ON SOLUTIONS OF A HOMOGENEOUS LINEAR MATRIX EQUATION WITH VARIABLE COMPONENTS

By Yoshikazu Hirasawa

1. We denote the totality of real numbers by ${\bf R}$ and the totality of complex numbers by ${\bf C}.$

Let *I* be a closed interval $[\alpha, \beta] = \{t | \alpha \leq t \leq \beta, t \in \mathbf{R}\}$. We denote by $C^{\mu}(I, \mathbf{R})$ the totality of real-valued functions defined and of class C^{μ} on *I* ($\mu = 0, 1, \dots, \infty$), and hereafter we fix some μ .

A complex-valued function f(t) defined on I is called a function of class C^{μ} on I if Re $f(t) \in C^{\mu}(I, \mathbf{R})$ and Im $f(t) \in C^{\mu}(I, \mathbf{R})$. We denote by $C^{\mu}(I, \mathbf{C})$ the totality of complex-valued functions defined and of class C^{μ} on I.

A d-dimensional row vector \mathbf{x} with components $x_{\rho} \in \mathbb{C}$ ($\rho = 1, 2, \dots, d$) will be denoted by

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_d)$$

and a d'-dimensional column vector \boldsymbol{y} with components $y_{\sigma} \in \mathbb{C}$ ($\sigma = 1, 2, \dots, d'$) by

$$\boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d'} \end{pmatrix} = \operatorname{col}(y_1, y_2, \cdots, y_{d'}).$$

Now, let B(t) be a square matrix of degree n:

$$B(t) = \begin{pmatrix} b_{11}(t) & b_{12}(t) & \cdots & b_{1n}(t) \\ b_{21}(t) & b_{22}(t) & \cdots & b_{2n}(t) \\ \vdots & \vdots & \vdots \\ b_{n1}(t) & b_{n2}(t) & \cdots & b_{nn}(t) \end{pmatrix},$$

where $b_{jk}(t) \in C^{\mu}(I, \mathbb{C})$ $(j, k=1, 2, \dots, n)$, and let us assume, throughout this paper, that for a positive integer $s: 1 \leq s \leq n-1$, a condition

(1)
$$\operatorname{rank} B(t) = n - s \ (=r)$$

is satisfied on the interval *I*, and further let us consider a homogeneous linear matrix equation

$$B(t)P(t)=O$$

where P(t) is an $n \times s$ matrix:

(2)

Received March 1, 1982

$$P(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \cdots p_{1s}(t) \\ p_{21}(t) & p_{22}(t) \cdots p_{2s}(t) \\ \vdots & \vdots & \vdots \\ p_{n1}(t) & p_{n2}(t) \cdots p_{ns}(t) \end{pmatrix}.$$

The purpose of this paper is to establish the existence of solutions P(t) of the equation (2) on I, such that every component $p_{jk}(t)$ of P(t) belongs to $C^{\mu}(I, \mathbb{C})$ and

rank P(t) = s

on I.

Y. Sibuya treated such a problem in a paper [1], provided that B(t) was periodic on $-\infty < t < +\infty$. But as a certain part of the proof was omitted in his paper, we will, in this paper, give a detailed proof of this part to clarify the matter.

2. Let I_1 and I_2 be two open intervals (α_1, β_1) and (α_2, β_2) contained in the interval I, such that $\alpha_1 < \alpha_2 < \beta_1 < \beta_2$, and but let us consider $I_1 = [\alpha_1, \beta_1)$ if $\alpha_1 = \alpha$ and $I_2 = (\alpha_2, \beta_2]$ if $\beta_2 = \beta$.

Put r=n-s and let $B\begin{pmatrix} j_1 & j_2 & \cdots & j_r \\ k_1 & k_2 & \cdots & k_r \end{pmatrix}$ denote a minor of degree r of B(t) such that

$$B\begin{pmatrix} j_{1} & j_{2} \cdots & j_{r} \\ k_{1} & k_{2} \cdots & k_{r} \end{pmatrix} = \begin{pmatrix} b_{j_{1}k_{1}}(t) & b_{j_{1}k_{2}}(t) \cdots & b_{j_{1}k_{r}}(t) \\ b_{j_{2}k_{1}}(t) & b_{j_{2}k_{2}}(t) \cdots & b_{j_{2}k_{r}}(t) \\ \vdots & \vdots & \vdots \\ b_{j_{r}k_{1}}(t) & b_{j_{r}k_{2}}(t) \cdots & b_{j_{r}k_{r}}(t) \end{pmatrix},$$
$$\begin{pmatrix} 1 \leq j_{1} < j_{2} < \cdots < j_{r} \leq n \\ 1 \leq k_{1} < k_{2} < \cdots < k_{r} \leq n \end{pmatrix}.$$

Let us now assume that the condition (1) is satisfied on $I_1 \cup I_2$ and further that a condition

(3)
$$B\begin{pmatrix} j_1 & j_2 & \cdots & j_r \\ k_1 & k_2 & \cdots & k_r \end{pmatrix} \neq 0$$

is satisfied on I_1 and a condition

(4)
$$B\begin{pmatrix} l_1 & l_2 & \cdots & l_r \\ m_1 & m_2 & \cdots & m_r \end{pmatrix} \neq 0$$

is satisfied on I_2 .

Under these assumptions, it is clear that there exist two $n \times s$ matrices P(t) and Q(t) having the following properties:

(1) P(t) and Q(t) satisfy matrix equations

$$B(t)P(t) = O \quad \text{on} \quad I_1$$

and

$$B(t)Q(t) = O \quad \text{on} \quad I_2$$

respectively, and every component $p_{jk}(t)$ of P(t) belongs to $C^{\mu}(I_1, \mathbb{C})$ and every component $q_{jk}(t)$ of Q(t) belongs to $C^{\mu}(I_2, \mathbb{C})$;

(II) rank P(t) = s on I_1 and rank Q(t) = s on I_2 .

However, we here wish to look over the structure of these matrices P(t) and Q(t).

Let us define s-tuple $(j'_{r+1}, j'_{r+2}, \dots, j'_n)$ for $1 \leq j_1 < j_2 < \dots < j_r \leq n$ in such a manner that $1 \leq j'_{r+1} < j'_{r+2} < \dots < j'_n \leq n$ and $\{j_1, \dots, j_r, j'_{r+1}, \dots, j'_n\} = \{1, 2, \dots, n\}$. That is, $j_1 < j_2 < \dots < j_r$ and $j'_{r+1} < j'_{r+2} < \dots < j'_n$ form a complete system of indices $\{1, 2, \dots, n\}$. s-tuples $(k'_{r+1}, k'_{r+2}, \dots, k'_n)$, $(l'_{r+1}, l'_{r+2}, \dots, l'_n)$ and $(m'_{r+1}, m'_{r+2}, \dots, m'_n)$ are defined for $1 \leq k_1 < k_2 < \dots < k_r \leq n$, $1 \leq l_1 < l_2 < \dots < l_r \leq n$ and $1 \leq m_1 < m_2 < \dots < m_r \leq n$ in the same manner.

By virtue of Cramer's rule, we see the following fact.

We can take arbitrarily all components $p_{k'_{a}g}(t)$ of s row vectors

$$\hat{p}_{k'_{\sigma}}(t) = (p_{k'_{\sigma}1}(t), p_{k'_{\sigma}2}(t), \cdots, p_{k'_{\sigma}s}(t)) \qquad (\sigma = r+1, r+2, \cdots, n),$$

or s column vectors

$$\tilde{p}_{g}(t) = \operatorname{col}(p_{k'_{r+1}g}(t), p_{k'_{r+2}g}(t), \cdots, p_{k'_{n}g}(t)) \quad (g=1, 2, \cdots, s)$$

under restrictions that $p_{k'_{\sigma}g}(t) \in C^{\mu}(I_1, \mathbb{C})$ and

(7)
$$\det(\tilde{\boldsymbol{p}}_{1}(t), \tilde{\boldsymbol{p}}_{2}(t), \cdots, \tilde{\boldsymbol{p}}_{s}(t)) = \det\begin{pmatrix} \hat{\boldsymbol{p}}_{k_{r+1}'}(t) \\ \hat{\boldsymbol{p}}_{k_{r+2}'}(t) \\ \vdots \\ \hat{\boldsymbol{p}}_{k_{n}'}(t) \end{pmatrix} \neq 0 \quad \text{on} \quad I_{1}.$$

We can further express other r row vectors

$$\hat{p}_{k_{\rho}}(t) = (p_{k_{\rho}1}(t), p_{k_{\rho}2}(t), \cdots, p_{k_{\rho}s}(t)) \quad (\rho = 1, 2, \cdots, r)$$

by linear combinations of $\hat{p}_{k'_{\sigma}}(t)$ ($\sigma = r+1, r+2, \dots, n$):

$$\hat{\boldsymbol{p}}_{k_{\rho}}(t) = \sum_{\sigma=r+1}^{n} \hat{\boldsymbol{\xi}}_{\rho\sigma}(t) \hat{\boldsymbol{p}}_{k'_{\sigma}}(t) \qquad (\rho = 1, 2, \cdots, r),$$

whose coefficients $\xi_{\rho\sigma}(t)$ belong to $C^{\mu}(I_1, \mathbb{C})$.

More exactly,

$$\xi_{\rho\sigma}(t) = -\frac{B_{\rho\sigma}\begin{pmatrix} j_{1} & j_{2} \cdots & j_{r} \\ k_{1} & k_{2} \cdots & k_{r} \end{pmatrix}}{B\begin{pmatrix} j_{1} & j_{2} \cdots & j_{r} \\ k_{1} & k_{2} \cdots & k_{r} \end{pmatrix}} \quad \begin{pmatrix} \rho = 1, \, 2, \, \cdots, \, r \, ; \\ \sigma = r+1, \, r+2, \, \cdots, \, n \end{pmatrix},$$

where

72

$$B_{\rho\sigma} \begin{pmatrix} j_1 \ j_2 \cdots \ j_r \\ k_1 \ k_2 \cdots \ k_r \end{pmatrix} = \begin{vmatrix} \rho_{j_1 k_1}(t) & b_{j_1 k_2}(t) \cdots & b_{j_1 k_d'}(t) \cdots & b_{j_1 k_r}(t) \\ b_{j_2 k_1}(t) & b_{j_2 k_2}(t) \cdots & b_{j_2 k_d'}(t) \cdots & b_{j_2 k_r}(t) \\ \vdots & \vdots & \vdots & \vdots \\ b_{j_r k_1}(t) & b_{j_r k_2}(t) \cdots & b_{j_r k_d'}(t) \cdots & b_{j_r k_r}(t) \end{vmatrix}.$$

Of course, we see rank P(t) = s on I_1 . The matrix Q(t):

$$Q(t) = \begin{pmatrix} q_{11}(t) & q_{12}(t) \cdots & q_{1s}(t) \\ q_{21}(t) & q_{22}(t) \cdots & q_{2s}(t) \\ \vdots & \vdots & \vdots \\ q_{n1}(t) & q_{n2}(t) \cdots & q_{ns}(t) \end{pmatrix}$$

also has a structure similar to P(t).

We can choose arbitrarily all components $q_{m'_{\sigma}g}(t)$ of s row vectors

$$\hat{q}_{m'_{\sigma}}(t) = (q_{m'_{\sigma}1}(t), q_{m'_{\sigma}2}(t), \cdots, q_{m'_{\sigma}s}(t)) \qquad (\sigma = r+1, r+2, \cdots, n)$$

or s column vectors

$$\tilde{q}_{g}(t) = \operatorname{col}(q_{m'_{r+1}g}(t), q_{m'_{r+2}g}(t), \cdots, q_{m'_{n}g}(t)) \quad (g=1, 2, \cdots, s)$$

under restrictions that $q_{m'_{\sigma}\,g}(t) \in C^{\mu}(I_2, \mathbb{C})$ and

(8)
$$\det\left(\tilde{\boldsymbol{q}}_{1}(t), \, \tilde{\boldsymbol{q}}_{2}(t), \, \cdots, \, \tilde{\boldsymbol{q}}_{s}(t)\right) = \det\left(\begin{array}{c} \hat{\boldsymbol{q}}_{m_{r+1}}(t) \\ \hat{\boldsymbol{q}}_{m_{r+2}}(t) \\ \vdots \\ \hat{\boldsymbol{q}}_{m_{n}'}(t) \end{array}\right) \neq 0 \quad \text{on} \quad I_{2}.$$

Other r row vectors

$$\hat{q}_{m_{\rho}}(t) = (q_{m_{\rho}1}(t), q_{m_{\rho}2}(t), \cdots, q_{m_{\rho}s}(t)) \quad (\rho = 1, 2, \cdots, r)$$

can be expressed by linear combinations of $\hat{q}_{m'_{\sigma}}(t)$ ($\sigma = r+1, r+2, \cdots, n$):

$$\hat{\boldsymbol{q}}_{m_{\rho}}(t) = \sum_{\sigma=r+1}^{n} \gamma_{\rho\sigma}(t) \hat{\boldsymbol{q}}_{m'_{\sigma}}(t) \qquad (\rho=1, 2, \cdots, r),$$

whose coefficients $\eta_{\rho\sigma}(t)$ belong to $C^{\mu}(I_2, \mathbb{C})$. Of course, we have rank Q(t)=s on I_2 .

3. We use the same notations as in Nos. 1-2, and will prove the following:

LEMMA 1. Assume that the condition (1) is satisfied on $I_1 \cup I_2$ and the conditions (3) and (4) are satisfied on I_1 and on I_2 respectively. Then we have

Y. HIRASAWA

(9)
$$B\begin{pmatrix} l_1 & l_2 \cdots & l_r \\ k_1 & k_2 \cdots & k_r \end{pmatrix} \neq 0;$$

(10)
$$B\begin{pmatrix} j_1 & j_2 & \cdots & j_r \\ m_1 & m_2 & \cdots & m_r \end{pmatrix} \neq 0$$

on $I_1 \cap I_2$.

Proof. The lemma shall be principally proved for (9). If we put

$$\hat{b}_{l_{\rho}}(t) = (b_{l_{\rho}m_{1}}(t), b_{l_{\rho}m_{2}}(t), \cdots, b_{l_{\rho}m_{r}}(t)) \qquad (\rho = 1, 2, \cdots, r),$$

then, by virtue of the conditions (1) and (4), other vectors

$$\hat{b}_{l'_{\sigma}}(t) = (b_{l'_{\sigma} m_1}(t), b_{l'_{\sigma} m_2}(t), \cdots, b_{l'_{\sigma} m_r}(t)) \quad (\sigma = r+1, r+2, \cdots, n)$$

can be expressed by linear combinations of $\hat{\boldsymbol{b}}_{l_{\rho}}(t)$ $(\rho=1, 2, \cdots, r)$ with coefficients $\varphi_{\rho\sigma}(t)$ belonging to $C^{\mu}(I_2, \mathbf{C})$. That is,

$$\hat{\boldsymbol{b}}_{l_{\sigma}'}(t) = \sum_{\rho=1}^{r} \varphi_{\rho\sigma}(t) \hat{\boldsymbol{b}}_{l_{\rho}}(t) \qquad (\sigma = r+1, r+2, \cdots, n),$$

where

$$\varphi_{\rho\sigma}(t) = \frac{B^{\rho\sigma} \begin{pmatrix} l_1 & l_2 \cdots & l_r \\ m_1 & m_2 \cdots & m_r \end{pmatrix}}{B \begin{pmatrix} l_1 & l_2 \cdots & l_r \\ m_1 & m_2 \cdots & m_r \end{pmatrix}} \qquad \begin{pmatrix} \rho = 1, 2, \cdots, r; \\ \sigma = r+1, r+2, \cdots, n \end{pmatrix}$$

and

$$B^{\rho\sigma} \binom{l_1 \ l_2 \cdots \ l_r}{m_1 \ m_2 \ \cdots \ m_r} = \begin{vmatrix} b_{l_1 m_1}(t) & b_{l_1 m_2}(t) \ \cdots \ b_{l_1 m_r}(t) \\ b_{l_2 m_1}(t) & b_{l_2 m_2}(t) \ \cdots \ b_{l_2 m_r}(t) \\ \vdots & \vdots & \vdots \\ b_{l'\sigma \ m_1}(t) & b_{l'\sigma \ m_2}(t) \ \cdots \ b_{l'\sigma \ m_r}(t) \\ \vdots & \vdots & \vdots \\ b_{l_r m_1}(t) & b_{l_r m_2}(t) \ \cdots \ b_{l_r m_r}(t) \end{vmatrix} \rho \text{-th row} .$$

In this case, any component $b_{l'_{\sigma} m'_{\nu}}(t)$ (σ , v=r+1, r+2, \cdots , n) which does not lie on the m_{τ} -th column ($\tau=1, 2, \cdots, r$) of B(t) also can be expressed by a linear combination with the common coefficients $\varphi_{\rho\sigma}(t)$ as follows:

$$b_{l'_{\sigma} m'_{\upsilon}}(t) = \sum_{\rho=1}^{r} \varphi_{\rho \sigma}(t) b_{l_{\rho} m'_{\upsilon}}(t) \qquad (\sigma, \, \upsilon = r+1, \, r+2, \, \cdots, \, n) ,$$

otherwise it contradicts the fact that the condition (1) holds on I_2 . Next if we put

$$\widetilde{\boldsymbol{b}}_{k_{\tau}}(t) = \operatorname{col}(b_{j_{1}k_{\tau}}(t), b_{j_{2}k_{\tau}}(t), \cdots, b_{j_{r}k_{\tau}}(t)) \qquad (\tau = 1, 2, \cdots, r),$$

74

ON SOLUTIONS OF A HOMOGENEOUS LINEAR MATRIX EQUATION

then, by virtue of the conditions (1) and (3), other vectors

$$\hat{\boldsymbol{b}}_{k'_{v}}(t) = \operatorname{col}(b_{j_{1}k'_{v}}(t), b_{j_{2}k'_{v}}(t), \cdots, b_{j_{r}k'_{v}}(t)) \qquad (v = r+1, r+2, \cdots, n)$$

can be expressed by linear combinations of $\tilde{\boldsymbol{b}}_{k_{\tau}}(t)$ ($\tau=1, 2, \dots, r$) with coefficients belonging to $C^{\mu}(I_1, \mathbb{C})$. That is,

$$\widetilde{\boldsymbol{b}}_{k_{\upsilon}'}(t) = \sum_{\tau=1}^{r} \phi_{\tau \upsilon}(t) \widetilde{\boldsymbol{b}}_{k_{\tau}}(t) \qquad (\upsilon = r+1, r+2, \cdots, n),$$

where

$$\psi_{\tau v}(t) = \frac{B_{\tau v} \begin{pmatrix} j_1 \ j_2 \ \cdots \ j_r \\ k_1 \ k_2 \ \cdots \ k_r \end{pmatrix}}{B \begin{pmatrix} j_1 \ j_2 \ \cdots \ j_r \\ k_1 \ k_2 \ \cdots \ k_r \end{pmatrix}} \qquad \begin{pmatrix} \tau = 1, \ 2, \ \cdots, \ r \ ; \\ v = r+1, \ r+2, \ \cdots, \ n \end{pmatrix}$$

and

$$B_{\tau v} \begin{pmatrix} j_{1} \ j_{2} \cdots j_{r} \\ k_{1} \ k_{2} \cdots k_{r} \end{pmatrix} = \begin{vmatrix} b_{j_{1}k_{1}(t)} & b_{j_{1}k_{2}(t)} \cdots b_{j_{1}k'_{v}}(t) \cdots b_{j_{1}k'_{r}}(t) \\ b_{j_{2}k_{1}(t)} & b_{j_{2}k_{2}(t)} \cdots b_{j_{2}k'_{v}}(t) \cdots b_{j_{2}k'_{r}}(t) \\ \vdots & \vdots & \vdots \\ b_{j_{r}k_{1}}(t) & b_{j_{r}k_{2}}(t) \cdots b_{j_{r}k'_{v}}(t) \cdots b_{j_{r}k'_{r}}(t) \end{vmatrix}$$

In this case, any component $b_{j'_{\sigma}k'_{\nu}}(t)$ $(\sigma, \nu=r+1, r+2, \dots, n)$ which does not lie on the j_{ρ} -th row $(\rho=1, 2, \dots, r)$ of B(t) also can be expressed by a linear combination with the common coefficients $\phi_{\tau\nu}(t)$ as follows:

$$b_{j'_{\sigma} k'_{\upsilon}}(t) = \sum_{\tau=1}^{r} \phi_{\tau \upsilon}(t) b_{j'_{\sigma} k_{\tau}}(t) \qquad (\sigma, \upsilon = r+1, r+2, \cdots, n),$$

otherwise it contradicts the fact that the condition (1) holds on I_1 .

Under these circumstances, we arrive at the following conclusion.

Multiplying an adequate function which belongs to $C^{\mu}(I_2, \mathbb{C})$, to each l_{ρ} -th row vector ($\rho = 1, 2, \dots, r$) of B(t) and adding these row vectors to each l'_{σ} -th row vector ($\sigma = r+1, r+2, \dots, n$) of B(t), we can make each l'_{σ} -th row vector be the zero vector. And further, multiplying an adequate function which belongs to $C^{\mu}(I_1, \mathbb{C})$, to each k_{τ} -th column vector ($\tau = 1, 2, \dots, r$) of B(t) and adding these column vectors to each k'_{ν} -th column vector ($\upsilon = r+1, r+2, \dots, n$) of B(t), we can make each k'_{ν} -th column vector ($\upsilon = r+1, r+2, \dots, n$) of B(t), we can make each k'_{ν} -th column vector be the zero vector. After all, there remain only the components $b_{l_{\rho}k_{\tau}}(t)$ ($\rho, \tau = 1, 2, \dots, r$) in B(t), and hence the condition (1) implies

$$B\begin{pmatrix} l_1 & l_2 \cdots & l_r \\ k_1 & k_2 \cdots & k_r \end{pmatrix} \neq 0 \quad \text{on} \quad I_1 \cap I_2.$$

We also can prove, on the same lines, that

$$B\begin{pmatrix} j_1 & j_2 \cdots & j_r \\ m_1 & m_2 \cdots & m_r \end{pmatrix} \neq 0 \quad \text{on} \quad I_1 \cap I_2 \,.$$

4. We use the same notations as in Nos. 1-2, and for the solutions P(t) and Q(t) obtained in No. 2, we will prove the following:

LEMMA 2. Suppose that the condition (1) holds on $I_1 \cup I_2$ and the condition (3) holds on I_1 and the condition (4) holds on I_2 . Let P(t) and Q(t) be the solutions of the equations (5) and (6) respectively, obtained in No. 2. Then there exists a square matrix C(t) of degree s such that

- (I) Every component $c_{jk}(t)$ of C(t) belongs to $C^{\mu}(I_1 \cap I_2, \mathbb{C})$;
- (II) rank C(t) = s on $I_1 \cap I_2$;
- (III) P(t) = Q(t)C(t) on $I_1 \cap I_2$.

Proof. By rearranging the row vectors of P(t) and Q(t), we put

$$\hat{P}(t) = \begin{pmatrix} \hat{p}_{k_{1}}(t) \\ \vdots \\ \hat{p}_{k_{r}}(t) \\ \hat{p}_{k_{r+1}}(t) \\ \vdots \\ \hat{p}_{k_{n}'}(t) \end{pmatrix} \quad \text{and} \quad \hat{Q}(t) = \begin{pmatrix} \hat{q}_{k_{1}}(t) \\ \vdots \\ \hat{q}_{k_{n}}(t) \\ \hat{q}_{k_{r+1}'}(t) \\ \vdots \\ \hat{q}_{k_{n}'}(t) \end{pmatrix}$$

Then, by virtue of the condition (9) proved in Lemma 1, we can express the vectors $\hat{\boldsymbol{p}}_{k_1}(t)$, $\hat{\boldsymbol{p}}_{k_2}(t)$, \cdots , $\hat{\boldsymbol{p}}_{k_r}(t)$ by linear combinations of $\hat{\boldsymbol{p}}_{k_{r+1}'}(t)$, $\hat{\boldsymbol{p}}_{k_{r+2}'}(t)$, \cdots , $\hat{\boldsymbol{p}}_{k_n'}(t)$ and the vectors $\hat{\boldsymbol{q}}_{k_1}(t)$, $\hat{\boldsymbol{q}}_{k_2}(t)$, \cdots , $\hat{\boldsymbol{q}}_{k_r}(t)$ by linear combinations of $\hat{\boldsymbol{p}}_{k_{r+1}'}(t)$, $\hat{\boldsymbol{p}}_{k_{r+2}'}(t)$, \cdots , $\hat{\boldsymbol{q}}_{k_n'}(t)$ by linear combinations of $\hat{\boldsymbol{q}}_{k_{r+1}'}(t)$, $\hat{\boldsymbol{q}}_{k_{r+2}'}(t)$, \cdots , $\hat{\boldsymbol{q}}_{k_n'}(t)$ by linear combinations of $\hat{\boldsymbol{q}}_{k_{r+1}'}(t)$, $\hat{\boldsymbol{q}}_{k_{r+2}'}(t)$, \cdots , $\hat{\boldsymbol{q}}_{k_n'}(t)$ with the same coefficients belonging to $C^{\mu}(I_1 \cap I_2, \mathbf{C})$. That is,

(11)
$$\begin{cases} \boldsymbol{\hat{p}}_{k_{\rho}}(t) = \sum_{\sigma=r+1}^{n} \zeta_{\rho \sigma}(t) \boldsymbol{\hat{p}}_{k'_{\sigma}}(t) & (\rho=1, 2, \cdots, r); \\ \boldsymbol{\hat{q}}_{k_{\rho}}(t) = \sum_{\sigma=r+1}^{n} \zeta_{\rho \sigma}(t) \boldsymbol{\hat{q}}_{k'_{\sigma}}(t) & (\rho=1, 2, \cdots, r), \end{cases}$$

where $\zeta_{\rho\sigma}(t) \in C^{\mu}(I_1 \cap I_2, \mathbb{C})$ and more exactly

$$\zeta_{\rho\sigma}(t) = -\frac{B_{\rho\sigma}\begin{pmatrix} l_1 \ l_2 \ \cdots \ l_r \\ k_1 \ k_2 \ \cdots \ k_r \end{pmatrix}}{B\begin{pmatrix} l_1 \ l_2 \ \cdots \ l_r \\ k_1 \ k_2 \ \cdots \ k_r \end{pmatrix}} \qquad \begin{pmatrix} \rho = 1, \ 2, \ \cdots, \ r; \\ \sigma = r+1, \ r+2, \ \cdots, \ n \end{pmatrix}$$

and

76

$$B_{\rho\sigma} \begin{pmatrix} l_1 \ l_2 \cdots \ l_r \\ k_1 \ k_2 \cdots \ k_r \end{pmatrix} = \begin{vmatrix} p \cdot th \ column \\ b_{l_1k_1}(t) & b_{l_1k_2}(t) \cdots b_{l_1k'_{\sigma}}(t) \cdots b_{l_1k_r}(t) \\ b_{l_2k_1}(t) & b_{l_2k_2}(t) \cdots b_{l_2k'_{\sigma}}(t) \cdots b_{l_2k_r}(t) \\ \vdots & \vdots & \vdots \\ b_{l_rk_1}(t) & b_{l_rk_2}(t) \cdots b_{l_rk'_{\sigma}}(t) \cdots b_{l_rk_r}(t) \end{vmatrix}.$$

Now, we shall verify

(12)
$$\det \begin{pmatrix} \hat{q}_{k'_{r+1}}(t) \\ \hat{q}_{k'_{r+2}}(t) \\ \vdots \\ \hat{q}_{k'_{n}}(t) \end{pmatrix} \neq 0 \quad \text{on} \quad I_{1} \cap I_{2}.$$

If the above determinant vanishes at some $t_0 \in I_1 \cap I_2$, then there exists a set of s complex numbers: $(c_1, c_2, \dots, c_s) \neq (0, 0, \dots, 0)$ such that

$$c_1 \hat{q}_{k'_{r+1}}(t_0) + c_2 \hat{q}_{k'_{r+2}}(t_0) + \cdots + c_s \hat{q}_{k'_n}(t_0) = o.$$

This fact and the fact that $\hat{q}_{k_{\rho}}(t)$ $(\rho=1, 2, \dots, r)$ can be expressed by linear combinations of $\hat{q}_{k'_{\sigma}}(t)$ $(\sigma=r+1, r+2, \dots, n)$, imply

$$\operatorname{rank} \begin{pmatrix} \hat{\boldsymbol{q}}_{k_{1}}(t_{0}) \\ \vdots \\ \hat{\boldsymbol{q}}_{k_{r}}(t_{0}) \\ \hat{\boldsymbol{q}}_{k_{r+1}}(t_{0}) \\ \vdots \\ \hat{\boldsymbol{q}}_{k_{n}'}(t_{0}) \end{pmatrix} < s$$

which contradicts that rank Q(t) = s on I_2 .

Thus there exists a square matrix C(t) of degree s such that

$$\begin{pmatrix} \hat{\boldsymbol{p}}_{k'_{r+1}}(t) \\ \hat{\boldsymbol{p}}_{k'_{r+2}}(t) \\ \vdots \\ \hat{\boldsymbol{p}}_{k'_{n}}(t) \end{pmatrix} = \begin{pmatrix} \hat{\boldsymbol{q}}_{k'_{r+1}}(t) \\ \hat{\boldsymbol{q}}_{k'_{r+2}}(t) \\ \vdots \\ \hat{\boldsymbol{q}}_{k'_{n}}(t) \end{pmatrix} C(t) \quad \text{on} \quad I_{1} \cap I_{2}$$

and every component of C(t) belongs to $C^{\mu}(I_1 \cap I_2, \mathbb{C})$. It follows furthermore from (7) that det $C(t) \neq 0$ on $I_1 \cap I_2$, and hence rank C(t) = s on $I_1 \cap I_2$.

By rearranging the row vectors of $\hat{P}(t)$ and $\hat{Q}(t)$, and by observing the relations (11), we have

$$P(t) = Q(t)C(t)$$
 on $I_1 \cap I_2$.

Thus, the lemma has been completely proved.

5. Now we will prove the following:

Y. HIRASAWA

THEOREM. Let I be a closed interval $[\alpha, \beta]$ of a real variable t and let $B(t) = (b_{jk}(t))$ be a square matrix of degree n whose components $b_{jk}(t)$ belong to $C^{\mu}(I, \mathbf{C})$ and further assume that the condition (1) is satisfied on I. Then there exists an $n \times s$ matrix $P(t) = (p_{jk}(t))$ such that P(t) satisfies the equation (2) on I and all components $p_{jk}(t)$ of P(t) belong to $C^{\mu}(I, \mathbf{C})$ and rank P(t) = s on I.

Proof. Let us put r=n-s. Then, for any point $t_0 \in [\alpha, \beta]$, there exists, by assumption, a nonzero minor of degree r of $B(t_0)$. Furthermore, there exists, by virtue of the continuity of functions, a neighborhood $U(t_0)$ of t_0 such that the above-mentioned minor does not vanish on $I \cap U(t_0)$.

Since we can find such neighborhoods U(t) for all points $t \in I$ and since we see $I \subset \bigcup_{t \in I} U(t)$, this open covering $\{U(t)\}_{t \in I}$ has, by the Heine-Borel theorem, a finite subcovering $\{U(t_{\kappa})\}_{\kappa=1}^{\kappa_0}$. By use of this subcovering, we can form, without loss of generality, a set $\{I_{\kappa}\}_{\kappa=1}^{\kappa_0}$ of intervals possessing the following properties:

- (i) $I = \sum_{\kappa=1}^{\kappa_0} I_{\kappa};$
- (ii) $I_1 = [\alpha_1, \beta_1), \quad I_{\kappa_0} = (\alpha_{\kappa_0}, \beta_{\kappa_0}], \quad \alpha_1 = \alpha, \quad \beta_{\kappa_0} = \beta,$ $I_{\kappa} = (\alpha_{\kappa}, \beta_{\kappa}) \quad (\kappa = 2, 3, \cdots, \kappa_0 - 1);$
- (iii) $I_{\kappa} \cap I_{\kappa+1} \neq \emptyset$ ($\kappa=1, 2, \cdots, \kappa_0-1$), $I_{\kappa} \cap I_{\kappa'} = \emptyset$ ($\kappa+1 < \kappa', \kappa=1, 2, \cdots, \kappa_0-2$), that is, $\alpha_1 < \alpha_2 < \beta_1 < \cdots < \alpha_{\kappa} < \beta_{\kappa-1} < \alpha_{\kappa+1} < \beta_{\kappa}$ $< \cdots < \beta_{\kappa_0-2} < \alpha_{\kappa_0} < \beta_{\kappa_0-1} < \beta_{\kappa_0}$ ($\kappa=2, 3, \cdots, \kappa_0-1$);
- (iv) For each I_{κ} , there exists a minor of degree r of B(t) which does not vanish on I_{κ} .

We consider first the intervals
$$I_1$$
 and I_2 , and we choose two minors
 $B\begin{pmatrix} J_1 & J_2 & \cdots & J_r \\ k_1 & k_2 & \cdots & k_r \end{pmatrix}$ and $B\begin{pmatrix} l_1 & l_2 & \cdots & l_r \\ m_1 & m_2 & \cdots & m_r \end{pmatrix}$ of degree r of $B(t)$ such that
 $B\begin{pmatrix} J_1 & J_2 & \cdots & J_r \\ k_1 & k_2 & \cdots & k_r \end{pmatrix} \neq 0$ on I_1 and $B\begin{pmatrix} l_1 & l_2 & \cdots & l_r \\ m_1 & m_2 & \cdots & m_r \end{pmatrix} \neq 0$ on I_2 .

As seen in No. 2, there exist, in this case, the matrices P(t) and Q(t) satisfying the equations (5) and (6) respectively, such that all components $p_{jk}(t)$ of P(t) belong to $C^{\mu}(I_1, \mathbb{C})$ and all components $q_{jk}(t)$ of Q(t) belong to $C^{\mu}(I_2, \mathbb{C})$ and further

rank
$$P(t) = s$$
 on I_1 and rank $Q(t) = s$ on I_2 .

Now it follows from Lemma 2 that there exists a square matrix C(t) of degree s possessing the properties (I), (II), (III) stated in Lemma 2.

We next use a method adopted in the paper of Y. Sibuya [1]. Since the matrix C(t) is non-singular on $I_1 \cap I_2$, if we choose an arbitrary point $t_1 \in I_1 \cap I_2$,

and if we choose a sufficiently small positive number ε , then any square matrix C of degree s satisfying $||C-C(t_1)|| < \varepsilon$, is non-singular, where $||\cdot||$ denotes the Euclidean norm of a matrix.

There exists, by virtue of the continuity of functions, a positive number δ such that $\|C(t)-C(t_1)\| < \varepsilon$ whenever $|t-t_1| < \delta$ and $t \in I_1 \cap I_2$.

Let t'_1 be a point belonging to $I_1 \cap I_2$ such that $0 < t'_1 - t_1 < \delta$ and let γ be a small positive number fulfilling the inequality $t_1 + \gamma < t'_1 - \gamma$. Further let $\chi(t)$ be a real-valued function defined and of class C^{∞} on $-\infty < t < +\infty$, such that $0 \leq \chi(t) \leq 1$ for all $t, \chi(t)=1$ for $t \leq t_1+\gamma$ and $\chi(t)=0$ for $t \geq t'_1-\gamma$.

And we make a square matrix $\tilde{C}(t)$ of degree s in the following manner:

$$\widetilde{C}(t) \!=\! \begin{cases} C(t) & \text{for } \alpha_2 \!<\! t \!\leq\! t_1 \,, \\ \chi(t)(C(t) \!-\! C(t_1')) \!+\! C(t_1') & \text{for } t_1 \!\leq\! t \!\leq\! t_1' \,, \\ C(t_1') & \text{for } t_1' \!\leq\! t \!<\! +\infty \,. \end{cases}$$

Since

 $\|\widetilde{C}(t) - C(t_1)\|$

$$= \|\chi(t)(C(t) - C(t_1)) + (1 - \chi(t))(C(t_1') - C(t_1))\|$$

$$\leq \chi(t) \|C(t) - C(t_1')\| + (1 - \chi(t))\|C(t_1') - C(t_1)\|$$

$$< \chi(t)\varepsilon + (1 - \chi(t))\varepsilon = \varepsilon$$

for $t_1 \leq t \leq t'_1$, we see that $\widetilde{C}(t)$ is non-singular on $\alpha_2 < t < +\infty$.

Further we can easily verify that all components of $\tilde{C}(t)$ are of class C^{μ} on $\alpha_2 < t < +\infty$.

We now put $P^{(1)}(t) = P(t)$ on I_1 and we define $P^{(2)}(t)$ on $I_1 \cup I_2$ as follows:

$$P^{(2)}(t) = \begin{cases} P^{(1)}(t) & \text{for } \alpha_1 \leq t \leq \alpha_2, \\ Q(t)\widetilde{C}(t) & \text{for } \alpha_2 < t < \beta_2. \end{cases}$$

Then $P^{(2)}(t)$ is a solution of the equation (2) on $I_1 \cup I_2$ and all components of $P^{(2)}(t)$ belong to $C^{\mu}(I_1 \cup I_2, \mathbb{C})$ and further

rank
$$P^{(2)}(t) = s$$
 on $I_1 \cup I_2$.

By repeating the above-mentioned process for the intervals I_{κ} ($\kappa=1, 2, \cdots$, κ_0) successively, we can construct the desired solution P(t) of the equation (2) on I.

BIBLIOGRAPHY

[1] Y. SIBUYA, Some global properties of matrices of functions of one variable, Math. Annalen 161 (1965), 66-77.

> DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY