()],

log Q(2)=S: log (1—2/H)d[(1—8) | gu(t)—1]] .

Then, since (9.21) and (9.23) hold, the arguments in [1, pp 466-4697] and [9, Proof
of Theorem 27 show that

(9.25) log m*(r, P)<‘{1—(1—25’)L2, (1)

7 B M P) rzne),

and
(9.26) log M(r, P)=N(r, 0, P)+(x%/6)(1+¢")¢s(r)+log 2 (r=ro(e”)).
From (9.24) we have

(9.27) (r)y—logr <N(r, 0, P)<¢(r)
and
(9.28) N, 0, Q)<(1—0)N(r, 0, P).

Now, put f(z)=P(z)/Q(z). Since T(r, f)<m(r, P)+m(r, Q)<log M(r, P)+
log M(r, Q), we obtain (9.16) from (9.26), (9.27), (9.15) and (9.20). Using (9.16)
and (9.28), we have f(z)em, ;. We proceed to estimate log m*(», f) from above.
By (9.23), (9.14) and (9.15)

(m*/6)(1+e")s(r)+log 2 o (®/6)1+2e")o(r)
&(r)—log r (I1—¢")g(r)

(9.29) (rzro(e”).
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We easily see from (9.20), (9.3) and (9.22) that

(9.30) (logr)/o(r)<e’  (rzri(e).
In view of (9.15) and (9.20)
(9.31) o)/ P(r)>(A—=e)5h(r)  (r=ry(e)).

Therefore from (9.25)-(9.27), (9.29)-(9.31) and (9.18) it follows that
log m*(r, f)=logm*(r, P)—log M(r, Q)

<{1—(1—25/)52—%(%1} log M(r, P)—(1—&)log M(r, P)
+(2—0)log (r+1)

(o T Pulr) Lo !
<{o—-2e)5 e HNG, 0, )+ T (1+e)gutr) + Tog 2]
+(2—3) log (r+1)
s 1 on T ) (7*/6)(1+€")ps(r)+-log 2
<fo—a-2¢) 3 }{1+ e }N<r, 0, F)

+(2—0) log (r+1)

14+2¢" \o7°  e'd+e) , Ps(1)
1—5”‘>0 6 1—¢’ @ 5>} gb(r);l

/7 7[2
<[5—{(1—ze e —(
XN(r, 0, P)
<O—(1—=e)(n%/2)(1—=0/3)8*hi(r)  (r=rile)),
which implies (9.17). This completes the proof of Lemma 11.

Completion of the proof of Theorem 4. Let 6=(0, 1] and h(r)S be given,
and let Ahi;(r)€S be constructed in Lemma 10 corresponding to A(r). Further,
let f(z)em, ; be constructed in Lemma 11. Then we have from (9.17) that for
any ¢<(0, 1)

(I—e)(1—0/3)(=*/2)
0

log m*(r, f)<5{1— 52h1(r)} (rzvrole),

so if we choose 6(>0) small enough, we deduce from (9.1) that
log m*(r, f)<o(l—h(M=0(1—h(r))  (r=ry).
This completes the proof of Theorem 4.

Finally, without proof we state the following result, which should be com-
pared with Lemma 11.

THEOREM 5. Let 0(0, 17 be given, and suppose that h,(v)E S satisfies (9.2)-
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(9.6). If f(z)em, s satisfies the growth condition -
e V2 [TV o
7, p=0(og e { = [ af) e
with some ¢>0, then for a suitable sequence of r—oo
log m*(r, f)>0(1—h(M)T(r, f).

Although the proof is more complicated than the one of Theorem [, they are
essentially the same.
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