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THE HAHN METRIC ON RIEMANN SURFACES

By C. DAVID MINDA

Abstract Recently, K. T. Hahn introduced a new pseudodifferential metric
for complex manifolds by means of an extremal problem. This metric is in-
vestigated in the special case of Riemann surfaces. First, the metric is related
to two other extremal problems on a Riemann surface. Next, basic properties
of the Hahn metric are studied; in particular, it is shown that the Hahn metric
is complete if it is nontrivial. For simply and doubly connected Riemann sur-
faces the Hahn metric is explicitly calculated it is also studied on tori. Finally,
the Hahn metric is shown to have generalized Gaussian curvature at least — 4;
for the unit disk it has constant curvature —4.

1. Introduction.

K. T. Hahn introduced a new pseudo-differential metric and related distance
function on complex manifolds via an extremal problem [4]. We shall investigate
this metric in the context of Riemann surfaces. Let us begin by defining the
metric. Let B= {w : | w | <1} denote the open unit disk. For an arbitrary Riemann
surface X, let S{B, X) denote the family of all injective analytic functions / . B
~>X Fix j&el and consider any local coordinate z defined in a neighborhood
of p such that z(p)=0. Set

^ , X) and f{0)=p

A function f<=S(B,X) is called extremal if Sx(z)=l/\(zof)'(0)\ and f(0) = p.
The quantity Sx(z) depends upon the choice of the local coordinate z at p in
such a way that Sx(z)\dz\ is an invariant form, or metric, on X. We shall call
Sx(z)\dz\ the Hahn metric on X. Hahn [4] proved that Sx(z)\dz\ is a con-
tinuous metric on X. The Hahn metric naturally induces a distance function on
X. For p, q^X set

Sχ(p, q) = inf^ Sx(z)\dz\ ,

where the infimum is taken over all piecewise smooth paths y on X that join p
and q.
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In section 2 we relate the Hahn metric to two other extremal problems on
a Riemann surface. This will enable us to show that if the Riemann surface X
is not conformally equivalent to the complex plane C or the Riemann sphere P,
then the Hahn metric is positive at each point of X. Consequently, the distance
function Sx is compatible with the topology for such surfaces. The connection
with these other extremal problems will also permit us to demonstrate the ex-
istence and essential uniqueness of extremal functions for the Hahn metric.
Section 3 is devoted to several basic properties of the Hahn metric, including the
facts that for hyperbolic Riemann surfaces it dominates the hyperbolic metric
and is complete. Recall that a Riemann surface is called hyperbolic if the unit
disk B is its universal covering surface. The Hahn metric for a torus and
doubly connected Riemann surfaces is determined in sections 4 and 5. Finally,
curvature properties of the Hahn metric are discussed in section 6. In particular,
we show that the Hahn metric has generalized Gaussian curvature at least —4
for any Riemann surface not conformally equivalent to either C or P. For B
the Hahn metric has constant curvature —4.

2. Connection with other extremal problems.

In this section we relate the Hahn metric to two other extremal problems
that involve the concepts of mapping radius and reduced modulus.

Let us start by recalling the definition of the mapping radius and formulat-
ing the extremal problem that involves the mapping radius. Assume X is a
Riemann surface. Let Ω be a hyperbolic simply connected region on X; that is,
Ω is conformally equivalent to B. Suppose p^Ω and z is a local coordinate
defined in a neighborhood of p such that z(p)=0. Then there is a unique con-
formal mapping g of Ω onto a disk {w: \w\<r} with g(p)=0 and the derivative
of g°z~λ has value 1 at the origin. The value of r is uniquely determined by
the choice of the local coordinate z. The value r=ro(z) is called the mapping
radius of Ω at p with respect to the local coordinate z. The value of the
mapping radius depends upon the choice of local coordinate at p in such a way
that ro{z)/1 dz | is an invariant expression [12]. Now, we can formulate the ex-
tremal problem. Define

rx(z)=suprΩ(z),

where the supremum is taken over all hyperbolic simply connected regions on X
that contain p. The quantity rx[z) is called the mapping radius of X at p with
respect to the local coordinate z. Clearly, the expression rx{z)/1dz\ is invariant.
A direct application of the Riemann mapping theorem shows that Sx(z)\dz\ =
\dz\/rx{z).

Next, we recall the definition of the reduced modulus of a simply connected
region on a Riemann surface. Suppose I is a Riemann surface and Ω is a hy-
perbolic simply connected region on X. Assume p <= Ω and z is a local coordinate
in a neighborhood of p such that z(p) = 0. For all sufficiently small r > 0 the
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closed disk D(p, r)={g^X: \z{q)\^r) lies in Ω. Then Ω(r)=Ω\D{p, r) is a dou-
bly connected region on X and we denote its modulus by M{r). Remember that
if Ω(r) is conformally equivalent to an annulus {w : rx< \ w\ <r2), then M(r) =
log (r2/ri). The sum M{r) + log r is increasing as r tends to zero and the limit

is called the reduced modulus of Ω at p with respect to the local coordinate z.
The reduced modulus depends upon the choice of local coordinate at p in such a
way that exp (Mρ(z))/ \ dz | is invariant and it is related to the mapping radius by

[12]. The extremal problem for the reduced modulus is

Mx(z)=sup MΩ(z),

where the supremum is taken over all hyperbolic simply connected regions Ω on
X with p^Ω. The quantity Mx(z) is called the reduced modulus of X at p
with respect to the local coordinate z. Clearly, exp(Mx(z))/\dz\ is invariant and

Sx(z)\dz\ = ^y=exp(-

The solution to the extremal problem for the reduced modulus is a very
special case of a result of Jenkins [7] the particular instance that we require
is explicitly stated in [8]. We summarize it here. Assume that X is a Riemann
surface that is not conformally equivalent to either C or P. As usual, ^ e l a n d
z is a local coordinate in a neighborhood of p with z(p)=0. There is a unique
hyperbolic simply connected region 42* on X such that f £ f l * and MQ*{Z) is
maximal for all hyperbolic simply connected regions on X that contain p. The
extremal region Ω* is obtained by slitting X along the trajectories of a quadratic
differential Q(w)dw2, holomorphic on X apart from a double pole at p, with
limiting end points at the zeros of Q(w)dw2 together with possibly certain
trajectories running from the ideal boundary of X back to itself. 42* is a circle
domain in the trajectory structure of Q(w)dw2. Note that the extremal region
Ω^ does not depend upon the choice of the local coordinate at p. However, the
value of the reduced modulus of Ω^ does clearly depend on the local coordinate,
but the value is maximal with respect to any local coordinate. Thus,

In particular, if X is a Riemann surface that is not conformally equivalent
to either C or P, then we can conclude that Sx{z)\dz\ is a positive metric on X.
What is the situation if X is conformally equivalent to C or P? First, suppose
Z = C a n d α e C . For R>0 define fR(z)=a+Rz. Then fR^S{B, C), /(0)=α and

| = # . Hence, Sc(a)^l/R, so Sc(a)=0. This gives Sc(z)\dz\=0. Similarly,
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Sp{z)\dz\=Q. In fact, if X is conformally equivalent to either C or P, then
Sx(z)\dz\=0.

The result of Jenkins also enables us to show that extremal functions for
the Hahn metric exist and are essentially unique if X is not conformalίy equiv-
alent to either C or P. For / > ε l let β* be the unique hyperbolic simply con-
nected region containing p that has maximal reduced modulus at p. Let ώ: B^
£?* be a conformal mapping such that φ(0)=p. From our discussion of the
mapping radius and reduced modulus, we conclude that

where z is a local coordinate at p with z(p)=0. Thus, φ is an extremal func-
tion. Let us show that φ is unique up to precomposition with a rotation of B.
Suppose f^S{B, X) with f(0)=p is also extremal. If Ω=f(B), then

Then MQ{Z) — MQ*{Z) and so Jenkins' result implies that Ω—Ω^. Clearly, φ~1°f(z)
is a conformal automorphism of B that fixes the origin, so it is a rotation, say
eiθz. Then f(z)=φ(eιθz).

3. Basic properties of the Hahn metric.

In this section we study some of the elementary fundamental properties of
the Hahn metric. We begin by stating a result of Hahn [4] which shows that
injective analytic functions are distance decreasing relative to the Hahn metric.
Recall that if / : X-^Y is an analytic function and p(z)\dz\ is a metric on Y,
then f*(p(z)\dz\) denotes the pull-back to X via / of the metric p(z)\dz\.
f*{p(z)\dz\) is a metric on X. If X and Y are plane regions, then f*(ρ(z)\dz\)
= p(ttz))\f\z)\\dz\.

THEOREM 1. Suppose X and Y are Riemann surfaces and f: X-^ Y is an in-
jective analytic function. Then f*(Sγ(z)\dz\)^Sx(z)\dz\. In particular, if
/ : X->Y is a conformal mapping, then f*(Sγ(z)\dz\) = Sx(z)\dz\.

COROLLARY 1. Let X be a Riemann surface. Then Sx{z)\dz\ is invariant
under the group Aut(Z) of conformal automorphism of X; that is, f*(Sx(z)\dz\)
= Sx(z)\dz\ for all

COROLLARY 2. If X and Y are Riemann surfaces with XdY, then Sx(z)\dz\

Proof. Just apply Theorem 1 to the inclusion mapping of X into Y.

Corollary 2 expresses a monotonicity property of the Hahn metric. Strict
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inequality need not hold in this result even if X is a proper subsurface of Y.
This can be seen as follows. Suppose Y is a nonsimply connected Riemann
surface and p^Y. Let φ^S(B, X) be an extremal function, so that φ(0)=p and
Sγ(z)=l/\(z°φY(0)\, where z is any local coordinate at p such that z(p)=0.
Then X~φ(B) is a simply connected subsurface of Y and Sx(z)~ l/|(z°0)'(O)| —
Sγ(z).

Next, we want to compare the Harm metric to the hyperbolic metric. Let
X be a hyperbolic Riemann surface that is, B is the universal covering surface
of X. Suppose π: B-*X is any analytic universal covering projection. The hy-
perbolic metric λχ(z) \dz\ on I is real-analytic and has constant (Gaussian) cur-
vature —4. It is the unique metric on X that satisfies

It is also the Kobayashi-Royden metric on X. That is, if p e X and z is a local
coordinate at p with z(p)—0, then

~ΎvmVΓ : -^: ^ — > ^ i s a n a l y t i c a n d /(0)=j&|.

An analytic function / : B-^X is extremal for the hyperbolic metric if and only
if it is a universal covering that satisfies f(0)=p. Obviously, the Hahn metric
dominates the hyperbolic metric; the following theorem sharpens this result.

T H E O R E M 2. Let X be a hyperbolic Riemann surface. Then λx(z)\dz\S

Sχ(z)\dz\ and equality holds if and only if X is simply connected.

Proof. Fix j f )ε l and let z be a local coordinate in a neighborhood of p
such that z(p)~0. Assume π:B-+X is an analytic universal covering with
π(0)=p. Then

Let φ(=S(B, X) be an extremal function for the Hahn metric at p; that is,
φ{p)=0 and

Since π is a universal covering, there is a holomorphic function h : B-+B with
Λ(0)=0 such that φ=π°h. Then

λx(z)=\h'(0)\Sx{z).

Schwarz' Lemma implies that | / Ϊ ' ( 0 ) | ^ 1 with equality if and only if h is a
rotation of B. Thus, ΛχO)^ΞSχ(». If X is simply connected, then π: Z?->X is
a conformal mapping. This gives h(w)=eiΘw for some 0ei2, so equality holds.
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Conversely, suppose that equality holds. Then |/ι '(0) |=l so h{z)—eιθw, or φ{w)
= π(eιθw). This shows that π is injective, so X must be simply connected.

COROLLARY. Let X be a Riemann surface. The distance function Sx is
complete if X is not con formally equivalent to either C or P.

Proof. First, we assume that X is hyperbolic. Let dx denote the hyperbolic
distance function on X induced by the hyperbolic metric. Then dx is com-
patible with the topology of X and complete [3, p. 204]. Theorem 2 implies
that dχ^Sx. It follows easily that Sx is complete. If X is neither hyperbolic
nor conformally equivalent to C or P, then X is conformally equivalent to C\ {0}
or a torus. The explicit formula for SC\ιo}(z)\dz\ given in section 5 implies that
SC\[o) is complete. Since a compact metric space is automatically complete, the
Hahn metric on a torus is complete.

Hahn [4] established the completeness of Sx when X is a proper plane region.

4. The hahn metric for a torus.

Let X be a compact Riemann surface of genus one that is, a torus. We
shall show that the Hahn metric for X is real-analytic and has constant curva-
ture zero. This is a consequence of the fact that the Hahn metric is invariant
under the group of conformal automorphisms of X as the following theorem
shows.

THEOREM 3. Let X be a compact Riemann surface of genus one. Suppose
that p(z)\dz\ is a positive metric on X that is invariant under the group Aut(Z).
Let π'.C^X be an analytic universal covering. Then π*(p(z)\dz\)=c\dz\ for
some positive constant c. In particular, p{z)\dz\ is real-analytic and has constant
curvature zero.

Proof. Let Γ be the group of cover transformations associated with the
covering π: C—>X. Γ is generated by two translations 7\ and T2, where Tt(z)=
zJ

rωι (z = l, 2), ωλ and ω2 are nonzero complex numbers and lm.(ω1/ω2)iL0. Define
ρ(z)\dz\ =π*(p(z)\dz\). We shall show that p{z) is constant on C by demonstrat-
ing that the metric p(z)\dz\ is invariant under all translations of C. Let T(z)=
z^-co be any translation of C. Then T belongs to N(Γ), the normalizer of Γ in
the group Aut(C), since all translations commute. Because T^N(Γ), there
exists φ<=Aut(X) such that π°T = φ°π [9, p. 139]. Now,

= π*(φ*(p(z)\dz\))=π*(p(z)\dz\)

= p(z)\dz\,

or
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p{z)=p(T{z))\T'(z)\=p(z+ω).

Because ω is an arbitrary complex number, we conclude that p is constant, say
p — c. Thus, p[z)\dz\—c\dz\ is just a scalar multiple of the euclidean metric
which is real-analytic and has constant curvature zero. Since the analytic func-
tion π is locally injective and π*(ρ(z)\dz\) = c\dz\, we may conclude that p{z)\dz\
is real-analytic and has constant curvature zero.

Note that the constant c in Theorem 3 probably depends on the torus X.
It would be interesting to determine the value of c, say in terms of ωx and ω2.

Since exp: C->C\{0} is a universal covering, it is possible to establish the
analog of Theorem 3 for C\ {0} in place of a torus. In fact, we could show that

or equivalently,

for some positive constant c. In the next section we explicitly determine
Sc\[n\(z)\dz\ by a different method.

5. The Hahn metric on doubly connected Riemann surfaces.

By a doubly connected Riemann surface we understand a surface with fun-
damental group isomorphic to Z. Any doubly connected Riemann surface is
conformally equivalent to exactly one of the following plane regions : ( i ) C\ {0},
(ii) B\{0}, or (iii) an annulus AR={z: l/R<\z\<R) where Λ G ( 1 , OO) [3, p. 192].
Thus, it suffices to determine the Hahn metric for the punctured plane, the
punctured disk and an annulus in order to know it for any doubly connected
surface. We shall explicitly calculate the Hahn metric and its curvature in each
of these three cases.

( i ) C\{0}. We will prove that

(1) SCxUz)\dz\ = ψzj

so that the Hahn metric for the punctured plane is just one quarter of the
logarithmic metric. It follows that the curvature is identically zero. Let us
establish (1). Suppose f^S(B, C\{0}) and f(0)=a. The Koebe 1/4-theorem
applied to (/—α)//'(0) gives

4 = |/'(0)|

with equality if and only if / is a conformal mapping of B onto C slit along a
ray emanating from the origin in the direction opposite a and /(0)=α.
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THEOREM 4. Let X be a plane region, XφC, and δx(z)=dist(z, C\X). Then

Proof. First, we establish the lower bound which is due to Hahn [4]. Fix
α e l and select b^dX with \a—b\=δx{a). Since XdC\{b}, the monotonicity
property of the Hahn metric yields

( )

The upper bound is also elementary to establish. Define f(z)=a+δx(ά)z. Then
ftΞS{B, X\ /(0)=α and f'(0)=δx(a) so that

noγ\:=

(ii) B\{Q}. We shall demonstrate that

Since SB\{o)(z)\dz\ is invariant under the group Aut(2?\{0}) which consists of all
rotations about the origin, we obtain SB\{o}(z)=SB\[o](\z\) for z^B\{0}. Thus, we
need only establish (2) for z — a^(0, 1). We want to determine f^S(B, B\{0})
that satisfies f(0) = a and maximizes \f'(0)\. Let Ω=f(B). Circular symmetrize
Ω with respect to the positive real axis. Since Ω is simply connected and omits
0, the circular symmetrization of Ω is contained in the simply connected region
Ω* = B\(-1, 0]. Then \f/(O)\^\φ\O)\, where φ: B->Ω* is a conformal mapping
that satisfies φ(0) = a [5, p. 84]. Thus,

The elementary conformal mapping φ can be determined in a straightforward
manner; direct calculation yields (2).

Next, we calculate the curvature of SB\ιo)(z)\dz\. By definition the curva-
ture is

Δ log SBχ{Q}{z)
K\Z)

It is advantageous to change to polar coordinates. Let u(r)=\og SB\{0](r). Then
u is independent of θ so

1
U-Urr γ U r .

We obtain
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Notice that

\imκ(z)=Q,
z-»0

(iii) AR. Let SR{z)\dz\ denote the Hahn metric for AR. We shall express
SR{z) explicitly in terms of Jacobian elliptic functions. Since SR(z)\dz\ is in-
variant under Aut (AR) which contains all rotations about the origin, we conclude
that SR(z)=SR(\z\) for z^AR. Consequently, it suffices to determine SR(a) for
GG(l/i?, R). This is equivalent to determining f^S(B, AR) that satisfies /(0)=α
and maximizes | /'(()) | over the class of all such functions. Assume / e S(B, AR),
/(0)=α and f{B) — Ω. The circular symmetrization of Ω with respect to the
positive real axis is contained in the simply connected region Ω*=AR\(—R, —1/R).
Therefore, if φ: B->Ω* is a conformal mapping with φ(0)=a, then |/'(()) | ^
\φ'(0)\ [5, p. 84]. This yields

where Ψ—φ'1.
Now, we want to explicitly determine Ψ. Let sn, en and Jn denote the

Jacobian elliptic functions relative to the parameter τ. The basic facts that we
require about these functions are contained in [11, Chapter VI, Section 3]. Let
k = VJ(τ)> where λ denotes the elliptic modular function that is normalized by

l, Λ(l)=oo, ^(oo)=0. If

then for τ=tK'/K the function

maps the rectangle R(K, K')={z: \Re(z)\<K, \Im(z)\ <K'} conformally onto the
unit disk B with /(0)=0 [11, p. 297]. The function / is symmetric about the
real axis. By making use of elementary identities for the Jacobian elliptic func-
tions, we find that

dn(z)
/ ' ( * ) = • l + cn(z)

In particular, //(0) = l/2 since cn(0) = l = dn(0). The function L(z) = (K\og z)/
log R maps β* conformally onto R(K, K')\ here we select τ so that K'/K=π/
log R. Then /°L is a conformal mapping of Ω* onto B. Set δ=/(L(α))e(—1,1)
and define T{z)—{z—b)/{l—bz). The function T is a conformal automorphism
of 2? that sends b to the origin. Finally, Ψ=T°f°L is a conformal mapping of
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Ω* onto B with Ψ(a)=0. Now,

Ψ'(a)=-

f,(K\oga
K J \ logR

a log R i __ fzfKΛogjπ
] \ logR

K log a

2a\ogR r?Ί(KJogoΛ '
cn\ Tog R )

Thus,

log R
2|2|logfl

logi?
It is possible to express the constant K directly in terms of R. From [2, pp.
385, 410] we have

Δ 71 = 1

where ^=exp(2πτ). Because τ—iKr/K—iπ/\ogR we obtain

" ~ 2 L ' , ^ i FV logRJi '

For purposes of comparison we give the hyperbolic metric for ΛR; it is

λR(z)\dz\ = ~Tι

There is a curious connection between the Hahn metric and the hyperbolic
metric. For τ^ico we have &=0. In this case, s?i(»=sm (̂ ), cn(z)=cos(z),
dn(z)=l and K(0)=π/2 [10, p. 216]. Thus, for τ=zoo the Hahn metric becomes
the hyperbolic metric.

We are interested in the curvature of SR(z)\dz\. The calculations are
simplified if we use the identity

Cΐl(U)

[2, p. 388] and change to polar coordinates. Straightforward calculation give

logR
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Observe that

lim ιc(z) — — 4 .
z^BAR

6. Curvature properties of the Hahn metric.

Our final goal is to investigate the curvature of the Hahn metric. We
start by recalling the curvature in some particular cases. Suppose X is a simply
connected Riemann surface; then X is conformally equivalent to exactly one of
B, C and P. If X is conformally equivalent to either C or P, then the Hahn
metric is trivial. When X is conformally equivalent to B, the Hahn metric
coincides with the hyperbolic metric. In this situation it has constant curvature
—4. If X is conformally equivalent to the punctured plane C\ {0} or torus, then
Sχ(z) I dz I has constant curvature zero. Finally, if X is conformally equivalent
to a the punctured disk J5\ {0} or an annulus, then the curvature lies strictly
between —4 and 0. For a general Riemann surface XψC, P it is only known
that Sx{z)\dz\ is a continuous metric [4]. It is an open question whether it is
of class C2 in the general case. Thus, it does not make sense to speak of the
curvature of the Hahn metric of a general Riemann surface. For this reason
we introduce generalized notions of curvature which were motivated by Heins'
definition of SK metrics [6].

DEFINITION. Let p(z)\dz\ be a continuous metric on a Riemann surface.
Suppose p^X and z is any local coordinate in a neighborhood of p with z(p)—0.
Define

4 lim inf -}τ\}Λ2π log p(re*θ)dθ-log p(0)]
(3) κ{p)=-~ -~w>γ—

4 lim sup-MoVΓ* l oS p(reιβ)d0-~\og p(0)]
(A) ..( hy- __ ... '•-o r_λlπJ«. 1 I

κ(p)(ic(p)) is called the generalized upper (lower) curvature of p(z)\dz\ at p.
Observe that if p(z)\dz\ is of class C2 in a neighborhood of p, then

Δ log ,0(0)̂ 4 lim W-^ΐ* log p(reτ0)dθ-log p(0)] .

In this situation

where κ(p) denotes the Gaussian curvature of p(z)\dz\ at p. In general, the
numerator of the expression in (3) ((4)) is a generalized lower (upper) Laplacian
for log p.

We shall prove that the Hahn metric has generalized upper curvature at
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least —4. The method that we employ is closely related to the work of Suita [13].

LEMMA. Suppose that σ{z)\dz\ is a positive metric of class C2 in a neigh-
borhood of a point a^C. Suppose that p(z)\dz\ is a continuous metric in a
neighborhood of a, ρ(a) = σ(a) and p(z)^σ(z) in a neighborhood of a. Then κ(a, σ)

Proof. Clearly, log (σ(z)/p(z)) is continuous and nonnegative in a neigh-
borhood of a and has a local minimum at a. It follows that

G n (f{a)
log — ( a + reιO)dθ}^Q=\og —τ-N--.

o p p{a)

Hence,

log

for all r > 0 sufficiently small. If we take the limit superior of both sides of this
inequality as r-»0, then we obtain the desired result since σ is of class C2 in a
neighborhood of a.

THEOREM 5. Suppose X is a Riemann surface that is not conformally equi-
valent to either C or P. Then the Hahn metric Sx{z)\dz\ has generalized upper
curvature at least —4 at each point of X.

Proof. We assume that X is actually a region in C and fix J G I If X is
actually a Riemann surface, then we perform similar calculations in terms of
any local coordinate at p. Let φ^S(B, X) be an extremal function for Sx(p);
that is, φ(0)=p and Sx(p)=l/\φ'(0)\. Thus,

where λB(z)\dz\ is the hyperbolic metric on B. For any a^B define

z+a \
Λ+άz/'

Then φa£ΞS(B, X) and φa(0)=φ(a) so

1 1

or

This implies that
φ*(Sx(z)\dz\)^λB(z)\dz\

with equality at the origin. Let Ψ—φ'1. Then
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Sx(z)\dz\^Ψ*(λB(z)\dz\)

on φ(B) with equality at p. Because curvature is a conformal invariant,
Ψ*(λB(z) I dz I) has constant curvature —4 on φ(B). The theorem now follows
immediately from the preceding lemma.

If X is any Riemann surface such that Sx(z)\dz\ is of class C2, then
Theorem 5 actually implies that Sx(z)\dz\ has Guassian curvature at least —4.
In all of our examples, the curvature of the Hahn metric was either identically
zero or else strictly negative. Is it true that for an arbitrary Riemann surface
XΦC, P, the generalized lower curvature of the Hahn metric is nonpositive?
Also, in our examples, the curvature of the Hahn metric approached —4 at any
point of an analytic boundary contour of X. Is this true in more generality?

ADDED IN PROOF. Recently, the author discovered that the Hahn metric
was also considered in the following papers.

N. Mok, The Serre problem on Riemann surfaces, Math. Ann. 258 (1981),
145-168.

Y.-T. Siu, All plane regions are Banach-Stein, Manuscripta Math. 14 (1974),
101-105.
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