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ON THE GROWTH OF ALGEBROID FUNCTIONS OF

BY HIDEHARU UEDA

1. Introduction. Let f0, •••, /N (NTzl) be entire functions with no common
zeros and denote by T (r, /) the characteristic function of the system / =
(/o, •••, ΪN\ Further, if /,=£() (0^/^iV), we define m2(r, f) as follows:

By Drasin and Shea [2], Pόlya peaks of order p exist iff p^[_μ*, λ*] and
where

In [5], [6], Miles and Shea have shown

THEOREM A. Suppose that f ts meromorphic {i.e., N=l, /=/i//o=(/o, Λ))
with μ*<co. Then

(3) Uf)=m ^ 0, f)+N(r co, /)

where

r N_ I sin πρ\ j 2 yι*
1 πp I l+(sin 2πp)/(2πp) J

In this note, we shall extend Theorem A to systems of μ*<oo. Our exten-
sion is the following:

THEOREM. Let / = ( / 0 , •••, /N) (Λ^O) be a system with μ*<&>. Then

_ ΈN(r, 0,Λ)
(5) fe2(/)=Hm ; ° — 7 τ — ^ sup CN(ρ),

where

1 I s in fffli r 9 •*l/2

(6) C^)^—p-—- U+(sin2π jo)/(2π io)ί '
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Equality holds in (5) for / = ( 1 , •••, 1, fN), where fN is a Lindelδf function,
i. e., an entire function having all zeros on a ray through 0 and N(r, 0, fN)~rμ*
(r->oo).

The corresponding problem with m2(r, f) replaced by T(r, f) in (5) has re-
ceived much attention. Making use of the techniques developed by Edrei and
Fuchs [3], Toda [8] obtained

THEOREM B. Let f=(f0, •••, fN) (Λ^l) be a system and let λ, μ be the order
and lower order of f, respectively. If μ<°o, then

(7) < V 1 W r~~ T{r,f) =μl,ϊx N 4 . 4 ^ + 1 ) + 1 sir

Using (5), we are able to sharpen his estimate (7).

COROLLARY 1. Let / = ( / 0 , •••, /#) (N^l) be a system with μ*<oo. Then

*l{f) ™ T(r,f) = Λ . TV 7r1o/V2"+l/4V2~+|sinτriO|/iV

COROLLARY 2. Lei y(z) be an N-valued algebroid function with μ*<oo. Then

_ Σ M r , aJf y)
kί(y; fl0, •••, fl^)=lim-1~=^ r

ΛH-1 I sin

Remark. For //^l, Ozawa [7] obtained the correct value of

inf Kxiy; α0, ••• , αjv).
lower ord y~μ

2. Lemmas

L E M M A 1. ( [ 1 ] ) L e t / = ( / 0 , • • - , / * ) ( Λ / ^ l ) fte α s ^ s ί e m αnύί /eί α 0 , ••• i β.v fo
complex numbers such that F^aofo^ ••• +aNfN^0. Further, define \\F\\ and
m(r, F) as follows:

τ-rr=τΓ7r^T2T==^3ΓT==T2 > m( r> ^?):==^Γ~\ ^ log -ΓT̂ TΓ<̂ ^

+ I / I l l + f l 2 2 J ||F||

T(r, f)=m(r, F)+N(r, 0, F)

LEMMA 2. ([8]) Lei /=(/<>, •••, fN) (N^l) be a system. Then

T(r, fi/fx)-OQ)<T(r, f)<ΈT(r, /*//,)+0(1).
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LEMMA 3. ([1]) Let A = (aιjyjZo ί::.'>^ be a regular matrix and let

Then
T(r, / ) - , F)<T{r,

F=(F0,

LEMMA 4. ([9]) /eί ̂ (z) &£ an N-valued algebroid function and let F(z, y) —
A0(z)yN+ ••• + AN(z)=Ό be the defining equation of y. Further, let A be the
system (Ao, ••• AN). Then

NT(r,y)=T{r,A)+O{l).

LEMMA 5. Let a0, •••, aN (Λfel) be positive numbers. Then

N \2 N

proof is clear.

LEMMA 6. Let /=(/ 0 ,

Proof.
rrφ, f)= /

V2τr

J Γ * Σ

be a system (f^

f)-ΈN(r, O,fj

Ϊ
2τr 1 N N r

— y W
12 \ l

l dθ)

max !

N

= Σ

S 2π N
Σ log ma

0 j = 0 Z

, f)-N(r, 0, /,;

, / ) - Σ N{r, 0, Λ r ) .

LEMMA 7. ([3]) Let f be meromorphic and let {aj}, {bj} be the sequences of
its zeros and poles. Further let s, R be positive numbers such that 2s < R/2. Then

log|/(z)|=log Π E(--,q)-\og Π
δ

, q) +W(z)+O(\og\z\),

where, if 2s<\z\=r^R/2,

\W{z)\<Vq{s,r,R)=

f/ γ \q / γ \Q+1

A\{j) T(2s, /)+(---) T(2Λ,

i-)r(2/?,
A{T(2s, f) log {-
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A an absolute constant>0.

LEMMA 8. (cf. [3], [4, Theorem 1.11]) Let f be meromorphic and let s, R
be positive numbers such that 2s<R/2. Then if 2s^\z\=r^

for suitable constants Kq(>0), B(>0).

The following lemma, which is an extension to systems of a result due to
Miles and Shea [6], plays an important role for the proof of Theorem.

LEMMA 9. Let / = ( / 0 , ••-,/#) (Λ^O) be a system satisfying μ*<λ*. If
μ*<p<λ*, ρφl,2, •••, there exist positive sequences sn, rn, Rn tending to oo and
ξn-^0 such that

(8) sn = o(rn), rn = o(Rn) (n -> oo),

(9) N(ί)^N(m)(—)P (sn^t^Rn) (N(f) = Σ N{r, 0, Λ )) ,

^ 7 l

(10)
T(2sn, f)<ξnN(rn)(~Y •

Proof. By the fact that T(r, f) has Pόlya peaks of orders p±ε for small
ε>0 and the continuity of T(r, /), there exist sequences sn, tn, Rn, τ4n->oo and
δn-^0 such that

(11) T(t, fW,

(12) T(ί, f)<δnT(tn, f)(f/tny

(See [6, pl77].) Choose rn^[_sn, 2Rn~] such that

Applying Lemma 8 to fjfj (Iφj /, y=0, ••• , N), we have

Tit f,/f-)< TS +°+^Rn ^y> ϋ >

1 \ t7l> J 11 J jJ =

Hence
N cRn 2N-N(t) N

(iA) y1 Tit fi/f)<κtq+l\ —- dt-^r y1 BV is t /

Here we choose q=\_p~\. Then by (11) and Lemma 2, we have
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(15) Vq(sn, tn, Rn f,/fj)=o(T(fn, / ) ) .

Thus, (14), (15) and Lemma 2 imply

(N+ί)T(tn, f)^

Further, using (13), we have

sn \ T

Since q<p<q+l, the integral in the right hand side converges. Hence

(16) T(tn,

Now, from (12) and (16), we have

T(2Rn, f)<δnT{tn,

Putting ξn=2pδn{2N/(N+l)+o(l)}Kq(->0), we obtain the first inequality of (10).
In the same way, we have the second. It remains to prove (8). To do this, it
suffices to show rn^(Λnsn, A^Rn)- If rn&(Ansn, AnιRn), we have (12) with
t—rn. It follows from this and (16) that

(17) T{rn,

On the other hand, we have from Lemma 1

(18) N(rn)-θa)<(N+l)T(rn, f).

(17) and (18) yield 1^2δnNKq (->0 as n-»oo), a contradiction. This completes
the proof of Lemma 9.

3. Proof of Theorem.

Case 1) Assume first that μ^—λ^. Let λ be the order of /. In this case
λ—μ^—λ^. We may assume that λφl,2, ~. Choose #=[/Q. By Lemma 2, the
order of fjf} (iΦj) does not exceed λ. Let {ziι>^}} {w(

k

l>j^} be the sequences
of the zeros and poles of fjf, (ziιJ^Φθ, wlιJ>Φθ). Then we can write
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where pL>J is an integer and Pι,j(z)=a^ιj'>zq+

we define Fιj(z) as follows:
is of degree Sq. Here

where Pi,j{z)=\a Let

(m=0, ± 1 , •••),

(m=0, ± 1 , •••)•

Then |c« » ( r ) | ^ l r ί ί " ( r ) | (m=0, ± 1 , •••) (See [5]), so that

(19) m,(r,/)={jV Σ Σ Σ l ^ Λ ( r ) | 2 p

{ +oo iV ϊ 1/2

V̂ Σ Σ Σlrίί Λ(r)l'[
It is clear that c£ »(r) = cίW(r) for m ^ - 1 and dι }\r)=N{r, 0, fι/fj)-N(r, oo,
/;//>). By Edrei-Fuchs' computation [3],

2m

/ Γ \ m

+ Σ ί-nΓTπ-) + Σ

Now, we use Lemma 5. Let {z(

k

h} (1=0, •••, N) be the zeros of ft. If we

put

Lemma 5 implies for l^m^q,

(20) ΛΓΣΣIr^MI^JVΣΣ

If we put

lrfPWI
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Lemma 5 implies for m^q+l,

(21) NΣ Σ lrίί Λ(r)|*^iVΣ Σ(fli + αi)8^N«(Σ aλ*=N*(% \rίί\r)\)\
J=0 1>J j=0 ί>j \j = 0 V \j = 0 /

Substituting (20), (21) into (19) we have

( ( N \2 q N \ l

Σ JΣ \rti\r)\\ +N2(r)+O(r**)+O(r«) Σ Σ \fi\r)\)
mΦO κj=0 ) m=i j~0 /

/ N \

(N(r)=Σ> N(r, 0, /,).) It is easy to see that for ra^
\ J = 0 /

l/2

)

and for

Here we show that N(r) has order λ. First, Lemma 1 gives

which implies that the order of ΛΓ(r) does not exceed λ. Next, we use the
following estimate:

where C 0 =l, Cβ=2(^+l){2+log(^+l)} if ^ 1 . For the proof, see [4, p 102].
Hence

iV ( rr MA Γ°° JV(t) λ

Σ T(r, ft/f^lNCΛqrλ ^{-dt+{q+l)r^\ - ^ f dt +O(r'+logr).
UΦj)

It follows from this and Lemma 2 that

(25) T{r, f)S-j^cjprfj^ r).

If N(r) has order less than λ, we deduce from (25) that T(r, f) has order less
than λ, a contradiction. Thus N(r) has order λ. Hence, by a growth lemma of
Pόlya (cf. [4, Lemma 4.7]), there exists, for small ε>0, a positive sequence {vn}
tending to oo such that

(26)
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l i m — — — -

i ε

Choose ε>0 such that λ—ε>q. Substituting (26) into (23), (24) with r=vny we
obtain

N

Σ

Hence by (22) and (26) we have

lim
m = i sin

which implies

— Mr) l
lim —-—-yr ^ -—
r-oo m2(r, f) N

ĵ 1

Λ + (β\n2πλ)/(2πλ) ϊ '

Case 2) Assume next that /i*<,}*. Let p^(μ*, λ*) be nonintegral and
choose fl = fl(/))e(0, 1) such that

(27)

Let ^=[/o],

π Γ»> Q)

where {zi1-^}, {wiι ^} are the sequences of the zeros and poles of fι/fJt and
snt Rn are the same as in Lemma 9. Here we introduce an entire function as-
sociated with fάι>n(z)'.

Π Π

Further let be the zeros of ft(z) and let

fa )(~\— TT
j n \^ J l i

Now, define Nn{t) by

It follows from (8) and (9) that

(28) Nn(rn)=a-oQ.))N(rn) (n -> oo).
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If we set F(u)=uP-1-(2P/log2)\ogu, (27) implies that F(u)>0 for u>l/a.
Hence, putting t=(aRn)u (>Rn), we have

( U ( L V (t>Rn).
rn ) Iog2 v " "

On the other hand, from (9) it follows that

Combining above results, we obtain

N(aRn)+n(aRn)log(jt/aRn)£N(rJ—Y (t>RnJ.

From this and (9) it follows that

(29) Nn(t)^N(r

Applying Lemma 7 to fjf3 (Iφj) with \z\=rn, we have

fiiz)
log

\Wa'h(7)\ <V (ς r πR f,/f-)~n(J\f(r })

where we used Lemma 2, (8) and (10). Hence an easy computation gives

m2(rn, ft/fj^m&n, fίι'J') + o{N{rn)).

However, since we may assume that k2(f)<°°, N(rn)=O(m2(rn, /)). Thus

m2(rn, fι/fj)^m2(rn, fnl'n) + o(m2(rnt /)) (n -> oo).

Therefore

N N

[m2{rn) /)}2=A^Σ Σ {m2(rn, fι/f-)}2<Λ^Σ Σ

which implies

{m2{rn, / ) } 2 ^ ( l + o ( l ) ) N Σ Σ {m2(rn, /« «)} 2 .

Further it is known that m2(rn, fϊ!J))^m2(rn, fn

ι j)). So, we have

{w8(rn, / ) } 2 S 1 + O ( 1 P Σ { / Λ

(30) = ( l + o ( l ) W Σ Σ
o
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where we used Lemma 5. By (8), (28) and (29) we have for m^

Σ lr-(r., ffP)\ = f {Γ"(f
.7=0 ^ U s \ r

<: m \κκ ^ΓV f \mί t V d t , \π \[°° (rn\Πt( t y dth

(31) ^Ύ\N(rΛλT:) Kir) Ύ+N{rAn(-T) fc) t\

uniformly in ?n. On the other hand, for l^m^q, we have

{ ' } (n -> oo)

Substituting (31) and (32) into (30), we have

- 1

Thus

lim-

This completes the proof of Theorem.

Proof of Corollary 1. By Lemma 6 and Theorem,

b.(f) -r- ΣMr,0,Λ)
. ,,.N-=lim ^

_L_ I sin πρ\ V 2

Hence

N+l I sin πp\

8in πp\/N '
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Proof of Corollary 2. Let F(z, y)=Aoy
N-] t-AN=O be the defining equa-

tion of y{z). Let A=(A0, ••• , AN) and F^(F{z, α0), •••, F(z, aN)). Then by
Lemmas 3 and 4,

_ Σ M r , α,, jθ _ Σ Mr, 0, Ffe β,))
ϋCiĈ  αo, •••, aN)=\ιmJ ° i

T(r, y) " ~ T(r, F)

Corollary 2 follows from this and Corollary 1.
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