S. HAMADA KODAI MATH. J 6 (1983), 47-50

NORM THEOREM ON SPLITTING FIELDS OF SOME BINOMIAL POLYNOMIALS

By Suguru Hamada

Let K be a finite algebraic number field and let M/K be a finite Galois extension. Let Knot (M/K) be the factor group $\{a \in K^{\times}, a \text{ is a local norm everywhere}\}/\{a \in K^{\times}, a \text{ is a global norm}\}$. Hasse's norm theorem asserts that if M/K is a cyclic extension then Knot(M/K)=1. H. HASSE ([4]) showed that the norm theorem not always holds for arbitrary abelian extension by giving a counter example: $M=Q(\sqrt{-39}, \sqrt{-3})$ and K=Q, where Q is the field of rational numbers.

And related theories are in [1], [2], [3], [6], and [7]. In this paper we prove the following:

THEOREM. Let p be an odd prime number, ζ a primitive p^r -th root of unity $(r \ge 1)$, K a finite algebraic number field, $L = K(\zeta)$ and $M = L(a^{1/p^r})$ $(a \in K)$.

If $f(X)=X^{p^r}-a$ is irreducible in L[X] then Knot(M/K)=1. When $\sqrt{-1}\in K$ the same assertion holds also for p=2.

In Remark, by examples, we shall show that in Theorem if we replace p^r by a number which is not a power of an odd prime number or by 2^r $(r \ge 2$ and $\sqrt{-1} \notin K$) then the conclusion is not always valid.

In §1, we shall prove Theorem and Remark by determing Knot(M/K) explicitly by the following Lemma:

LEMMA. Let l, n be positive integers and let G be a group of order ln generated by two elements σ, τ whose fundamental relations are $\sigma^{l} = \tau^{n} = 1, \tau \sigma \tau^{-1} = \sigma^{m}$ $(1 \le m < l \text{ and } m^{n} - 1 \text{ is a multipler of } l)$. Then $H^{3}(G, Z) \approx Z/dZ$ where $d = (1 + m + \dots + m^{n-1}, l, (m^{n} - 1)/l, m - 1)$ and Z is the ring of rational integers on which G operates trivially.

In §2, we shall give a proof of the Lemma as a corollary of a proposition in [4].

§1. Proofs of Theorem and Remark.

In the following the notations are same as those in our Theorem. Let G =

Received January 13, 1982

Gal(M/K) be the Galois group of M/K, M^{\times} the multiplicative group of M, J_M the idèle group of M, and C_M the idèle class group of M.

Then the exact sequence

$$1 \longrightarrow M^{\times} \longrightarrow J_M \longrightarrow C_M \longrightarrow 1$$

gives an exact sequence

$$\cdots \longrightarrow H^{-1}(G, C_M) \longrightarrow H^{\circ}(G, M^{\times}) \longrightarrow H^{\circ}(G, J_M) \longrightarrow H^{\circ}(G, C_M) \longrightarrow \cdots$$

By Tate's Theorem, we have $H^{-1}(G, C_M) \approx H^{-3}(G, Z)$. In the following, by Lemma we show that $H^{-3}(G, Z) = 0$ then we have an exact sequence $1 \rightarrow H^{\circ}(G, M^{\times}) \rightarrow H^{\circ}(G, J_M)$.

Therefore, the canonical map $K^*/N_{M/K}M^* \rightarrow J_K/N_{M/K}J_M$ is injective and we have Theorem. Now we show that $H^3(G, Z)=0$ by Lemma then $H^{-3}(G, Z)=0$ follows because in general $H^{-3}(G, Z) \approx H^3(G, Z)$.

First let $p \neq 2$, [L: K] = n, $\theta = a^{1/p^r}$ and ρ a rational integer such that ρ mod p^r generates the units group of $Z/p^r Z$. By assumption, M/L is a cyclic Kummer extension of degree p^r and L/K is also a cyclic extension of degree n. Let σ, τ be the elements of G such that $\sigma(\theta) = \theta \zeta$, $\sigma(\zeta) = \zeta$; $\tau(\theta) = \theta$, $\tau(\zeta) = \zeta^m$, where $m \equiv \rho^{\varphi(p^r)/n} \mod p^r$ (φ is Euler's function and $1 \leq m < p^r$).

Then $G = \langle \sigma, \tau \rangle$, $\sigma^{p^r} = \tau^n = 1$, $\tau \sigma \tau^{-1} = \sigma^m$ and G is a group of the type in Lemma. Therefore, we have $H^3(G, Z) = Z/dZ$ where $d = (1+m+\cdots+m^{n-1}, p^r, (m^n-1)/p^r, m-1)$. We show that d=1.

Now, $d \neq 1$ if and only if $m \equiv 1 \mod p$, $n \equiv 0 \mod p$ and $(m^n - 1)/p^r \equiv 0 \mod p$. While if $n \equiv 0 \mod p$, we have $m^n \equiv \rho^{\varphi(p^r)} \mod p^{r+1}$ and $\rho^{\varphi(p^r)} \not\equiv 1 \mod p^{r+1}$, because in fact *n* is a divisor of $\varphi(p^r)$ and $n \equiv 0 \mod p$ implies $r \geq 2$. Therefore we have $(m^n - 1)/p^r \not\equiv 0 \mod p$ and d = 1.

Next let p=2, $\sqrt{-1} \in K$ and [L:K]=n. If $r \leq 2$ we have the result immediately, so let $r \geq 3$. Since $\sqrt{-1} \in K$, $\operatorname{Gal}(L/K)$ is also a cyclic group generated by τ_0 such that $\tau_0(\zeta) = \zeta^m$ where $m \equiv 5^{2^{r-1}/n} \mod 2^r$ and $1 \leq m < 2^r$.

And $G = \langle \sigma, \tau \rangle$ $(\sigma(\theta) = \theta\zeta, \sigma(\zeta) = \zeta; \tau(\theta) = \theta, \tau(\zeta) = \zeta^m), \sigma^{2^r} = \tau^n = 1$ and $\tau \sigma \tau^{-1} = \sigma^m$. Now if $n \equiv 0 \mod 2$ we have $m^n \equiv 5^{2^{r-2}} \mod 2^{r+1}$, and $5^{2^{r-2}} \equiv 1 \mod 2^{r+1}$. Therefore $H^3(G, Z) = 0$ follows just as the case $p \neq 2$.

Thus the proof of Theorem is completed.

Remark. In Theorem, if we replace p^r by a number which is not a power of an odd prime number, or by 2^r $(r \ge 2, \sqrt{-1} \in K)$ then our Theorem not always holds.

To show this, we use the following well known theorem ([1] p. 198). Let K be a finite algebraic number field and let M/K be a finite Galois extension with Galois group G=G(M/K). For each prime divisor \mathfrak{p} of K, we fix a prime divisor \mathfrak{P} of M lying above \mathfrak{p} and let $G_{\mathfrak{P}}$ be the decomposition group of \mathfrak{P} . Let F be the subgroup of $H^{-3}(G, Z)$ generated by all $\operatorname{cor}(H^{-3}(G_{\mathfrak{P}}, Z))$ where \mathfrak{p} runs over all prime divisors of K and cor is the correstriction homomorphism from $H^{-3}(G, Z)/F$.

48

In the following Examples, ζ_t is a primitive *t*-th root of unity.

EXAMPLE 1. Let $L = Q(\zeta)$, $\zeta = \zeta_{21}$ and let K be the subfield of L which corresponds to the subgroup $\langle \tau_0 \rangle$ of $\operatorname{Gal}(L/Q)$, where $\tau_0(\zeta) = \zeta^4$. Then we have $\operatorname{Knot}(M/K) \approx Z/3Z$ where $M = L(883^{1/21})$.

Proof. 883 is a prime number and $883\equiv 1 \mod (21)^2$. We have $\operatorname{Gal}(M/K) = \langle \sigma, \tau \rangle \ (\sigma(\theta) = \theta \zeta, \ \sigma(\zeta) = \zeta; \ \tau(\theta) = \theta \text{ and } \tau(\zeta) = \zeta^4$ where $\theta = 883^{1/21}$), $\sigma^{21} = \tau^3 = 1$ and $\tau \sigma \tau^{-1} = \sigma^4$. By Lemma, we have $H^{-3}(G, Z) \approx Z/3Z$. On the other hand, for any prime divisor \mathfrak{P} of M the decomposition group $G_{\mathfrak{P}}$ is cyclic. For the proof, we may consider only \mathfrak{P} which is above 883, 3 or 7. When \mathfrak{P} is above 883, $G_{\mathfrak{P}} \subseteq \operatorname{Gal}(M/L) = \langle \sigma \rangle$ because the prime of K under \mathfrak{P} splits completely in L. When \mathfrak{P} is above 3 or 7 the prime of L under \mathfrak{P} splits completely in M, because $X^{21} \equiv 883 \mod 3^2$ or mod 7² has a solution X=1. Hence the order of $G_{\mathfrak{P}}$ is ≤ 3 and $G_{\mathfrak{P}}$ is cyclic. Therefore for any \mathfrak{P} , $H^{-3}(G_{\mathfrak{P}}, Z) = 0$ and by the above theorem we have $\operatorname{Knot}(M/K) \approx Z/3Z$.

EXAMPLE 2. Let K = Q, $L = Q(\zeta_4) = Q(\sqrt{-1})$, and $M = L(17^{1/4})$, then $Knot(M/K) \approx Z/2Z$.

Proof. Gal $(M/K) = \langle \sigma, \tau \rangle$, $\sigma^4 = \tau^2 = 1$ and $\tau \sigma \tau^{-1} = \sigma^3$. By Lemma, we have $H^3(G, Z) \approx Z/2Z$. On the other hand, just as Example 1, we see that for any prime divisor \mathfrak{P} of M, $G_{\mathfrak{P}}$ is cyclic and $\operatorname{Knot}(M/K) \approx Z/2Z$.

Remark. As we have seen in the proof of Theorem, we have a slightly generalized theorem as follows; let p be an odd prime number and let M/K be a finite Galois extension. If $\operatorname{Gal}(M/K) = \langle \sigma, \tau \rangle$, $\sigma^{p^r} = \tau^n = 1$ $(n | \varphi(p^r))$, $\langle \sigma \rangle \cap \langle \tau \rangle = 1$, $\tau \sigma \tau^{-1} = \sigma^m$ and $m \mod p^r$ has order n in the unit group of $Z/p^r Z$, then Knot (M/K) = 1. We have also a similar generalization for p = 2.

2. A Proof of Lemma.

Let G be a group of the type in Lemma: G is a group of order ln, generated by two elements σ , τ with fundamental relations $\sigma^{l} = \tau^{n} = 1$, $\tau \sigma \tau^{-1} = \sigma^{m}$ where $1 \le m < l$ and $m^{n} - 1$ is a multipler of l. In the following, let $N = 1 + \sigma + \dots + \sigma^{l-1}$, $\Delta = 1 - \sigma$, $S = 1 + \sigma + \dots + \sigma^{m-1}$, $T_{i} = \tau^{-1}S^{i}$, $N_{i} = 1 + T_{i} + \dots + T_{i}^{n-1}$, $\Delta_{i} = 1 - T_{i}$ and $L_{i} = \frac{(l_{0}N + 1)^{i} - 1}{N}$, where $i \ge 0$ and $l_{0} = (m^{n} - 1)/l$.

For a left G-module A, in [4], by giving a free resolution of G, we determined cohomology groups $H^{r}(G, A)$ as follows:

PROPOSITION. Let
$$M_1 = \begin{pmatrix} \Delta \\ \Delta_0 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} N & 0 \\ \Delta_1 & -\Delta \\ 0 & N_0 \end{pmatrix}$ and for $q \ge 1$

S. HAMADA

$$M_{2q+1} = \begin{pmatrix} \mathcal{A} & 0 & \vdots & 0 \\ \mathcal{A}_{q} & -N & \vdots & \\ \mathcal{L}_{q} & N_{q} & \vdots \\ 0 & \vdots & M_{2q-1} \end{pmatrix}, \qquad M_{2(q+1)} = \begin{pmatrix} N & 0 & \vdots & 0 \\ \mathcal{A}_{q+1} & -\mathcal{A} & \vdots & 0 \\ \mathcal{A}_{q+1} & -\mathcal{A} & \vdots & 0 \\ 0 & N_{q} & \vdots \\ 0 & -\mathcal{L}_{q} & M_{2q} \\ 0 & \vdots & 0 \end{pmatrix},$$

where 0 means that all elements in the places are 0. Then

 $H^{i}(G, A) = \{a\} / \{M_{i}b\}$ $(i=1, 2, \cdots),$

where $\{a\} = \{a = (a_1, \dots, a_{i+1})^t (\text{column vector}) | a_j \in A \text{ and } M_{i+1}a = 0\}$ and $\{M_ib\} = \{M_i(b_1, \dots, b_i)^t | b_j \in A\}.$

Now we prove our Lemma by above Proposition. Since G operates trivially on Z, we have, for $r \in Z$, Nr = lr, $\varDelta_2 r = (1-m^2)r$, $\varDelta r = \varDelta_0 r = 0$, $N_1 r = \mu r$ ($\mu = 1+m$ $+ \cdots + m^{n-1}$), $L_1 r = l_0 r$, $\varDelta_1 r = (1-m)r$ and $N_0 r = nr$.

By Proposition, $H^{3}(G, Z) \approx \{a\} / \{M_{3}b\}$ and direct computations give $\{a\} \approx \{x(r_{0}, -s_{0}) | x \in Z\}$ where $\mu = d_{0}s_{0}, l = d_{0}r_{0}$ (($s_{0}, r_{0}=1$)) and $\{M_{3}b\} \approx \{((1-m)y-lz, l_{0}y+\mu z)^{t} | y, z \in Z\} = \{(d_{1}y+d_{0}z)(r_{0}, -s_{0})^{t} | y, z \in Z\}$, where $d_{1}=(m-1, l_{0})$. (For convenience if $m-1=l_{0}=0$ we set $d_{1}=0$.)

Hence $\{M_3b\} \approx \{dx(r_0, -s_0)^t | x \in Z\}$, where $d = (d_0, d_1)$. Consequently we have $H^3(G, Z) \approx Z/dZ$, where $d = (1+m+\cdots+m^{n-1}, l, (m^n-1)/l, m-1)$.

References

- [1] J.W.S. CASSELS AND A. FROHLICH, Algebraic Number Theory, Proceedings of a Conference (Brighton 1965), LONDON-NEW YORK ACADEMIC PRESS 1967.
- [2] D.A. GARBANTI, The Hasse norm theorem for *l*-extensions of the rationals, In: Number and Algebra (ed. H. ZASSENHAUS), LONDON-NEW YORK ACADEMIC PRESS (1977), 77-90.
- [3] D.A. GARBANTI, The Hasse norm theorem for non-cyclic extensions of the rationals, Proc. London Math. Soc. (3) 37 (1978), 143-164.
- [4] S. HAMADA, On cohomology groups of dihedral groups (in Japanese), "Sūgaku" Vol. 16 (2) (1964), 106-107.
- [5] H. HASSE, Beweis eines Satzes und Widerlegung einer Vermutung über das allgemeine Normenrestsymbol, Nach. Ges. Wiss. 1 (1931), 64-69.
- [6] F. LOLENZ, Über eine Verallgemeierung des Hasseschen Normensatzes, Math. Z. 173 (1980), 203-210.
- [7] H. OPOLKA, Zur Auflösung zahlentheoretischer Knoten, Math. Z. 173 (1980), 95-103.

Department of Mathematics Miyagi University of Education Sendai

50