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ON FACTORIZATION OF ENTIRE FUNCTIONS

BY YOJI NODA

1. Introduction. A meromorphic function F(z)=f(g(z)) is said to have /
and g as left and right factors respectively, provided that / is meromorphic and
g is entire (g may be meromorphic when / is rational). F(z) is said to be
prime (pseudo-prime, left-prime, right-prime) if every factorization of the above
form into factors implies either / is linear or g is linear (either / is rational or
g is a polynomial, / is linear whenever g is transcendental, g is linear whenever
/ is transcendental). When factors are restricted to entire functions, it is called
to be a factorization in entire sense.

Gross [4] posed the following problem:

(A) Given any entire function / , does there exist a polynomial Q such that
f+Q is prime ?

Further, Gross-Yang-Osgood [6] posed the following problem:

(B) Given any entire function / , does there exist an entire function g such
that fg is prime ?

In this paper we shall give affirmative answers to the above two problems
(Theorem 2 and Theorem 3). Further we shall show a similar result for periodic
entire functions (Theorem 4). In each case it can be shown that almost all
functions are prime.

According to [9], [10], we shall make use of the simultaneous equations

Theorem 1 and Theorem 5 are extensions of theorem 1 and theorem 2 in [10].

2. In this section we shall state the following two theorems which are used
in the proof of Theorem 2 and Theorem 3.

THEOREM A (a modified version of theorem 2 in [9]). Let F{z) be a trans-
cendental entire function satisfying N{r, 0, Ff)>km(r, F') on a set of r of infinite
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ON FACTORIZATION OF ENTIRE FUNCTIONS 481

measure for some k>Q. Assume that the Simultaneous equations

F{z)=c,

F'(z)=0

have only finitely many common roots for any constant c. Then F{z) is left-prune
in entire sense.

The proof is essentially the same as that of theorem 2 in [9], hence omitted.
The following theorem is an extension of theorem 2 in [10].

THEOREM 1. Let F(z) be a transcendental entire function with at least one
simple zero satisfying

(2.1) N(r, 0, F')-(N(r, 0, F)-N(r, 0, F))>kT(r, F'/F)

On a set of r of infinite measure for some k>0. Assume that the simultaneous
equations

F(z)=c ,

have only finitely many common roots for any non-zero constant c. Then F(z) is
left-prime in entire sense.

Proof. Let F(z)=f(g(z)).
a) / and g are transcendental entire. We consider the following two cases.
(1) There exists a complex number w0 such that f'(wo)=O and f(wo)Φθ.
(2) If p is a zero of f\w), then /(/>)=0.
Firstly we consider the case (1). By the assumption g(z) must be of the

form

where P{z) is a polynomial and G{z) a non-constant entire function. Further if
x is a zero of f'(w) other than w0, then f(x)=0. Thus

N(r, 0, F')=N(r, 0, fΌg)+N(r, 0, g')

£(N(r, 0, F)-N(r, 0, F))+N(r, 0, g') + O(\og r).

Therefore

(2.2) N{r, 0, F')-(N(r, 0, F)-N(r, 0, F))^m(r, G0 + O(log r)^O{m{r, G))

outside a set of r of finite measure. Let p be a zero of f(w). Then pη=ιv0.
By the second fundamental theorem

(2.3) a-t)m(r, g)<N(r, p, g)%N{r, 0, F)
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outside a set of r of finite measure, where t is an arbitrarily fixed number in
(0, 1). By (2.1), (2.2) and (2.3)

m(r, g)<0(m(r, G))

on a set of r of infinite measure. By Clunie's theorem [1] we have a contra-
diction.

Secondly we consider the case (2). In this case

N(r, 0, F')^N(r, 0, f'*g)+N{r, 0, gf)

^N(r, 0, F)-N(r, 0, F)+N(r, 0, g').

Thus

(2.4) N(r, 0, F')-(N(r, 0, F)-N(r, 0, F))rg

outside a set of r of finite measure. There are the following two subcases.
(2, a) f(w) has infinitely many zeros {wn}n=i-
(2, b) f(w) has at most finitely many zeros.
In the case (2, a), by the second fundamental theorem,

(2.5) (l-f)M.m(r, g)< Σ N(r, wn, g)^N(r, 0, F)
71 = 1

outside a set of r of finite measure, where t is an arbitrarily fixed number in
(0, 1) and M an arbitrarily fixed positive integer. By (2.1) and (2.5)

(2.6) a-t)kM 7n(r, g)<N(r, 0, F')-(N(r, 0, F)-N(r, 0, F))

on a set of r of infinite measure. Since M can be taken arbitrarily large, from
(2.4) and (2.6) we have a contradiction.

In the case (2, b) f{w) is of the form

(2.7) f(w)=P(w)eII(w>,

where P(w) is a non-constant polynomial and H(w) a non-constant entire func-
tion. Suppose that H(ιv) is transcendental entire. Since

F\z)/F(z)=g'{z){P\g{z))-\-P(g{z)W{g{z)))IP{g{z)),

(2.8) T{r, F'/F)~m(r, H'°g)

holds outside a set of r of finite measure. By (2.1), (2.4), (2.8) and Clunie's
theorem [1], we have a contradiction. Thus H(w) must be a polynomial.

Since

f'(w)=(P'(w)+P(w)H'(w))eH<iw:>,

by (2) and (2.7) we see that any root x of
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satisfies

(2.9) P(x)=P'(x)=0.

By (2.9) P(w) has at least one multiple zero. Let {aι}ι be the set of multiple

zeros of P(w) and nι the multiplicity at at. Put

Q{w)={P\w)+P{w)H\w))/n (w-aι)
n^1.

Then Q{w) is a polynomial satisfying Q(at)Φθ for every ?. If x is a zero of
Q(w), then

Thus by (2.9) x — a% for some z. This is a contradiction. Thus" Q(w) is equal
to a constant. Hence

deg(P'+Pi7 ' )=Σ(Wi-l) .

On the other hand the left side is not less than deg(P). And deg(P)^Σ nτ.

Thus we have a contradiction. Therefore F(z) is pseudo-prime in entire sense.

b) / is a polynomial of degree d (^2) and g is transcendental entire. We
consider the same conditions (1) and (2) as in the case a). If the case (2)
occurs, then it is easily seen that f(w) must be of the form

f(w)=A(w-B)d,

where A and B are constants. This is a contradiction, since F(z) has at least
one simple zero. If the case (1) occurs, then using the same argument as in
the case a) we have again a contradiction.

Theorem 1 is thus proved.

3. Problem (A).

THEOREM 2. Let f{z) be a transcendental entire function. Then the set

{a^C; f{z) + az is not prime]

is at most a countable set.

We shall first prove

LEMMA 1. Let f(z) be a transcendental entire function. Then there is a
countable set E of complex numbers such that the simultaneous equations

f(z)-az=c,
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have at most one common root for any constant c ( e C ) provided that a is in
C\E.

Proof. Let us write

A=C-{pt=C; f"(p)=Q}.

We choose open sets {d}T=1 of A satisfying the following conditions.

(1) \Jc%=A.

(2) f \ z ) is univalent in cx ( * = 1 , 2, •••).
(3) {/ '(z); ztΞCi} is a disk (* = 1, 2, •••).

P u t

Dt={f'(z); z^c%) 0 = 1 , 2, •••),

(3.1) F{z)=f{z)-z-f\z),

(3.2) w i (u;)=(/ / k»)- 1 (M;) (u e f l , 2 = 1, 2, •••),

(3.3) vι(w)=F(ui(w)) (w£ΞDl} ι = lf 2, •••),

(3.4)

(3.5)

Then E=C\E0 is a countable set.
Let βe^Ό. If

(3.6) Vi(

for some /, j , then by (3.4) and (3.5)

Thus

vί(α)=t>ί(α).

By (3.1), (3.2) and (3.3) we have

v'k{a)=-uk(a) (k=i,

Hence

(3.7) Ui(a)=uj(a).

From (3.1), (3.2) and (3.3) we have
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Thus from (3.6) and (3.7) we see that if

f(uι{a))-a ui(a)=f(uj{a))-a-uJ(a),
then

uι(a)=uJ(a).

On the other hand, by (3.2) and (3.5), the set

{uk(a); a^Dk, k=l, 2, •••}

coincides with the set of distinct α-points {zn}n of f\z). Therefore if znφzm,
then f{zn)—aznφf(zm) — azm. Thus the simultaneous equations

f(z)—az=c,

/ ' ( * ) - α = 0

have at most one common root for any constant c. Lemma 1 is thus proved.

Proof of Theorem 2. Let fe(0, 1/2). Then by Lemma 1 and the second
fundamental theorem there is a countable set Ex of complex numbers such that
the conclusion of Lemma 1 holds with E replaced by Ex and that

(3.8) N(r, a,ff)>t<m{r,f)

holds on a set of r of infinite measure for every a in C\Eλ. Hence by Theorem
A f(z)—az is left-prime in entire sense for every a in C\Eλ.

We next show the right-primeness of f(z)—az in entire sense (αeC\£i).
Let f(z)—az=g{P(z)), where g is transcendental entire and P is a polynomial
of degree d (^2). Then f'(z)-a=g'(P(z))P'(z). From (3.8) gf has infinitely
many zeros {wn}n. For sufficiently large n the equation wn=P(z) has d distinct
roots, which are also common roots of the simultaneous equations

f(z)—az=g(wn),

This is a contradiction. Thus f{z) — az is prime in entire sense for every a in

If for some constants a, b (aΦb) the functions f(z) — az and f(z)—bz are
periodic with periods x and y respectively, then f\z) has periods x and y.
Hence x/y must be a real number. Thus f{z)—az and f{z) — bz are both bounded
on the straight line {tx; fe(—oo, +°°)}. This is impossible. Thus f(z)—az is
not periodic for every c ( G C ) with at most one exception.

Therefore by Gross' theorem [3] we conclude that f{z) — az is prime for
every a in C\EX with at most one exception. Theorem 2 is thus proved.
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4. Problem (B).

THEOREM 3. Let f{z) be a transcendental entire function. Then the set

{ α e C ; f{z)-{z—a) is not prime}

zs at most a countable set.

We need the following lemmas.

LEMMA 2. Let f{z) be a transcendental entire function. Then there is a
countable set Er of complex numbers such that the simultaneous equations

f(zΠz-a)=c,

have at most one common root for any non-zero constant c ( e C ) provided that a
is in C\E'.

Proof. Put

A'=C—{p(=C p is a zero or a pole of h\z)}.

We choose open sets {cί}£=i of A' satisfying the following conditions.

(1) \Jcί=A'.

(2) hiz) is u n i v a l e n t m c'% (* = 1, 2, •••).
(3) {h(z); z^c'x] is a disk (2 = 1, 2, •••).

P u t
Dί={h(z)',

(4.1) H(z)=(z-h(z)) f(z),

(4.2) xι(w)=(h\c[r\w) {w^D[, z = l, 2, ••

(4.3) yί(w)=H(xι(w)) (wtΞDί, ι = l, 2, •••)

/ / = f c , j) = NxN; DΊΓΛD'jφζd, yι{w)^yJ(w) (tυe

(4.4) Sί> < 7={M;eZ};n^ί; ^ » ( ^ ) = ^ ; ( ^ ) } (0

(4.5) ^ ( O ^ - f l W AW^fEH'i U Sί.Λ
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As in the case of Lemma 1 we can show the following four facts.
1) E'=^C\EΌ is a countable set.
2) yk(w)=(xk(w)-w)-f(xk(w)) (w<=D'k).
3) If yi(a)=yj(a) for some a in Ef

Q, then Xi(a)—Xj(a).
4) If a is in E'o, then the set {xk(a)', a^Dί, k — 1, 2, •••} contains the set

-j^(f(zXz-a))\tsap=O, f(p)(p-a)Φθ\.

1) and 2) are immediate consequences of (4.1)-(4.5).
Next we shall show 3). From (4.4) and (4.5) we deduce that yi(ιv) = yj(w)

(w<ΞDίΓΛD'j). Thus y'i(a)=y'j(a). Since H'(z)=-f(z)h'(z\ from (4.2) and (4.3)
we have

(4.6) 3>ί(α)=-/(**(α)) {k=ι,j).

From (4.5) we have f(xk(a))Φθ (k=t, j). Thus by 2) and (4.6) we obtain xτ(a)
— Xj(a). 3) is thus proved.

Finally, we shall show 4). If jz(f(z)(z-a))\z^p=f/(pXp-a)Jrf(p)=O and

f(p)(p-a)Φθ for some p in C, then / /(^)^0. Thus a=p+(f(p)/f'(p)) =
Therefore by (4.5) we have h'(p)Φθ. Thus p^cf

k for some k in ΛΓ. Hence we
have p=xk(a) and a^Df

k. 4) is thus proved.
From 1), 2), 3) and 4) we have the desired result.

LEMMA A [6]. Let F(z) be a transcendental entire function. Then except
for a countable set of a^C, the function (z—a)- F{z) has no factorization of form
(z—a)-F(z)=g(P(z)), where g is transcendental entire and P is a polynomial of
degree at least two.

Proof of Theorem 3. Let us write

h(z)=z+(f(z)/f'(z)),

E[= {p p is a zero of f(z)}\J {h(p)\ p is a zero of h'(z)}.

Let a^C\E[. Then Fa(z) has at least one simple zero and

N(r, a, h)=N(r, a, h)^N(r, 0, Ff

a)-(N{r, 0, Fa)-N{r, 0, Fa)).

Let ίe(0, 1/3). Then by the second fundamental theorem

N(r, a, h)>tT{r, h)

holds on a set of r of infinite measure for every complex number a with at
most two exceptions. Further we see that for some k (>0)

T{r, h)~kT{r, Ff

a/Fa).
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By Theorem 1, Lemma 2, Lemma A and the above consideration we deduce
that there is a countable set Ef

2 of complex numbers such that Fa(z) is prime
in entire sense for every a in C\Er

2.
It is easily seen that there is a countable set E'z of complex numbers such

that Fa(z) is not periodic for every a in C\E'Z. Therefore by Gross' theorem
[3] Fa(z) is prime for every a in C\(Er

z\jE'3). Theorem 3 is thus proved.

5. In this section we shall prove.

THEOREM 4. Let h(w) be a one-valued regular function in 0< | w \ <CΌ, having
essential singularities at w=0 and w = oo. Let n be a non-zero integer. Then
the set

nz is not prime)

is at most a countable set.

By the same method as in the proof of Lemma 1 we can show

LEMMA 3. Let h{w) and n satisfy the assumption of Theorem 4. Then there
is a countable set E" of complex numbers such that any two common roots s, t of
the simultaneous equations

h(w)J

Γawn = c,

h/(w)J

Γanwn-1=0

satisfy sn=tn for any constant c ( ε C ) provided that a is in C\E".

Proof. Put

k(ιv)=-h\w)/nwn-\ Λ " = C - ( { 0 } U { / > < Ξ C - { 0 } ; k\p)=0}).

We choose open sets {c"}~=i of A" satisfying the following conditions.

(1) Ocΐ=A".

(2) k{w) is univalent in c'l (z = l, 2, •••).

(3) {k(w); w^c'l} is a disk 0 = 1, 2, •••).

Put

K(w)=h(w) + wnk(w), D't'={k(w); w^cf/} (? = 1, 2,

qt(x)=(k\c.t)-Kx) (XΪΞDΪ, ι = l, 2, •••),

ri(x)=K(gi(x)) U e % 2==1, 2, •••),

I"={(i, j)£ΞNxN; D' ΓΛD' Φ®, rt(x)Έ£r3(x) (xSΞD?

f;; ri{x)=rj{x)} ((/
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£ ί ' = ( 0 Dΐ)-({k(p); k'(p)=O, ίeC-{0}}υ( U Si'.,)).

\ι = l / \ \(i,j)<El" / /

As in the case of Lemma 1 we can show the following four facts.

1) E"=C\E'0
; is a countable set.

2) rk(x)=h(qhM)+gkM
nx (x^Dίl).

3) If ri(a)=rj(a) for some a in E'o', then qi(a)n=qj(a)n.
4) If α is in E", then the set {qk(a)', a^D", k~\,2, •••} coincides with

the set of roots of h/(w)Jranwn~1=0.

From 1), 2), 3) and 4) we have the desired result.

Proof of Theorem 4. Put

Let t^(0, 1/2). Then Lemma 3 and the second fundamental theorem imply
that there is a countable set E'Q

f of complex numbers such that the conclusion
of Lemma 3 holds with E" replaced by EH and that the inequalities

(5.1) N(r, 0, H'a)^tm(r, h\ez)),

(5.2) N(r, c, Ha)^tm(r, h(ez))

hold on a set of r of infinite measure for any complex number c, provided that
a is in C\Ef

o

f.
In what follows we shall assume that a is in C\E'ό and prove that Ha(z)

is prime.
Let Ha{z)=f(g{z)).

a) / and g are transcendental entire. We shall make use of Kobayashi's
theorem [7]. This idea is due to theorem 3 in [11]. Since H'a(z)=f'(g(z))g'(z),
by (5.1) f'(w) has infinitely many zeros {wn}n=i- Then any root of g(z)=ιvn is
also a common root of the simultaneous equations

Therefore, since a^EΌ', all the roots of g{z)~wn lie on a straight line of the
complex plane ( n ~ l , 2, •••). Thus by Kobayashi's theorem [7]

g(z)=P(eΛz)

with a quadratic polynomial P(z) and a non-zero constant A. It is easily seen
that A = n/N with an integer AΓ. Thus

Ha(z)=-f(P(enz/Λrϊ).
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Put w=eZIN. Then

h(wN)+awnN=f(P(wn)).

The right side is regular at w==0 but the left side is not. This is a contradic-
tion.

b) / is transcendental meromorphic (not entire) and g is transcendental
entire. This case can be treated by the same method as in the case a).

c) / is transcendental entire and g is a polynomial of degree at least two.
By Renyi's theorem [13] g is a quadratic polynomial. Put g(z) = s(z—u)2Jrv
with constants s, u, v. Let {wm}m be the zeros of f'{w) and let pm and qm be
the two roots of g(z)=wm. Then ρm and qm are also common roots of the
simultaneous equations

Ha(z)=f(wm),

Therefore, since a^Eg, enPm=enq™-. Thus Re pm=Reqm=Re u. Hence

N(r, 0, H'a)=N(r, 0, f'*g)+N{r, 0, g')

= O(r)+O(\og r)=o(m(r, h\ez))).

This contradicts (5.1).

d) / is a polynomial of degree d (^2) and g is transcendental entire. By
Renyi's theorem [13] g is periodic. Put g(z)=k(eΛz), where k{w) is a regular
function in 0< \w\ <co and A a non-zero constant. Since 0 and oo are essential
singularities of Ha, they are also essential singularities of k.

Let i be a zero of / ' . Then by a&Ef

0' k(w)=x has at most finitely many
roots. Thus f has exactly one zero, say x. Therefore f'(w)—b(w — x)d~1, f(w)=
bd-\w-x)dJrc with constants b (ΦQ), c. Thus Ha{z)^bd-\g{z)-x)d-\-c. Hence

(5.3) N{r, c,Ha)=dN{r, x,g).

Since k(w)=x has at most finitely many roots,

N(r, x, g)=O(r)=o(m(r, h(ez))).

This contradicts (5.2) and (5.3).

e) / is rational (not a polynomial) and g is transcendental entire. Then

P(w)
(5.4) /(u')= (Ίfz^γ (P(u'o)---O),

(5.5) g(z) = wo+e0^ ,
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where P is a polynomial, G a non-constant entire function and q a positive
integer [8, proposition 2].

By the theorem in [5, p. 59], g is periodic. Put g(z)=k(eAz), where k(w)
is a regular function in 0< | tί; | <oo and A a non-zero constant. Since 0 and
co are essential singularities of Ha, they are also essential singularities of k.
Thus

(5.6) lim m(r, g)/r=oo .
r-»oo

If x is a zero of / ' , then xΦwQ. Further, by a&E'J, k(w)=x has at most
finitely many roots. Thus

(5.7) N(r,x,g)=O(r).

From (5.5), (5.6), (5.7) and the second fundamental theorem, we have a contra-
diction. Thus / ' has no zero.

From (5.4)

where b is a non-zero constant. Hence f(w)—d(w — woy
qjrc with constants c, d

(Φθ). Thus from (5.5) Ha(z)=de-qGCΌJrc. This contradicts (5.2).

f) / is rational (not a polynomial) and g is transcendental meromorphic
(not entire). This case can be reduced to the case d) or the case e).

Theorem 4 is thus proved.

A remark should be mentioned here. Theorem 4 indicates that there are
prime periodic entire functions of arbitrarily rapid growth.

6. In this section we shall give an extension of theorem 1 in [10].

THEOREM 5. Let F{z) be a transcendental entire function of finite order
and R an arbitrarily fixed positive number. Assume that the simultaneous equa-
tions

F'(z)=0

have only finitely many common roots for any constant c satisfying \c\>R.

Then F(z) is pseudo-prime.

Examples. The functions cos z and P(Q(z)eSίn), where P and S are non-
constant polynomials and Q is a non-zero polynomial, satisfy the assumption of
Theorem 5.
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Proof of Theorem 5. Let F(z)=f(g(z)).
a) / and g are transcendental entire. By Pόlya's theorem [12] f(z) is of

order zero. Let {zn}n=i be the zeros of f'(z). Then by the assumption \f(zn)\
^R for every zn with at most one exception. Hence there is a positive
number A satisfying

(6.1) \f(zn)\<A (n = l, 2, •••).

By Wiman's theorem and (6.1) we can see that {zeC; \f(z)\^A} consists
of infinitely many bounded components φ j ^ i and that dDτ consists of one
closed Jordan curve (z=l, 2, •••). Let Er (r>0) be that component of { Z G C ;
|/(z)| ^M(r, /)} which contains the circle \z\=r. Then, as in the case of Dlf

dEr consists of one closed Jordan curve for every r satisfying M(r, / ) > A. Let
/(r)={/; DidEr} (M(r,f)>A).

For a subset Z of the complex plane and an entire function h, we denote
by n(X, h) the number of zeros (counting multiplicity at multiple zeros) of h
in X. If M(r, f)>A, then

(6.2) n(Er,f)= Σ n(Dt,f).

On the other hand, if M(r, / ) > A then by the argument principle

(6.3) n(Erff')=n(Ertf)-l,

(6.4) n(Dl} f')=n(Dt, / ) - l (/=1, 2, •••).

By (6.1) we have

(6.5) n(Er, f')= Σ n(Dlff').

Since the number of the elements of I(r) tends to infinity as r—cc, from (6.2)-
(6.5) we have a contradiction.

b) / is transcendental meromorphic (not entire) and g is transcendental
entire. Then by proposition 2 in [8]

where / * is transcendental entire and m a positive integer. By Edrei-Fuchs'
theorem [2] / is of order zero. Then by the same argument as in the case a),
we have a contradiction. The detail is omitted.

The following corollary is an extension of theorem 1 in [10].

COROLLARY 1. Let F{z) be α transcental entire function of finite order witii
at least one but at most finitely many simple zeros. Assume that the simultaneous
equations
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have only finitely many common roots for any non-zero constant c. Then F(z) is
left-prime in entire sense.

Proof. By Theorem 5 F(z) is pseudo-prime. Let F(z)=P(g(z)), where g is
transcendental entire and P is a polynomial of degree d (<^2). We consider the
following two cases.

(1) There exists a complex number w0 such that P/(ιv0)=0 and P(wo)
:rzO.

(2) If x is a zero of P'(w), then P(x)=0.

Firstly we consider the case (1). By the assumption g(z) must be of the
form

(6.6) g(z)=wo+Q(z)eRW,

where Q{z) and R(z) are polynomials. By the assumption P{w) has a simple
zero b. Then bΦwQ. Thus from (6.6) and the second fundamental theorem we
have

θφ, g)=l-lim sup(iV(r, b, g)/m(rf g))=0.
r-»oo

Thus g(z) has infinitely may simple 6-points. Hence F(z)~P(g{z)) has infinitely
many simple zeros. This is a contradiction.

Secondly we consider the case (2). In this case P{w) must be of the form
P(w)=a(w—b)d with constants a, b. This is a contradiction, since F{z)=P{g{z))
has a simple zero.

Corollary 1 is thus proved.
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