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Introduction.

The CR submanifolds of a Kaehlerian manifold have been defined and
studied by A. Bejancu [1] and are now being studied by many authors [3, 4, 5,
10, 11, 13, 14].

The main purpose of the present paper is to define what we call contact
CR submanifolds of a Sasakian manifold and to study their properties [2, 13].

In § 1, we first of all state some known results on submanifolds of a
Sasakian manifold and define the contact CR submanifolds of a Sasakian mani-
fold. We then prove a theorem which gives a necessary and sufficient condition
in order for a submanifold tangent to the structure vector field ξ of a Sasakian
manifold to be a contact CR submanifold.

§ 2 is devoted to the study of integrabίlity conditions of the distributions
defining contact CR structure of the contact CR submanifolds.

In § 3, we deal with contact CR submanifolds of a Sasakian manifold
whose normal connection is flat and in § 4 we study minimal contact CR sub-
manifolds of a Sasakian manifold.

§ 1. Submanifolds of Sasakian manifolds.

Let M be a (2m+l)-dimensional Sasakian manifold with structure tensors
(φ, ξ, η, g). The structure tensors of M satisfy

φ*X=-X+v(X)ζ, φξ=Q,

g(φX, φY) = g(X, Y)-η(X)η(Y), η{X) = g{X, ξ)

for any vector fields X and Y on M. We denote by V the operator of covariant
differentiation with respect to the metric g on M. We then have
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where R denotes the Riemannian curvature tensor of M. _
Let M be an (n + l)-dimensional submanifold isometrically immersed in M.

Throughout this paper, we assume that the submanifold M of M is tangent to
the structure vector field ξ.

We denote by the same g the Riemannian metric tensor field induced on
M from that of M. The operator of covariant differentiation with respect to
the induced connection on M will be denoted by 7. Then the Gauss and
Weingarten formulas are respectively given by

1ZY=ΊZY+B(X, Y) and 1ZV = -AVX+DZV

for any vector fields X, Y tangent to M and any vector field V normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle T(M)1 of M. A and B appear-
ing here are both called the second fundamental forms of M and are related by

g(B(X, Y), V)=g{AvX, Y).

The second fundamental form A can be considered as a symmetric (w+1, n + 1)-
matrix. The mean curvature vector μ of M is defined to be μ=(Tr B)/(n + l),
Tr B denoting the trace of B. If μ=0, then M is said to be minimal. If the
second fundamental form B vanishes identically, then M is said to be totally
geodesic. A vector field V normal to M is said to be parallel if DXV=O for
any vector field X tangent to M. The covariant derivative 1'XB of B is defined
to be

Y, Z))-B{1XY, Z)-B(Y, 1XZ)

and the covariant derivative ΊXA of A is defined to be

If VXB=O for any vector field X tangent to M, then the second fundamental
form of M is said to be parallel, which is equivalent to 1XA—^). Let R be the
Riemannian curvature tensor field of M. Then we have

R(X, Y)Z = R(X, Y)Z-AB<r.z>X+ABCZ.z>Y + WzBXY, Z)-{1YB){X, Z)

for any vector fields X, Y and Z tangent to M. Then we have equations of
Gauss and Codazzi respectively

g(R(X, Y)Z, W)=g(R(X, Y)Z, W)-g{B{X, W), B{Yy Z))+g(B(Y} W), B{X, Z)),

{R(X, Y)Zy=WzB)(Y9 Z)-{ΊYB){X, Z),

(R(X, Y)Z)L denoting the normal component of R(X, Y)Z. We now define the
curvature tensor RL of the normal bundle of M by

RKX, Y)V=DxDYV-DYDxV-DiX,Y1V.
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Then we have equation of Ricci

g(R(X, Y)U, V)=g(R±(X, Y)U, V)+g(£Av, A^X, Y).

If R1=^0, then the normal connection of M is said to be flat.
For any vector field X tangent to M, we put

(1.1) φX=PX+FX,

where PX is the tangential part and FX the normal part of φX. Then P is
an endomorphism on the tangent bundle T(M) and F is a normal bundle valued
1-form on the tangent bundle T(M). Similarly, for any vector field V normal
to M, we put

(1.2) φV=tV+fV,

where tV is the tangential part and fV the normal part of φV. For any
vector field Y tangent to M, we have, from (1.1), g(φX, Y)—g{PX} Y), which
shows that g(PX, Y) is skew-symmetric. Similarly, for any vector field U
normal to M, we have, from (1.2), g(φV, U)=g(fV, U), which shows that
g(fV, U) is skew-symmetric. We also have, from (1.1) and (1.2),

(1.3) g(FX, V)+g(X, tV)=0,

which gives the relation between F and t.
If we put X—ξ in (1.1), we have

φξ=pς+Fξ=o,

from which

(1.4) Pξ=0, Fξ=0.

Now, applying φ to (1.1) and using (1.1) and (1.2), we find

(1.5) P2=-I-tF+η®ξ, FP+/F-0.

Applying φ to (1.2) and using (1.1) and (1.2), we find

(1.6) Pt+tf=O, f2=-I-Ft.

DEFINITION. Let M be a submanifold isometrically immersed in a Sasakian
manifold M tangent to the structure vector field ξ. Then M is called a contact
CR submanifold of M if there exists a differentiate distribution W x->£)x(ZTx(M)
on M satisfying the following conditions:

(i) 3) is invariant with respect to φ, i.e., φ2)xdS)χ for each x^M, and
(ii) the complementary orthogonal distribution S)L: x-^QicTX(M) is anti-

invariant with respect to φ, i.e., φ£)L

xZLTX{M)L for each x e M .

Remark. For a contact CR submanifold M, the structure vector field ξ
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satisfies £e£) or ξe^)1. Indeed, from φ2X= — X+η{X)ξ for any X^W, we see
that η{X)ξ^£D. Thus we have ξ<ΞLS) or η(X)=0 and hence f e.©-1-.

Let M be a contact Cϋ? submanifold of a Sasakian manifold M. We denote
by / and lL the projection operators on S) and ̂ ) 1 respectively. Then we have

(1.7) /+/ x =/, I2=l, l±2=l\ iμ = M=0.

From (1.1), we have

φlX=PlX+FlX,

from which, the distribution β) being invariant, we have

(1.8) 1XPI=O, FZ=0.

From (1.1), we also have

φl±X=Pl±X+Fl1X,
from which, the distribution QL being anti-invariant, we have PlL—Q, and
consequently

(1.9) P/=P,

since Z1 ==/—/.
Now applying Z from the right to the second equation of (1.5) and using

the second equation of (1.8) and (1.9), we find

(1.10) FP=0

and consequently

(1.11) fF=0.

Thus, remembering the skew-symmetry of / and the relation (1.3), we have

(1.12) f/=0

and consequently, from the first equation of (1.6),

(1.13) Pt=0.

Thus, from the first equation of (1.5) we have

(1.14)

which shows that P is an /-structure in M and from the second equation of
(1.6), we have

(1.15) / 3 + / = 0 ,

which shows that / is an /-structure in the normal bundle T(M)1 (see [8]).
Conversely, for a submanifold M of a Sasakian manifold M, assume that
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we have (1.10). Then we have (1.11), (1.12), (1.13) and consequently (1.14) and
(1.15). We now put

(1.16) l=-P2+η®ξ, l^I-l.

Then we can easily verify that

ίJrl1=If I2 = l, I12=l\ ίί± = ίΊ=0y

which means that / and I1 are complementary projection operators and con-
sequently define complementary orthogonal distributions 2) and S)L respectively.

From the first equation of (1.16), we have

Pί=P

since P3 = — P and Pξ=0. This equation can be written as

Pί1=0.

But g(PX, Y) is skew-symmetric and g(lLX, Y) is symmetric and consequently
the above equation gives

Z-LP=O
and hence

ίLPί=0.

From the first equation of (1.16), we have

Fl=0,

since FP=Q and Fξ=Q.
The above equations show that the distribution 3) is invariant and £DL is

anti-invariant with respect to φ. Moreover, we have

/£=£, ZΈ=0

and consequently S) contains ξ.
On the other hand, putting

(1.17) l=-P2, lL=I+P2,

we still see that / and lL define complementary orthogonal distributions S) and
S)L respectively since P is an /-structure. We also have

Pl=P, / x P = 0 , F/=0, ^ = 0

and see that 3) is invariant and S)L is anti-invariant with respect to φ and that

lξ=0, l*-ξ=ξ,

which means that S)L contains ξ.
Thus we have
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THEOREM 1.1. In order for a submanifold M of a Sasakian manifold M to
be a contact CR submanifold, it is necessary and sufficient that FP—Q.

THEOREM 1.2. Let M be a contact CR submanifold of a Sasakian manifold
M. Then P is an f-structure in M and f is an f-structure in the normal bundle.

Let M be a contact CR submanifold of a Sasakian manifold M. If dim .0=0,
then M is an anti-invariant submanifold of M, and if dim^)1=0, then M is an
invariant submanifold of M. If φ£)L = T(My, then M is a generic submanifold
of M (see [10], [12]).

In the following, we state certain properties of the second fundamental
form of a submanifold M of a Sasakian manifold M. Since ξ is tangent to M,
for any vector field X tangent to M, we have

from which

(1.18) Ίxξ=PX, FX=B(X, ζ), Λvζ=-tV,

where V is a vector field normal to M. Especially, we have

(1.19) θ(£, f )=0.

Let X and Y be vector fields tangent to M. Then we obtain

(1.20) {lxP)Y = -g{X, Y)ξ+v(Y)X+AFVX+tB(X, Y)

and

(1.21) {!xF)Y=fB{X, Y)-B{Xy PY),

where we have defined C7XP)Y and C7XF)Y respectively by

(1XP)Y=1X{PY)-PΊXY and

For any vector field X tangent to M and any vector field V normal to M, we
have

(1.22) (lxt)V = AfVX-PAvX

and

(1.23) {lxf)V=-FAvX-B{X, tV),

where we have defined (Vxt)V and (lxf)V respectively by

(lxt)V=lx{tV)-tDxV and {Ίxf)V=Dx{fV)-fDxV.

If M is a contact CΛ submanifold of M, then P Z = P F = 0 for any X, 7 e ^ ,
and then we have g((VzP)X, Y)=gWz(PX), Y)~g(PVZX, Y)=0 for any vector
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field Z tangent to M. Therefore, (1.20) implies

Q=g(&zP)X, Y) = -η(Y)g(Z, X) + η(X)g(Z, Y)

+g(AFXZ,Y)+g(tB(Z,X),Y),
from which

g(AFXY, Z)-g{AFYX, Z)=v(Y)g(Z, X)-r]{X)g{Z, Y).

Thus we have

(1.24) AFXY-AFYX=v(Y)X-η(X)Y for X,Y^2)L.

For a contact CR submanifold M we have the following decomposition of
the tangent space TX{M) at each x^M:

Tx(M)=Hx(M)+{ξ}+Nx(M),

where Hx{M)—φHx{M) and NX(M) is the orthogonal complement of Hx(M)+{ξ}
in TX(M). Then φNx(M)=FNx(M)dTx(M)\ Similarly, we have

TX(M)1=FNX(M)+NX(M)1,

where NX(M)L is the orthogonal complement of FNX{M) in TX(M)L. Then
φNx(M)1=fNx(M)1=Nx(M)\ _

We take an orthonormal frame elf ••• , e2m+1 of M such that, restricted to
M, elf •••, en+1 are tangent to M. Then elf •••, en+i form an orthonormal frame
of M. We can take elf •••, ̂ n+i such that elf •••, £ p form an orthonormal frame
of NX(M) and <?p+1, •••, <?„ form an orthonormal frame of HX(M) and 0n+i=£>
where dim7V^(M)=^. Moreover, we can take en+2, ••• , e2m+i of an orthonormal
frame of TX(M)L such that en+2, ••• , en+1+p form an orthonormal frame of
FNX(M) and ^+2+^, •••, e2m+1 form an orthonormal frame of Nx(M)λ. In case
of n e e d , w e c a n t a k e en+2, •••, en+1+p s u c h t h a t en+2—Fely ••-, en+1+p—Fep.
Unless otherwise stated, we use the conventions that the ranges of indices are
respectively:

i, j , k = l, ••• , n + 1; x, y, z=l, ••• , p α, 6, c = /> + l, ••• , n

α, /3, r = n + 2 , •••, n + l+p.

§ 2. Integrability of distributions

We consider the integrability of the distributions 3) and 2)L of a contact
CR submanifold M of a Sasakian manifold M.

Let F , YΪΞW1. Then we have

, F]

-F[Z, F],
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from which φ[_X, Y^T{M)\ Thus we have IX, Y^3)L.

PROPOSITION 2.1. Let M be an (n + ϊ)-dimensιonal contact CR submamfold
of a (2m+ϊ)-dimensional Sasakian mam fold M. Then the distribution 3)1 is
completely integrable and its maximal integral submanifold is a p-dimensional
anti-invariant submamfold of M normal to ξ or a (p + l)-dimensional anti-
invariant submanifold of M tangent to ξ.

Let X, Y^3>. Then we have

=PZX, Y1+B(X, PY)-B(Y, PX).

Thus we see that [X, 7]ej2) if and only if B(X, PY)=B(Y, PX) for any
I , 7 G ^ ) . If 3) is normal to the structure vector field ξ, then we have

g(ίX, Yl, ξ)=2g(X, PY)

for any X, F ε ^ ) . Therefore, if 3) is completely integrable and is normal to
the structure vector field ξ, then we have g(X, PY)=0, which shows that
άim£D—0. Therefore we have

PROPOSITION 2.2. Let M be an (n + l)-dimensιonal contact CR submanifold
of a (2m+1)-dimensional Sasakian manifold M. Then the distribution 3) is com-
pletely integrable if and only if

B{X, PY)=B(Y, PX)

for any vector fields X, F ε ί ) , and then ξ<^3). Moreover, the maximal integral
submanifold of 3) is an (n + l—p)-dimensional invariant submanifold of M.

§ 3. Flat normal connection

Let S 2 m + 1 be a (2ra+l)-dimensional unit sphere. We know that S 2 m + 1

admits a standard Sasakian structure. Let M be an (n + l)-dimensional contact
CR submanifold of S2TO+1.

LEMMA 3.1. // the normal connection of M is flat, then

ΛfV=0

for any vector field V normal to M.

Proof. Let V and U be vector fields normal to M. Since Rλ—Q, equation
of Ricci implies that AVAU=ΛUΛV. Thus, from (1.18), we find

(3.1) AvtU=AutV.
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Since f/=0, using (3.1), we see that ΛfVtU=0 and AfVξ=0. Moreover, from
(1.23), we have

, U)-g(B(X, tfV), U)=g(AfvtU, X)=0,

from which

Thus, from (1.15) and (1.21), we have

g{{lχf)fV, FY)=-g(f*V, {lxF)Y)=-g{AfvX, Y)+g(Af2vX, PY)=0.

From this and the fact that AfVAf2V=Af2VAfV, we have

Tr A2

fv=Ύr Af2vPAfV=-Ύr AfvPAf2V=-Tr Af2vAfvP

= - T r AfvAfzvP=-Tr Af2VPAfv=-Tv A}v .

Consequently, we have Tr A}v=0 and hence Afv=0.

LEMMA 3.2. Let M be an (n + l)-dimenstonaί contact CR submamfold of S2m+1

with flat normal connection. If PAV—AVP for any vector field V normal to M,
then

(3.2) g(AuX, AvY)=g{X, Y)g{tU, ίV)-Σ g(AσtV, eι)g{AFHX, Y).

Proof. From the assumption we see that

g(AuPX,tV)=0,

from which

g^yA^PX, tV)+g{Au{lYP)X, tV)+g{AuPX, (7 rί)V)=0.

Thus, from (1.20) and (1.22), we have

g(ίlγA)uPX, tV)-g{X, Y)g(Au£, tV)+v(X)g(AuY, tV)+g{AOAFxY9 tV)

+g(AutB(Y, X), tV)+g{AuPX, AfvY)-g(AuPX, PAvY)=0,

from which and Lemma 3.1, we find

g((VPγA)uPX, tV)+g(X, PY)g(tU, tV)

+g(AutV, tB(PY, X))-g{AvPX, PAvPY)=0.

On the other hand, we have

g{AutV, tB(PY, X))=-Έg(AutV, eι)g(AFHX, PY),

-g(AvPX, PAvPY)=g(AuPX, AVY).
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From these equations we have

g{{lPYA)vPX, tV)+g{X, PY)g(tU, tV)

-ΈgiAutV, eι)g{AFHX, PY)+g(AϋPX, ArY)=0.

Therefore, the Codazzi equation implies

g{X, PY)g(tU, tV)-Σg(AσtV, et)g(AFeiX, PY)+g{AυPX, ArY)=0,

from which

(3.3) g{PX, PY)g(tU, ίV)-Σ g(AσtV, eι)g{APeιPX, PY)+g(AσP*X, AVY)=O .

On the other hand, we have

g(PX, PY)g(tU, tV)

=g(X, Y)g(tU, tV)-η{X)η{Y)g{tU, tV)-g{FX, FY)g{tU, tV),

-Σg(AvtV, eι)g(AFHPX, PY)=-*Σg(AutV, et)g{AFttX, Y)

+ ViY)siAυtV, X)+v(X)η(Y)g(tU, tV)-Σg(AvtV, et)g(AFeiX, tFY),

g{AΌP>X, AyY)=-g(AuX, AvY)—q{Y)g{AυtV, X)-g{AvX, AvtFY).

Substituting these equations into (3.3), we find

g(X, Y)g(tU, tV)-Σg(AutV, eι)g{AFHX, Y)-g(AΌX, AVY)

-g(FX, FY)g(tU, tV)-Σg(AπtV, et)g{APHX, tFY)-g{AυX, AvtFY)=0.

Moreover, we obtain

-ΈgiAvtV, et)g(AFβiX, tFY)=g{AutV, AFYX)+g(FX, FY)g{tU, tV),

-g{AvX, AvtFY)^-g{AutV, AFYX).

From these equations we have

g{X, Y)g{tU, tV)-Σg{AvtV, eι)g(AFeiX, Y)-g{AuX, AVY)=O,

which proves (3.2).

LEMMA 3.3. Let M be an (n + l)-dimensional contact CR submanifold of S2m+1

with flat normal connection. If the mean curvature vector of M is parallel, and
if PAv—AvP for any vector field V normal to M, then the square of the length
of the second fundamental form of M is constant.
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Proof. From Lemma 3.1 the square of the length of the second funda-
mental form of M is given by Σ Tr A%, where Aa—A€a. Using (3.2), we have

a

Σ Tr Al = (n + l)p+ Έg(Aatea, teβ) Tr Aβ .
a a, β

Since the normal connection of M is flat, we can take {ea} such that Dxea=0
for each a, because, for any V^FN(M) we have DXV<=FN(M) by (1.23) and
(3.1). Then we have

V Z (Σ Tr A%)= Σ g((lχA)atea, teβ) Tr Aβ
a a, β

= Σ gW«aA)βtett, X) Tr Aβ
a, β

by using Vx(fea)=(^χt)ea=AfeaX—PAaX and Pt=0.
On the other hand, using PAV=AVP, we have, for any X<=TX(M),

Σ gWpetA)aPe%, X)

= Σ ZgWpe&Aae^ X)+g(P{lpHA)aeX9 X)-

Since Aa is symmetric and P is skew-symmetric, using (1.4), (1.10), (1.13) and
(1.20), we see that

ί a e ι , X)=0 and Σ g(AaφPetP)ex, X)=0 .

Therefore, we have

ett X)

A)aPel9 0 = 0 ,

where we have used the Codazzi equation and the fact that (lPXA)a is sym-
metric and P is skew-symmetric.

Since we have Σ C^eaΛ)aea — Σ (VPe A)aPelf the above equation implies

(3.4) ΈWeaA)aea=0.
a

Moreover, we see that

(3.5) φςA)aζ=O.

From the assumption the mean curvature vector of M is parallel, and hence

0 = Σ (7β <i4)αβt=Σ (Vβ αi4)αeα+(7€i4)βf+Σ CJexA)ae,
% it X

= Σ CJerA)aex=Σ (VteβA)Jeβ.
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Therefore the square of the length of the second fundamental form of M is
constant.

From Lemmas 3.1 and 3.3, using a theorem of [9], we have (see [6])

LEMMA 3.4. Let M be an (n + l)~dimensιonal contact CR submanifold of S2m+1

with flat normal connection. If the mean curvature vector of M is parallel, and
if PAV—AVP for any vector field V normal to M, then

(3.6) gφA, V i4)=-(n+l) Σ Tr Al+Σ (Tr Aa)
2

a a

+ Σ [Tr{AaAβ)J- Σ Tr Aβ Tr A%Aβ .
a,β a,β

LEMMA 3.5. Under the same assumptions as those of Lemma 3.4, the second
fundamental form of M is parallel.

Proof. From (3.2) we have

Tr A%Aβ=Tr Aag(ea, eβ)+Σ,Tr(ArAa)g(Artea, teβ),

a, eβ)+Έ Tr Arg(Artea,

Thus we have

Σ [ ( ^ / 3 ) ] ( + D Σ T r ^ + Σ Tr(AaAβ) Tr Arg(Artea, teβ),
a, β ex. a, β,γ

- Σ Tr AβTr A%Aβ = -Σί (Tr Aa)
2- Σ Tr(AaAβ)Tr Arg(Artea, teβ).

Substituting these equations into (3.6), we find ^(7^4, V-A)=0, that is, the second
fundamental form of M is parallel.

THEOREM 3.1. Let M be an (n + l)-dimensιonal complete contact CR sub-
manifold of S 2 m + 1 with flat normal connection. If the mean curvature vector of
M is parallel, and if PAV—AVP for any vector field V normal to M, then M is
an Sn+1 or

Σ r* = l

in some Sn+1+P, where mlf •••, mk are odd numbers.

Proof. We first assume that F=0, that is, M is an invariant submanifold
of S2m+1. Then the second fundamental form of M satisfies PAV+AVP=O (cf.
[10]). Thus we have PAv=0, which implies that Av=0 and hence M is totally
geodesic in S2m+1. Therefore M is an Sn+1 and n + 1 is odd.

We next assume that FφQ. Since the second fundamental form of M is
parallel and R1=0, by Lemma 1.2 of [11], the sectional curvature of M is non-
negative. On the other hand, from (3.2), we see that AvΦ0 for any V^FNX(M).
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Thus Lemma 3.1 shows that the first normal space is of dimension p. Therefore,
by a theorem of [9] and a result of Example 3 of [11] (see also [14]), we have
our assertion.

COROLLARY 3.1. Let M be an (n+l)-dimenstonal complete generic submamfold
of S2m+1 with flat normal connection. If the mean curvature vector of M is
parallel, and if PAV—AVP for any vector field V normal to M, then M ts

= Σ mx, 2^/^n + l, Σr?=l,
l

where mu ••• , mk are odd numbers.

§ 4. Minimal contact CR submanif olds

Let M be an (n + l)-dimensional contact CR submanif old of S 2 m + 1 with flat
normal connection. We denote by 5 the Ricci tensor of M. For any vector
field X of M, we have generally (see [7])

div(7zZ)-div((div X)X) = S(X, X)+j \L(X)g\2- | 7 Z | 2 - ( d i v X)2,

where L(X)g denotes the Lie derivative of the Riemannian metric g with
respect to a vector field X and | F | denotes the length with respect to the
Riemannian metric of a vector field Y on M.

Let V be a parallel vector field normal to M. Then, by Lemma 3.1, Afv—{).
Thus (1.22) implies

VxtV=-PAvX.

Hence we have

div tV=-Tr PAv^0, div((div tV)tV)=0 .

Consequently, we obtain

(4.1) divφtvtV)=S(tV, tV)+^\L(tV)g\2-\ltV\\

In the sequel, we assume that M is minimal. Then the Ricci tensor S of
M is given by

S(X, Y)=ng(X, Y)-Σg(AlX, Y)
a

because of Afv—Q.
On the other hand, we have

ΐ O - Σ g{FAveu FAvex)

V)-Σ g(AjV, AJV).
a

Therefore, equation C4.D reduces to
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(4.2) div(V£7fV)=(n + l)g(f7, tV)-Tτ A2

V+1-1 L(tV)g | 2 .

PROPOSITION 4.1. Let M be a compact onentable (n+ 1)-dimensional contact
CR submanifold of S 2 m + 1 with flat normal connection and with parallel section V
in the normal bundle. If M is minimal and

JM

then tV is an infinitesimal isometry of M and PAV—AVP.

Proof. For any vector fields X, Y tangent to M, we have

(L(tV)gXX, Y)=g{lχtV, Y)Λ-g{lYtV, X)

=g{(AvP-PAv)X,Y),

from which we have our assertion.

Since the normal connection of M is flat, we can take a frame {ea} of
FN(M) such that Dea=0 for each a. Thus we find

div(Σ V£ββfO = (n + l)/>-Σ Tr Al + \ ΣI Utea)g \2.
a a Z a

From this we have

THEOREM 4.1. Let M be a compact onentable (n + \)-dimensιonal minimal
contact CR submanifold of S2m+1 with flat normal connection. Then

/, JM a

As an application of Theorem 4.1, we have

THEOREM 4.2. Let M be a compact onentable (n + 1)-dimensional minimal
contact CR submanifold of S2m+1 with flat normal connection. If the square of
the length of the second fundamental form of M is (n + ΐ)pf then M is

Σ
ί = l

in some Sn+1+P, where mlf •••, mk are odd numbers.

Proof. Since Afv=0, the square of the length of the second fundamental
form of M is given by Σ Tr ̂ 4L Thus, from Theorem 4.1, we have \L(tea)g\

a

—0 for each a and hence PA~ = A~P. On the other hand, from the assumption,
M is not totallv geodesic. Therefore, our assertion follows from Theorem 3.1.
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If M is minimal, the scalar curvature r of M is given by

From this and Theorem 4.2 we have

THEOREM 4.3. Let M be a compact orientable (n+-1)-dimensional minimal

contact CR submanifold of S2m+1 with flat normal connection. If r = ( n + l)(n— p),

then M is

t/(n + lψ2 (ί=l, ••• , k),

Σ w ί , 2^fcgn + l , Σ rf=l
ί = l ί = l

n + 1 + ^ where mlt ••• , ra* a r e <9<id numbers.
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