ON THE GROWTH OF ALGEBROID FUNCTIONS OF $\mu_{*}<\infty$

By Hideharu Ueda

1. Introduction. Let f_{0}, \cdots, f_{N} ($N \geqq 1$) be entire functions with no common zeros and denote by $T(r, f)$ the characteristic function of the system $f=$ $\left(f_{0}, \cdots, f_{N}\right)$. Further, if $f_{j} \neq 0(0 \leqq j \leqq N)$, we define $m_{2}(r, f)$ as follows:

$$
\begin{equation*}
m_{2}(r . f)=\left(\frac{N}{4 \pi} \int_{0}^{2 \pi} \sum_{l, j=0}^{N}\left\{\log \left|\frac{f_{l}\left(r e^{2 \theta}\right)}{f_{j}\left(r e^{i \theta}\right)}\right|\right\}^{2} d \theta\right)^{1 / 2} \tag{1}
\end{equation*}
$$

By Drasin and Shea [2], Pólya peaks of order ρ exist iff $\rho \in\left[\mu_{*}, \lambda_{*}\right]$ and $\rho<\infty$, where

$$
\mu_{*}=\mu_{*}(T)=\inf \left\{\rho: \lim _{r, A \rightarrow \infty} \frac{T(A r, f)}{A^{\rho} T(r, f)}=0\right\},
$$

$$
\begin{equation*}
\lambda_{*}=\lambda_{*}(T)=\sup \left\{\rho: \overline{\lim }_{r, A \rightarrow \infty} \frac{T(A r, f)}{A^{\rho} T(r, f)}=\infty\right\} . \tag{2}
\end{equation*}
$$

In [5], [6], Miles and Shea have shown
Theorem A. Suppose that f is meromorphic (i.e., $N=1, f=f_{1} / f_{0}=\left(f_{0}, f_{1}\right)$) with $\mu_{*}<\infty$. Then

$$
\begin{equation*}
k_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{N(r, 0, f)+N(r, \infty, f)}{m_{2}(r, f)} \geqq \sup _{\mu_{*} \leq \rho \leq \lambda_{*}} C_{1}(\rho), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}(\rho)=\frac{|\sin \pi \rho|}{\pi \rho}\left\{\frac{2}{1+(\sin 2 \pi \rho) /(2 \pi \rho)}\right\}^{1 / 2} . \tag{4}
\end{equation*}
$$

In this note, we shall extend Theorem A to systems of $\mu_{*}<\infty$. Our extension is the following :

Theorem. Let $f=\left(f_{0}, \cdots, f_{N}\right)\left(f_{j} \not \equiv 0\right)$ be a system with $\mu_{*}<\infty$. Then

$$
\begin{equation*}
k_{2}(f)=\overline{\lim }_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)}{m_{2}(r, f)} \geqq \sup _{\mu, \leq \rho \leq \lambda_{*}} C_{N}(\rho), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{N}(\rho)=\frac{1}{N} \frac{|\sin \pi \rho|}{\pi \rho}\left\{\frac{2}{1+(\sin 2 \pi \rho) /(2 \pi \rho)}\right\}^{1 / 2} . \tag{6}
\end{equation*}
$$

Equality holds in (5) for $f=\left(1, \cdots, 1, f_{N}\right)$, where f_{N} is a Lindelöf function, i. e., an entire function having all zeros on a ray through 0 and $N\left(r, 0, f_{N}\right) \sim r^{\mu_{*}}$ ($r \rightarrow \infty$).

The corresponding problem with $m_{2}(r, f)$ replaced by $T(r, f)$ in (5) has received much attention. Making use of the techniques developed by Edrei and Fuchs [3], Toda [8] obtained

Theorem B. Let $f=\left(f_{0}, \cdots, f_{N}\right)(N \geqq 1)$ be a system and let λ, μ be the order and lower order of f, respectively. If $\mu<\infty$, then

$$
\begin{equation*}
k_{1}(f)=\overline{\lim }_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)}{T(r, f)} \geqq \sup _{\mu \leq \rho \leq \lambda} \frac{N+1}{N} \frac{|\sin \pi \rho|}{4.4 e(\rho+1)+|\sin \pi \rho|} . \tag{7}
\end{equation*}
$$

Using (5), we are able to sharpen his estrmate (7).
Corollary 1. Let $f=\left(f_{0}, \cdots, f_{N}\right)(N \geqq 1)$ be a system with $\mu_{*}<\infty$. Then

$$
k_{1}(f)=\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)}{T(r, f)} \geqq \sup _{\mu, \leq \rho \leq \lambda_{*}} \frac{N+1}{N} \frac{|\sin \pi \rho|}{\pi \rho / \sqrt{ } 2+1 / 4 \sqrt{2}+|\sin \pi \rho| / N}
$$

Corollary 2. Let $y(z)$ be an N-valued algebroid function with $\mu_{*}<\infty$. Then

$$
\begin{aligned}
k_{1}\left(y ; a_{0}, \cdots, a_{N}\right) & =\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, a_{\jmath}, y\right)}{T(r, y)} \\
& \geqq \sup _{\mu, \leq \rho \leq \lambda_{*}} \frac{N+1}{N} \frac{|\sin \pi \rho|}{\pi \rho / \sqrt{ } 2+1 / 4 \sqrt{ } 2+|\sin \pi \rho| / N}
\end{aligned}
$$

Remark. For $\mu \leqq 1$, Ozawa [7] obtained the correct value of

$$
\inf _{\text {lower ord } y=\mu} K_{1}\left(y ; a_{0}, \cdots, a_{N}\right) .
$$

2. Lemmas

Lemma 1. ([1]) Let $f=\left(f_{0}, \cdots, f_{N}\right)(N \geqq 1)$ be a system and let a_{0}, \cdots, a_{N} be complex numbers such that $F=a_{0} f_{0}+\cdots+a_{N} f_{N} \not \equiv 0$. Further, define $\|F\|$ and $m(r, F)$ as follows:

$$
\|F\|=\frac{|F|}{\sqrt{\left|f_{0}\right|^{2}+\cdots+\left|f_{N}\right|^{2}} \sqrt{\left|a_{0}\right|^{2}+\cdots+\left|a_{N}\right|^{2}}}, m(r, F)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{1}{\|F\|} d \theta .
$$

Then

$$
T(r, f)=m(r, F)+N(r, 0, F)+O(1) .
$$

Lemma 2. ([8]) Let $f=\left(f_{0}, \cdots, f_{N}\right)(N \geqq 1)$ be a system. Then

$$
T\left(r, f_{j} / f_{\imath}\right)-O(1)<T(r, f)<\sum_{k \neq j} T\left(r, f_{k} / f_{j}\right)+O(1) .
$$

Lemma 3. ([1]) Let $A=\left(a_{2 j}\right)^{2=0, \cdots, \cdots, N}$ be a regular matrix and let

Then

$$
\left(F_{0}, \cdots, F_{N}\right)^{t}=A\left(f_{0}, \cdots, f_{N}\right)^{t} .
$$

$$
T(r, f)-O(1)<T(r, F)<T(r, f)+O(1),
$$

where $F=\left(F_{0}, \cdots, F_{N}\right)$.
Lemma 4. ([9]) let $y(z)$ be an N-valued algebrord functıon and let $F(z, y)=$ $A_{0}(z) y^{N}+\cdots+A_{N}(z)=0$ be the defining equation of y. Further, let A be the system $\left(A_{0}, \cdots A_{N}\right)$. Then

$$
N T(r, y)=T(r, A)+O(1)
$$

Lemma 5. Let $a_{0}, \cdots, a_{N}(N \geqq 1)$ be positive numbers. Then

$$
N\left(\sum_{j=0}^{N} a_{\jmath}\right)^{2} \geqq \sum_{j=0}^{N} \sum_{l \gg}\left(a_{l}+a_{\jmath}\right)^{2}
$$

The proof is clear.
Lemma 6. Let $f=\left(f_{0}, \cdots, f_{N}\right)$ be a system $\left(f_{\rho} \neq 0\right)$. Then

$$
m_{2}(r, f) \geqq(N+1) T(r, f)-\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)+O(\log r) .
$$

Proof.

$$
\begin{aligned}
m_{2}(r, f) & =\left(\frac{N}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2} \sum_{j=0}^{N} \sum_{l=0}^{N}\left\{\log \left|f_{l} / f_{j}\right|\right\}^{2} d \theta\right)^{1 / 2} \\
& \geqq\left(\frac{N}{2 \pi} \int_{0}^{2 \pi} \sum_{j=0}^{N}\left\{\log \max _{l}\left|f_{l} / f_{j}\right|\right\}^{2} d \theta\right)^{1 / 2} \\
& \geqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j=0}^{N} \log \max _{l}\left|f_{l} / f_{j}\right| d \theta \\
& =\sum_{j=0}^{N}\left\{T(r, f)-N\left(r, 0, f_{j}\right)+O(\log r)\right\} \\
& =(N+1) T(r, f)-\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)+O(\log r)
\end{aligned}
$$

Lemma 7. ([3]) Let f be meromorphic and let $\left\{a_{j}\right\},\left\{b_{j}\right\}$ be the sequences of its zeros and poles. Further let s, R be positive numbers such that $2 s<R / 2$. Then

$$
\left.\log |f(z)|=\left.\log \right|_{s<\left|a_{j}\right|<R} E\left(\frac{z}{a_{j}}, q\right)|-\log |_{s<\left|b_{j}\right|<R} E\left(\frac{z}{b_{j}}, q\right) \right\rvert\,+W(z)+O(\log |z|),
$$

where if $2 s \leqq|z|=r \leqq R / 2$,

$$
|W(z)| \leqq V_{q}(s, r, R)= \begin{cases}A\left\{\left(\frac{r}{s}\right)^{q} T(2 s, f)+\left(\frac{r}{R}\right)^{q+1} T(2 R, f)\right\} & (q \geqq 1) \\ A\left\{T(2 s, f) \log \left(\frac{r}{s}\right)+\left(\frac{s}{R}\right) T(2 R, f)\right\} & (q=0),\end{cases}
$$

A an absolute constant >0.
Lemma 8. (cf. [3], [4, Theorem 1.11]) Let f be meromorphic and let s, R be positive numbers such that $2 s<R / 2$. Then if $2 s \leqq|z|=r \leqq R / 2$.

$$
T(r, f) \leqq K_{q} r^{q+1} \int_{s}^{R} \frac{N(t, 0, f)+N(t, \infty, f)}{t^{q+1}(t+r)} d t+B V_{q}(s, r, R)
$$

for suitable constants $K_{q}(>0), B(>0)$.
The following lemma, which is an extension to systems of a result due to Miles and Shea [6], plays an important role for the proof of Theorem.

Lemma 9. Let $f=\left(f_{0}, \cdots, f_{N}\right)\left(f_{j} \neq 0\right)$ be a system satisfying $\mu_{*}<\lambda_{*}$. If $\mu_{*}<\rho<\lambda_{*}, \rho \neq 1,2, \cdots$, there exist positive sequences s_{n}, r_{n}, R_{n} tending to ∞ and $\xi_{n} \rightarrow 0$ such that

$$
\begin{align*}
& s_{n}=o\left(r_{n}\right), \quad r_{n}=o\left(R_{n}\right) \quad(n \rightarrow \infty), \tag{8}\\
& N(t) \leqq N\left(r_{n}\right)\left(\frac{t}{r_{n}}\right)^{\rho} \quad\left(s_{n} \leqq t \leqq R_{n}\right) \quad\left(N(t) \equiv \sum_{j=0}^{N} N\left(r, 0, f_{j}\right)\right), \\
& T\left(2 R_{n}, f\right)<\xi_{n} N\left(r_{n}\right)\left(-\frac{R_{n}}{r_{n}}\right)^{\rho}, \\
& T\left(2 s_{n}, f\right)<\xi_{n} N\left(r_{n}\right)\left(\frac{s_{n}}{r_{n}}\right)^{\rho} .
\end{align*}
$$

Proof. By the fact that $T(r, f)$ has Pólya peaks of orders $\rho \pm \varepsilon$ for small $\varepsilon>0$ and the continuity of $T(r, f)$, there exist sequences $s_{n}, t_{n}, R_{n}, A_{n} \rightarrow \infty$ and $\delta_{n} \rightarrow 0$ such that

$$
\begin{align*}
t_{n} / s_{n} \longrightarrow \infty, \quad R_{n} / t_{n} \longrightarrow \infty & (n \rightarrow \infty), \\
T(t, f) \leqq T\left(t_{n}, f\right)\left(t / t_{n}\right)^{\rho} & \left(s_{n} \leqq t \leqq 2 R_{n}\right), \tag{11}\\
T(t, f)<\delta_{n} T\left(t_{n}, f\right)\left(t / t_{n}\right)^{\rho} & \left(s_{n} \leqq t \leqq A_{n} s_{n}, A_{n}^{-1} R_{n} \leqq t \leqq 2 R_{n}\right) . \tag{12}
\end{align*}
$$

(See [6, p 177].) Choose $r_{n} \in\left[s_{n}, 2 R_{n}\right]$ such that

$$
\begin{equation*}
N\left(r_{n}\right) r_{n}^{-\rho} \geqq N(t) t^{-\rho} \quad\left(s_{n} \leqq t \leqq 2 R_{n}\right) . \tag{13}
\end{equation*}
$$

Applying Lemma 8 to $f_{l} / f_{\jmath}(l \neq \jmath ; l, j=0, \cdots, N)$, we have

$$
T\left(t_{n}, f_{l} / f_{j}\right) \leqq K_{q} t_{n}^{q+1} \int_{s_{n}}^{R_{n}} \frac{N\left(t, 0, f_{l}\right)+N\left(t, 0, f_{j}\right)}{t^{q+1}\left(t+t_{n}\right)} d t+B V_{q}\left(s_{n}, t_{n}, R_{n} ; f_{l} / f_{j}\right)
$$

Hence

$$
\begin{equation*}
\sum_{\substack{l, j=0 \\ i l \neq j}}^{N} T\left(t_{n}, f_{l} / f_{j}\right) \leqq K_{q} q_{n}^{q+1} \int_{s_{n}}^{R_{n}} \frac{2 N \cdot N(t)}{t^{q+1}\left(t+t_{n}\right)} d t+\sum_{\substack{l,=0 \\(l \neq j}}^{N} B V_{q}\left(s_{n}, t_{n}, R_{n} ; f_{l} / f_{j}\right) \tag{14}
\end{equation*}
$$

Here we choose $q=[\rho]$. Then by (11) and Lemma 2, we have

$$
\begin{equation*}
V_{q}\left(s_{n}, t_{n}, R_{n} ; f_{l} / f_{j}\right)=o\left(T\left(t_{n}, f\right)\right) . \tag{15}
\end{equation*}
$$

Thus, (14), (15) and Lemma 2 imply

$$
(N+1) T\left(t_{n}, f\right) \leqq 2 N K_{q} t_{n}^{q+1} \int_{s_{n}}^{R_{n}} \frac{N(t)}{t^{q+1}\left(t+t_{n}\right)} d t+o\left(T\left(t_{n}, f\right)\right)
$$

Further, using (13), we have

$$
\begin{aligned}
(N+1) T\left(t_{n}, f\right) & \leqq 2 N K_{q} q_{n}^{q+1} N\left(r_{n}\right) \int_{s_{n}}^{R_{n}}\left(\frac{t}{r_{n}}\right)^{\rho} \frac{d t}{t^{q+1}\left(t+t_{n}\right)}+o\left(T\left(t_{n}, f\right)\right) \\
& <2 N K_{q} N\left(r_{n}\right)\left(\frac{t_{n}}{r_{n}}\right)^{\rho} \int_{0}^{\infty} \frac{d u}{u^{q+1-\rho}(u+1)}+o\left(T\left(t_{n}, f\right)\right)
\end{aligned}
$$

Since $q<\rho<q+1$, the integral in the right hand side converges. Hence

$$
\begin{equation*}
T\left(t_{n}, f\right)<\left\{\frac{2 N}{N+1}+o(1)\right\} \tilde{K}_{q} N\left(r_{n}\right)\left(\frac{t_{n}}{r_{n}}\right)^{\rho} \quad(n \rightarrow \infty) . \tag{16}
\end{equation*}
$$

Now, from (12) and (16), we have

$$
T\left(2 R_{n}, f\right)<\delta_{n} T\left(t_{n}, f\right)\left(\frac{2 R_{n}}{t_{n}}\right)^{\rho}<\delta_{n}\left(\frac{2 N}{N+1}+o(1)\right) \tilde{K}_{q} N\left(r_{n}\right)\left(\frac{2 R_{n}}{r_{n}}\right)^{\rho}
$$

Putting $\xi_{n}=2^{\rho} \dot{\delta}_{n}\{2 N /(N+1)+o(1)\} \tilde{K}_{q}(\rightarrow 0)$, we obtain the first inequality of (10). In the same way, we have the second. It remains to prove (8). To do this, it suffices to show $r_{n} \in\left(A_{n} s_{n}, A_{n}^{-1} R_{n}\right)$. If $r_{n} \in\left(A_{n} s_{n}, A_{n}^{-1} R_{n}\right)$, we have (12) with $t=r_{n}$. It follows from this and (16) that

$$
\begin{equation*}
T\left(r_{n}, f\right)<\delta_{n}\left(\frac{2 N}{N+1}+o(1)\right) \tilde{K}_{q} N\left(r_{n}\right) . \tag{17}
\end{equation*}
$$

On the other hand, we have from Lemma 1

$$
\begin{equation*}
N\left(r_{n}\right)-O(1)<(N+1) T\left(r_{n}, f\right) . \tag{18}
\end{equation*}
$$

(17) and (18) yield $1 \leqq 2 \delta_{n} N \tilde{K}_{q}(\rightarrow 0$ as $n \rightarrow \infty)$, a contradiction. This completes the proof of Lemma 9.

3. Proof of Theorem.

Case 1) Assume first that $\mu_{*}=\lambda_{*}$. Let λ be the order of f. In this case $\lambda=\mu_{*}=\lambda_{*}$. We may assume that $\lambda \neq 1,2, \cdots$. Choose $q=[\lambda]$. By Lemma 2, the order of $f_{l} / f_{\rho}(l \neq j)$ does not exceed λ. Let $\left\{z_{k}^{(l, j)}\right\},\left\{w_{k}^{(l, j)}\right\}$ be the sequences of the zeros and poles of $f_{l} / f_{j}\left(z_{k}^{(l, j)} \neq 0, w_{k}^{(l, j)} \neq 0\right)$. Then we can write

$$
f_{l, j}(z)=\frac{f_{l}(z)}{f_{j}(z)}=z^{p_{l, j} e^{P l, c^{\prime}(z)}} \frac{\Pi E\left(\frac{z}{z_{k}^{(l, j)}, q}\right)}{\Pi E\left(\frac{z}{w_{k}^{l,-j)}, q}\right)},
$$

where $p_{l, j}$ is an integer and $P_{l, j}(z)=\alpha_{q}^{(l, j)} z^{q}+\cdots+\alpha_{0}^{(l, j)}$ is of degree $\leqq q$. Here we define $F_{l, j}(z)$ as follows:

$$
F_{l, j}(z)=z^{p_{l, \jmath}} e^{\hat{P}_{l, j}(z)} \Pi E\left(\frac{z}{\left|z_{k}^{(l, j)}\right|}, q\right) \Pi E\left(\frac{z}{\left|w_{k}^{l, j)}\right|}, q\right),
$$

where $\hat{P}_{l, j}(z)=\left|\alpha_{q}^{(l, j)}\right| z^{q}+\cdots+\left|\alpha_{0}^{(l, j)}\right|$. Let

$$
\begin{array}{ll}
c_{m}^{(l, j)}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f_{l, j}\left(r e^{i \theta}\right)\right|\right) e^{-\imath m \theta} d \theta & (m=0, \pm 1, \cdots), \\
r_{m}^{(l, j)}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|F_{l, j}\left(r e^{2 \theta}\right)\right|\right) e^{-\imath m \theta} d \theta & (m=0, \pm 1, \cdots) .
\end{array}
$$

Then $\left|c_{m}^{(l, \nu)}(r)\right| \leqq\left|\gamma_{m}^{(l, \nu)}(r)\right|(m=0, \pm 1, \cdots)$ (See [5]), so that

$$
\begin{align*}
m_{2}(r, f) & =\left\{N \sum_{m=-\infty}^{+\infty} \sum_{j=0}^{N} \sum_{l>1}\left|c_{m}^{(l, j)}(r)\right|^{2}\right\}^{1 / 2} \tag{19}\\
& \leqq\left\{N \sum_{m=-\infty}^{+\infty} \sum_{j=0}^{N} \sum_{l>1}\left|\gamma_{m}^{(l, j)}(r)\right|^{2}\right\}^{1 / 2}
\end{align*}
$$

It is clear that $c_{m}^{(l, j)}(r)=\overline{c_{-m}^{l l, j)}(r)}$ for $m \leqq-1$ and $c_{0}^{(l, j)}(r)=N\left(r, 0, f_{l} / f_{j}\right)-N(r, \infty$, $\left.f_{l} / f_{j}\right)$. By Edrei-Fuchs' computation [3],

$$
\underbrace{}_{\left|\gamma_{m}^{(l, j)}(r)\right|}\left\{\begin{aligned}
= & \frac{1}{2}\left|\alpha_{m}^{(l, j)}\right| r^{m}+\frac{1}{2 m} \sum_{\left|z_{k}^{(l, j)}\right| \leq r}\left\{\left(\frac{r}{\left|z_{k}^{(l, j)}\right|}\right)^{m}-\left(\frac{\left|z_{k}^{(l, j)}\right|}{r}\right)^{m}\right\} \\
& +\frac{1}{2 m} \sum_{\left|w_{k}^{(l, j)}\right| \leq r}\left\{\left(\frac{r}{\left|w_{k}^{(l, j)}\right|}\right)^{m}-\left(\frac{\left|w_{k}^{(l, j)}\right|}{r}\right)^{m}\right\} \quad(1 \leqq m \leqq q) \\
= & \frac{1}{2 m}\left\{\sum_{\left|2_{k}^{(l, j)}\right| \leq r}\left(\frac{\left|z_{k}^{(l, j)}\right|}{r}\right)^{m}+\sum_{\left|w_{k}^{(l, j)}\right| \leq r}\left(\frac{\left|w_{k}^{(l, j)}\right|}{r}\right)^{m}\right. \\
& \left.+\sum_{\left|z_{k}^{(l, j)}\right|>r}\left(\frac{r}{\left|z_{k}^{(l, j)}\right|}\right)^{m}+\sum_{\left|w_{k}^{(l, j)}\right|>r}\left(\frac{r}{\left|w_{k}^{(l, j)}\right|}\right)^{m}\right\}(m \geqq q+1) .
\end{aligned}\right.
$$

Now, we use Lemma 5. Let $\left\{z_{k}^{(l)}\right\}(l=0, \cdots, N)$ be the zeros of f_{l}. If we put

$$
a_{l}=\frac{1}{2 m} \sum_{\left|z_{k}^{(l)}\right| \leq r}\left\{\left(\frac{r}{\left|z_{k}^{(l)}\right|}\right)^{m}-\left(\frac{\left|z_{k}^{(l)}\right|}{r}\right)^{m}\right\} \equiv\left|r_{m}^{(l)}(r)\right|,
$$

Lemma 5 implies for $1 \leqq m \leqq q$,

$$
\begin{align*}
& N \sum_{j=0}^{N} \sum_{l>j}\left|\gamma_{m}^{(l, j)}(r)\right|^{2} \leqq N \sum_{j=0}^{N} \sum_{l>j}\left\{a_{l}+a_{j}+O\left(r^{m}\right)\right\}^{2} \tag{20}\\
& \leqq N^{2}\left\{\left(\sum_{j=0}^{N} a_{j}\right)+O\left(r^{m}\right)\right\}^{2}=N^{2}\left\{\sum_{j=0}^{N}\left|\gamma_{m}^{(j)}(r)\right|+O\left(r^{m}\right)\right\}^{2}
\end{align*}
$$

If we put

$$
a_{\iota}=\frac{1}{2 m}\left\{\sum_{\left|z_{k}^{(l)}\right| \leq r}\left(\frac{\left|r_{k}^{(l)}\right|}{r}\right)^{m}+\sum_{\left|z_{k}^{(l)}\right|>r}\left(\frac{r}{\left|z_{k}^{(l)}\right|}\right)^{m}\right\} \equiv\left|\gamma_{m}^{(l)}(r)\right|,
$$

Lemma 5 implies for $m \geqq q+1$,

$$
\begin{equation*}
N \sum_{j=0}^{N} \sum_{l>\rho}\left|\gamma_{m}^{(l, j)}(r)\right|^{2} \leqq N \sum_{j=0}^{N} \sum_{l>\rho}\left(a_{l}+a_{j}\right)^{2} \leqq N^{2}\left(\sum_{j=0}^{N} a_{\jmath}\right)^{2}=N^{2}\left(\sum_{j=0}^{N}\left|\gamma_{m}^{(j)}(r)\right|\right)^{2} \tag{21}
\end{equation*}
$$

Substituting (20), (21) into (19) we have

$$
\begin{equation*}
m_{2}(r, f) \leqq N\left(\sum_{m \neq 0}\left\{\sum_{j=0}^{N}\left|\gamma_{m}^{(j)}(r)\right|\right\}^{2}+N^{2}(r)+O\left(r^{2 q}\right)+O\left(r^{q}\right) \sum_{m=1}^{q} \sum_{j=0}^{N}\left|\gamma_{m}^{(j)}(r)\right|\right)^{1 / 2} \tag{22}
\end{equation*}
$$

$\left(N(r) \equiv \sum_{j=0}^{N} N\left(r, 0, f_{j}\right).\right)$ It is easy to see that for $m \geqq q+1$,

$$
\begin{equation*}
\sum_{j=0}^{N}\left|\gamma_{m}^{(j)}(r)\right|=\frac{m}{2}\left\{\int_{0}^{r}\left(\frac{t}{r}\right)^{m} \frac{N(t)}{t} d t+\int_{r}^{\infty}\left(\frac{r}{t}\right)^{m} \frac{N(t)}{t} d t\right\}-N(r) \tag{23}
\end{equation*}
$$

and for $1 \leqq m \leqq q$,

$$
\begin{equation*}
\sum_{j=0}^{N}\left|\gamma_{m}^{(j)}(r)\right|=\frac{m}{2} \int_{0}^{r}\left\{\left(\frac{r}{t}\right)^{m}-\left(\frac{t}{r}\right)^{m}\right\} \frac{N(t)}{t} d t+N(r) \tag{24}
\end{equation*}
$$

Here we show that $N(r)$ has order λ. First, Lemma 1 gives

$$
N(r)<(N+1) T(r, f)+O(1)
$$

which implies that the order of $N(r)$ does not exceed λ. Next, we use the following estimate:

$$
\begin{aligned}
T\left(r, f_{l} / f_{j}\right) \leqq & C_{q}\left\{q r^{q} \int_{0}^{r} \frac{N\left(t, 0, f_{l}\right)+N\left(t, 0, f_{j}\right)}{t^{q+1}} d t\right. \\
& \left.+(q+1) r^{q+1} \int_{r}^{\infty} \frac{N\left(t, 0, f_{l}\right)+N\left(t, 0, f_{j}\right)}{t^{q+2}} d t+O\left(r^{q}\right)+O(\log r)\right\}
\end{aligned}
$$

where $C_{0}=1, C_{q}=2(q+1)\{2+\log (q+1)\}$ if $q \geqq 1$. For the proof, see [4, p 102]. Hence

$$
\sum_{\substack{i, l=0 \\(l \neq j)}}^{N} T\left(r, f_{l} / f_{j}\right) \leqq 2 N C_{q}\left\{q r^{q} \int_{0}^{r} \frac{N(t)}{t^{q+1}} d t+(q+1) r^{q+1} \int_{r}^{\infty} \frac{N(t)}{t^{q+2}} d t\right\}+O\left(r^{q}+\log r\right)
$$

It follows from this and Lemma 2 that

$$
\begin{equation*}
T(r, f) \leqq \frac{2 N}{N+1} C_{q}\left\{q r^{q} \int_{0}^{r} \frac{N(t)}{t^{q+1}} d t+(q+1) r^{q+1} \int_{r}^{\infty} \frac{N(t)}{t^{q+2}} d t\right\}+O\left(r^{q}+\log r\right) \tag{25}
\end{equation*}
$$

If $N(r)$ has order less than λ, we deduce from (25) that $T(r, f)$ has order less than λ, a contradiction. Thus $N(r)$ has order λ. Hence, by a growth lemma of Pólya (cf. [4, Lemma 4.7]), there exists, for small $\varepsilon>0$, a positive sequence $\left\{\nu_{n}\right\}$ tending to ∞ such that

$$
\begin{equation*}
\frac{N(t)}{N\left(\nu_{n}\right)} \leqq\left(\frac{t}{\nu_{n}}\right)^{\lambda-\varepsilon} \quad\left(0<t \leqq \nu_{n}\right), \quad \frac{N(t)}{N\left(\nu_{n}\right)} \leqq\left(\frac{t}{\nu_{n}}\right)^{\lambda+\varepsilon} \quad\left(\nu_{n} \leqq t<\infty\right), \tag{26}
\end{equation*}
$$

$$
\lim _{n \rightarrow \infty} \frac{N\left(\nu_{n}\right)}{\nu_{n}^{\lambda-\varepsilon}}=\infty .
$$

Choose $\varepsilon>0$ such that $\lambda-\varepsilon>q$. Substituting (26) into (23), (24) with $r=\nu_{n}$, we obtain

$$
\sum_{j=0}^{N}\left|\gamma_{m}^{(0)}\left(\nu_{n}\right)\right| \begin{cases}\leqq N\left(\nu_{n}\right)\left\{\frac{m(m-\varepsilon)}{(m-\varepsilon)^{2}-\lambda^{2}}-1\right\} & (m \geqq q+1) \\ \leqq N\left(\nu_{n}\right)\left\{\frac{m^{2}}{(\lambda-\varepsilon)^{2}-m^{2}}+1\right\} & (1 \leqq m \leqq q)\end{cases}
$$

Hence by (22) and (26) we have

$$
\varlimsup_{n \rightarrow \infty}\left\{\frac{m_{2}\left(\nu_{n}, f\right)}{N\left(\nu_{n}\right)}\right\}^{2} \leqq N^{2}\left\{1+2 \sum_{m=1}^{\infty} \frac{\lambda^{4}}{\left(\lambda^{2}-m^{2}\right)^{2}}\right\}=N^{2}\left(\frac{\pi \lambda}{\sin \pi \lambda}\right)^{2}\left\{\frac{1}{2}+\frac{\sin 2 \pi \lambda}{4 \pi \lambda}\right\},
$$

which implies

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r)}{m_{2}(r, f)} \geqq-\frac{1}{N} \frac{|\sin \pi \lambda|}{\pi \lambda}\left\{\frac{2}{1+(\sin 2 \pi \lambda) /(2 \pi \lambda)}\right\}^{1 / 2}
$$

Case 2) Assume next that $\mu_{*}<\lambda_{*}$. Let $\rho \in\left(\mu_{*}, \lambda_{*}\right)$ be nonintegral and choose $a=a(\rho) \in(0,1)$ such that

$$
\begin{equation*}
a^{\rho}<\rho \log 2 / 2^{\rho}, \quad a^{-\rho}-1+\left(2^{\rho} / \log 2\right) \log a>0 \tag{27}
\end{equation*}
$$

Let $q=[\rho]$,

$$
f_{n}^{(l, j)}(z)=\frac{\prod_{s_{n}\langle | z_{k}^{(l, j)} \mid<a R_{n}}^{\Pi} E\left(\frac{z}{z_{k}^{(l, j)}}, q\right)}{s_{n}<\left|w_{k}^{(l, j)}\right|<a R_{n}} E\left(\frac{z}{\left.w_{k}^{(l, j)}, q\right)} \quad(n=1,2, \cdots),\right.
$$

where $\left\{z_{k}^{(l, j)}\right\},\left\{w_{k}^{(l, j)}\right\}$ are the sequences of the zeros and poles of f_{l} / f_{\jmath}, and s_{n}, R_{n} are the same as in Lemma 9. Here we introduce an entire function associated with $f_{n}^{(l,,)}(z)$:

$$
\hat{f}_{n}^{(l, j)}(z)=\prod_{s_{n}<\left|\left.\right|_{k} ^{(l, j)}\right|\left\langle a R_{n}\right.} E\left(\frac{z}{\left|z_{k}^{(l, j)}\right|}, q\right)_{s_{n}<\left|z_{k}^{(l,, j)}\right|<\bar{a} R_{n}} E\left(\frac{z}{\left|w_{k}^{(l, j)}\right|}, q\right) .
$$

Further let $\left\{z_{k}^{(l)}\right\}$ be the zeros of $f_{l}(z)$ and let

$$
\hat{f}_{n}^{(l)}(z)=\prod_{s_{n}<\left|z_{k}^{(l)}\right|<a R_{n}} E\left(\frac{z}{\left|z_{k}^{(l)}\right|}, q\right)
$$

Now, define $N_{n}(t)$ by

$$
N_{n}(t)=\sum_{j=0}^{N} N\left(t, 0, \hat{f}_{n}^{(j)}\right) .
$$

It follows from (8) and (9) that

$$
\begin{equation*}
N_{n}\left(r_{n}\right)=(1-o(1)) N\left(r_{n}\right) \quad(n \rightarrow \infty) . \tag{28}
\end{equation*}
$$

If we set $F(u)=u^{\rho}-1-\left(2^{\rho} / \log 2\right) \log u$, (27) implies that $F(u)>0$ for $u>1 / a$. Hence, putting $t=\left(a R_{n}\right) u\left(>R_{n}\right)$, we have

$$
\left(\frac{R_{n}}{r_{n}}\right)^{\rho} a^{\rho}+\frac{1}{\log 2}(2 a)^{\rho}\left(\frac{R_{n}}{r_{n}}\right)^{\rho} \log \left(\frac{t}{a R_{n}}\right) \leqq\left(\frac{t}{r_{n}}\right)^{\rho} \quad\left(t>R_{n}\right) .
$$

On the other hand, from (9) it follows that

$$
\begin{aligned}
& N\left(a R_{n}\right) \leqq N\left(r_{n}\right)\left(\frac{R_{n}}{r_{n}}\right)^{\rho} a^{\rho}, \\
& n\left(a R_{n}\right) \leqq \frac{1}{\log 2} N\left(2 a R_{n}\right) \leqq \frac{1}{\log 2} N\left(r_{n}\right)(2 a)^{\rho}\left(\frac{R_{n}}{r_{n}}\right)^{\rho}
\end{aligned}
$$

Combining above results, we obtain

$$
N\left(a R_{n}\right)+n\left(a R_{n}\right) \log \left(t / a R_{n}\right) \leqq N\left(r_{n}\right)\left(\frac{t}{r_{n}}\right)^{\rho} \quad\left(t>R_{n}\right)
$$

From this and (9) it follows that

$$
\begin{equation*}
N_{n}(t) \leqq N\left(r_{n}\right)\left(\frac{t}{r_{n}}\right)^{\rho} \quad(0<t<\infty) . \tag{29}
\end{equation*}
$$

Applying Lemma 7 to $f_{l} / f_{\rho}(l \neq j)$ with $|z|=r_{n}$, we have

$$
\begin{aligned}
& \log \left|\frac{f_{l}(z)}{f_{j}(z)}\right|=\log \left|f_{n}^{(l, j)}(z)\right|+W_{n}^{(l, j)}(z), \\
& \left|W_{n}^{(l, j)}(z)\right| \leqq V_{q}\left(s_{n}, r_{n}, a R_{n}, f_{l} / f_{j}\right)=o\left(N\left(r_{n}\right)\right)
\end{aligned}
$$

where we used Lemma 2, (8) and (10). Hence an easy computation gives

$$
m_{2}\left(r_{n}, f_{l} / f_{j}\right) \leqq m_{2}\left(r_{n}, f_{n}^{(l, y)}\right)+o\left(N\left(r_{n}\right)\right)
$$

However, since we may assume that $k_{2}(f)<\infty, N\left(r_{n}\right)=O\left(m_{2}\left(r_{n}, f\right)\right)$. Thus

$$
m_{2}\left(r_{n}, f_{l} / f_{j}\right) \leqq m_{2}\left(r_{n}, f_{n}^{(l, \nu)}\right)+o\left(m_{2}\left(r_{n}, f\right)\right) \quad(n \rightarrow \infty)
$$

Therefore

$$
\left\{m_{2}\left(r_{n}, f\right)\right\}^{2}=N \sum_{j=0}^{N} \sum_{l>j}\left\{m_{2}\left(r_{n}, f_{l} / f_{j}\right)\right\}^{2} \leqq N \sum_{j=0}^{N} \sum_{l>1}\left\{m_{2}\left(r_{n}, f_{n}^{(l, j)}\right)+o\left(m_{2}\left(r_{n}, f\right)\right)\right\}^{2}
$$

which implies

$$
\left\{m_{2}\left(r_{n}, f\right)\right\}^{2} \leqq(1+o(1)) N \sum_{j=0}^{N} \sum_{l>1}\left\{m_{2}\left(r_{n}, f_{n}^{(l, \nu)}\right)\right\}^{2}
$$

Further it is known that $m_{2}\left(r_{n}, f_{n}^{(l, j)}\right) \leqq m_{2}\left(r_{n}, \hat{f}_{n}^{(l, j)}\right)$. So, we have

$$
\begin{align*}
\left\{m_{2}\left(r_{n}, f\right)\right\}^{2} & \leqq(1+o(1)) N \sum_{j=0}^{N} \sum_{l>\rho}\left\{m_{2}\left(r_{n}, \hat{f}_{n}^{(l, j)}\right)\right\}^{2} \\
& =(1+o(1)) N \sum_{m=-\infty}^{+\infty} \sum_{j=0}^{N} \sum_{l>\rho}\left|\gamma_{m}\left(r_{n}, \hat{f}_{n}^{(l, j)}\right)\right|^{2} \tag{30}
\end{align*}
$$

$$
\leqq(1+o(1)) N^{2}\left\{\sum_{m \neq 0}\left(\sum_{j=0}^{N}\left|\gamma_{m}\left(r_{n}, \hat{f}_{n}^{(j)}\right)\right|\right)^{2}+\left(N_{n}\left(r_{n}\right)\right)^{2}\right\},
$$

where we used Lemma 5 . By (8), (28) and (29) we have for $m \geqq q+1$,

$$
\begin{align*}
\sum_{j=0}^{N}\left|r_{m}\left(r_{n}, \hat{f}_{n}^{(j)}\right)\right|= & \frac{m}{2}\left\{\int_{s_{n}}^{r_{n}}\left(\frac{t}{r_{n}}\right)^{m} N_{n}(t) \frac{d t}{t}+\int_{r_{n}}^{\infty}\left(\frac{r_{n}}{t}\right)^{m} N_{n}(t) \frac{d t}{t}\right\}-N_{n}\left(r_{n}\right) \\
\leqq & \frac{m}{2}\left\{N\left(r_{n}\right) \int_{s_{n}}^{r_{n}}\left(\frac{t}{r_{n}}\right)^{m}\left(\frac{t}{r_{n}}\right)^{\rho} \frac{d t}{t}+N\left(r_{n}\right) \int_{r_{n}}^{\infty}\left(\frac{r_{n}}{t}\right)^{m}\left(\frac{t}{r_{n}}\right)^{\rho} \frac{d t}{t}\right\} \tag{31}\\
& -(1-o(1)) N\left(r_{n}\right) \\
= & \left\{\frac{m^{2}}{m^{2}-\rho^{2}}-1+o(1)\right\} N\left(r_{n}\right) \quad(n \rightarrow \infty),
\end{align*}
$$

uniformly in m. On the other hand, for $1 \leqq m \leqq q$, we have

$$
\begin{align*}
\sum_{j=0}^{N}\left|r_{m}\left(r_{n}, \hat{f}_{n}^{(j)}\right)\right| & =\frac{m}{2} \int_{s_{n}}^{r_{n}}\left\{\left(\frac{r_{n}}{t}\right)^{m}-\left(\frac{t}{r_{n}}\right)^{m}\right\} N_{n}(t) \frac{d t}{t}+N_{n}\left(r_{n}\right) \\
& \leqq \frac{m}{2} N\left(r_{n}\right) \int_{s_{n}}^{r_{n}}\left\{\left(\frac{r_{n}}{t}\right)^{m}-\left(\frac{t}{r_{n}}\right)^{m}\right\}\left(\frac{t}{r_{n}}\right)^{\rho} \frac{d t}{t}+(1-o(1)) N\left(r_{n}\right) \tag{32}\\
& =\left\{\frac{m^{2}}{\rho^{2}-m^{2}}+1+o(1)\right\} N\left(r_{n}\right) \quad(n \rightarrow \infty) .
\end{align*}
$$

Substituting (31) and (32) into (30), we have

$$
\left\{\frac{m_{2}\left(r_{n}, f\right)}{N\left(r_{n}\right)}\right\}^{2} \leqq(1+o(1)) N^{2}\left\{1+2 \rho^{4} \sum_{m=1}^{\infty} \frac{1}{\left(\rho^{2}-m^{2}\right)^{2}}\right\} .
$$

Thus

$$
\overline{\lim _{r \rightarrow \infty}} \frac{N(r)}{m_{2}(r, f)} \geqq C_{N}(\rho) .
$$

This completes the proof of Theorem.
Proof of Corollary 1. By Lemma 6 and Theorem,

$$
\begin{aligned}
\frac{k_{1}(f)}{N+1-k_{1}(f)} & =\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)}{(N+1) T(r, f)-\sum_{j=0}^{N} N\left(r, 0, f_{j}\right)+O(\log r)} \\
& \geqq \varlimsup_{r \rightarrow \infty} \sum_{j=0}^{N} N\left(r, 0, f_{j}\right) \\
m_{2}(r, f) & C_{N}(\rho)>\frac{1}{N} \frac{|\sin \pi \rho|}{\pi \rho} \frac{\sqrt{2}}{1+1 / 4 \pi \rho} .
\end{aligned}
$$

Hence

$$
k_{1}(f) \geqq \frac{N+1}{N} \frac{|\sin \pi \rho|}{\pi \rho / \sqrt{2}+1 / 4 \sqrt{2}+|\sin \pi \rho| / N} .
$$

Proof of Corollary 2. Let $F(z, y)=A_{0} y^{N}+\cdots+A_{N}=0$ be the defining equation of $y(z)$. Let $A=\left(A_{0}, \cdots, A_{N}\right)$ and $F=\left(F\left(z, a_{0}\right), \cdots, F\left(z, a_{N}\right)\right)$. Then by Lemmas 3 and 4,

$$
K_{1}\left(y ; a_{0}, \cdots, a_{N}\right)=\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, a_{\jmath}, y\right)}{T(r, y)}=\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=0}^{N} N\left(r, 0, F\left(z, a_{j}\right)\right)}{T(r, F)} .
$$

Corollary 2 follows from this and Corollary 1.

References

[1] Cartan, H., Sur les zéros des combinaisons linéaires de p functions holomorphes données, Mathematica 7 (1933), 5-33.
[2] Drasin, D. and Shea, D.F., Pólya peaks and the oscillation of positıve functions, Proc. Amer. Math. Soc. 34 no 2 (1972), 403-411.
[3] Edrei, A. and Fuchs, W.H.J., On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292-328.
[4] Hayman, W.K., Meromorphic functions, Oxford (1964).
[5] Miles, J. and Shea, D.F., An extremal problem in value distribution theory, Quart. J. Math. Oxford (2), 24 (1973), 377-383.
[6] Miles, J. and Shea, D. F., On the growth of meromorphic functions having at least one deficient value, Duke Math. J. Vol 43 No 1. (1976), 171-186.
[7] Ozawa, M., On the growth of algebrold functions with several deficient values, II, Kōdai Math. Sem. Rep. 22 (1970), 129-137.
[8] Toda, N., Sur la croissance de fonctions algebroides à valeurs deficientes, Kōdai Math. Sem. Rep. 22 (1970), 324-337.
[9] Valiron, G., Sur la derivée des fonctions algébroides, Bull. Soc. Math. 59 (1931), 17-39.

Department of Mathematics
Daido Institute of Technology
Daido-cho, Minami-ku, Nagoya, Japan

