ON FACTORIZATION OF ENTIRE FUNCTIONS

By Yoji Noda

1. Introduction. A meromorphic function $F(z)=f(g(z))$ is said to have f and g as left and right factors respectively, provided that f is meromorphic and g is entire (g may be meromorphic when f is rational). $F(z)$ is said to be prime (pseudo-prime, left-prime, right-prime) if every factorization of the above form into factors implies either f is linear or g is linear (either f is rational or g is a polynomial, f is linear whenever g is transcendental, g is linear whenever f is transcendental). When factors are restricted to entire functions, it is called to be a factorization in entire sense.

Gross [4] posed the following problem:
(A) Given any entire function f, does there exist a polynomial Q such that $f+Q$ is prime?

Further, Gross-Yang-Osgood [6] posed the following problem:
(B) Given any entire function f, does there exist an entire function g such that $f g$ is prime?

In this paper we shall give affirmative answers to the above two problems (Theorem 2 and Theorem 3). Further we shall show a similar result for periodic entire functions (Theorem 4). In each case it can be shown that almost all functions are prime.

According to [9], [10], we shall make use of the simultaneous equations

$$
\left\{\begin{array}{l}
F(z)=c \\
F^{\prime}(z)=0
\end{array}\right.
$$

Theorem 1 and Theorem 5 are extensions of theorem 1 and theorem 2 in [10].
2. In this section we shall state the following two theorems which are used in the proof of Theorem 2 and Theorem 3.

THEOREM A (a modified version of theorem 2 in [9]). Let $F(z)$ be a transcendental entire function satisfyng $N\left(r, 0, F^{\prime}\right)>k m\left(r, F^{\prime}\right)$ on a set of r of infinite
measure for some $k>0$. Assume that the simultaneous equations

$$
\left\{\begin{array}{l}
F(z)=c, \\
F^{\prime}(z)=0
\end{array}\right.
$$

have only fintely many common roots for any constant c. Then $F(z)$ is left-prime in entire sense.

The proof is essentially the same as that of theorem 2 in [9], hence omitted. The following theorem is an extension of theorem 2 in [10].

Theorem 1. Let $F(z)$ be a transcendental entire function with at least one simple zero satisfying

$$
\begin{equation*}
N\left(r, 0, F^{\prime}\right)-(N(r, 0, F)-\bar{N}(r, 0, F))>k T\left(r, F^{\prime} / F\right) \tag{2.1}
\end{equation*}
$$

on a set of r of infinte measure for some $k>0$. Assume that the smultaneous equations

$$
\left\{\begin{array}{l}
F(z)=c, \\
F^{\prime}(z)=0
\end{array}\right.
$$

have only finitely many common roots for any non-zero constant c. Then $F(z)$ is left-prime in entire sense.

Proof. Let $F(z)=f(g(z))$.
a) f and g are transcendental entire. We consider the following two cases.
(1) There exists a complex number w_{0} such that $f^{\prime}\left(w_{0}\right)=0$ and $f\left(w_{0}\right) \neq 0$.
(2) If p is a zero of $f^{\prime}(w)$, then $f(p)=0$.

Firstly we consider the case (1). By the assumption $g(z)$ must be of the form

$$
g(z)=w_{0}+P(z) e^{G(z)},
$$

where $P(z)$ is a polynomial and $G(z)$ a non-constant entire function. Further if x is a zero of $f^{\prime}(w)$ other than w_{0}, then $f(x)=0$. Thus

$$
\begin{aligned}
N\left(r, 0, F^{\prime}\right) & =N\left(r, 0, f^{\prime} \circ g\right)+N\left(r, 0, g^{\prime}\right) \\
& \leqq(N(r, 0, F)-\bar{N}(r, 0, F))+N\left(r, 0, g^{\prime}\right)+O(\log r) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
N\left(r, 0, F^{\prime}\right)-(N(r, 0, F)-\bar{N}(r, 0, F)) \leqq m\left(r, G^{\prime}\right)+O(\log r) \leqq O(m(r, G)) \tag{2.2}
\end{equation*}
$$

outside a set of r of finite measure. Let p be a zero of $f(w)$. Then $\phi=w_{0}$. By the second fundamental theorem

$$
\begin{equation*}
(1-t) m(r, g)<\bar{N}(r, p, g) \leqq \bar{N}(r, 0, F) \tag{2.3}
\end{equation*}
$$

outside a set of r of finite measure, where t is an arbitrarily fixed number in $(0,1)$. By (2.1), (2.2) and (2.3)

$$
m(r, g)<O(m(r, G))
$$

on a set of r of infinite measure. By Clunie's theorem [1] we have a contradiction.

Secondly we consider the case (2). In this case

$$
\begin{aligned}
N\left(r, 0, F^{\prime}\right)= & N\left(r, 0, f^{\prime} \circ g\right)+N\left(r, 0, g^{\prime}\right) \\
& \leqq N(r, 0, F)-\bar{N}(r, 0, F)+N\left(r, 0, g^{\prime}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
N\left(r, 0, F^{\prime}\right)-(N(r, 0, F)-\bar{N}(r, 0, F)) \leqq O(m(r, g)) \tag{2.4}
\end{equation*}
$$

outside a set of r of finite measure. There are the following two subcases.
$\left(2\right.$, a) $f(w)$ has infinitely many zeros $\left\{w_{n}\right\}_{n=1}^{\infty}$.
$(2$, b) $f(w)$ has at most finitely many zeros.
In the case (2, a), by the second fundamental theorem,

$$
\begin{equation*}
(1-t) M \cdot m(r, g)<\sum_{n=1}^{2 M} \bar{N}\left(r, w_{n}, g\right) \leqq \bar{N}(r, 0, F) \tag{2.5}
\end{equation*}
$$

outside a set of r of finite measure, where t is an arbitrarily fixed number in $(0,1)$ and M an arbitrarily fixed positive integer. By (2.1) and (2.5)

$$
\begin{equation*}
(1-t) k M \cdot m(r, g)<N\left(r, 0, F^{\prime}\right)-(N(r, 0, F)-\bar{N}(r, 0, F)) \tag{2.6}
\end{equation*}
$$

on a set of r of infinite measure. Since M can be taken arbitrarily large, from (2.4) and (2.6) we have a contradiction.

In the case $(2, \mathrm{~b}) f(w)$ is of the form

$$
\begin{equation*}
f(w)=P(w) e^{I I(w)}, \tag{2.7}
\end{equation*}
$$

where $P(w)$ is a non-constant polynomial and $H(w)$ a non-constant entire function. Suppose that $H(w)$ is transcendental entire. Since

$$
\begin{gather*}
F^{\prime}(z) / F(z)=g^{\prime}(z)\left(P^{\prime}(g(z))+P(g(z)) H^{\prime}(g(z))\right) / P(g(z)), \\
T\left(r, F^{\prime} / F\right) \sim m\left(r, H^{\prime} \circ g\right) \tag{2.8}
\end{gather*}
$$

holds outside a set of r of finite measure. By (2.1), (2.4), (2.8) and Clunie's theorem [1], we have a contradiction. Thus $H(w)$ must be a polynomial.

Since

$$
f^{\prime}(w)=\left(P^{\prime}(w)+P(w) H^{\prime}(w)\right) e^{H(w)},
$$

by (2) and (2.7) we see that any root x of

$$
P^{\prime}(w)+P(w) H^{\prime}(w)=0
$$

satisfies

$$
\begin{equation*}
P(x)=P^{\prime}(x)=0 . \tag{2.9}
\end{equation*}
$$

By (2.9) $P(w)$ has at least one multiple zero. Let $\left\{a_{2}\right\}_{2}$ be the set of multiple zeros of $P(w)$ and n_{2} the multiplicity at a_{2}. Put

$$
Q(w)=\left(P^{\prime}(w)+P(w) H^{\prime}(w)\right) / \prod_{\imath}\left(w-a_{\imath}\right)^{n_{\imath}-1}
$$

Then $Q(w)$ is a polynomial satisfying $Q\left(a_{2}\right) \neq 0$ for every 2 . If x is a zero of $Q(w)$, then

$$
P^{\prime}(x)+P(x) H^{\prime}(x)=0 .
$$

Thus by (2.9) $x=a_{\imath}$ for some 2 . This is a contradiction. Thus $Q(w)$ is equal to a constant. Hence

$$
\operatorname{deg}\left(P^{\prime}+P H^{\prime}\right)=\sum_{2}\left(n_{i}-1\right) .
$$

On the other hand the left side is not less than $\operatorname{deg}(P)$. And $\operatorname{deg}(P) \geqq \sum_{\imath} n_{2}$. Thus we have a contradiction. Therefore $F(z)$ is pseudo-prime in entire sense.
b) f is a polynomial of degree $d(\geqq 2)$ and g is transcendental entire. We consider the same conditions (1) and (2) as in the case a). If the case (2) occurs, then it is easily seen that $f(w)$ must be of the form

$$
f(w)=A(w-B)^{d},
$$

where A and B are constants. This is a contradiction, since $F(z)$ has at least one simple zero. If the case (1) occurs, then using the same argument as in the case a) we have again a contradiction.

Theorem 1 is thus proved.

3. Problem (A).

Theorem 2. Let $f(z)$ be a transcendental entire function. Then the set

$$
\{a \in \boldsymbol{C} ; f(z)+a z \text { is not prime }\}
$$

is at most a countable set.
We shall first prove
Lemma 1. Let $f(z)$ be a transcendental entire function. Then there is a countable set E of complex numbers such that the simultaneous equations

$$
\left\{\begin{array}{l}
f(z)-a z=c, \\
f^{\prime}(z)-a=0
\end{array}\right.
$$

have at most one common root for any constant $c(\in \boldsymbol{C})$ provided that a is in $C \backslash E$.

Proof. Let us write

$$
A=\boldsymbol{C}-\left\{p \in \boldsymbol{C} ; f^{\prime \prime}(p)=0\right\} .
$$

We choose open sets $\left\{c_{i}\right\}^{\infty}=1$ of A satisfying the following conditions.
(1) $\bigcup_{i=1}^{\infty} c_{\imath}=A$.
(2) $f^{\prime}(z)$ is univalent in $c_{\imath}(\imath=1,2, \cdots)$.
(3) $\left\{f^{\prime}(z) ; z \in c_{i}\right\}$ is a disk $(\imath=1,2, \cdots)$.

Put

$$
\begin{gather*}
D_{\imath}=\left\{f^{\prime}(z) ; z \in c_{\imath}\right\} \quad(\imath=1,2, \cdots), \\
F(z)=f(z)-z \cdot f^{\prime}(z), \tag{3.1}
\end{gather*}
$$

$$
\begin{gather*}
u_{i}(w)=\left(f^{\prime} \mid c_{\imath}\right)^{-1}(w) \quad\left(w \in D_{\imath}, \imath=1,2, \cdots\right), \tag{3.2}\\
v_{\imath}(w)=F\left(u_{i}(w)\right) \quad\left(w \in D_{\imath}, \imath=1,2, \cdots\right), \tag{3.3}\\
I=\left\{(i, j) \in \boldsymbol{N} \times \boldsymbol{N} ; D_{i} \cap D_{\jmath} \neq \varnothing, v_{i}(w) \neq v_{\jmath}(w) \quad\left(w \in D_{i} \cap D_{\jmath}\right)\right\},
\end{gather*}
$$

$$
\begin{equation*}
S_{\imath, j}=\left\{w \in D_{i} \cap D_{j} ; v_{\imath}(w)=v_{j}(w)\right\} \quad((\imath, j) \in I), \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
E_{0}=\left(\bigcup_{\imath=1}^{\infty} D_{\imath}\right)-\left(\left\{f^{\prime}(p) ; f^{\prime \prime}(p)=0, p \in \boldsymbol{C}\right\} \cup\left(\bigcup_{(i, j) \in I} S_{\imath, j}\right)\right) . \tag{3.5}
\end{equation*}
$$

Then $E=\boldsymbol{C} \backslash E_{0}$ is a countable set.
Let $a \in E_{0}$. If

$$
\begin{equation*}
v_{i}(a)=v_{\jmath}(a) \tag{3.6}
\end{equation*}
$$

for some \imath, j, then by (3.4) and (3.5)

$$
v_{i}(w) \equiv v_{j}(w) \quad\left(w \in D_{i} \cap D_{j}\right) .
$$

Thus

$$
v_{i}^{\prime}(a)=v_{\jmath}^{\prime}(a) .
$$

By (3.1), (3.2) and (3.3) we have

$$
v_{k}^{\prime}(a)=-u_{k}(a) \quad(k=i, j) .
$$

Hence

$$
\begin{equation*}
u_{i}(a)=u_{,}(a) . \tag{3.7}
\end{equation*}
$$

From (3.1), (3.2) and (3.3) we have

$$
v_{k}(a)=f\left(u_{k}(a)\right)-a \cdot u_{k}(a) \quad(k=\imath, i) .
$$

Thus from (3.6) and (3.7) we see that if

$$
f\left(u_{\imath}(a)\right)-a \cdot u_{i}(a)=f\left(u_{j}(a)\right)--a \cdot u_{j}(a),
$$

then

$$
u_{2}(a)=u_{,}(a) .
$$

On the other hand, by (3.2) and (3.5), the set

$$
\left\{u_{k}(a) ; a \in D_{k}, k=1,2, \cdots\right\}
$$

coincides with the set of distinct a-points $\left\{z_{n}\right\}_{n}$ of $f^{\prime}(z)$. Therefore if $z_{n} \neq z_{m}$, then $f\left(z_{n}\right)-a z_{n} \neq f\left(z_{m}\right)-a z_{m}$. Thus the simultaneous equations

$$
\left\{\begin{array}{l}
f(z)-a z=c, \\
f^{\prime}(z)-a=0
\end{array}\right.
$$

have at most one common root for any constant c. Lemma 1 is thus proved.
Proof of Theorem 2. Let $t \in(0,1 / 2)$. Then by Lemma 1 and the second fundamental theorem there is a countable set E_{1} of complex numbers such that the conclusion of Lemma 1 holds with E replaced by E_{1} and that

$$
\begin{equation*}
N\left(r, a, f^{\prime}\right)>t \cdot m\left(r, f^{\prime}\right) \tag{3.8}
\end{equation*}
$$

holds on a set of r of infinite measure for every a in $\boldsymbol{C} \backslash E_{1}$. Hence by Theorem A $f(z)-a z$ is left-prime in entire sense for every a in $\boldsymbol{C} \backslash E_{1}$.

We next show the right-primeness of $f(z)-a z$ in entire sense ($a \in \boldsymbol{C} \backslash E_{1}$). Let $f(z)-a z=g(P(z))$, where g is transcendental entire and P is a polynomial of degree $d(\geqq 2)$. Then $f^{\prime}(z)-a=g^{\prime}(P(z)) P^{\prime}(z)$. From (3.8) g^{\prime} has infinitely many zeros $\left\{w_{n}\right\}_{n}$. For sufficiently large n the equation $w_{n}=P(z)$ has d distinct roots, which are also common roots of the simultaneous equations

$$
\left\{\begin{array}{l}
f(z)-a z=g\left(w_{n}\right), \\
f^{\prime}(z)-a=0 .
\end{array}\right.
$$

This is a contradiction. Thus $f(z)-a z$ is prime in entire sense for every a in $\boldsymbol{C} \backslash E_{1}$.

If for some constants $a, b(a \neq b)$ the functions $f(z)-a z$ and $f(z)-b z$ are periodic with periods x and y respectively, then $f^{\prime}(z)$ has periods x and y. Hence x / y must be a real number. Thus $f(z)-a z$ and $f(z)-b z$ are both bounded on the straight line $\{t x ; t \in(-\infty,+\infty)\}$. This is impossible. Thus $f(z)-a z$ is not periodic for every $a(\in \boldsymbol{C})$ with at most one exception.

Therefore by Gross' theorem [3] we conclude that $f(z)-a z$ is prime for every a in $C \backslash E_{1}$ with at most one exception. Theorem 2 is thus proved.

4. Problem (B).

Theorem 3. Let $f(z)$ be a transcendental entire function. Then the set

$$
\{a \in \boldsymbol{C} ; f(z) \cdot(z-a) \text { is not prome }\}
$$

is at most a countable set.
We need the following lemmas.
Lemma 2. Let $f(z)$ be a transcendental entire function. Then there is a countable set E^{\prime} of complex numbers such that the smultaneous equations

$$
\left\{\begin{array}{l}
f(z) \cdot(z-a)=c \\
\frac{d}{d z}(f(z) \cdot(z-a))=0
\end{array}\right.
$$

have at most one common root for any non-zero constant $c(\in \boldsymbol{C})$ provided that a is in $\boldsymbol{C} \backslash E^{\prime}$.

Proof. Put

$$
h(z)=z+\left(f(z) / f^{\prime}(z)\right),
$$

$$
A^{\prime}=\boldsymbol{C}-\left\{p \in \boldsymbol{C} ; p \text { is a zero or a pole of } h^{\prime}(z)\right\} .
$$

We choose open sets $\left\{c_{i}^{\prime}\right\}_{\imath=1}^{\infty}$ of A^{\prime} satisfying the following conditions.
(1) $\bigcup_{i=1}^{\infty} c_{i}^{\prime}=A^{\prime}$.
(2) $h(z)$ is univalent in $c_{\imath}^{\prime}(\imath=1,2, \cdots)$.
(3) $\left\{h(z) ; z \in c_{i}^{\prime}\right\}$ is a disk $(\imath=1,2, \cdots)$.

Put

$$
\begin{gather*}
D_{\imath}^{\prime}=\left\{h(z) ; z \in c_{i}^{\prime}\right\} \quad(\imath=1,2, \cdots), \\
H(z)=(z-h(z)) \cdot f(z), \tag{4.1}\\
x_{2}(w)=\left(h \mid c_{\imath}^{\prime}\right)^{-1}(w) \quad\left(w \in D_{\imath}^{\prime}, l=1,2, \cdots\right), \\
y_{\imath}(w)=H\left(x_{\imath}(w)\right) \quad\left(w \in D_{\imath}^{\prime}, \imath=1,2, \cdots\right), \\
I^{\prime}=\left\{(\imath, j) \equiv \boldsymbol{N} \times \boldsymbol{N} ; D_{\imath}^{\prime} \cap D_{\jmath}^{\prime} \neq \varnothing, y_{2}(w) \neq y_{\jmath}(w) \quad\left(w \in D_{i}^{\prime} \cap D_{j}^{\prime}\right)\right\}, \tag{4.4}\\
S_{\imath, j}^{\prime}=\left\{w \in D_{\imath}^{\prime} \cap D_{j}^{\prime} ; y_{\imath}(w)=y_{j}(w)\right\} \quad\left((\imath, j) \in I^{\prime}\right), \tag{4.5}\\
E_{0}^{\prime}=\left(\bigcup_{\imath=1}^{\infty} D_{\imath}^{\prime}\right)-\left(\left\{h(p) ; h^{\prime}(p)=0, p \in \boldsymbol{C}\right\}^{\prime} \cup\left(\bigcup_{(\imath, j) \in I^{\prime}} S_{\imath, \jmath}^{\prime}\right)\right. \\
\left.\cup\left(\bigcup_{\imath=1}^{\infty}\left\{p \equiv D_{\imath}^{\prime} ; f_{\imath} \circ x_{i}(p)=0\right\}\right)\right) .
\end{gather*}
$$

As in the case of Lemma 1 we can show the following four facts.

1) $E^{\prime}=\boldsymbol{C} \backslash E_{0}^{\prime}$ is a countable set.
2) $y_{k}(w)=\left(x_{k}(w)-w\right) \cdot f\left(x_{k}(w)\right) \quad\left(w \in D_{k}^{\prime}\right)$.
3) If $y_{i}(a)=y_{j}(a)$ for some a in E_{0}^{\prime}, then $x_{i}(a)=x_{j}(a)$.
4) If a is in E_{0}^{\prime}, then the set $\left\{x_{k}(a) ; a \in D_{k}^{\prime}, k=1,2, \cdots\right\}$ contains the set $\left\{p \in \boldsymbol{C} ;\left.\frac{d}{d z}(f(z)(z-a))\right|_{z=p}=0, f(p)(p-a) \neq 0\right\}$.
5) and 2) are immediate consequences of (4.1)-(4.5).

Next we shall show 3). From (4.4) and (4.5) we deduce that $y_{i}(w) \equiv y_{j}(w)$ $\left(w \in D_{i}^{\prime} \cap D_{j}^{\prime}\right)$. Thus $y_{i}^{\prime}(a)=y_{j}^{\prime}(a)$. Since $H^{\prime}(z)=-f(z) h^{\prime}(z)$, from (4.2) and (4.3) we have

$$
\begin{equation*}
y_{k}^{\prime}(a)=-f\left(x_{k}(a)\right) \quad(k=l, j) . \tag{4.6}
\end{equation*}
$$

From (4.5) we have $f\left(x_{k}(a)\right) \neq 0(k=\imath, j)$. Thus by 2) and (4.6) we obtain $x_{\imath}(a)$ $=x_{j}(a)$. 3) is thus proved.

Finally, we shall show 4). If $\left.\frac{d}{d z}(f(z)(z-a))\right|_{z=p}=f^{\prime}(p)(p-a)+f(p)=0$ and $f(p)(p-a) \neq 0$ for some p in \boldsymbol{C}, then $f^{\prime}(p) \neq 0$. Thus $a=p+\left(f(p) / f^{\prime}(p)\right)=h(p)$. Therefore by (4.5) we have $h^{\prime}(p) \neq 0$. Thus $p \in c_{k}^{\prime}$ for some k in N. Hence we have $p=x_{k}(a)$ and $a \in D_{k}^{\prime}$. 4) is thus proved.

From 1), 2), 3) and 4) we have the desired result.
Lemma A [6]. Let $F(z)$ be a transcendental entire functıon. Then except for a countable set of $a \in \boldsymbol{C}$, the function $(z-a) \cdot F(z)$ has no factorzzation of form $(z-a) \cdot F(z)=g(P(z))$, where g is transcendental enture and P is a polynomal of degree at least two.

Proof of Theorem 3. Let us write

$$
\begin{aligned}
& h(z)=z+\left(f(z) / f^{\prime}(z)\right), \\
& F_{a}(z)=(z-a) \cdot f(z),
\end{aligned}
$$

$E_{1}^{\prime}=\{p ; p$ is a zero of $f(z)\} \cup\left\{h(p) ; p\right.$ is a zero of $\left.h^{\prime}(z)\right\}$.
Let $a \in \boldsymbol{C} \backslash E_{1}^{\prime}$. Then $F_{a}(z)$ has at least one simple zero and

$$
N(r, a, h)=\bar{N}(r, a, h) \leqq N\left(r, 0, F_{a}^{\prime}\right)-\left(N\left(r, 0, F_{a}\right)-\bar{N}\left(r, 0, F_{a}\right)\right) .
$$

Let $t \in(0,1 / 3)$. Then by the second fundamental theorem

$$
N(r, a, h)>t T(r, h)
$$

holds on a set of r of infinite measure for every complex number a with at most two exceptions. Further we see that for some $k(>0)$

$$
T(r, h) \sim k T\left(r, F_{a}^{\prime} / F_{a}\right) .
$$

By Theorem 1, Lemma 2, Lemma A and the above consideration we deduce that there is a countable set E_{2}^{\prime} of complex numbers such that $F_{a}(z)$ is prime in entire sense for every a in $C \backslash E_{2}^{\prime}$.

It is easily seen that there is a countable set E_{3}^{\prime} of complex numbers such that $F_{a}(z)$ is not periodic for every a in $\boldsymbol{C} \backslash E_{3}^{\prime}$. Therefore by Gross' theorem [3] $F_{a}(z)$ is prime for every a in $\boldsymbol{C} \backslash\left(E_{2}^{\prime} \cup E_{3}^{\prime}\right)$. Theorem 3 is thus proved.
5. In this section we shall prove.

Theorem 4. Let $h(w)$ be a one-valued regular function in $0<|w|<\infty$, having essentıal singularitzes at $w=0$ and $w=\infty$. Let n be a non-zero integer. Then the set

$$
\left\{a \in \boldsymbol{C} ; h\left(e^{2}\right)+a e^{n z} \text { us not prome }\right\}
$$

is at most a countable set.
By the same method as in the proof of Lemma 1 we can show
Lemma 3. Let $h(w)$ and n satisfy the assumption of Theorem 4. Then there is a countable set $E^{\prime \prime}$ of complex numbers such that any two common roots s, t of the simultaneous equations

$$
\left\{\begin{array}{l}
h(w)+a w^{n}=c, \\
h^{\prime}(w)+a n w^{n-1}=0
\end{array}\right.
$$

satisfy $s^{n}=t^{n}$ for any constant $c(\in \boldsymbol{C})$ provided that a is in $\boldsymbol{C} \backslash E^{\prime \prime}$.
Proof. Put

$$
k(w)=-h^{\prime}(w) / n w^{n-1}, \quad A^{\prime \prime}=\boldsymbol{C}-\left(\{0\} \cup\left\{p \in \boldsymbol{C}-\{0\} ; k^{\prime}(p)=0\right\}\right) .
$$

We choose open sets $\left\{c_{\imath}^{\prime \prime}\right\}_{\imath=1}^{\infty}$ of $A^{\prime \prime}$ satisfying the following conditions.
(1) $\bigcup_{i=1}^{\infty} c_{\imath}^{\prime \prime}=A^{\prime \prime}$.
(2) $k(w)$ is univalent in $c_{\imath}^{\prime \prime}(\imath=1,2, \cdots)$.
(3) $\left\{k(w) ; w \in c_{\imath}^{\prime \prime}\right\}$ is a disk $(\imath=1,2, \cdots)$.

Put

$$
\begin{gathered}
K(w)=h(w)+w^{n} k(w), \quad D_{\imath}^{\prime \prime}=\left\{k(w) ; w \in c_{\imath}^{\prime \prime}\right\} \quad(\imath=1,2, \cdots), \\
q_{\imath}(x)=\left(\left.k\right|_{c_{i}^{\prime \prime}}\right)^{-1}(x) \quad\left(x \in D_{\imath}^{\prime \prime}, \imath=1,2, \cdots\right), \\
r_{i}(x)=K\left(q_{i}(x)\right) \quad\left(x \in D_{\imath}^{\prime \prime}, \imath=1,2, \cdots\right), \\
I^{\prime \prime}=\left\{(i, j) \in \boldsymbol{N} \times \boldsymbol{N} ; D_{\imath}^{\prime \prime} \cap D_{\jmath}^{\prime \prime} \neq \varnothing, r_{\imath}(x) \not \equiv r_{\jmath}(x) \quad\left(x \in D_{\imath}^{\prime \prime} \cap D_{\jmath}^{\prime \prime}\right)\right\}, \\
S_{\imath, j}^{\prime \prime}=\left\{x \in D_{\imath}^{\prime \prime} \cap D_{\jmath}^{\prime \prime} ; r_{i}(x)=r_{j}(x)\right\} \quad\left((\imath, j) \in I^{\prime \prime}\right),
\end{gathered}
$$

$$
E_{0}^{\prime \prime}=\left(\bigcup_{\imath=1}^{\infty} D_{\imath}^{\prime \prime}\right)-\left(\left\{k(p) ; k^{\prime}(p)=0, p \in \boldsymbol{C}-\{0\}\right\} \cup\left(\bigcup_{(i, j) \in I^{i}} S_{\imath, j}^{\prime \prime}\right)\right) .
$$

As in the case of Lemma 1 we can show the following four facts.

1) $E^{\prime \prime}=\boldsymbol{C} \backslash E_{0}^{\prime \prime}$ is a countable set.
2) $r_{k}(x)=h\left(q_{k}(x)\right)+q_{k}(x)^{n} x \quad\left(x \in D_{k}^{\prime \prime}\right)$.
3) If $r_{i}(a)=r_{j}(a)$ for some a in $E_{0}^{\prime \prime}$, then $q_{i}(a)^{n}=q_{j}(a)^{n}$.
4) If a is in $E_{0}^{\prime \prime}$, then the set $\left\{q_{k}(a) ; a \in D_{k}^{\prime \prime}, k=1,2, \cdots\right\}$ coincides with the set of roots of $h^{\prime}(w)+a n w^{n-1}=0$.
From 1), 2), 3) and 4) we have the desired result.
Proof of Theorem 4. Put

$$
H_{a}(z)=h\left(e^{2}\right)+a e^{n z} .
$$

Let $t \in(0,1 / 2)$. Then Lemma 3 and the second fundamental theorem imply that there is a countable set $E_{0}^{\prime \prime}$ of complex numbers such that the conclusion of Lemma 3 holds with $E^{\prime \prime}$ replaced by $E_{0}^{\prime \prime}$ and that the inequalities

$$
\begin{align*}
& N\left(r, 0, H_{a}^{\prime}\right) \geqq \operatorname{tm}\left(r, h^{\prime}\left(e^{z}\right)\right), \tag{5.1}\\
& N\left(r, c, H_{a}\right) \geqq \operatorname{tm}\left(r, h\left(e^{z}\right)\right) \tag{5.2}
\end{align*}
$$

hold on a set of r of infinite measure for any complex number c, provided that a is in $\boldsymbol{C} \backslash E_{0}^{\prime \prime}$.

In what follows we shall assume that a is in $\boldsymbol{C} \backslash E_{0}^{\prime \prime}$ and prove that $H_{a}(z)$ is prime.

Let $H_{a}(z)=f(g(z))$.
a) f and g are transcendental entire. We shall make use of Kobayashi's theorem [7]. This idea is due to theorem 3 in [11]. Since $H_{a}^{\prime}(z)=f^{\prime}(g(z)) g^{\prime}(z)$, by (5.1) $f^{\prime}(w)$ has infinitely many zeros $\left\{w_{n}\right\}_{n=1}^{\infty}$. Then any root of $g(z)=w_{n}$ is also a common root of the simultaneous equations

$$
\left\{\begin{array}{l}
H_{a}(z)=f\left(w_{n}\right), \\
H_{a}^{\prime}(z)=0
\end{array}\right.
$$

Therefore, since $a \in E_{0}^{\prime \prime}$, all the roots of $g(z)=w_{n}$ lie on a straight line of the complex plane ($n=1,2, \cdots$). Thus by Kobayashi's theorem [7]

$$
g(z)=P\left(e^{A z}\right)
$$

with a quadratic polynomial $P(z)$ and a non-zero constant A. It is easily seen that $A=n / N$ with an integer N. Thus

$$
H_{a}(z)=f\left(P\left(e^{n z / V}\right)\right) .
$$

Put $w=e^{z / N}$. Then

$$
h\left(w^{N}\right)+a w^{n N}=f\left(P\left(w^{n}\right)\right) .
$$

The right side is regular at $w=0$ but the left side is not. This is a contradiction.
b) f is transcendental meromorphic (not entire) and g is transcendental entire. This case can be treated by the same method as in the case a).
c) f is transcendental entire and g is a polynomial of degree at least two. By Rényi's theorem [13] g is a quadratic polynomial. Put $g(z)=s(z-u)^{2}+v$ with constants s, u, v. Let $\left\{w_{m}\right\}_{m}$ be the zeros of $f^{\prime}(w)$ and let p_{m} and q_{m} be the two roots of $g(z)=w_{m}$. Then p_{m} and q_{m} are also common roots of the simultaneous equations

$$
\left\{\begin{array}{l}
H_{a}(z)=f\left(w_{m}\right), \\
H_{a}^{\prime}(z)=0 .
\end{array}\right.
$$

Therefore, since $a \notin E_{0}^{\prime \prime}, e^{n p_{m}}=e^{n q_{m}}$. Thus $\operatorname{Re} p_{m}=\operatorname{Re} q_{m}=\operatorname{Re} u$. Hence

$$
\begin{aligned}
N\left(r, 0, H_{a}^{\prime}\right) & =N\left(r, 0, f^{\prime} \circ g\right)+N\left(r, 0, g^{\prime}\right) \\
& =O(r)+O(\log r)=o\left(m\left(r, h^{\prime}\left(e^{2}\right)\right)\right) .
\end{aligned}
$$

This contradicts (5.1).
d) f is a polynomial of degree $d(\geqq 2)$ and g is transcendental entire. By Rényi's theorem [13] g is periodic. Put $g(z)=k\left(e^{A z}\right)$, where $k(w)$ is a regular function in $0<|w|<\infty$ and A a non-zero constant. Since 0 and ∞ are essential singularities of H_{a}, they are also essential singularities of k.

Let x be a zero of f^{\prime}. Then by $a \notin E_{0}^{\prime \prime} k(w)=x$ has at most finitely many roots. Thus f^{\prime} has exactly one zero, say x. Therefore $f^{\prime}(w)=b(w-x)^{d-1}, f(w)=$ $b d^{-1}(w-x)^{d}+c$ with constants $b(\neq 0), c$. Thus $H_{a}(z)=b d^{-1}(g(z)-x)^{d}+c$. Hence

$$
\begin{equation*}
N\left(r, c, H_{a}\right)=d N(r, x, g) \tag{5.3}
\end{equation*}
$$

Since $k(w)=x$ has at most finitely many roots,

$$
N(r, x, g)=O(r)=o\left(m\left(r, h\left(e^{2}\right)\right)\right)
$$

This contradicts (5.2) and (5.3).
e) f is rational (not a polynomial) and g is transcendental entire. Then

$$
\begin{gather*}
f\left(w^{\prime}\right)=\frac{P(w)}{\left(w-w_{0}\right)^{\bar{q}}} \quad\left(P\left(u_{0}^{\prime}\right) \neq 0\right), \tag{5.4}\\
g(z)=w_{0}+e^{G(z)}, \tag{5.5}
\end{gather*}
$$

where P is a polynomial, G a non-constant entire function and q a positive integer [8, proposition 2].

By the theorem in [5, p. 59], g is periodic. Put $g(z)=k\left(e^{A z}\right)$, where $k(w)$ is a regular function in $0<|w|<\infty$ and A a non-zero constant. Since 0 and ∞ are essential singularities of H_{a}, they are also essential singularities of k. Thus

$$
\begin{equation*}
\lim _{r \rightarrow \infty} m(r, g) / r=\infty \tag{5.6}
\end{equation*}
$$

If x is a zero of f^{\prime}, then $x \neq w_{0}$. Further, by $a \notin E_{0}^{\prime \prime}, k(w)=x$ has at most finitely many roots. Thus

$$
\begin{equation*}
N(r, x, g)=O(r) \tag{5.7}
\end{equation*}
$$

From (5.5), (5.6), (5.7) and the second fundamental theorem, we have a contradiction. Thus f^{\prime} has no zero.

From (5.4)

$$
f^{\prime}(w)=\left(P^{\prime}(w)\left(w-w_{0}\right)-q P(w)\right) /\left(w-w_{0}\right)^{q+1}=b /\left(w-w_{0}\right)^{q+1}
$$

where b is a non-zero constant. Hence $f(w)=d\left(w-w_{0}\right)^{-q}+c$ with constants c, d $(\neq 0)$. Thus from (5.5) $H_{a}(z)=d e^{-q G(2)}+c$. This contradicts (5.2).
f) f is rational (not a polynomial) and g is transcendental meromorphic (not entire). This case can be reduced to the case d) or the case e).

Theorem 4 is thus proved.
A remark should be mentioned here. Theorem 4 indicates that there are prime periodic entire functions of arbitrarily rapid growth.
6. In this section we shall give an extension of theorem 1 in [10].

TheOrem 5. Let $F(z)$ be a transcendental entire function of finte order and R an arbitrarily fixed positive number. Assume that the simultaneous equations

$$
\left\{\begin{array}{l}
F(z)=c \\
F^{\prime}(z)=0
\end{array}\right.
$$

have only finutely many common roots for any constant c satisfing $|c|>R$. Then $F(z)$ is pseudo-prime.

Examples. The functions $\cos z$ and $P\left(Q(z) e^{S(2)}\right)$, where P and S are nonconstant polynomials and Q is a non-zero polynomial, satisfy the assumption of Theorem 5.

Proof of Theorem 5. Let $F(z)=f(g(z))$.
a) f and g are transcendental entire. By Pólya's theorem [12] $f(z)$ is of order zero. Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be the zeros of $f^{\prime}(z)$. Then by the assumption $\left.\mid f\left(z_{n}\right)\right\}$ $\leqq R$ for every z_{n} with at most one exception. Hence there is a positive number A satisfying

$$
\begin{equation*}
\left|f\left(z_{n}\right)\right|<A \quad(n=1,2, \cdots) . \tag{6.1}
\end{equation*}
$$

By Wiman's theorem and (6.1) we can see that $\{z \in \boldsymbol{C} ;|f(z)| \leqq A\}$ consists of infinitely many bounded components $\left\{D_{i}\right\}_{\imath=1}^{\infty}$ and that ∂D_{\imath} consists of one closed Jordan curve $(i=1,2, \cdots)$. Let $E_{r}(r>0)$ be that component of $\{z \in \boldsymbol{C}$; $|f(z)| \leqq M(r, f)\}$ which contains the circle $|z|=r$. Then, as in the case of D_{\imath}, ∂E_{r} consists of one closed Jordan curve for every r satisfying $M\left(r, \int\right)>A$. Let $I(r)=\left\{i ; D_{i} \subset E_{r}\right\} \quad(M(r, f)>A)$.

For a subset X of the complex plane and an entire function h, we denote by $n(X, h)$ the number of zeros (counting multiplicity at multiple zeros) of h in X. If $M(r, f)>A$, then

$$
\begin{equation*}
n\left(E_{r}, f\right)=\sum_{i \in I(r)} n\left(D_{\imath}, f\right) \tag{6.2}
\end{equation*}
$$

On the other hand, if $M(r, f)>A$, then by the argument principle

$$
\begin{equation*}
n\left(E_{r}, f^{\prime}\right)=n\left(E_{r}, f\right)-1 \tag{6.3}
\end{equation*}
$$

$$
\begin{equation*}
n\left(D_{\imath}, f^{\prime}\right)=n\left(D_{\imath}, f\right)-1 \quad(i=1,2, \cdots) \tag{6.4}
\end{equation*}
$$

By (6.1) we have

$$
\begin{equation*}
n\left(E_{r}, f^{\prime}\right)=\sum_{i \in I(r)} n\left(D_{i}, f^{\prime}\right) \tag{6.5}
\end{equation*}
$$

Since the number of the elements of $I(r)$ tends to infinity as $r \rightarrow c$. from (6.2)(6.5) we have a contradiction.
b) f is transcendental meromorphic (not entire) and g is transcendental entıre. Then by proposition 2 in [8]

$$
f(w)=\frac{f^{*}(w)}{\left(w-w_{0}\right)^{m}}, \quad f^{*}\left(w_{0}\right)=\neq 0
$$

where f^{*} is transcendental entire and m a positıve integer. By Edrei-Fuchs' theorem [2] f is of order zero. Then by the same argument as in the case a), we have a contradiction. The detail is omitted.

The following corollary is an extension of theorem 1 in [10].
Corollary 1. Let $F(z)$ be a transcental entore function of finnte order with at least one but at most fintely many smple zeros. Assume that the smultaneous equatzons

$$
\left\{\begin{array}{l}
F(z)=c \\
F^{\prime}(z)=0
\end{array}\right.
$$

have only fintely many common roots for any non-zero constant c. Then $F(z)$ is left-prime in entire sense.

Proof. By Theorem $5 F(z)$ is pseudo-prime. Let $F(z)=P(g(z))$, where g is transcendental entire and P is a polynomial of degree $d(\geqq 2)$. We consider the following two cases.
(1) There exists a complex number w_{0} such that $P^{\prime}\left(w_{0}\right)=0$ and $P\left(w_{0}\right) \neq 0$.
(2) If x is a zero of $P^{\prime}(w)$, then $P(x)=0$.

Firstly we consider the case (1). By the assumption $g(z)$ must be of the form

$$
\begin{equation*}
g(z)=w_{0}+Q(z) e^{R(z)}, \tag{6.6}
\end{equation*}
$$

where $Q(z)$ and $R(z)$ are polynomials. By the assumption $P(w)$ has a simple zero b. Then $b \neq w_{0}$. Thus from (6.6) and the second fundamental theorem we have

$$
\Theta(b, g)=1-\lim _{r \rightarrow \infty} \sup (\bar{N}(r, b, g) / m(r, g))=0
$$

Thus $g(z)$ has infinitely may simple b-points. Hence $F(z)=P(g(z))$ has infinitely many simple zeros. This is a contradiction.

Secondly we consider the case (2). In this case $P(w)$ must be of the form $P(w)=a(w-b)^{d}$ with constants a, b. This is a contradiction, since $F(z)=P(g(z))$ has a simple zero.

Corollary 1 is thus proved.

References

[1] Clunie, J., The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macıntype (Ohio Univ. Press, 1970), 75-92.
[2] Edrei, A. and W.H.J. Fuchs, On the zeros of $f(g(z))$ where f and g are entire functions, J. Analyse Math., 12 (1964), 243-255.
[3] Gross, F., Factorization of entire functions which are perıodic $\bmod g$, Indian J. pure and applied Math., 2 (1971), 561-571.
[4] Gross, F., Factorization of meromorphic functions, U.S. Gov. Prıntıng Office, 1972.
[5] Gross, F., Factorization of meromorphic functions and some open problems, Complex analysis, Lecture Notes in Math., 599, Sprınger (1977), 51-67.
[6] Gross, F., C.C. Yang and C. Osgood, Prımeable entıre functions, Nagoya Math. J., 51 (1973), 123-130.
[7] Kobayashi, T., On a characteristic property of the exponential function, Kōdaı Math. Sem. Rep., 29 (1977), 130-156.
[8] Ozawa, M., Factorızatıon of entire functions, Tôhoku Math. J., 27 (1975), 321336.
[9] Ozawa, M., On certaın criterıa for the left-prımeness of entıre functıons, Kōdaı Math. Sem. Rep., 26 (1975), 304-317.
[10] Ozawa, M., On certain criteria for the left-prımeness of entıre functıons, II, Kōdai Math. Sem. Rep., 27 (1976), 1-10.
[11] Ozawa, M., On the existence of prıme perıodic entıre functıons, Kōdaı Math. Sem. Rep., 29 (1978), 308-321.
[12] Pólya, G., On an integral function of an integral function, J. London Math. Soc., 1 (1926), 12-15.
[13] Rényi, A. and C. Rényi, Some remarks on perıodic entıre functıons, J. Analyse Math., 14 (1965), 303-310.

Department of Mathematics,
Tokyo Institute of Technology

