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OPERATIONAL CALCULUS OF TWO VARIABLES

BY TAKASHI OGATA

1. Introduction.

J. Mikusiήski [2] has introduced a simple and complete operational calculus
to obtain the solutions of linear ordinary differential equations with constant
coefficients. The significance of operational calculus is that operators are re-
garded as convolution quotient, that is, functions and differential operator are
elements of the same set. Moreover, he has discussed the linear partial differ-
ential equations of two variables with constant coefficients. In [2], the solutions
were obtained by the traditional method of testing solutions by substituting the
exponential functions, not by the systematic one as operational calculus. The
difficulty of his method is that no prospective insight for obtaining the particular
solutions has been given. In this paper, we discuss the linear partial differential
equations of two variables with constant coefficients by the same systematic
method as Mikusiήski's operational calculus by imposing some restrictions on
the constant part on the right hand side (cf. (2.7)).

We believe that the results obtained by such a way give a new develop-
ment to the theory of Mikusiήski's operational calculus.

In the last section, we show some well-known examples.

2. Operational calculus.

Let k be an algebrically closed field of characteristic 0 and JL=k\ΣλJ2 be
the module of the formal power series of a variable λ with coefficients in k.

Henceforth, we denote each element of J. by P(λ), or simply P= {Σ jMy} (in-

stead of usual notation Σ ίMv) where pv&k (v=0, 1, 2, •••).

DEFINITION 2.1. Multiplication in JL is defined by

(2.1) (/Ό)W)={Σ( Σ

where P= { Σ j M I and Q= { Σ qμλ
μ).

v=0 μ = 0
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PROPOSITION 2.2. By usual addition and above multiplication Jί forms an
integral domain without unit element.

Proof. We show that Jί has no zero devisor. If PφO and QΦO, there exist
Vo=min{y; pvφ0} and μo=m'm{μ; qμΦθ}. Then coefficient of λv°+μo+1 in PQ is
((vo\μo\)/(vo+μo+ΐ)\)pvo<Iμo which is nonzero. The other parts are shown by the
same way as Mikusiήski [2].

By Proposition 2.2, we can construct the quotient field Q{J) of the ring Jί.
An element of Q{J) is called operator. For the special operators in Q{J), we
have integral operator L={1}, k-operator (each element of k) which corresponds
to numerical operator and differential operator S — l/L as the same as Mikusiήski's
cases.

DEFINITION 2.3. The mapping dλ of Jί into itself is defined by

Moreover, for any positive integer n, dχP is defined inductively by dχP=

dΛdΓ'P).

In this section, we denote dχ by 9 for brevity. By Definition 2.3 we have,

for any P={±pvλ»}y

L(dP)=P-L P(0).

where P(0)=p0 is ^-operator. Hence, we have

(2.2) SP=3P+P(0).

By the induction, we can get the following general formula.

PROPOSITION 2.4. For n = l, 2, 3, •••,

(2.3) S n P=3 n P+(3 n - 1 P)(0)+5 (3n"2P)(0)H hS n -

For any p^k, we define the element {epλ} of J, by

Then, by (2.2), we have S{epλ} =p {epλ} + 1 . Hence,

Generally, we have

LEMMA 2.5.

(2.5) _
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Proof. We show by the induction.

{ jln Ί r 0° -hvjlv+n Ϊ r 7n~ι Ί r ^ ί 7 1

^—epλ\=dί T - ^ W — epX\ + lP

n! J U=o n!v! I l ( n - l ) ! Π n!

Hence, s ί ^ ^ ^ y ^ Γ + / > { - ^ - e * 4 . This shows that
I n ! J ( S — p ) n I n ! J

Let's consider the following fractional expression in Q{J).

2 6 ) j ? ( S )

where />t, qj^k(i=l, ••• , n / = 1 , •••, m) and pn^O, which is called a rational
operator. In the same way as Mikusiήski [2], we get the following.

PROPOSITION 2.6. Suppose m<n, then R(S)^Jl.

Now, the operational calculus provides us with convenient method of solv-
ing the linear differential equations with constant coefficients. Consider the
following formal linear differential equation of the n-th degree.

(2.7) pnd
nX+pn-1d

n-1X+

where pt^k (z"=0, 1, ••• , n), pn^0 and
We seek a solution X in Jί satisfying the following initial conditions

(2.8) Xφ)=r0, φXX0)=ru •••, (3»-1^)(0)=rn-i, (r,ej?).

By virtue of the general formula (2.3), equation (2.7) may be written in the
form,

(2.9) (pnSn+pn-iSn-1

where

qι=pι+iro+pι+2ri'i- ••• + i n r n - t - i ( / = 0 , 1, ••• , n — 1 ) .

Hence, we immediately find that

/nim y ffS71"^ •" + ^ P
pns

n+-+po

 +

Pns»+...+p;

Applying decomposition into simple fractions, we obtain the solution in Jί
by Proposition 2.6.
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3. The field of Puiseux series.

Let k be a field of characteristic 0. In this section, we consider the follow-
ing power series of fractional power of a variable u with coefficients in k.

(3.1) p = a1u
riJ

ra2u
rz+azu

r*Jr •••, where a^k and cdΦd.

A power series of the form (3.1) satisfying the following conditions (Cl)
and (C2) is called a Puiseux series.

(Cl) Each r% are rational numbers such that ri<rι+1.
(C2) For each rt, we denote rι—nι/mι such that integers nt, nii(>0) are

relatively prime. Then there exists positive integer m such that πii<m for all t.

Let e = e(p) be the least common multiple \jnlt m2, m3, •••] of mlt m2t ms, •••.
From (C2), £ is finite. Hence, (3.1) is expressed as the following form.

(3.2) a1(u1/e)eri+a2(u1/e)er*+

where each er% are integers. In the case of need, we denote Puiseux series by
the following form,

(3.3) Σ j8n(κ1 / e)n,

where e>0, no>Q and n are integers.
Let k {u} be the set of all Puiseux series. Then k {u} forms a field with

respect to usual addition and multiplication. It is known that k {u} is algebrically
closed if k is an algebrically closed field of characteristic 0 (cf. [1]). Hence,
C{1} is algebrically closed where C is the complex number field and / a variable.
Put s = l~1 and let C(ΐ) or C{s) be the rational function field of variable / or s,
respectively. We have obviously C(s)=C(l)cC{1}.

DEFINITION 3.1. For any p(Φθ)^C{ί} such that p^Σ,aιί
rί (azφθ), we

1 = 1

define v{p)=Tχ and v(0) = oo.

Then v{p) is a valuation on C{1).
For pi^C{l} {i—l, 2, •••), suppose that

(3.4) {e(pt); z = l, 2, •••} is bounded,

(3.5) v(pι)<v(pι+i) for each z,

then we define Σ i t as the following. We denote p%— Σ oί%JΓ
ιJ (atlφ0) for each

1 = 1 .7 = 1

/. F r o m (3.5), r1i<rlJ for a n y / a n d /. A r r a n g i n g {r%J} {i, j=l, 2, •••), w e h a v e
t h e s e q u e n c e {rk} s u c h t h a t r11—r1<r2< •••. B e c a u s e {r t J } 0 = 1, 2, •••) is a
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subsequence of {rk}, each p% is written by Σ βijlrj, where

βij—ocιk when r3—rxk for some k ,

βv=0 when rjφrιk for all k .

For each rlt denoting rι=nι/mι such that integers nt, πii(>0) are relatively
prime and e—[_m1} rn2, •••]» w e have e^Z^(Pi)> e(p2), •••]• So, from (3.4), £ is
finite. Because each erx are integers and ern<erlJ, the number of negative ones
in {rj is finite. On the other hand, for any r of {rk}, we set Ir={i^N; r—rX3

for some /}. Then there exists k such that ev(pk-i)<er^ev(pk) from (3.5).

Hence, the number of Ir is less than k and ao~ Σ j8ίi7= Σ î o is finite sum. So,
ι=i ie/r,

we define Σ ίz— Σ OIJΓJ. From the above argument, we have
t = l .7=1

L E M M A 3.2. F6>r ^ z (z = l, 2, •••) w/w'c/i satisfy the conditions (3.4), (3.5), as

above, we have Σ Pi
i

Applying Lemma 3.2, we show two examples.

EXAMPLE 1. For />eC{/} such that v(ί)>0, we have

v(ί*)=^(ί) 0=0, 1,2, •••),

which shows that {/)*} satisfies the condition (3.5) and we get easily that e(pι)

^e(p) for any ι. Let ( j be the formal binomial coefficient, that is, for some

real number λ and some positive integer k,

(3.6) (j)= Wm2)Qk±lϊ a n d

By Lemma 3.2, Σ,(*)pkt=C{l}. So, we define
k=o \ k '

(3.7)

By the properties of binomial coefficient, we get, for any real numbers /, μ
and an integer n,

(3.8)

(3.9)

EXAMPLE 2. Let p,q^C{l} such that v{q)>Q and ί = Σ « Λ q=Σ>βilUt

1 = 1 1 = 1
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. Here, we put gx= Σ (βj/βi)lu^Ul, then ^ 1 ) > 0 and q = βJUl(X+qi).

From example 1, (l+#i) r* is defined and we get

which is an element of C{1). Because of e{cίiqrί)^e(p)e{q) and v(ociqri)=-riv{q)

if ctiΦO, Σ α ^ G C { / } follows from Lemma 3.2. Hence, we define p(q)&C{l) by
i

(3.10) p(g)= Σ «i<?n

1 = 1

DEFINITION 3.3. The mapping dt of C{/} into itself is defined by dt(p)=

sp~p(0) for any p= Σ ^/ r i eC{/}, where s = /"1, and £(0)=α: ΐo or 0 if there

exists r%0 such that r l 0 = l or not, respectively. Moreover, dΐ(p) is defined induc-

tively by 9?(/>)=3t(9r *(/>)) for n=2, 3, •••.

From Definition 3.3, we have the following formula by the induction.

PROPOSITION 3.4. For n = l, 2, 3, •••,

(3.11) 3 ? ( ί ) = s » ί - s Λ -

4. The "function elements" of C{1}.

Let a{t) be a complex-valued function such that a(t)=O for ί<0 and JC the
set of all such functions which satisfy the following conditions.

(4.1) ait) has at most a finite number of points of discontinuity
in every interval.

(4.2) The integral \ \a(τ)\dτ has a finite value for every t>0.
Jo

The equality of two elements a(t), b{t) of ύi is defined by the following

a(t)=b(t) if and only if Γα(r)dτ=Γδ(τ )dr for every ί>0
Jo Jo

which is equivalent to that a(t) and b(t) have the same values at every point
where both are continuous.

It is known that the convolution of elements of JC is also element of JC (cf.
[2], p. 346). Hence, JC forms a ring with usual addition and multiplication by
the convolution.

Now, we shall regard some elements of C{1) as ones of JC. For any
= Σ an(l1/e)nGC{l}, we define a formal power series pz with complex vari-Σ

able z by
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(4.3) p,= Σ anz
n.

nz-no

The radius of convergence of pz is denoted by r(pz). For any natural num-
ber m, plm is defined by

(4.4) />«= Σ anz
mn.

Let 2" be the subset of C{1) given by the following

£F={/>eC{/} (1) v(p)>0 and (2) r(p,)>0},

Then we have

PROPOSITION 4.1. £F is a subnng of C{ί}.

Proof. Let /, ge£F and α e C . According to the properties of valuation,
we have v(af)>0, v(f+g)>0 and v(fg)>0. On the other hand, for suitable
natural numbers mu m2, m3, nlt n2 and n3, we have

( / + £ ) i m i ) = / i m 2 ) + £ i m 3 ) and (fg)ln*=fln*gin*,

which shows that r((f+g)β)>0 and r((fg)g)>0.
Moreover, £F has the following property.

PROPOSITION 4.2. For any f, g(Ξ$, f(g)&3.

Proof. According to example 2 of section 3, v(f(g))=v(f)v(g)>0 and (f(g))z

=Ugz) Hence, we have r((/(#))*)>0.
Let Γ(λ) be the Euler's gamma function, that is, for a positive real number λ,

(4.5)

PROPOSITION 4.3. Suppose that a series ^Σanz
n (an^C) has a positive con-

71 = 1

vergent radius r, then, for every β>0, the power series Σ ccnt
nβ~ιlΓ{nβ) is uni-

71 = 1

formly convergent in any closed interval [tly ί2H where 0<t1<t2. So, this is an
element of K.

Proof. We consider a natural number n such that nβ>2, so, for any posi-
tive number α>0,

For any t2>0, take α such that t2=a(r/2)1/β, then for any t such that 0<ίi
^t2, we have
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tn

1β-1<a

nβ-1(r/2ynβ-Όίβ .

Hence, we have

\tnβ-1/Γ(nβ)\<ea+\r/2)n(r/2y1/β .

From which, the Proposition is proved.

Now, we shall define a mapping i from £F to JC as the following. For a
positive real number λ, {tλ~1/Γ(λ)} ^JC, so we define, at first,

(4.6) i(lλ)={tλ

By the property of the convolution, we have

(4.7) i{lλ)i{in=i{lλ+η,

for any positive real numbers λ, μ. Especially, we have (i(lλ))n=i(lnλ) for any
natural number n.

From (4.7), for / e g such that / = Σ, ak(l1/e)erk} we have
k = l

(4.8) Λ«/1/e))= {Jj akt«*-»/r{rk)}

which is a element of JC by Proposition 4.3. For other positive rational integer
e' such that each e'rk are integers, we have fz(i(l1/e'))=fzW1/e)), which shows
that (4.8) is independent to e. So, we define i{f) for any / e g by

(4.9) i(f)=fzW
/e)).

Then we easily have the following proposition.

PROPOSITION 4.4. For f, g E ? and a&C, we have

(1) i(f)=i(g) if and only if f=g,

(2) ί(α/)=αί(/),

(3) i(J+g)=i(J)+i(g),

(4) i(Jg)=i(f)i(g).

According to Proposition 4.4, the mapping i is an injective ring homomor-
phism. By the Definition 3.3, we get the following identities for /eg".

(4.10) *'(//)= ^i{f){τ)dτ).

(4.11) i{dtf)={~ίfϊ(f)} if v ( / ) > 1

PROPOSITION 4.5. For any / e g and «eC, we have
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(4.12) i(f(l/(l-al)))= {i(f)eat}.

Proof. For f=Γ (r>0), we get

which is an element of 1. Hence,

)={ Σ (T
I k=o\ k

= {(r-VAr)) Σo

So, for any /= Σ α / ' e ϊ , we get

))) { Σ ^ ^ V A , ) ) ^ {(/

Applying Proposition 4.5, we show two examples.

EXAMPLE 1.

i(l/(s-a)n)= {i(ln)eat} = {{tn-ι/Γ{n))eat

EXAMPLE 2.

5. Logarithmic roots.

Let & and r be any positive rational numbers such that k>r and n the
integer such that k — nr>0 and k—(n+l)r^0. We consider a following element
α> of

(5.1) ω^^os ' + ̂ s ^ 1 ^ - ••• +/5 7 l s ' - n r +/,

where /e=£F, j8 teC (/=0, 1, •••, n), /30^0 and s = /"1.
For such an element α> of C{/}, we have v(ω)= — k. Hence, / H 1 α ) E ϊ .

Especially, any /e£F has no 5-terms of positive power. In this case, we define

Let xW, t) be a function of two variables λ, t defined in interval 0<λ, t<oo.
Suppose,
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(1) for every ί>0, x{λ, t) is differentiable with respect to λ,
(2) for every λ>0, x{λ, t) and dx/dλ (λ, t) are elements of JC.

For such a function x(λ, t) and any / e ϊ , we define

(5.2) i(f)W, t)} = {^i(f)(t-τ)x(λ, τ)dτ} for every λ>0.

DEFINITION 5.1. Let ω be an element of C{1} given by (5.1) and k =—v(ω).
Then ω is called a logarithmic root if the equation

(5.3) /(/'*l

has a solution {x(i, 01^0 in the interval O^λ, t<oo.

Remark that, if k — — v(ω)<0, (5.3) is equivalent to

because of Proposition 4.4. For example, let ω—l, then x(λ, ί) = Σ {tλ)n/(n !)2 is

the solution of {dx/SΛ (Λ, 0}=2(0{^W, 0} satisfying Λ(0, ΐ) = l.

The next proposition is easily proved (cf. [2], p. 191).

PROPOSITION 5.2. // ω is logarithmic, then for given c^$ (cΦO), there exists
the unique solution satisfying the equation (5.3) and the condition {x(Q, t)}=i(c).

LEMMA 5.3. // ωlf ω2^C{l) are logarithmic, then ω1+α)2 is also logarithmic
and we have

(5.4) {*Cωi+α>2)W, t)} = {Xωi{λ, t)} {Xω2(λ, t)}

and {xCωi+(ω2)(0, 0} = {xωi(0, t)} {xω2(0, t)},

where xωi, xω2 and Xcωi+ω^ are the solution of (5.3) corresponding to logarithmic
roots ωlf ω2 and α>i+ω2, respectively.

Proof. Let us consider the equation

(5.5) ί ( / *' + 1 ) {~!τ M ' ^id'^Kω.+ω^ixQ, t)}

where k/=\v(ω1)\ + \v(ω2)\. Then {xωi(λ, t)} {xω2(λ, t)} is the solution of (5.5)
satisfying {x(0, 0} = {XωjΦ, 0} {xω2Φ, t)}. So, by Proposition 5.2, we have Lemma
5.3.

From Proposition 5.2 and Lemma 5.3, we denote the solution of (5.3) satis-
fying the condition {x(0, t)}=i(c) for C G ? as {X(λ, t ω, c)}. Hence, (5.4) is
rewritten as the following form,



276 TAKASHI OGATA

{X(λ, t ω^ω2, c)} = {X(λ, t ωlf c,)} {X{λ, t ω2} c2)}

where c, cx and c2^S such that c=cλc2.

LEMMA 5.4. For ω^C{ί} given by (5.1),

(1) if k<0, then ω is longarithmic,

(2) if k>0, then ω is logarithmic if and only if βos
k is so.

Proof. (1) is obvious because of ωeEF, and (2) follows from Lemma 5.3.

The following lemma and examples are quoted from Mikusiήski's results.
So, we omit to give a full account.

LEMMA 5.5. // k<l, or k — 1 and β0 is real, then βos
k is logarithmic (cf.

[2], p. 399-p. 416)

EXAMPLE 1.

{X(λ, t -Vs~ I112)} = {(l/Vπt) exp (-Λ2/(40)}.

EXAMPLE 2.

{X(λ, t; - s , f)}=hλ i(f) for any /e£F,

where hλ is called translation operator which is given by

0 for

i(fXt-λ) for 0^;

6. Application to the partial differential equations.

Let k be C{1) in section 2 and C{l}0 the set of all logarithmic roots. Be-
cause differential operator 5 is transcendental over C{1}, we can consider the
rational function field C{l}(S), which has the unique partially fractional decom-
position. From Lemma 2.5, we get c/(S—ω)n={c(λn-1/(n—ϊ) \)eωλ} &Jl, where

and ceEF. Let Jί0 be the subset of Jί given by the following.

Σ T ^ — V (finite sum), ω^C{l}0, cω,n
( S — O > ) πω n=l (vS—

Then ĉ o is a ^-module. For any α>eC{/}0 and c^<Ξ, we can get the uni-
que function {X(λ, t ω, c)} of two variables, which is the solution of (5.3)
satisfying {x(0, t)}=i(c). For each {ceωλ}, we define a function j(ceωλ) of two
variables λ, t as the following.

j(ceωλ)={X(λ, t ω, c)}.

Now, the mapping 9̂  and 3 t operate in jί as the following (cf. Def. 2.3 and
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Def. 3.3). For any P= { fj pj"
V0

By the definition of j(ceωλ), we have

(6.1) / ( / * + 1 ) ~ 3 Γ j\ceωλ)=i(lk+1ω)j(ceωλ)

and j'(ceωX)φ, t)=i(c),

where k—\v(ω)\. By differentiating partially (6.1) with respect to λ, we get

(6.2) ί(/*+i)

and

(6.3) (i(lk+1)-^-j{ce«λ))φ, t)=i(lk+1ωc).

Because of the uniqueness of solution, (6.2) and (6.3) show that-^γ-j(cωeωλ)

=j(cωeωλ). On the other hand, we have

j(βλ(ceωλ))=jXcωeωλ).
Hence, we have

(6.4) d
dλ JK J

Here, we assume v{c)>\ because of v(lc)>l. By differentiating partially
(6.1) with respect to t and the property of the convolution, the left hand side
of (6.1) becomes

^(/(/*+ i)^y(ceω^))={4-^*+ 1)H^y(ceω Λ)}=^*)^y(ceω Λ) Q)

ot \ oλ / I ot J I oλ J oλ

or =tVk+1)^ "-^(j(ceωλ)) (2)

On the other hand, the right hand side becomes

or =i(lk+1ω)4rj(ceωλ). (4)
ot

Combining (1) and (3), or (2) and (4), we get that j(cseωλ) or ~w— j{ceωλ) is
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the solution of the equation (5.3) satisfying {x(0, t)}=i(sc) or {d/dti(c)}f respec-
tively. By (4.11), we have i{sc)—{d/dti{c)}y which shows that

(6.5) -^

On the other hand, j(dt(ceωλ))—j(sceωλ). Hence, we have

(β.β) -^Γj(ceωλ) = j(dt(cea>λ)).

For {(cλn-y(n-l)\)eωλ} eίJLo, we define j\(cλn-y(n--ϊ)\)eωλ) as the following

A (7,-1) ! e ) l ( n - l ) i Ά Ί9

no

and for any P= {Σ Σ cωin/{S—ω)n) ^Jl0, we define /(P) as the following

Then we put sB0={j(P); any Pe^ί 0 }, which is some set of functions of
two variables λ, t. Then, by virtue of (6.4) and (6.6), we get

(6.8)

Hence, the following diagrams are commutative.

J J

(6.9) dλ J J dλ

J

Now, we consider the linear partial differential equation of two variables
λ, t with constant coefficients. Any such equation can be written in the form,

(6.10) Σ Έ a μ»------{λ,t) = φ{l,t) ( f f / I,εC)

We assume that there exists 7 e J 0 such that j(Y)—{ψ(λ, t)}. Then, we
consider the following operational equation in Jί.

(6.11) Σ Έ
0 0
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From Proposition (3.4), we have

(6.12) dv

t(dμ

λX)=svdμ

λX- Σ s^'-WtdΊXίλ, 0),
k = 0

where we assume that dk

td
μ

λX(λ, 0)^Jl0 are determined by the equation

which are called initial conditions of (6.10).
Hence, (6.11) becomes

(6.13) and?X+an-1dΐ-1X+ ••• +a0X=F,

w h e r e aμ=aμns
n + ••• +aμ0 ( μ — 0 , 1, ••• , m) a n d

TO 71 i - l

F = r + Σ Σ Έaμvs
v-k-1dtt

λd
k

tX( 0)
μ = 0 v=l k = 0

Applying the operational calculus (cf. section 2) with respect to λ to (6.13),
we have the following.

(6.14) ( f l m S m + α m - i S T O - 1 + ••• +ao)X=bm-1S
m-1+ ••• +bo+F,

where bm-lf ••• , b0 are determined by the values of

,(o,o,^<o,o, ,Ί5^1-(<w>,

which are called boundary conditions.
Since k=C{l} is algebrically closed, we can decompose

TO

amSm+---+a0=amπ(S-ωί) {ωt<BC{l})

Hence, by simple-fraction-decomposition method, we can get the solution of
(6.11) in JL (cf. section 2).

If ω is not logarithmic, choosing suitable boundary conditions, we can neglect
these parts. Thus we can get the solution Xo in Jί0. Because of the commuta-
tive diagrams (6.9), we get the solution j(X0) of (6.10).

7. Examples.

1. Solve the following differential equation (7.1) with the conditions (7.2).

(7.2) x(λ,0)=λ2, -^
at
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χΦ,t)=t*, - ^ - ( 0 , 0 = 0 .

By virtue of (6.9), (7.1) is equivalent to

(7.3) d2

λX-d2

tX=0.

Here, from Proposition (3.4) and condition (7.2), we have

(7.4) d2

tX=s2X-S'x(λ, 0)--~(λ, 0)=s2X-sλ2-3λ2+22.

Hence, (7.3) becomes

(7.5) 32

λX-s2X=-sλ2-3λ2+2λ.

Next, applying the operational calculus with respect to λ, (7.5) is written as

(7.6) S2X-s2Z=6/4S-

From which, we have

(77) γ 6lS (2s_+6)__
S 2 -s 2 S3(S2-s2) ' S2(S2-s2)

-2/ 3 (2/3+6/4) 2/2 (2/+6/2)
~l O O9. " I " O SS+s

Because l/(SJrs)=e~sλ is translation operator (cf. section 5, example 2), we
obtain

f 3λ2t+λ2-2λt+t2+t3

x(λ,t)=\

This is the only solution which satisfies (7.1) and (7.2) in the interval O^λ, ί<oo.

2. Solve the following differential equation (7.8) with the conditions (7.9).

(7-8) 1F+W- = 1-

(7.9) x(λ,ΰ)=0, xt(λ,0)=λ2e-λ.

By the same way as example 1, we have the following operational equation.

(7.10) S2X+s2X=ClS+c2+lL + ϊ

where c1 and c2 are undetermined constants. From which, we get
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dS+cί (-2s2+6) 1 __ 4 1

(S2+s2) (s+iγ (s+i) ' (s2+i)2 (s+iy

+_i _L_+J1
^ (s2+l) (S+l)3 τ S

Here, ±is are not logarithmic. Choosing suitable boundary conditions, we
can get cΊ=cί=O. Hence, (7.11) becomes

v = Γ - 2 I 1

J (5+(s2+l)2 ^ (s2+l)3 J (5+1) ^ (s2+l)2 (S+l)2

^ (s2+l) (S+l)3 ^ S '

From which, we have

x(λ, ί ) = [ - ( s i n ( 0 - ί c o s ( ί ) ) + 2 ( ( | ~ | - ) s i n ( ί ) — | / .Όs(

(0-ίcos(0)+^sin(0>^ + y .

which is the solution of (7.8) satisfying (7.9).

3. Solve the following differential equation (7.12) with the conditions (7.13).

(7.13) xλλ{λ, 0 ) = ^ ,

Λ(0, ί )=l+2ί, x^(0, ί)=2ί.

By the same way as example 1 and 2, we have the following operational equa-
tion.

(7.14) (s-l)2S2Z-Z=(s-l)2((/+2/2)S+2/2) + ̂ | - Γ l - + -^-.

From which, we have

(s-l)2((/+2/2)S+2/2) (5-4/) 1

(s-l)2S2-l ' ((s-l)2S2-l)(S-l) ' 52((s-l)2S2-l)

/(s-1)2 /(s-1)2 (/+2/2) 1

+
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where ±l/(s— 1 ) = ± {e1} are logarithmic. By the some routine calculations, we
have the solution of (7.12) satisfying (7.13).
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