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NORM THEOREM ON SPLITTING FIELDS OF

SOME BINOMIAL POLYNOMIALS

BY SUGURU HAMADA

Let K be a finite algebraic number field and let M/K be a finite Galois ex-
tension. Let Knot {M/K) be the factor group { α e i P , a is a local norm every-
where} /{a^Kx, a is a global norm}. Hasse's norm theorem asserts that if M/K
is a cyclic extension then Knot(M/ϋO=l. H. HASSE ([4]) showed that the
norm theorem not always holds for arbitrary abelian extension by giving a
counter example: M=Q(V—39, V—3) and K=Q, where Q is the field of rational
numbers.

And related theories are in [1], [2], [3], [6], and [7]. In this paper we
prove the following:

THEOREM. Let p be an odd prime number, ζ a primitive pr-th root of unity
( r^ l ) , K a finite algebraic number field, L = K(ζ) and M=L(a1/pT) (αeΛΓ).

// f(X)=χpr-a is irreducible in L [ Z ] then Knot(M/K) = L When V-Ί^K
the same assertion holds also for p—2.

In Remark, by examples, we shall show that in Theorem if we replace pr

by a number which is not a power of an odd prime number or by 2r (r>2 and
«s/^l€K) then the conclusion is not always valid.

In § 1, we shall prove Theorem and Remark by determing Knot (M/K) ex-
plicitely by the following Lemma:

LEMMA. Let I, n be positive integers and let G be a group of order In gen-
erated by two elements σ, τ whose fundamental relations are σι~τn — l, τστ~1 — σ7ϊl

(l^m<l and ?nn-l is a multipler of I). Then H3(G, Z)^Z/dZ where d = (l +
m+ ••• +mn~\ I, {mn—l)/l, m—1) and Z is the ring of rational integers on which
G operates trivially.

In §2, we shall give a proof of the Lemma as a corollary of a proposition
in [4].

§ 1. Proofs of Theorem and Remark.

In the following the notations are same as those in our Theorem. Let G —

Received January 13, 1982

47



48 S. HAMADA

Gal (M/K) be the Galois group of M/K, Mx the multiplicative group of M, JM

the idele group of M, and CM the idele class group of M.
Then the exact sequence

1 — > Mx — JM —> CM —> 1

gives an exact sequence

> H-\G, CM) — > H°(G, M x) — > H°(G, JM) —* H°(G, CM) —+ - .

By Tate's Theorem, we have H~\G, CM)~H-\G, Z). In the following, by
Lemma we show that H~B(G, Z)=0 then we have an exact sequence l-»i/°(G, M x)
^H\G, JM\

Therefore, the canonical map KX/NM/KMX->JK/NM/KJM is injective and we
have Theorem. Now we show that H\G, Z)=0 by Lemma then H~\G, Z)=0
follows because in general H~\G, Z)~H\G, Z).

First let pφ2, [L : K~] — ny θ — allΊ)r and p a rational integer such that p
mod pr generates the units group of Z/prZ. By assumption, M/L is a cyclic
Kummer extension of degree pr and L/K is also a cyclic extension of degree n.
Let σ, τ be the elements of G such that σ(θ)=θζ, σ(ζ)=ζ; r(0) = 0, τ(ζ)=ζm,
where 7n = ρφCpr^n mod pr (φ is Euler's function and l^m<pr).

Then G = <σ, τ>, <7pr=τn = l, τστ " 1 ^^ 7 7 1 and G is a group of the type in
Lemma. Therefore, we have H\G, Z)=Z/dZ where d=(l+mH hwi""1, ίr,
(mn—l)/pr, m—l). We show that d = l.

Now, d/^1 if and only if m = l mod/), n^O mod p and (mn — l)/ pr=0 mod p.
While if n=0 modp} we have mn = pψ( v^ mod £ r + 1 and pWr>^l mod pr+1, be-
cause in fact ?2 is a divisor of φ(pr) and ΉΞO mod p implies r ^ 2 . Therefore
we have (mn—l)/pr^0 mod p and d — l.

Next let /?—2, Λ/^I^K and [L : K2 = n. If r ^ 2 we have the result im-
mediately, so let r ^ 3 . Since ^/^ΐ^K, Gal (L/K) is also a cyclic group generated
by τ0 such that τ o (ζ)=ζ m where m=52r~1/n mod2 r and l ^ m < 2 r .

And G = <σ, τ> (σ(θ) = θζ, σ(ζ)=ζ; τ(θ) = θ, τ(Q=ζm), σ

2T=τn = l and τστ-1^
σm. Now if n=0 mod 2 we have mn=52r~2 mod2 r+1, and 5 2 r " 2 ^l mod2 r + 1.
Therefore H\G, Z)=0 follows just as the case pφ2.

Thus the proof of Theorem is completed.

Remark. In Theorem, if we replace pr by a number which is not a power
of an odd prime number, or by 2r (r^2, Λ/^Λ^K) then our Theorem not always
holds.

To show this, we use the following well known theorem ([1] p. 198). Let K
be a finite algebraic number field and let M/K be a finite Galois extension with
Galois group G — G(M/K). For each prime divisor p of K, we fix a prime divisor
$ of M lying above p and let G$ be the decomposition group of 5β. Let F be
the subgroup of H~S(G, Z) generated by all cor (H~B(G%, Z)) where p runs over
all prime divisors of K and cor is the correstriction homomorphism from H~3(G%, Z)
into H~\G, Z). Then the theorem asserts that Knot (M/K)^H-*(G, Z)/F.
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In the following Examples, ζt is a primitive ί-th root of unity.

EXAMPLE 1. Let L—Q(ζ), ζ—ζ2l and let K be the subfield of L which cor-
responds to the subgroup <τo> of Gal(L/Q), where ro(ζ)—ζ4. Then we have
Knot(M//O«Z/3Z where M=L(8831/21).

/V00/. 883 is a prime number and 8 8 3 Ξ 1 mod(21)2. We have Gal(M/ΛΓ) =
<<τ, r> (σ{θ) = θζ, σ(ζ)=ζ; τ{θ) = θ and r(ζ)=ζ 4 where 6>=8831/21), <721=r3 = l and
τστ~1 = σ\ By Lemma, we have H~S(G, Z)^Z/3Z. On the other hand, for any
prime divisor $ of M the decomposition group G% is cyclic. For the proof, we
may consider only *$ which is above 883, 3 or 7. When $ is above 883, G%Q
Gal(M/L)=<σ> because the prime of K under $ splits completely in L. When
$ is above 3 or 7 the prime of L under % splits completely in M, because X21 =
883 mod 32 or mod72 has a solution X=l. Hence the order of G$ is ^ 3 and G%
is cyclic. Therefore for any $, H~S(G%, Z)=0 and by the above theorem we
have Knot(M/K)*Z/3Z.

EXAMPLE 2. Let K=Q, L=Q(ζ 4 )=Q(V : = Ί), and M=L(171/4), then Knot (M/K)
-Z/2Z.

Proof. Gal(M/K)—<σ, τ>, (7 4 =τ 2 =l and τcjτ"1^^-3. By Lemma, we have
//3(G, Z)^Z/2Z. On the other hand, just as Example 1, we see that for any
prime divisor $ of M, Gφ is cyclic and Knot(M/iΓ)^Z/2Z.

Remark. As we have seen in the proof of Theorem, we have a slightly
generalized theorem as follows let p be an odd prime number and let M/K be
a finite Galois extension. If Gal(M/ϋC)=<σ, τ>, σ ^ r n = l (n|^(£ r)), <»π<τ> = l,
τ ί7r~1=ί7m and m mod^ r has order n in the unit group of ZlprZ, then Knot
(M/K)=l. We have also a similar generalization for p—2.

2. A Proof of Lemma.

Let G be a group of the type in Lemma: G is a group of order In, generated
by two elements σ, τ with fundamental relations σι=τn — l, τστ~1 = σm where
lfg?n</ and mn—1 is a multipler of /. In the following, let Λ^=l + cr+ ••• -j-σ1"1,
Δ=l-σ, S=l + σ+ ••• +σm~\ T1=T~1S\ Nι=l+Ti+ ••• + T ? " 1 , Δx = l-Tτ and

^ 1 - , where i^O and /0=(7?zn-l)//.

For a left G-module A, in [4], by giving a free resolution of G, we determined
cohomology groups Hr(G, A) as follows:

PROPOSITION. L^ M x = ( . ), M2=\Δ1 -Δ\ and for g^

\o N
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ί 0

-N

0

0
N

-Δ

0 -Lt

0

where 0 means that all elements in the places are 0. Then

H%G,A)={a}/{Mιb} (j = l , 2 , •••),

vector) I α̂  e 4̂ αncί M t + 1α=0}

Now we prove our Lemma by above Proposition. Since G operates trivially

on Z, we have, for r^.Zy Nr—lr, Δ2r—{l—m2)r, Δr—Δ^r—^, Nλr—μr (μ=l+m

+ ••• +77171"1), L1r=lor, Δ1r=(l—m)r and Nor=nr.

By Proposition, H3(G, Z)& {a} / {M3b} and direct computations give {a} «

{x(r0, —s o ) |xeZ} where μ = doso, l=doro ((s0, r o =l)) and {M3fr} « {((1—m)^—/z,

/ o ^ + ^ Ί ^ * z^Z} = {(dιy + dtz)(r<h —soy\y, z&Z}, where d1=(m—1, /0). (For
convenience if m—1=/0==0 we set d^O.)

Hence {M3̂ } « {<ix(r0, — so)c | x ^ Z } , where d=(d0, dλ). Consequentely we

have i/3(G, Z)^Z/dZ, where J = ( l + 7 n + ••• +m π - 1 , /, (mn-l)/l, m-1).
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