CONTACT $C R$ SUBMANIFOLDS

Dedicated to Professor Shigeru Ishihara on his sixtieth birthday

By Kentaro Yano and Masahiro Kon

Introduction.

The $C R$ submanifolds of a Kaehlerian manifold have been defined and studied by A. Bejancu [1] and are now being studied by many authors $[3,4,5$, $10,11,13,14]$.

The main purpose of the present paper is to define what we call contact $C R$ submanifolds of a Sasakian manifold and to study their properties [2, 13].

In §1, we first of all state some known results on submanifolds of a Sasakian manifold and define the contact $C R$ submanifolds of a Sasakian manifold. We then prove a theorem which gives a necessary and sufficient condition in order for a submanifold tangent to the structure vector field ξ of a Sasakian manifold to be a contact $C R$ submanifold.
$\S 2$ is devoted to the study of integrability conditions of the distributions defining contact $C R$ structure of the contact $C R$ submanifolds.

In $\S 3$, we deal with contact $C R$ submanifolds of a Sasakian manifold whose normal connection is flat and in $\S 4$ we study minimal contact $C R$ submanifolds of a Sasakian manifold.

§ 1. Submanifolds of Sasakian manifolds.

Let \bar{M} be a $(2 m+1)$-dimensional Sasakian manifold with structure tensors (ϕ, ξ, η, g). The structure tensors of \bar{M} satisfy

$$
\begin{aligned}
& \phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\xi)=1, \quad \eta(\phi X)=0, \\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{aligned}
$$

for any vector fields X and Y on \bar{M}. We denote by $\bar{\nabla}$ the operator of covariant differentiation with respect to the metric g on \bar{M}. We then have

$$
\bar{\nabla}_{x} \hat{\xi}=\phi X, \quad\left(\bar{\nabla}_{x} \phi\right) Y=\bar{R}(X, \xi) Y=-g(X, Y) \xi+\eta(Y) X
$$

where \bar{R} denotes the Riemannian curvature tensor of \bar{M}.
Let M be an $(n+1)$-dimensional submanifold isometrically immersed in \bar{M}. Throughout this paper, we assume that the submanifold M of \bar{M} is tangent to the structure vector field ξ.

We denote by the same g the Riemannian metric tensor field induced on M from that of \bar{M}. The operator of covariant differentiation with respect to the induced connection on M will be denoted by ∇. Then the Gauss and Weingarten formulas are respectively given by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \text { and } \bar{\nabla}_{X} V=-A_{V} X+D_{X} V
$$

for any vector fields X, Y tangent to M and any vector field V normal to M, where D denotes the operator of covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of $M . A$ and B appearing here are both called the second fundamental forms of M and are related by

$$
g(B(X, Y), V)=g\left(A_{V} X, Y\right)
$$

The second fundamental form A can be considered as a symmetric ($n+1, n+1$)matrix. The mean curvature vector μ of M is defined to be $\mu=(\operatorname{Tr} B) /(n+1)$, $\operatorname{Tr} B$ denoting the trace of B. If $\mu=0$, then M is said to be minimal. If the second fundamental form B vanishes identically, then M is said to be totally geodesic. A vector field V normal to M is said to be parallel if $D_{X} V=0$ for any vector field X tangent to M. The covariant derivative $\nabla_{x} B$ of B is defined to be

$$
\left(\nabla_{X} B\right)(Y, Z)=D_{X}(B(Y, Z))-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right)
$$

and the covariant derivative $\nabla_{X} A$ of A is defined to be

$$
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V} \nabla_{X} Y .
$$

If $\nabla_{X} B=0$ for any vector field X tangent to M, then the second fundamental form of M is said to be parallel, which is equivalent to $\nabla_{X} A=0$. Let R be the Riemannian curvature tensor field of M. Then we have

$$
\bar{R}(X, Y) Z=R(X, Y) Z-A_{B(Y, Z)} X+A_{B(X, Z)} Y+\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)
$$

for any vector fields X, Y and Z tangent to M. Then we have equations of Gauss and Codazzi respectively

$$
\begin{aligned}
g(\bar{R}(X, Y) Z, W)= & g(R(X, Y) Z, W)-g(B(X, W), B(Y, Z))+g(B(Y, W), B(X, Z)), \\
& (\bar{R}(X, Y) Z)^{\perp}=\left(\nabla_{X} \dot{B}\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z),
\end{aligned}
$$

$(\bar{R}(X, Y) Z)^{\perp}$ denoting the normal component of $\bar{R}(X, Y) Z$. We now define the curvature tensor R^{\perp} of the normal bundle of M by

$$
R^{\perp}(X, Y) V=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V .
$$

Then we have equation of Ricci

$$
g(\bar{R}(X, Y) U, V)=g\left(R^{\perp}(X, Y) U, V\right)+g\left(\left[A_{V}, A_{U}\right] X, Y\right)
$$

If $R^{\perp}=0$, then the normal connection of M is said to be flat.
For any vector field X tangent to M, we put

$$
\begin{equation*}
\phi X=P X+F X, \tag{1.1}
\end{equation*}
$$

where $P X$ is the tangential part and $F X$ the normal part of ϕX. Then P is an endomorphism on the tangent bundle $T(M)$ and F is a normal bundle valued 1 -form on the tangent bundle $T(M)$. Similarly, for any vector field V normal to M, we put

$$
\begin{equation*}
\phi V=t V+f V, \tag{1.2}
\end{equation*}
$$

where $t V$ is the tangential part and $f V$ the normal part of ϕV. For any vector field Y tangent to M, we have, from (1.1), $g(\phi X, Y)=g(P X, Y)$, which shows that $g(P X, Y)$ is skew-symmetric. Similarly, for any vector field U normal to M, we have, from (1.2), $g(\phi V, U)=g(f V, U)$, which shows that $g(f V, U)$ is skew-symmetric. We also have, from (1.1) and (1.2),

$$
\begin{equation*}
g(F X, V)+g(X, t V)=0 \tag{1.3}
\end{equation*}
$$

which gives the relation between F and t.
If we put $X=\xi$ in (1.1), we have

$$
\phi \xi=P \xi+F \xi=0,
$$

from which

$$
\begin{equation*}
P \xi=0, \quad F \xi=0 . \tag{1.4}
\end{equation*}
$$

Now, applying ϕ to (1.1) and using (1.1) and (1.2), we find

$$
\begin{equation*}
P^{2}=-I-t F+\eta \otimes \xi, \quad F P+f F=0 . \tag{1.5}
\end{equation*}
$$

Applying ϕ to (1.2) and using (1.1) and (1.2), we find

$$
\begin{equation*}
P t+t f=0, \quad f^{2}=-I-F t . \tag{1.6}
\end{equation*}
$$

Definition. Let M be a submanifold isometrically immersed in a Sasakian manifold \bar{M} tangent to the structure vector field ξ. Then M is called a contact $C R$ submanifold of \bar{M} if there exists a differentiable distribution $\mathscr{D} ; x \rightarrow \mathscr{D}_{x} \subset T_{x}(M)$ on M satisfying the following conditions:
(i) \mathscr{D} is invariant with respect to ϕ, i. e., $\phi \mathscr{D}_{x} \subset \mathscr{D}_{x}$ for each $x \in M$, and
(ii) the complementary orthogonal distribution $\mathscr{D}^{\perp}: x \rightarrow \mathscr{D}_{x}^{\perp} \subset T_{x}(M)$ is antiinvariant with respect to ϕ, i. e., $\phi \mathscr{D}_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$.

Remark. For a contact $C R$ submanifold M, the structure vector field ξ
satisfies $\xi \in \mathscr{D}$ or $\xi \in \mathscr{D}^{\perp}$. Indeed, from $\phi^{2} X=-X+\eta(X) \xi$ for any $X \in \mathscr{D}$, we see that $\eta(X) \xi \in \mathscr{D}$. Thus we have $\xi \in \mathscr{D}$ or $\eta(X)=0$ and hence $\xi \in \mathscr{D}^{\perp}$.

Let M be a contact $C R$ submanifold of a Sasakian manifold \bar{M}. We denote by l and l^{\perp} the projection operators on \mathscr{D} and \mathscr{D}^{\perp} respectively. Then we have

$$
\begin{equation*}
l+l^{\perp}=I, \quad l^{2}=l, \quad l^{12}=l^{\perp}, \quad l l^{\perp}=l^{\perp} l=0 . \tag{1.7}
\end{equation*}
$$

From (1.1), we have

$$
\phi l X=P l X+F l X,
$$

from which, the distribution \mathscr{D} being invariant, we have

$$
\begin{equation*}
l^{\perp} P l=0, \quad F l=0 . \tag{1.8}
\end{equation*}
$$

From (1.1), we also have

$$
\phi l^{\perp} X=P l^{\perp} X+F l^{\perp} X
$$

from which, the distribution \mathscr{D}^{\perp} being anti-invariant, we have $P l^{\perp}=0$, and consequently

$$
\begin{equation*}
P l=P, \tag{1.9}
\end{equation*}
$$

since $l^{\perp}=I-l$.
Now applying l from the right to the second equation of (1.5) and using the second equation of (1.8) and (1.9), we find

$$
\begin{equation*}
F P=0 \tag{1.10}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
f F=0 \tag{1.11}
\end{equation*}
$$

Thus, remembering the skew-symmetry of f and the relation (1.3), we have

$$
\begin{equation*}
t f=0 \tag{1.12}
\end{equation*}
$$

and consequently, from the first equation of (1.6),

$$
\begin{equation*}
P t=0 \tag{1.13}
\end{equation*}
$$

Thus, from the first equation of (1.5) we have

$$
\begin{equation*}
P^{3}+P=0 \tag{1.14}
\end{equation*}
$$

which shows that P is an f-structure in M and from the second equation of (1.6), we have

$$
\begin{equation*}
f^{3}+f=0 \tag{1.15}
\end{equation*}
$$

which shows that f is an f-structure in the normal bundle $T(M)^{\perp}$ (see [8]).
Conversely, for a submanifold M of a Sasakian manifold \bar{M}, assume that
we have (1.10). Then we have (1.11), (1.12), (1.13) and consequently (1.14) and (1.15). We now put

$$
\begin{equation*}
l=-P^{2}+\eta \otimes \xi, \quad l^{\perp}=I-l . \tag{1.16}
\end{equation*}
$$

Then we can easily verify that

$$
l+l^{\perp}=I, \quad l^{2}=l, \quad l^{\perp 2}=l^{\perp}, \quad l l^{\perp}=l^{\perp} l=0,
$$

which means that l and l^{\perp} are complementary projection operators and consequently define complementary orthogonal distributions \mathscr{D} and \mathscr{D}^{\perp} respectively.

From the first equation of (1.16), we have

$$
P l=P
$$

since $P^{3}=-P$ and $P \xi=0$. This equation can be written as

$$
P l^{\perp}=0 .
$$

But $g(P X, Y)$ is skew-symmetric and $g\left(l^{\perp} X, Y\right)$ is symmetric and consequently the above equation gives

$$
l^{\perp} P=0
$$

and hence

$$
l^{\perp} P l=0 .
$$

From the first equation of (1.16), we have

$$
F l=0,
$$

since $F P=0$ and $F \xi=0$.
The above equations show that the distribution \mathscr{D} is invariant and \mathscr{D}^{\perp} is anti-invariant with respect to ϕ. Moreover, we have

$$
l \xi=\xi, \quad l^{\perp} \xi=0
$$

and consequently \mathscr{D} contains ξ.
On the other hand, putting

$$
\begin{equation*}
l=-P^{2}, \quad l^{1}=I+P^{2} \tag{1.17}
\end{equation*}
$$

we still see that l and l^{\perp} define complementary orthogonal distributions \mathscr{D} and \mathscr{D}^{\perp} respectively since P is an f-structure. We also have

$$
P l=P, \quad l^{\perp} P=0, \quad F l=0, \quad P l^{\perp}=0
$$

and see that \mathscr{D} is invariant and \mathscr{D}^{+}is anti-invariant with respect to ϕ and that

$$
l \xi=0, \quad l^{\perp} \xi=\xi,
$$

which means that \mathscr{D}^{\perp} contains ξ.
Thus we have

Theorem 1.1. In order for a submanifold M of a Sasakıan manıfold \bar{M} to be a contact $C R$ submanifold, it is necessary and sufficient that $F P=0$.

Theorem 1.2. Let M be a contact $C R$ submanıfold of a Sasakıan manıfold \bar{M}. Then P is an f-structure in M and f is an f-structure in the normal bundle.

Let M be a contact $C R$ submanifold of a Sasakian manifold \bar{M}. If $\operatorname{dim} \mathscr{D}=0$, then M is an anti-invariant submanifold of \bar{M}, and if $\operatorname{dim} \mathscr{D}^{\perp}=0$, then M is an invariant submanifold of \bar{M}. If $\phi \mathscr{D}^{\perp}=T(M)^{\perp}$, then M is a generic submanifold of \bar{M} (see [10], [12]).

In the following, we state certain properties of the second fundamental form of a submanifold M of a Sasakian manifold \bar{M}. Since ξ is tangent to M, for any vector field X tangent to M, we have

$$
\bar{\nabla}_{x} \xi=\phi X=\nabla_{x} \xi+B(X, \xi),
$$

from which

$$
\begin{equation*}
\nabla_{X} \xi=P X, \quad F X=B(X, \xi), \quad A_{V} \xi=-t V, \tag{1.18}
\end{equation*}
$$

where V is a vector field normal to M. Especially, we have

$$
\begin{equation*}
B(\xi, \xi)=0 . \tag{1.19}
\end{equation*}
$$

Let X and Y be vector fields tangent to M. Then we obtain

$$
\begin{equation*}
\left(\nabla_{X} P\right) Y=-g(X, Y) \xi+\eta(Y) X+A_{F Y} X+t B(X, Y) \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} F\right) Y=f B(X, Y)-B(X, P Y) \tag{1.21}
\end{equation*}
$$

where we have defined $\left(\nabla_{X} P\right) Y$ and $\left(\nabla_{X} F\right) Y$ respectively by

$$
\left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P \nabla_{X} Y \quad \text { and } \quad\left(\nabla_{X} F\right) Y=D_{X}(F Y)-F \nabla_{X} Y .
$$

For any vector field X tangent to M and any vector field V normal to M, we have

$$
\begin{equation*}
\left(\nabla_{X} t\right) V=A_{f V} X-P A_{V} X \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} f\right) V=-F A_{V} X-B(X, t V) \tag{1.23}
\end{equation*}
$$

where we have defined $\left(\nabla_{X} t\right) V$ and $\left(\nabla_{X} f\right) V$ respectively by

$$
\left(\nabla_{X} t\right) V=\nabla_{X}(t V)-t D_{X} V \quad \text { and } \quad\left(\nabla_{X} f\right) V=D_{X}(f V)-f D_{X} V .
$$

If M is a contact $C R$ submanifold of \bar{M}, then $P X=P Y=0$ for any $X, Y \in \mathscr{D}^{+}$, and then we have $g\left(\left(\nabla_{Z} P\right) X, Y\right)=g\left(\nabla_{Z}(P X), Y\right)-g\left(P \nabla_{Z} X, Y\right)=0$ for any vector
field Z tangent to M. Therefore, (1.20) implies

$$
\begin{aligned}
0=g\left(\left(\nabla_{Z} P\right) X, Y\right)= & -\eta(Y) g(Z, X)+\eta(X) g(Z, Y) \\
& +g\left(A_{F X} Z, Y\right)+g(t B(Z, X), Y),
\end{aligned}
$$

from which

$$
g\left(A_{F X} Y, Z\right)-g\left(A_{F Y} X, Z\right)=\eta(Y) g(Z, X)-\eta(X) g(Z, Y)
$$

Thus we have

$$
\begin{equation*}
A_{F X} Y-A_{F Y} X=\eta(Y) X-\eta(X) Y \quad \text { for } \quad X, Y \in \mathscr{D}^{\perp} \tag{1.24}
\end{equation*}
$$

For a contact $C R$ submanifold M we have the following decomposition of the tangent space $T_{x}(M)$ at each $x \in M$:

$$
T_{x}(M)=H_{x}(M)+\{\xi\}+N_{x}(M),
$$

where $H_{x}(M)=\phi H_{x}(M)$ and $N_{x}(M)$ is the orthogonal complement of $H_{x}(M)+\{\xi\}$ in $T_{x}(M)$. Then $\phi N_{x}(M)=F N_{x}(M) \subset T_{x}(M)^{\perp}$. Similarly, we have

$$
T_{x}(M)^{\perp}=F N_{x}(M)+N_{x}(M)^{\perp},
$$

where $N_{x}(M)^{\perp}$ is the orthogonal complement of $F N_{x}(M)$ in $T_{x}(M)^{\perp}$. Then $\phi N_{x}(M)^{\perp}=f N_{x}(M)^{\perp}=N_{x}(M)^{\perp}$.

We take an orthonormal frame $e_{1}, \cdots, e_{2 m+1}$ of \bar{M} such that, restricted to $M, e_{1}, \cdots, e_{n+1}$ are tangent to M. Then e_{1}, \cdots, e_{n+1} form an orthonormal frame of M. We can take e_{1}, \cdots, e_{n+1} such that e_{1}, \cdots, e_{p} form an orthonormal frame of $N_{x}(M)$ and e_{p+1}, \cdots, e_{n} form an orthonormal frame of $H_{x}(M)$ and $e_{n+1}=\xi$, where $\operatorname{dim} N_{x}(M)=p$. Moreover, we can take $e_{n+2}, \cdots, e_{2 m+1}$ of an orthonormal frame of $T_{x}(M)^{\perp}$ such that $e_{n+2}, \cdots, e_{n+1+p}$ form an orthonormal frame of $F N_{x}(M)$ and $e_{n+2+p}, \cdots, e_{2 m+1}$ form an orthonormal frame of $N_{x}(M)^{\perp}$. In case of need, we can take $e_{n+2}, \cdots, e_{n+1+p}$ such that $e_{n+2}=F e_{1}, \cdots, e_{n+1+p}=F e_{p}$. Unless otherwise stated, we use the conventions that the ranges of indices are respectively:

$$
\begin{aligned}
& \imath, \jmath, k=1, \cdots, n+1 ; \quad x, y, z=1, \cdots, p ; \quad a, b, c=p+1, \cdots, n ; \\
& \alpha, \beta, \gamma=n+2, \cdots, n+1+p .
\end{aligned}
$$

§ 2. Integrability of distributions

We consider the integrability of the distributions \mathscr{D} and \mathscr{D}^{\perp} of a contact $C R$ submanifold M of a Sasakian manifold \bar{M}.

Let $Y, Y \in \mathscr{D}^{+}$. Then we have

$$
\begin{aligned}
\phi[X, Y] & =P[X, Y]+F[X, Y]=-\left(\nabla_{X} P\right) Y+\left(\nabla_{Y} P\right) X+F[X, Y] \\
& =A_{F X} Y-A_{F Y} X-\eta(Y) X+\eta(X) Y+F[X, Y]=F[X, Y],
\end{aligned}
$$

from which $\phi[X, Y] \in T(M)^{\perp}$. Thus we have $[X, Y] \in \mathscr{D}^{\perp}$.
Proposition 2.1. Let M be an ($n+1$)-dimensional contact CR submanafold of a $(2 m+1)$-dimensional Sasakıan manıfold \bar{M}. Then the distribution \mathscr{D}^{\perp} is completely integrable and its maximal integral submanifold is a p-dimensional antı-invariant submanafold of \bar{M} normal to ξ or $a(p+1)$-dimensional antıinvariant submanifold of \bar{M} tangent to ξ.

Let $X, Y \in \mathscr{D}$. Then we have

$$
\begin{aligned}
\phi[X, Y] & =P[X, Y]+F[X, Y]=P[X, Y]+\left(\nabla_{Y} F\right) X-\left(\nabla_{X} F\right) Y \\
& =P[X, Y]+B(X, P Y)-B(Y, P X) .
\end{aligned}
$$

Thus we see that $[X, Y] \in \mathscr{D}$ if and only if $B(X, P Y)=B(Y, P X)$ for any $X, Y \in \mathscr{D}$. If \mathscr{D} is normal to the structure vector field ξ, then we have

$$
g([X, Y], \xi)=2 g(X, P Y)
$$

for any $X, Y \in \mathscr{D}$. Therefore, if \mathscr{D} is completely integrable and is normal to the structure vector field ξ, then we have $g(X, P Y)=0$, which shows that $\operatorname{dim} \mathscr{D}=0$. Therefore we have

Proposition 2.2. Let M be an $(n+1)$-dimensional contact $C R$ submanifold of a $(2 m+1)$-dimensional Sasakıan manıfold \bar{M}. Then the distribution \mathscr{D} is completely integrable if and only if

$$
B(X, P Y)=B(Y, P X)
$$

for any vector fields $X, Y \in \mathscr{D}$, and then $\xi \in \mathscr{D}$. Moreover, the maximal integral submanifold of \mathscr{D} is an $(n+1-p)$-dimensional invariant submanıfold of \bar{M}.

§3. Flat normal connection

Let $S^{2 m+1}$ be a $(2 m+1)$-dimensional unit sphere. We know that $S^{2 m+1}$ admits a standard Sasakian structure. Let M be an ($n+1$)-dimensional contact $C R$ submanifold of $S^{2 m+1}$.

Lemma 3.1. If the normal connection of M is fat, then

$$
A_{f V}=0
$$

for any vector field V normal to M.
Proof. Let V and U be vector fields normal to M. Since $R^{\perp}=0$, equation of Ricci implies that $A_{V} A_{U}=A_{U} A_{V}$. Thus, from (1.18), we find

$$
\begin{equation*}
A_{V} t U=A_{U} t V \tag{3.1}
\end{equation*}
$$

Since $t f=0$, using (3.1), we see that $A_{f v} t U=0$ and $A_{f v} \xi=0$. Moreover, from (1.23), we have

$$
g\left(\left(\nabla_{X} f\right) f V, U\right)=-g\left(F A_{f V} X, U\right)-g(B(X, t f V), U)=g\left(A_{f V} t U, X\right)=0
$$

from which

$$
\left(\nabla_{X} f\right) f V=0
$$

Thus, from (1.15) and (1.21), we have

$$
g\left(\left(\nabla_{X} f\right) f V, F Y\right)=-g\left(f^{2} V,\left(\nabla_{X} F\right) Y\right)=-g\left(A_{f V} X, Y\right)+g\left(A_{f^{2 V}} X, P Y\right)=0 .
$$

From this and the fact that $A_{f V} A_{f 2 V}=A_{f 2 V} A_{f V}$, we have

$$
\begin{aligned}
\operatorname{Tr} A_{f V}^{2} & =\operatorname{Tr} A_{f^{2 V}} P A_{f V}=-\operatorname{Tr} A_{f V} P A_{f^{2} V}=-\operatorname{Tr} A_{f^{2 V}} A_{f V} P \\
& =-\operatorname{Tr} A_{f V} A_{f^{2 V}} P=-\operatorname{Tr} A_{f 2 V} P A_{f V}=-\operatorname{Tr} A_{f V}^{2} .
\end{aligned}
$$

Consequently, we have $\operatorname{Tr} A_{f V}^{2}=0$ and hence $A_{f V}=0$.
Lemma 3.2. Let M be an $(n+1)$-dimensional contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. If $P A_{V}=A_{V} P$ for any vector field V normal to M, then

$$
\begin{equation*}
g\left(A_{U} X, A_{V} Y\right)=g(X, Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{\imath}\right) g\left(A_{F e_{i}} X, Y\right) \tag{3.2}
\end{equation*}
$$

Proof. From the assumption we see that

$$
g\left(A_{U} P X, t V\right)=0
$$

from which

$$
g\left(\left(\nabla_{Y} A\right)_{U} P X, t V\right)+g\left(A_{U}\left(\nabla_{Y} P\right) X, t V\right)+g\left(A_{U} P X,\left(\nabla_{Y} t\right) V\right)=0 .
$$

Thus, from (1.20) and (1.22), we have

$$
\begin{gathered}
g\left(\left(\nabla_{Y} A\right)_{U} P X, t V\right)-g(X, Y) g\left(A_{U} \xi, t V\right)+\eta(X) g\left(A_{U} Y, t V\right)+g\left(A_{U} A_{F X} Y, t V\right) \\
\quad+g\left(A_{U} t B(Y, X), t V\right)+g\left(A_{U} P X, A_{f V} Y\right)-g\left(A_{U} P X, P A_{V} Y\right)=0
\end{gathered}
$$

from which and Lemma 3.1, we find

$$
\begin{aligned}
& g\left(\left(\nabla_{P Y} A\right)_{U} P X, t V\right)+g(X, P Y) g(t U, t V) \\
& \quad+g\left(A_{U} t V, t B(P Y, X)\right)-g\left(A_{U} P X, P A_{V} P Y\right)=0
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& g\left(A_{U} t V, t B(P Y, X)\right)=-\sum_{\imath} g\left(A_{U} t V, e_{2}\right) g\left(A_{F e_{i}} X, P Y\right) \\
& -g\left(A_{U} P X, P A_{V} P Y\right)=g\left(A_{U} P X, A_{V} Y\right)
\end{aligned}
$$

From these equations we have

$$
\begin{aligned}
& g\left(\left(\nabla_{P Y} A\right)_{U} P X, t V\right)+g(X, P Y) g(t U, t V) \\
& \quad-\sum_{\imath} g\left(A_{U} t V, e_{2}\right) g\left(A_{F e_{i}} X, P Y\right)+g\left(A_{U} P X, A_{V} Y\right)=0 .
\end{aligned}
$$

Therefore, the Codazzi equation implies

$$
g(X, P Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{\imath}\right) g\left(A_{F e_{i}} X, P Y\right)+g\left(A_{U} P X, A_{V} Y\right)=0,
$$

from which
(3.3) $g(P X, P Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{2}\right) g\left(A_{F e_{i}} P X, P Y\right)+g\left(A_{U} P^{2} X, A_{V} Y\right)=0$.

On the other hand, we have

$$
\begin{aligned}
& g(P X, P Y) g(t U, t V) \\
& \quad=g(X, Y) g(t U, t V)-\eta(X) \eta(Y) g(t U, t V)-g(F X, F Y) g(t U, t V) \\
& -\sum_{\imath} g\left(A_{U} t V, e_{2}\right) g\left(A_{F e_{2}} P X, P Y\right)=-\sum_{\imath} g\left(A_{U} t V, e_{\imath}\right) g\left(A_{F e_{i}} X, Y\right) \\
& \quad+\eta(Y) g\left(A_{U} t V, X\right)+\eta(X) \eta(Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{2}\right) g\left(A_{F e_{i}} X, t F Y\right), \\
& g\left(A_{U} P^{2} X, A_{V} Y\right)=-g\left(A_{U} X, A_{V} Y\right)-\eta(Y) g\left(A_{U} t V, X\right)-g\left(A_{U} X, A_{V} t F Y\right)
\end{aligned}
$$

Substituting these equations into (3.3), we find

$$
\begin{aligned}
& g(X, Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{\imath}\right) g\left(A_{F e_{i}} X, Y\right)-g\left(A_{U} X, A_{V} Y\right) \\
& \quad-g(F X, F Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{\imath}\right) g\left(A_{F e_{i}} X, t F Y\right)-g\left(A_{U} X, A_{V} t F Y\right)=0
\end{aligned}
$$

Moreover, we obtain

$$
\begin{aligned}
& -\sum_{\imath} g\left(A_{U} t V, e_{2}\right) g\left(A_{F e_{i}} X, t F Y\right)=g\left(A_{U} t V, A_{F Y} X\right)+g(F X, F Y) g(t U, t V), \\
& -g\left(A_{U} X, A_{V} t F Y\right)=-g\left(A_{U} t V, A_{F Y} X\right)
\end{aligned}
$$

From these equations we have

$$
g(X, Y) g(t U, t V)-\sum_{\imath} g\left(A_{U} t V, e_{\imath}\right) g\left(A_{F e_{i}} X, Y\right)-g\left(A_{U} X, A_{V} Y\right)=0,
$$

which proves (3.2).
Lemma 3.3. Let M be an $(n+1)$-dimensional contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. If the mean curvature vector of M is parallel, and if $P A_{V}=A_{V} P$ for any vector field V normal to M, then the square of the length of the second fundamental form of M is constant.

Proof. From Lemma 3.1 the square of the length of the second fundamental form of M is given by $\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}$, where $A_{\alpha}=A_{e_{\alpha}}$. Using (3.2), we have

$$
\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}=(n+1) p+\sum_{\alpha, \beta} g\left(A_{\alpha} t e_{\alpha}, t e_{\beta}\right) \operatorname{Tr} A_{\beta} .
$$

Since the normal connection of M is flat, we can take $\left\{e_{\alpha}\right\}$ such that $D_{X} e_{\alpha}=0$ for each α, because, for any $V \in F N(M)$ we have $D_{X} V \in F N(M)$ by (1.23) and (3.1). Then we have

$$
\begin{aligned}
\nabla_{X}\left(\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}\right) & =\sum_{\alpha, \beta} g\left(\left(\nabla_{X} A\right)_{\alpha} t e_{\alpha}, t e_{\beta}\right) \operatorname{Tr} A_{\beta} \\
& =\sum_{\alpha, \beta} g\left(\left(\nabla_{t e_{\alpha}} A\right)_{\beta} t e_{\alpha}, X\right) \operatorname{Tr} A_{\beta}
\end{aligned}
$$

by using $\nabla_{X}\left(t e_{\alpha}\right)=\left(\nabla_{X} t\right) e_{\alpha}=A_{f_{e_{\alpha}}} X-P A_{\alpha} X$ and $P t=0$.
On the other hand, using $P A_{V}=A_{V} P$, we have, for any $X \in T_{x}(M)$,

$$
\begin{aligned}
& \sum_{\imath} g\left(\left(\nabla_{P e_{i}} A\right)_{\alpha} P e_{\imath}, X\right) \\
& \quad=\sum_{\imath}\left[g\left(\left(\nabla_{P e_{i}} P\right) A_{\alpha} e_{2}, X\right)+g\left(P\left(\nabla_{P e_{i}} A\right)_{\alpha} e_{i}, X\right)-g\left(A_{\alpha}\left(\nabla_{P e_{i}} P\right) e_{2}, X\right)\right]
\end{aligned}
$$

Since A_{α} is symmetric and P is skew-symmetric, using (1.4), (1.10), (1.13) and (1.20), we see that

$$
\sum_{\imath} g\left(\left(\nabla_{P e_{i}} P\right) A_{\alpha} e_{\imath}, X\right)=0 \quad \text { and } \quad \sum_{\imath} g\left(A_{\alpha}\left(\nabla_{P e_{i}} P\right) e_{\imath}, X\right)=0
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{\imath} g\left(\left(\nabla_{P e_{i}} A\right)_{\alpha} P e_{\imath}, X\right)=\sum_{\imath} g\left(P\left(\nabla_{P e_{i}} A\right)_{\alpha} e_{\imath}, X\right) \\
& \quad=-\sum_{\imath} g\left(\left(\nabla_{P e_{i}} A\right)_{\alpha} e_{\imath}, P X\right)=-\sum_{\imath} g\left(\left(\nabla_{P X} A\right)_{\alpha} P e_{\imath}, e_{\imath}\right)=0
\end{aligned}
$$

where we have used the Codazzi equation and the fact that $\left(\nabla_{P X} A\right)_{\alpha}$ is symmetric and P is skew-symmetric.

Since we have $\sum_{a}\left(\nabla_{e_{a}} A\right)_{\alpha} e_{a}=\sum_{2}\left(\nabla_{P e_{2}} A\right)_{\alpha} P e_{2}$, the above equation implies

$$
\begin{equation*}
\sum_{a}\left(\nabla_{e_{a}} A\right)_{\alpha} e_{a}=0 . \tag{3.4}
\end{equation*}
$$

Moreover, we see that

$$
\begin{equation*}
\left(\nabla_{\xi} A\right)_{\alpha} \xi=0 . \tag{3.5}
\end{equation*}
$$

From the assumption the mean curvature vector of M is parallel, and hence

$$
\begin{aligned}
0 & =\sum_{\imath}\left(\nabla_{e_{i}} A\right)_{\alpha} e_{2}=\sum_{a}\left(\nabla_{e_{a}} A\right)_{\alpha} e_{a}+\left(\nabla_{\xi} A\right)_{\alpha} \xi+\sum_{x}\left(\nabla_{e_{x}} A\right)_{\alpha} e_{x} \\
& =\sum_{x}\left(\nabla_{e_{x}} A\right)_{\alpha} e_{x}=\sum_{\beta}\left(\nabla_{t e_{\beta}} A\right)_{\alpha} t e_{\beta}
\end{aligned}
$$

Therefore the square of the length of the second fundamental form of M is constant.

From Lemmas 3.1 and 3.3, using a theorem of [9], we have (see [6])
Lemma 3.4. Let M be an $(n+1)$-dimensional contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. If the mean curvature vector of M is parallel, and if $P A_{V}=A_{V} P$ for any vector field V normal to M, then

$$
\begin{align*}
g(\nabla A, \nabla A)= & -(n+1) \sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}+\sum_{\alpha}\left(\operatorname{Tr} A_{\alpha}\right)^{2} \tag{3.6}\\
& +\sum_{\alpha, \beta}\left[\operatorname{Tr}\left(A_{\alpha} A_{\beta}\right)\right]^{2}-\sum_{\alpha, \beta} \operatorname{Tr} A_{\beta} \operatorname{Tr} A_{\alpha}^{2} A_{\beta} .
\end{align*}
$$

Lemma 3.5. Under the same assumptions as those of Lemma 3.4, the second fundamental form of M is parallel.

Proof. From (3.2) we have

$$
\begin{aligned}
& \operatorname{Tr} A_{\alpha}^{2} A_{\beta}=\operatorname{Tr} A_{\alpha} g\left(e_{\alpha}, e_{\beta}\right)+\sum_{\gamma} \operatorname{Tr}\left(A_{\gamma} A_{\alpha}\right) g\left(A_{\gamma} t e_{\alpha}, t e_{\beta}\right), \\
& \operatorname{Tr}\left(A_{\alpha} A_{\beta}\right)=(n+1) g\left(e_{\alpha}, e_{\beta}\right)+\sum_{\gamma} \operatorname{Tr} A_{\gamma} g\left(A_{\gamma} t e_{\alpha}, t e_{\beta}\right) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \sum_{\alpha, \beta}\left[\operatorname{Tr}\left(A_{\alpha} A_{\beta}\right)\right]^{2}=(n+1) \sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}+\sum_{\alpha, \beta, \gamma} \operatorname{Tr}\left(A_{\alpha} A_{\beta}\right) \operatorname{Tr} A_{\gamma} g\left(A_{\gamma} t e_{\alpha}, t e_{\beta}\right), \\
& -\sum_{\alpha, \beta} \operatorname{Tr} A_{\beta} \operatorname{Tr} A_{\alpha}^{2} A_{\beta}=-\sum_{\alpha}\left(\operatorname{Tr} A_{\alpha}\right)^{2}-\sum_{\alpha, \beta, \gamma} \operatorname{Tr}\left(A_{\alpha} A_{\beta}\right) \operatorname{Tr} A_{\gamma} g\left(A_{\gamma} t e_{\alpha}, t e_{\beta}\right)
\end{aligned}
$$

Substituting these equations into (3.6), we find $g(\nabla A, \nabla A)=0$, that is, the second fundamental form of M is parallel.

Theorem 3.1. Let M be an ($n+1$)-dimensional complete contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. If the mean curvature vector of M is parallel, and if $P A_{V}=A_{V} P$ for any vector field V normal to M, then M is an S^{n+1} or

$$
S^{m_{1}}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right), \quad n+1=\sum_{i=1}^{k} m_{\imath}, \quad 2 \leqq k \leqq n+1, \quad \sum_{i=1}^{k} r_{i}^{2}=1
$$

in some S^{n+1+p}, where m_{1}, \cdots, m_{k} are odd numbers.
Proof. We first assume that $F=0$, that is, M is an invariant submanifold of $S^{2 m+1}$. Then the second fundamental form of M satisfies $P A_{V}+A_{V} P=0$ (cf. [10]). Thus we have $P A_{V}=0$, which implies that $A_{V}=0$ and hence M is totally geodesic in $S^{2 m+1}$. Therefore M is an S^{n+1} and $n+1$ is odd.

We next assume that $F \neq 0$. Since the second fundamental form of M is parallel and $R^{\perp}=0$, by Lemma 1.2 of [11], the sectional curvature of M is nonnegative. On the other hand, from (3.2), we see that $A_{V} \neq 0$ for any $V \in F N_{x}(M)$.

Thus Lemma 3.1 shows that the first normal space is of dimension p. Therefore, by a theorem of [9] and a result of Example 3 of [11] (see also [14]), we have our assertion.

Corollary 3.1. Let M be an $(n+1)$-dimensional complete generic submanıfold of $S^{2 m+1}$ with flat normal connection. If the mean curvature vector of M is parallel, and if $P A_{V}=A_{V} P$ for any vector field V normal to M, then M is

$$
S^{m_{1}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right), \quad n+1=\sum_{\imath=1}^{k} m_{\imath}, \quad 2 \leqq k \leqq n+1, \quad \sum_{i=1}^{k} r_{\imath}^{2}=1, ~ ; ~, ~}
$$

where m_{1}, \cdots, m_{k} are odd numbers.

§4. Minimal contact CR submanifolds

Let M be an $(n+1)$-dimensional contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. We denote by S the Ricci tensor of M. For any vector field X of M, we have generally (see [7])

$$
\operatorname{div}\left(\nabla_{X} X\right)-\operatorname{div}((\operatorname{div} X) X)=S(X, X)+\frac{1}{2}|L(X) g|^{2}-|\nabla X|^{2}-(\operatorname{div} X)^{2},
$$

where $L(X) g$ denotes the Lie derivative of the Riemannian metric g with respect to a vector field X and $|Y|$ denotes the length with respect to the Riemannian metric of a vector field Y on M.

Let V be a parallel vector field normal to M. Then, by Lemma 3.1, $A_{f V}=0$. Thus (1.22) implies

$$
\nabla_{X} t V=-P A_{V} X .
$$

Hence we have

$$
\operatorname{div} t V=-\operatorname{Tr} P A_{V}=0, \quad \operatorname{div}((\operatorname{div} t V) t V)=0 .
$$

Consequently, we obtain

$$
\begin{equation*}
\operatorname{div}\left(\nabla_{t V} t V\right)=S(t V, t V)+\frac{1}{2}|L(t V) g|^{2}-|\nabla t V|^{2} . \tag{4.1}
\end{equation*}
$$

In the sequel, we assume that M is minimal. Then the Ricci tensor S of M is given by

$$
S(X, Y)=n g(X, Y)-\sum_{\alpha} g\left(A_{\alpha}^{2} X, Y\right)
$$

because of $A_{f V}=0$.
On the other hand, we have

$$
\begin{aligned}
|\nabla t V|^{2} & =\operatorname{Tr} A_{V}^{2}-g(t V, t V)-\sum_{2} g\left(F A_{V} e_{2}, F A_{V} e_{2}\right) \\
& =\operatorname{Tr} A_{V}^{2}-g(t V, t V)-\sum_{\alpha} g\left(A_{\alpha} t V, A_{\alpha} t V\right) .
\end{aligned}
$$

Therefore, equation (4.1) reduces to

$$
\begin{equation*}
\operatorname{div}\left(\nabla_{t V} t V\right)=(n+1) g(t V, t V)-\operatorname{Tr} A_{V}^{2}+\frac{1}{2}|L(t V) g|^{2} . \tag{4.2}
\end{equation*}
$$

Proposition 4.1. Let M be a compact ornentable $(n+1)$-dimensional contact $C R$ submanıfold of $S^{2 m+1}$ with flat normal connection and with parallel section V in the normal bundle. If M is minimal and

$$
\int_{M}\left[\operatorname{Tr} A_{V}^{2}-(n+1) g(t V, t V)\right]^{*} 1 \leqq 0
$$

then $t V$ is an infinitesimal isometry of M and $P A_{V}=A_{V} P$.
Proof. For any vector fields X, Y tangent to M, we have

$$
\begin{aligned}
(L(t V) g)(X, Y) & =g\left(\nabla_{X} t V, Y\right)+g\left(\nabla_{Y} t V, X\right) \\
& =g\left(\left(A_{V} P-P A_{V}\right) X, Y\right)
\end{aligned}
$$

from which we have our assertion.
Since the normal connection of M is flat, we can take a frame $\left\{e_{\alpha}\right\}$ of $F N(M)$ such that $D e_{\alpha}=0$ for each α. Thus we find

$$
\operatorname{div}\left(\sum_{\alpha} \nabla_{t e_{\alpha}} t e_{\alpha}\right)=(n+1) p-\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}+\frac{1}{2} \sum_{\alpha}\left|L\left(t e_{\alpha}\right) g\right|^{2}
$$

From this we have
Theorem 4.1. Let M be a compact ornentable $(n+1)$-dimensional minmal contact $C R$ submanzold of $S^{2 m+1}$ with flat normal connection. Then

$$
0 \leqq \frac{1}{2} \int_{M} \sum_{\alpha}\left|L\left(t e_{\alpha}\right) g\right|^{2} * 1=\int_{M}\left[\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}-(n+1) p\right] * 1 .
$$

As an application of Theorem 4.1, we have
THEOREM 4.2. Let M be a compact orientable $(n+1)$-dimensional minimal contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. If the square of the length of the second fundamental form of M is $(n+1) p$, then M is

$$
\begin{aligned}
S^{m_{1}}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right), & r_{t}=\left(m_{t} /(n+1)\right)^{1 / 2}(t=1, \cdots, k), \\
& n+1=\sum_{t=1}^{k} m_{t}, \quad 2 \leqq k \leqq n+1, \quad \sum_{t=1}^{k} r_{t}^{2}=1
\end{aligned}
$$

in some S^{n+1+p}, where m_{1}, \cdots, m_{k} are odd numbers.
Proof. Since $A_{f V}=0$, the square of the length of the second fundamental form of M is given by $\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}$. Thus, from Theorem 4.1, we have $\left|L\left(t e_{\alpha}\right) g\right|$ $=0$ for each α and hence $P A_{\sim}=A_{\sim} P$. On the other hand. from the assumption, M is not totallv geodesic. Therefore our assertion follows from Theorem 3.1.

If M is minimal, the scalar curvature r of M is given by

$$
r=n(n+1)-\sum_{\alpha} \operatorname{Tr} A_{\alpha}^{2}
$$

From this and Theorem 4.2 we have
THEOREM 4.3. Let M be a compact orientable ($n+1$)-dimensional minimal contact $C R$ submanifold of $S^{2 m+1}$ with flat normal connection. If $r=(n+1)(n-p)$, then M is

$$
\begin{aligned}
S^{m_{1}}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right), & r_{t}=\left(m_{t} /(n+1)\right)^{1 / 2}(t=1, \cdots, k), \\
& n+1=\sum_{t=1}^{k} m_{t}, \quad 2 \leqq k \leqq n+1, \quad \sum_{t=1}^{k} r_{t}^{2}=1
\end{aligned}
$$

in some S^{n+1+p}, where m_{1}, \cdots, m_{k} are odd numbers.

Bibliography

[1] A. Bejancu, $C R$ submanıfolds of a Kaehler manifold I, Proc. Amer. Math. Soc., 69 (1978), 135-142.
[2] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, to appear.
[3] B. Y. Chen, On $C R$-submanifolds of a Kaehler manifold, to appear.
[4] U-Hang Ki, J.S. Pak and Y. H. Kim, Generic submanifolds of complex projective spaces with parallel mean curvature vector, to appear.
[5] U-Hang Ki and J. S. Pak, Generic submanifolds of an even-dimensional Euclidean space, to appear.
[6] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
[7] K. Yano, On harmonic and Killing vector fields, Ann. of Math., 55 (1952), 38-45.
[8] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^{3}+f=0$, Tensor N. S., 14 (1963), 99-109.
[9] K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry, 6 (1971), 95-118.
[10] K. Yano and M. Kon, Ant1-1nvariant submanifolds, Marcel Dekker, Inc., New York and Basel, 1976.
[11] K. Yano and M. Kon, Generic submanifolds, Annali di Mat., 123 (1980), 59-92.
[12] K. Yano and M. Kon, Generic submanifolds of Sasakıan manifolds, Kodai Math. J., 3 (1980), 163-196.
[13] K. Yano and M. Kon, Differential geometry of $C R$-submanifolds, Geometriae Dedicata, 10 (1981), 369-391.
[14] K. Yano and M. Kon, On some mınımal submanifolds of an odd dimensional sphere with flat normal connection, to appear.

```
Tokyo Institute of Technology AND
Hirosaki University
```

