ON THE HOMOTOPY OF TYPE $C W$ COMPLEXES WITH
 THE FORM $S^{2} \cup e^{4} \cup e^{6}$

By Kohnei Yamaguchi

§ 1. Introduction.

The purpose of this paper is to classify the homotopy type of $C W$ complexes with the form $S^{2} \cup e^{4} \cup e^{6}$. For example, the total space of a sphere boundle over a sphere (or of a spherical fibration over a sphere) is a $C W$ complex with the form $S^{p} \cup e^{q} \cup e^{p+q}$ up to homotopy. The homotopy type classification of such a complex was partially given by James and Whitehead [8] and Sasao [6], and for more general cases Toda considered. [7]

In general, it is not easy to find the complete invariants which determine the homotopy type of it. But we can find them in the case of $C W$ complexes with the form $S^{2} \cup e^{4} \cup e^{6}$.

Let X be a $C W$ complex with the form $S^{2} \cup e^{4} \cup e^{6}$, and $x_{j} \in H^{2 J}(X, Z)$ be the generator for $j=1,2$ or 3 such that,

$$
\left(x_{1}\right)^{2}=m \cdot x_{2} \quad \text { and } \quad x_{1} \cdot x_{2}=n \cdot x_{3} . \quad(m, n \geqq 0)
$$

Then we have
Theorem 4.5. (a) If m is odd, then

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is trivial and the homotopy type of X is unqquely determined by the pair of integers (m, n).
(b) If m is even and

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is trivial, then the homotopy type of X is uniquely determined by the pair of integers (m, n).
(c) If m is even and

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is non-trivial, then X has precisely two homotopy types which can be distingushed
by some element of order two in $\pi_{5}\left(L_{m}\right)$.
In particular, in the case of manifolds we also have
Corollary 4.6. Let M be a closed 6 -dimensional smooth mannfold with the form $S^{2} \cup e^{4} \cup e^{6}$ such that

$$
\left(x_{1}\right)^{2}=m \cdot x_{2}
$$

where $x_{k} \in H^{2 k}(M, Z)$ is a generator for $k=1,2$ or 3 .
(a) If m is odd, then

$$
S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)
$$

is trivial and the homotopy type of M is uniquely determined by the integer m.
(b) If m is even and

$$
S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)
$$

is trivial, then the homotopy type of M is uniquely determined by the integer m.
(c) If m is even and

$$
S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)
$$

is non-trivial, then M has precisely two homotopy types which can be distınguished by the element of order two in $\pi_{5}\left(L_{m}\right)$.

The plan of this paper is as follows: In §2, we calculate homotopy groups of a $C W$ complex L with the form $S^{2} \cup e^{4}$. In $\S 3$, at first, we calculate $\varepsilon(L)$ which is the group of self-homotopy equivalences over L. Secondly, we determine the actions of $\varepsilon(L)$ on $\pi_{5}(L)$. In $\S 4$, we give the proof of the main results.

The problem of this paper was suggested by Professor S. Sasao and the author would like to take this opportunity to thank him for his many valuable suggestions and encouragement.

§ 2. Homotopy groups of L_{m}.

Let $\eta_{2}: S^{3} \rightarrow S^{2}$ be the Hopf map. It is well-known that the homotopy group $\pi_{3}\left(S^{2}\right)$ is isomorphic to $Z\left\{\eta_{2}\right\}$. For each integer m, let L_{m} denote the $C W$ complex formed by attaching the 4 -cell e^{4} to S^{2} with the map $m \eta_{2}: S^{3} \rightarrow S^{2}$, and the map $a_{m}:\left(E^{4}, S^{3}\right) \rightarrow\left(L_{m}, S^{2}\right)$ denote the characteristic map of 4 -cell e^{4} of L_{m}. For example, L_{0} and L_{1} are homotopy equivalent to the wedge of sphers $S^{2} \vee S^{4}$ and the 2 -dimensional projective space $C P^{2}$, respectively. Let $S O(n)$ be the n-th rotation group, and $p: S O(3) \rightarrow S O(3) / S O(2) \cong S^{2}$ be the canonical fibration with its fibre S^{1}. Let X_{m} be the S^{2} bundle over S^{4} with the characteritic element $c_{m} \in \pi_{3}(S O(3))$ satisfying $p_{*}\left(c_{m}\right)=m \eta_{2}$, where p_{*} is the induced homomorphism $p_{*}: \pi_{3}(S O(3)) \rightarrow \pi_{3}\left(S^{2}\right)=Z\left\{\eta_{2}\right\}$. It is easy to see that X_{m} is homotopy equivalent
to the $C W$ complex $L_{m} \cup_{b_{m}} e^{6}$ formed by attaching 6-cell e^{6} to L_{m} with $b_{m} \in$ $\pi_{5}\left(L_{m}\right)$, which is a generator of order infinity because X_{m} is a closed manifold. (See in detail [8]) Denote by ι_{n} the generator of $\pi_{n}\left(S^{n}\right)$ and by η_{m} the map $E^{m-2} \eta_{2}$ for integer $m \geqq 2$. It is also well-known that

$$
\pi_{4}\left(S^{2}\right)=Z_{2}\left\{\eta_{2}^{2}\right\}
$$

and

$$
\pi_{5}\left(S^{2}\right)=Z_{2}\left\{\eta_{2}^{3}\right\},
$$

where we denote by η_{n}^{2} the composition map $\eta_{n} \circ \eta_{n+1}$ and by η_{n}^{3} the composition map $\eta_{n}{ }^{\circ} \eta_{n+1}{ }^{\circ} \eta_{n+2}$.

LEMMA 2.1. (a) $L_{m}=S^{2} \cup_{m \eta_{2}} e^{4}$ is simply-connected,
(b) $\pi_{2}\left(L_{m}\right)=\pi_{2}\left(S^{2}\right)=Z\left\{c_{2}\right\}$, and
(c) $\pi_{3}\left(L_{m}\right) \cong Z / m Z=Z_{m}$.

Proof. Statements (a) and (b) are clear. Consider the exact sequence

$$
\begin{equation*}
\pi_{4}\left(L_{m}, S^{2}\right) \xrightarrow{\partial_{4}} \pi_{3}\left(S^{2}\right)=Z\left\{\eta_{2}\right\} \longrightarrow \pi_{3}\left(L_{m}\right) \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

Since $\pi_{4}\left(L_{m}, S^{2}\right)=Z\left\{a_{m}\right\}$ and $\partial_{4}\left(a_{m}\right)=m \eta_{2}$, the statement (c) is also obtained.
Q.E.D.

Lemma 2.3. (a) If m is odd, then $\pi_{4}\left(L_{m}\right)=0$.
(b) If m is even and $m \neq 0$, then

$$
\pi_{4}\left(L_{m}\right)=\pi_{4}\left(S^{2}\right)=Z_{2}\left\{\eta_{2}^{2}\right\}
$$

and in particular,

$$
\begin{equation*}
\pi_{4}\left(L_{0}\right)=\pi_{4}\left(S^{2} \vee S^{4}\right) \cong Z\left\{\varepsilon_{4}\right\} \oplus Z_{2}\left\{\eta_{2}^{2}\right\} \tag{c}
\end{equation*}
$$

Proof. Since $\pi_{1}\left(L_{m}, S^{2}\right)=Z\left\{a_{m}\right\}$, it is easy to see that $\pi_{\overline{5}}\left(L_{m}, S^{2}\right)=$ $a_{m *} * \pi_{5}\left(E^{4}, S^{3}\right) \oplus Z\left\{\left[a_{m}, \iota_{2}\right]_{r}\right\}$, where

$$
a_{m^{*}}: \pi_{5}\left(E^{4}, S^{3}\right) \longrightarrow \pi_{5}\left(L_{m}, S^{2}\right)
$$

is the homomorphism induced by a_{m}, and $[,]_{r}$ denotes a relative Whitehead product.

Now consider the exact sequence

$$
\begin{equation*}
\pi_{5}\left(L_{m}, S^{2}\right) \xrightarrow{\partial_{5}} \pi_{4}\left(S^{2}\right)=Z\left\{\eta_{2}^{2}\right\} \longrightarrow \pi_{4}\left(L_{m}\right) \longrightarrow \pi_{4}\left(L_{m}, S^{2}\right) \xrightarrow{\partial_{4}} \pi_{3}\left(S^{2}\right) \tag{2.4}
\end{equation*}
$$

Since $a_{m} \mid S^{2}=m \eta_{2}$, we have $\partial_{5} a_{m} * \pi_{5}\left(E^{4}, S^{3}\right)=Z_{2}\left\{m \eta_{2}^{2}\right\}$. On the other hand, taking account of $\left[\eta_{2}, \iota_{2}\right]=0$, we obtain

$$
\partial_{5}\left[a_{m}, \iota_{2}\right]_{r}=0 .
$$

Hence we also have

$$
\operatorname{Im}\left[\partial_{5}: \pi_{5}\left(L_{m}, S^{2}\right) \longrightarrow \pi_{4}\left(S^{2}\right)\right]=Z_{2}\left\{m \eta_{2}^{2}\right\}= \begin{cases}Z_{2}\left\{\eta_{2}^{2}\right\} & \text { if } m \text { is odd } \tag{2.5}\\ 0 & \text { if } m \text { is even } .\end{cases}
$$

Proof of Lemma 2.1 also shows that ∂_{4} is a monomorphism if $m \neq 0$. Then we have statements (a) and (b). The statement (c) is obvious. Q.E.D.

Lemma 2.6. (a) If m is odd, then

$$
\pi_{5}\left(L_{m}\right) \cong Z\left\{\left[a_{m}, \iota_{2}\right]_{r}\right\} \cong Z\left\{b_{m}\right\},
$$

(b) if m is even and $m \neq 0$, we have the exact sequence

$$
0 \longrightarrow \pi_{5}\left(S^{2}\right) \longrightarrow \pi_{5}\left(L_{m}\right) \longrightarrow Z\left\{\left[a_{m}, \iota_{2}\right]_{r}\right\} \oplus a_{m} \cdot \pi_{5}\left(E^{4}, S^{3}\right) \longrightarrow 0,
$$

and in particular, for $m=0$
(c)

$$
\begin{aligned}
\pi_{5}\left(L_{0}\right) & =\pi_{5}\left(S^{2} \vee S^{4}\right) \\
& =\pi_{5}\left(S^{2}\right) \oplus \pi_{5}\left(S^{4}\right) \oplus\left[\pi_{2}\left(S^{2}\right), \pi_{4}\left(S^{4}\right)\right] \\
& =Z_{2}\left\{\eta_{2}^{3}\right\} \oplus Z_{2}\left\{\eta_{4}\right\} \oplus Z\left\{\left[\iota_{2}, \iota_{4}\right]\right\} .
\end{aligned}
$$

Here we can identify $\left[a_{m}, \iota_{2}\right]_{r}= \pm b_{m} \in \pi_{5}\left(L_{m}\right)$.
Proof. The statement (c) is obvious. From (2.5) we have the exact sequence

$$
\begin{equation*}
\pi_{6}\left(L_{m}, S^{2}\right) \xrightarrow{\partial_{6}} \pi_{5}\left(S^{2}\right) \longrightarrow \pi_{5}\left(L_{m}\right) \longrightarrow \pi_{5}\left(L_{m}, S^{2}\right) \xrightarrow{\partial_{5}} Z_{2}\left\{m \eta_{2}^{2}\right\} \longrightarrow 0 . \tag{2.7}
\end{equation*}
$$

Since $\pi_{6}\left(L_{m}, S^{2}\right)=a_{m} * \pi_{6}\left(E^{4}, S^{3}\right) \oplus\left[\pi_{5}\left(L_{m}, S^{2}\right), \pi_{2}\left(S^{2}\right)\right]_{r}$ and $\left[\eta_{2}{ }^{\circ} \eta_{3}, \iota_{2}\right]=0$, we have

$$
\partial_{6}\left[\pi_{5}\left(L_{m}, S^{2}\right), \pi_{2}\left(S^{2}\right)\right]_{r}=0 .
$$

It follows from $a_{m} \mid S^{3}=m \eta_{2}$ and $\pi_{5}\left(S^{3}\right)=Z_{2}\left\{\eta_{4}^{2}\right\}$ that we obtain

$$
\begin{align*}
\operatorname{Im}\left[\partial_{6}: \pi_{6}\left(L_{m}, S^{2}\right) \longrightarrow \pi_{5}\left(S^{2}\right)\right] & =Z_{2}\left\{m \eta_{2}^{3}\right\} \tag{2.8}\\
& = \begin{cases}Z_{2}\left\{\eta_{2}^{3}\right\} & \text { if } m \text { is odd } \\
0 & \text { if } m \text { is even. }\end{cases}
\end{align*}
$$

Therefore we have statements (a) and (b). The rest of the proof is easy.
Q.E.D.

Lemma 2.9.

$$
\pi_{5}\left(L_{m}\right) \cong Z\left\{b_{m}\right\} \oplus \pi_{5}\left(X_{m}\right) .
$$

Proof. Let $b_{m}^{\prime}:\left(E^{6}, S^{5}\right) \rightarrow\left(X_{m}, L_{m}\right)$ be the characteristic map of 6-cell of X_{m}. Consider the exact sequence

$$
\pi_{6}\left(X_{m}, L_{m}\right) \xrightarrow{\partial_{6}^{\prime}} \pi_{5}\left(L_{m}\right) \longrightarrow \pi_{5}\left(X_{m}\right) \longrightarrow \pi_{5}\left(X_{m}, L_{m}\right)=0 .
$$

Since $\partial_{6}^{\prime}\left(b_{m}^{\prime}\right)=b_{m} \neq 0$ and $\pi_{6}\left(X_{m}, L_{m}\right)=Z\left\{b_{m}^{\prime}\right\}$, we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow Z\left\{b_{m}\right\} \xrightarrow{i_{*}} \pi_{5}\left(L_{m}\right) \longrightarrow \pi_{5}\left(X_{m}\right) \longrightarrow 0 \tag{2.10}
\end{equation*}
$$

Here we recall that $b_{m} \in \pi_{5}\left(L_{m}\right)$ is a generator. Then is follows by using the functional cup-product that the exact sequence (2.10) is split.
Q.E.D.

The preceding argument also shows
Corollary 2.11. (a) If m is odd, then

$$
\pi_{5}\left(X_{m}\right)=0
$$

and
(b) if m is even and $m \neq 0$, then the sequence

$$
0 \longrightarrow \pi_{5}\left(S^{2}\right) \longrightarrow \pi_{5}\left(X_{m}\right) \longrightarrow \pi_{5}\left(S^{4}\right) \longrightarrow 0
$$

is exact.

§ 3. Actions of $\varepsilon\left(L_{m}\right)$.

We denote by $\varepsilon(X)$ the group of self-homotopy equivalences over X with multiplication induced from composition. If $i: S^{2} \rightarrow L_{m}$ is the inclusion map, the induced homomorphism

$$
\imath_{*}: \pi_{2}\left(S^{2}\right) \xrightarrow{\cong} \pi_{2}\left(L_{m}\right)
$$

is an isomorphism. Since $H\left(\eta_{2}\right)=\iota_{3}$ and $\left[\iota_{2}, \iota_{2}\right]=2 \eta_{2}$, we have

$$
\begin{aligned}
i_{*}\left(\left(-\iota_{2}\right) \cdot \eta_{2}\right) & =-i_{*}\left(\eta_{2}\right)+i_{*}\left(\left[\iota_{2}, \iota_{2}\right] \circ H\left(\eta_{2}\right)\right) \\
& =-i_{*}\left(\eta_{2}\right)+2 i_{*}\left(\eta_{2}\right) \\
& =i_{*}\left(\eta_{2}\right)
\end{aligned}
$$

Thus there is a map

$$
f: L_{m} \longrightarrow L_{m}
$$

such that f has a degree $(-1)^{\jmath}$ on each cell $e^{2 J}$ of L_{m} for $\jmath=1$ or 2 , and we denote by (-1) one of such maps. Let $u: L_{m} \rightarrow L_{m} \vee S^{4}$ be the co-action map and $\nabla: L_{m} \vee L_{m} \rightarrow L_{m}$ be a folding map. For $h=\imath d$ or (-1), we denote by $h \vee \eta_{2} \eta_{3}$ the composite

$$
L_{m} \xrightarrow{u} L_{m} \vee S^{4} \xrightarrow{h \vee \eta_{2} \eta_{3}} L_{m} \vee L_{m} \xrightarrow{\nabla} L_{m}
$$

Lemma 3.1. (a) If m is odd, then $\varepsilon\left(L_{m}\right)=\{\imath d,(-1)\}$.
(b) If m is even and $m \neq 0$, then

$$
\varepsilon\left(L_{m}\right)=\left\{\imath d,(-1), \imath d \vee \eta_{2} \eta_{3},(-1) \vee \eta_{2} \eta_{3}\right\}
$$

(c) In partıcular, for $m=0$, we have the split extension

$$
0 \longrightarrow \pi_{4}\left(S^{2} \vee S^{4}\right) \longrightarrow \varepsilon\left(S^{2} \vee S^{4}\right)=\varepsilon\left(L_{0}\right) \longrightarrow Z_{2} \times Z_{2} \longrightarrow 0
$$

where $Z_{2} \times Z_{2}$ operates on the homotopy group $\pi_{4}\left(S^{2} \vee S^{4}\right)$ by

$$
(a, b) \circ c=a \circ c \circ b \quad \text { for }(a, b) \in Z_{2} \times Z_{2} \text { and } c \in \pi_{4}\left(S^{2} \vee S^{4}\right) .
$$

Proof. The statement (c) is clear. (See in detail [3]) Now suppose $m \neq 0$. It follows from (6.1) of [1] that we have the exact sequence

$$
\begin{equation*}
\operatorname{Im}\left[i_{*}: \pi_{4}\left(S^{2}\right) \longrightarrow \pi_{4}\left(L_{m}\right)\right] \xrightarrow{d_{*}} \varepsilon\left(L_{m}\right) \xrightarrow{r} \varepsilon\left(S^{2}\right) \longrightarrow 0 . \tag{3.2}
\end{equation*}
$$

At first, suppose m is odd. It follows from Lemma 2.3 the statement (a) is clear. Therefore we may assume m is even and that $m \neq 0$. It follows from (3.2) and Lemma 2.3 we also have the exact sequence

$$
\begin{equation*}
\pi_{4}\left(S^{2}\right)=Z_{2}\left\{\eta_{2}^{2}\right\} \xrightarrow{d_{*}} \varepsilon\left(L_{m}\right) \xrightarrow{r} \varepsilon\left(S^{2}\right) \longrightarrow 0 . \tag{3.3}
\end{equation*}
$$

Hence it suffices to prove $h \neq h \vee \eta_{2} \eta_{3}$ for $h=i d$ or (-1). Now consider the isomorphism $\pi_{5}\left(E^{4}, S^{3}\right) \xrightarrow{\cong} \pi_{4}\left(S^{3}\right)=Z_{2}\left\{\eta_{3}\right\}$. If $j: L_{m} \rightarrow\left(L_{m}, S^{2}\right)$ is the inclusion map, it follows from (2.6) that the induced homomorphism

$$
j_{*}: \pi_{\overline{5}}\left(L_{m}\right) \longrightarrow \pi_{5}\left(L_{m}, S^{2}\right)=Z\left\{b_{m}\right\} \oplus a_{m} * \pi_{5}\left(E^{4}, S^{3}\right)
$$

is an epimorphism. Thus there is an element $\gamma_{0} \in \pi_{5}\left(L_{m}\right)$ such that $j_{*}\left(\gamma_{0}\right)=$ $a_{m *}\left(\partial^{-1} \eta_{3}\right)$. Then we have

$$
\begin{equation*}
\pi_{5}\left(L_{m}, S^{2}\right)=Z\left\{b_{m}\right\} \oplus Z_{2}\left\{j_{*}\left(\gamma_{0}\right)\right\} \tag{3.4}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\pi_{5}\left(L_{m} \vee S^{4}\right) & =\pi_{5}\left(L_{m}\right) \oplus \pi_{5}\left(S^{4}\right) \oplus\left[\pi_{2}\left(L_{m}\right), \pi_{4}\left(S^{4}\right)\right] \\
& =\pi_{5}\left(L_{m}\right) \oplus Z_{2}\left\{\eta_{4}\right\} \oplus Z\left\{\left[\iota_{2}, \iota_{4}\right]\right\} .
\end{aligned}
$$

Therefore by using $\left[\epsilon_{2}, \eta_{2} \eta_{3}\right]=0$, we have

$$
\begin{align*}
\left(h \vee \eta_{2} \eta_{3}\right) \circ \gamma_{0} & =h \circ \gamma_{0}+\eta_{2} \gamma_{3} \eta_{4}+\left[h \mid S^{2}, \eta_{2} \eta_{3}\right] \tag{3.5}\\
& =h \circ \gamma_{0}+\eta_{2} \eta_{3} \eta_{4} \pm\left[\eta_{2} \eta_{3}, c_{2}\right] \\
& =h \circ \gamma_{0}+\eta_{2} \eta_{3} \eta_{4} .
\end{align*}
$$

Hence we have $h \vee \eta_{2} \gamma_{3} \neq h$ for $h=i d$ or (-1).
Q. E. D.

Remark 3.6. Suppose m is even and $m \neq 0$. Since $\left[\iota_{2}, \iota_{2}\right]=2 \eta_{2}$, we have

$$
\begin{align*}
m \eta_{2}+\left(-\iota_{2}\right) \cdot m \eta_{2} & =\left[\iota_{2}, \iota_{2}\right] \cdot H_{0}\left(m \eta_{2}\right) \tag{3.7}\\
& =2 m \eta_{2} .
\end{align*}
$$

Furthermore, it follows from $\left[\eta_{2}, c_{2}\right]=0$ that we also have

$$
\begin{equation*}
\eta_{2} \circ E\left(m \eta_{2}\right)+\left[\iota_{2}, \eta_{2}\right] \circ E H_{0}\left(m \eta_{2}\right)=0 \tag{3.8}
\end{equation*}
$$

Hence taking account of Theorem 3.15 in [3], we have the exact sequence

$$
\begin{equation*}
1 \longrightarrow \pi_{4}\left(S^{2}\right) \longrightarrow \varepsilon\left(L_{m}\right) \longrightarrow Z_{2} \longrightarrow 1 \tag{3.9}
\end{equation*}
$$

Remark 3.10. Since X_{m} is the total space of S^{2}-bundle over S^{4} with its characteristic element $c_{m} \in \pi_{3}(S O(3))$, we may also regard X_{m} as the space

$$
\begin{array}{ll}
S^{2} \times E^{4} \cup S^{2} \times E^{4} / \sim, & \text { where }(x, y) \sim\left(c_{m}(y) x, y\right) \tag{3.11}\\
& \text { for }(x, y) \in S^{2} \times S^{3} .
\end{array}
$$

Then we define a map $f_{m}: X_{m} \rightarrow X_{m}$ by

$$
\begin{equation*}
f_{m}(x, y)=(-x, y) \quad \text { for }(x, y) \in S^{2} \times E^{4} . \tag{3.12}
\end{equation*}
$$

Then the map f_{m} has a degree $(-1)^{\nu}$ on each cell $e^{2 \jmath}$ of X_{m} for $\jmath=1,2$ or 3. Hence without loss of generalities, we may set $(-1)=f_{m} \mid L_{m}$. Therefore $(-1) \cdot(-1)=i d$.

Lemma 3.13. (a) $(-1) \circ b_{m}=-b_{m}$.
(b) If m is even and $b \in \pi_{5}\left(L_{m}\right)$, then

$$
\left(h \vee \eta_{2} \eta_{3}\right) b= \begin{cases}h \circ b & \text { if } j_{*}(b) \in Z\left\{b_{m}\right\} \\ h \circ b+\eta_{2} \eta_{3} \eta_{4} & \text { if } \jmath *(b) \oplus Z\left\{b_{m}\right\}\end{cases}
$$

where $j_{*}: \pi_{5}\left(L_{m}\right) \rightarrow \pi_{5}\left(L_{m}, S^{2}\right)=Z\left\{b_{m}\right\} \oplus Z_{2}\left\{j_{*}\left(\gamma_{0}\right)\right\}$.
Proof. It follows from Remark 3.10 the statement (a) is clear. The preceding proof of Lemma 3.1 also shows the assertion (b). Q.E.D.

§4. Proof of the main results.

Throughout this section we assume X is a $C W$ complex with the form $S^{2} \cup e^{4} \cup e^{6}$ such that,

$$
\begin{equation*}
\left(x_{1}\right)^{2}=m \cdot x_{2} \quad \text { and } \quad x_{1} \cdot x_{2}=n \cdot x_{3}, \quad(m, n \geqq 0) \tag{4.1}
\end{equation*}
$$

where $x_{j} \in H^{2 \nu}(X, Z)$ is a generator for $\jmath=1,2$ or 3 . Furthermore, taking account of the Hopf invariant, we may also suppose that the attaching map of 4 -cell e^{4} of X is $m \eta_{2}$. Hence we have

$$
\begin{equation*}
X=L_{m} \cup_{b} e^{6} \quad \text { for some } b \in \pi_{5}\left(L_{m}\right) \tag{4.2}
\end{equation*}
$$

up to homotopy.
At first we recall
Lemma 4.3. Let $j: L_{m} \rightarrow\left(L_{m}, S^{2}\right)$ be the inclusion map. Then the following two conditions are equivalent:
(a) $J_{*}(b)=n b_{m}+a \quad$ for some $a \in Z_{2}$.
(b) $\left(x_{1}\right)^{2}=m x_{2}, x_{1} \cdot x_{2}=n \cdot x_{3}$ and the second Steenrod square

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

satısfies $S q^{2}\left(x_{2}\right)=a \cdot x_{3}$.
Proof. See (2) in detail.
Q. E. D.

Remark 4.4. Taking account of Lemma 2.6, it is easy to see that

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is trivial if m is odd.
Then we have
Theorem 4.5. (a) If m is odd, then

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is trivial and the homotopy type of X is uniquely determined by the pair of integers (m, n).
(b) If m is even and

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is trivaal, then the homotopy type of X is uniquely determined by the pair of integers (m, n).
(c) If m is even and

$$
S q^{2}: H^{4}\left(X, Z_{2}\right) \longrightarrow H^{6}\left(X, Z_{2}\right)
$$

is non-trivial, then X has precisely two homotopy types which can be distingurshed by some element of order two in $\pi_{5}\left(L_{m}\right)$.

In particular, in the case of manifolds, we also have
COROLLARY 4.6. Let M be a closed 6 -dimensional smooth manifold with the form $S^{2} \cup e^{4} \cup e^{6}$ such that

$$
\left(x_{1}\right)^{2}=m x_{2},
$$

where $x_{k} \in H^{2 k}(M, Z)$ is a generator for $k=1,2$ or 3 .
(a) If m is odd, then

$$
S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)
$$

is trivial and the homotopy type of M is uniquely determined by the integer m.
(b) If m is even and

$$
S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)
$$

is trivial, then the homotopy type of M is uniquely determined by the integer m.
(c) If m is even and

$$
S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)
$$

is non-trivial, then M has precisely two homotopy types which can be distinguished by element of order two in $\pi_{5}\left(L_{m}\right)$.

Proof of Theorem 4.5. Without loss of generalities, we may assume $X=$ $L_{m} \cup_{b} e^{6}$ for some $b \in \pi_{5}\left(L_{m}\right)$. At first, consider the case that $S q^{2}: H^{4}\left(M, Z_{2}\right) \rightarrow$ $H^{6}\left(M, Z_{2}\right)$ is trivial. It follows from (3.1), (3.13) and (4.1) that we have $b=n \cdot b_{m}$. Therefore taking account of (4.4), the assertion (a) and (b) can be obtained. Secondly consider the case (c). Let X^{\prime} be a $C W$ complex with the form $L_{m} \cup_{b}, e^{6}$ satisfying the same assumptions as X. If follows from (4.3) that we have

$$
\jmath_{*}(b)=\jmath_{*}(b),
$$

where $j_{*}: \pi_{5}\left(L_{m}\right) \rightarrow \pi_{5}\left(L_{m}, S^{2}\right)=Z\left\{b_{m}\right\} \oplus Z_{2}\left\{\eta_{2} \eta_{3} \eta_{4}\right\}$. Thus it follows from (2.6) that we have

$$
b=b^{\prime} \quad \text { or } \quad b=b^{\prime}+\eta_{2} \eta_{3} \eta_{4} .
$$

Hence taking account of (3.1) and (3.13), the assertion (c) is also obtained.
Q.E.D.

Remark 4.7. It is well-known that for each pair of integers (m, n), there is a simply connected $C W$ complex X with the form $S^{2} \cup e^{4} \cup e^{6}$ such that,

$$
\left(x_{1}\right)^{2}=m \cdot x_{2} \quad \text { and } \quad x_{1} \cdot x_{2}=n \cdot x_{3}
$$

for each generator $x_{j} \in H^{2 J}(X, Z)$. (See [6] in detail.)
Remark 4.8. Let M be a closed six dimensional smooth manifold with the $C W$ decomposition $S^{2} \cup e^{4} \cup e^{6}$. Then M has the same homotopy type as a S^{2} bundle over S^{4} if and only if m is odd, or m is even and one of the following conditions is satisfied:
(a) $S q^{2}: H^{4}\left(M, Z_{2}\right) \longrightarrow H^{6}\left(M, Z_{2}\right)$ is trivial, or
(b) $P_{1}(M)+4 m \equiv 0(\bmod 48)$, where we denote by $P_{1}(M)$ the first Pontrjagin class of M. (See (4) in detail.)

References

[1] W.D. Barcus and M. G. Barratt, On the homotopy classification of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
[2] I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
[3] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-23.
[4] S. Sasao, On homotopy type of certain complexes, Topology 3 (1965), 97-102.
[5] S. SASAO, Homotopy 4 -spheres with boundary, Topology 7 (1968), 417-427.
[6] S. Sasao, Homotopy type of spherical fibre space over spheres, Pacific J. Math. Soc. 52 (1974), 207-219.
[7] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Soc. 14 (1963), 89-95.
[8] J. H.C. Whitehead and I. M. James, The homotopy theory of sphere bundles over spheres II, Proc. London Math. Soc., 5 (1955), 148-166.

Tokyo Institute of Technology
Оh-Оkayama, Meguro, Tokyo
Japan

