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ON THE ALGEBRAIC STRUCTURES OF GRADED
LIE ALGEBRAS OF SECOND ORDER

By KENJI ATSUYAMA

§0. Introduction.

In 1973, by using of generalized Jordan triple systems of second order
(=Kantor systems), I. L. Kantor [4] has given the models of graded Lie algebras
of second order with involutive automorphism . In this note, we shall prove
the converse, that is, if z is an automorphism of a Lie triple system in a graded
Lie algebra of second order such that z?=1 (resp. —1), it characterizes the
Kantor (resp. Freudenthal) system. We also give a simple connection between
the two kinds of triple systems.

§1. A characterization of Kantor and Freudenthal systems.

We consider a graded Lie algebra of second order
B=6_.D6.,56,P6,BG, (direct sum)
[, 8,1CG,,

over a field 2 of characteristic zero. Then the vector space &_, DG, becomes
a Lie triple system (L.t.s.) with a triple product [[X, Y, Z] where [,] is the
Lie product of @ and elements X, Y, Z are in &_,PS, (cf. [7]). Let 7 be an
automorphism of the L.t.s. &_;P®, with respect to the triple product. Then
t is called an e-structure on &_, PG, (e==+1) if r2=¢cid and 7(G.;)=6:,.

Let V be a finite dimensional vector space over the field 2. Then V is
called a Kantor (resp. Freudenthal) system (cf. [4], [2], [8]) if V has a trilinear
operation ¢: VXV XV—V such that

D [L(a, b), L(c, d)]=L(L(a, b)e, d)—eL(c, L(b, a)d),
2) K(K(a, b)e, d)=L(d, c)K(a, b)+eK(a, b)L(c, d)

for a, b, ¢, d€V, where L(a, b)c=¢(a, b, ¢), K(a, b)c=L(a, c)b—L(b, c)a and e=1
(resp. —1).
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Now let & be a graded Lie algebra of second order which form is of (1.1)
and let ¢ be an e-structure on the L.t.s. &_,P®,. We denote by z.; the
e-structure ¢ restricted to ®.;, but, for simplicity, we sometimes use the same
notation = instead of 7., unless the confusion does not occur. When we write
an element a+<(x) in &_,PG, as the column vector, the Lie triple product
[La+z(x), b+z(»)], c+7(2)] in G_,PG,; can be denoted by

(1.2) K a )( b ( c )] (K(a, Dyz+La, y)e—Lb, x)c
. 7(x) T(y)) w2))] \er(K(x, Ve+Lix, bz—L(y, a)z))
for a, b, ¢, x, y, z€G_, where L(a, b)c=[[a,z(b)], c] and K(a, b)c=[La, b], (c)].

Moreover, by using of 2Xx2 matrix forms and column vectors, the right side of
(1.2) can be rewritten as the following form:

(L(a, ¥)—L(b, x) K(a, b)r? )( ¢ )

(1.3)
etK(x, y) —et(L(y, a)—L(x, b))c™*/\z(2)

for a, b, ¢, x, y, ze®_,.

If the Lie algebra & is semi-simple, it is isomorphic to the standard
imbedding (Lie algebra) of the L.t.s. &_,PG,; (see [6], [7]).

Now, let V be any Kantor (resp. Freudenthal) system. Then the direct sum
I(V)=VEPHV becomes a L.t.s. with an e-structure ¢ by the trilinear multiplica-
tion of (1.2) where z_;=1 and z;=¢ with e¢=1 (resp. —1). And, the standard
imbedding (Lie algebra) £(V) of the L.t.s. I(V) has a structure of graded Lie
algebra of second order (see [4], [8]). Then, we have the following.

THEOREM 1. Let © be a graded Lie algebra of second ovder which form is
of 1.1). If the L.t.s. &_.«PS, has a l-structure (resp. —1-structure) =, -, is a
Kantor (resp. Freudenthal) system with respect to the trilinear operation ¢(a, b, c)
=[[a, =(b)], c] for a, b, ce®_,. Moreover, if & is semi-simple, it is isomorphic
to the standard imbedding (Lie algebra) &(S.,) of the L.t.s. T(G_y).

Proof. Assume that the L.t.s. 8.,G, in @ has an e-structure z. Then
we show that &_; is a Kantor or Freudenthal system with respect to the
trilinear operation ¢(a, b, ¢) (=L(a, b)c)=[[a, =(b)], ¢] corresponding to ¢é=1 or
—1 respectively. The adjoint representation ad of the Lie algebra & is defined
usually by ad(x)y=[x, y] for x, y@.

First, for a, b, ¢, d, e€®_;, we have

[L(a, b), L(c, d)]=[ad[a, =(b)], ad[c, z(d)]]
=ad[[a, 7], [¢, «(d)]]
=ad[[[a, z(0)], c], =(d)]+ad[c, [La, w(b)], ©(d)]]
by the Jacobi’s identity. Since [[a, z(b)], cJ=L(a, b)c and [[a, =(b)], «(d)]=
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—erL(b, a)d, the operation ¢ satisfies the axiom 1) of the triple system. Sec-
ondly, again by the Jacobi’s identity, it holds that [[a, b], =(c)1=L(a, ¢)b—L(b, ¢)a,
i.e., the definition of K(a, b) in the Kantor or Freudenthal system coincides with
the definition in the L.t.s. &_,P®, of (1.2). Then we can prove the axiom 2):

K(K(a, b)e, d)e=[[[La, b], =(c)], d], z(e)]
=—[lz(e), 4], La, b1], =(e)]
=—ad[[(c), d], [a, b]]z(e)
=—T[ad[z(¢), d], ad[a, b]]z(e)
=—ad[z(c), dJad[a, blc(e)+ad[a, blad[z(c), d]1z(e)
=L(d, ¢)K(a, b)e+<cK(a, b)L(c, d)e

where the second equality is proved by the Jacobi’s identity and the relation
[La, b], d]€eS_;={0}.

Now, let &_; be the Kantor (resp. Freudenthal) system with the product
L(a, b)c which is obtained from & by the above method. Then the L.t.s.
&_,bG, in & with the e-structure 7 is isomorphic to Z(S-;) by the mapping
a+7_(x)—a+x. Therefore, if we assume the semi-simplicity of ©&, the two
Lie algebras & and {(®.,) are isomorphic.

ExaAMPLES. For the graded simple Lie algebra of second order with a
l-structure in &_,PS,, we know the models constructed by Tits-Koecher [5]
and I. L. Kantor [4]. However, the Tits-Koecher’s models are of &.,={0}. For
—1-structure, there are the models by H. Freudenthal [2] and B.N. Allison [1].

Remark. Any automorphism ¢ of the L.t.s. &_;P®, can be canonically
extended to an automorphism z of the Lie algebra &. In fact, under the
notation of (1.3), we can define the automorphism ¢: 8—® by z(D+E)=cDr™*
+7(E) for D+E<(6-,DGPG)B(G_,BS,). Hence, any l-structure z can be
extended to an involutive automorphism of & and —I-structure ¢ becomes an
automorphism with z‘=1 where =1 in &_,PE,PDS,.

§2. Simplicity of (V).

Let V be a Kantor (resp. Freudenthal) system with a triple product L(a, b)c
such that L(V, V)V {0} and let £(V) be the standard imbedding (Lie algebra)
of the L.t.s. (V). Usually, V is said to be simple if V has no subspaces {W}
except {0} and V such that LW, V)VCW, L(V, W)YVCW and LV, VYWCW.

PROPOSITION 2. [If V) is simple, V is simple. Conversely, 1f V 1s simple,
&(V) 1s semi-simple.
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Proof. Put V=G_,. We assume that % is any ideal of &_;. Then AD(W)
is an ideal of the L.t.s. I(®._,) where r_,=1 and 7,—¢ with e=1 (resp. —1).
Since (G_,) is simple by the simplicity of L(&.,), we have A={0} or G_,.
This means that &_; is simple.

Conversely, we assume that &_; is simple. For the L.t.s. 3=3(®_,) of
QG.,), it always holds R(L(G_))=RE)P[RE), T] where R(L(G-,)) and RE)
are the radicals of £(®_;) and I(®_,) respectively (cf. [6]). Under the notation

1 0
of (1.3), since the mapping 0:<0 l) of ¥ makes the radical ®(T) invariant

and 7 is an automorphism of £, there is an ideal % of G&_;, such that R()=
APc(NW)CT. Because G_; is simple, if we assume A=G_,, we have
G, GG, =6G_; and TCREO)™ (=[T, RV, RIX)* V] where [, ,] is
the triple product of the L.t.s. ¥) for any natural number n. But this con-
tradicts &_,# {0}. Therefore A={0}, i.e., RI)=REL(G_))={0}.

§3. Isomorphisms of (V).

Two triple systems V,, V. having triple products L,(a, b)c, L.(x, y)z
respectively, are weakly isomorphic if there are two one-to-one onto mappings
P, Q:V,—V, such that PL.(a, b)c=Ly(Pa, Qb)Pc and QL.(a, b)c=Ly(Qa, Pb)Qc
for a, b, c€V, where we use the notation Pa instead of P(a). Then we have
PKi(a, b)c= K,(Pa, Pb)Qc and QK (a, b)c=K,(Qa, Qb)Pc where Ka, b)c=
L.(a, ¢c)b—L;b, c)a (=1, 2).

PROPOSITION 3. Two standard imbedding (Lie algebra) 2(G-;) and L(G.,)
are 1somorphic (by an isomorphism preserving the grading) if and only if two
triple systems &_, and ®., are weakly 1somorphic. If o is a grade-preserving
isomorphism of {(G_y) to L(BL,), we can have P=c|®_; (the restriction of o to
®.) and Q=7'"'07t|G_, where t and ¢’ are e-structures in T(S_,) and T(S.))
respectively.

Proof. 1f &_, and &', are weakly isomorphic, there is an isomorphism
0:I(G_)—IT(G’,) with respect to the triple product of the L.t.s. which is
defined by o(a+z(b))=Pa-+7'(Qb) for a, be®_,. And, this ¢ can be canonically
extended to an isomorphism of the standard imbedding (Lie algebra) by the
same method as the Remark of Theorem 1.

Conversely, let ¢ be a grade-preserving isomorphism of {(G_;) to L(G.).
When we put P=¢|®_; and Q=17""'07|®_,, we have PL,(a, b)c=0[[a, (b)], c]
=[Lo(a), oz(b)], o(c)]J=[Lo(a), 'z’ *oz(b)], o(c)]=L.(Pa, Qb)Pc for a, b, ce®_,.
The other relation QL,(a, b)c=L,(Qa, Pb)Qc can be proved similarly.
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§4. A duality.

There is a simple connection between the Kantor systems and the Freu-
denthal systems.

THEOREM 4. Let V be a Kantor (resp. Freudenthal) system with a triple
product L(a, b)c. If there exist an automorphism @ of V, i.e., @(L(a, b)c)=
L(@(a), ®b))D(c) for a, b, cEV, such that ®*=—1, V becomes a Freudenthal
(resp. Kantor) system with respect to the new triple product L(a, @(b))c (resp.
—L(a, @b))c). This mapping @ s also an automorphism for the new product.

ExaMPLE. Let V (=€) be the Cayley algebra over the complex numbers
C. Then V is a Kantor system by the triple product L(a, b)c=a(be)+c(ba)—b(ac)
for a, b, c€V, where — is the usual conjugation of V, and f(V) is a simple
Lie algebra of type F, In this case, the right multiplication @ is an auto-
morphism for the triple product a(bc) in V where @(x)=xv for any xV and
some fixed v€V with tr(v)=0 and vv=—1. Therefore @ is also an auto-
morphism with respect to the product L(a, b)c and V becomes a Freudenthal

system by the product L(a, bv)c:a((—b-v)c%l—c((f);)a)—(bv)(dc) for a, b, ceV (cf.
[3D.
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