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ON RIEMANN SURFACES OF GENUS FOUR WITH
NON-TRIVIAL AUTOMORPHISMS

By Takao KaTo

§1. Introduction.

Let S be a compact Riemann surface of genus greater than two. Generi-
cally S does not admit a non-trivial conformal automorphism (Baily [1]).
(Henceforth, we shall use the term automorphism instead of conformal auto-
morphism.) Hence, compact Riemann surfaces which admit non-trivial auto-
morphisms have some restricted properties. These appear in the vanishing
properties of the theta functions, in Weierstrass points, in defining equations of
these surfaces and etc. Recently, Kuribayashi and Komiya [6] determined all
defining equations of Riemann surfaces of genus three which admit non-trivial
automorphisms.

In this paper we shall consider Riemann surfaces of genus four and shall
determined all defining equations of surfaces whose automorphisms groups are
of order three. First, we shall give defining equations of surfaces having
automorphisms of prime orders. The admissible prime orders are 2, 3 and 5.
To study the cases of order 3 and 5 carefully we obtain the main result.

§2. Statement of results.

Let S be a compact Riemann surface of genus 4. Suppose that ¢ is an
automorphism of S of prime order N. Let ¢t be the number of the fixed points
of ¢ and let § be the genus of S/{¢>, where {¢) is the group generated by ¢.
Since N is prime, using the Riemann-Hurwitz relation we have

6=(25—2)N+(N—1)t.

Thus there are the following 7 cases: (It is known that case N=7, g=1, =1
does not occur.)

(I) N=2, §=0, =10,
(I) N=2, g=1, t=6,
(M) N=2, §=2, t=2,
(IV) N=3, §=0, t=6,
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(V) N=3, g
(VI) N=3, g=

Then we have a defining equation of S as follows:

THEOREM 1. Suppose that S is a Riemann surface of genus four which
admits a non-trivial automorphism ¢ of prime order. Then, S s defined by one
of (1)-(17). Here, a, B8, -+ are complex numbers and A(x), B(x), -+ are polynomials
in x. Although A(x), B(x), - and «, B, -+ must satisfy so that the genus of S
is four, the genera of the surfaces defined by (1)-(17) are generically four.

Case (1).

@ yr=x(x—Dx—a) - (x—ay).

Case (II).

@) Y1 —2A0x)y*+ A(x)*— B(x)*x(x —1)(x —a)=0.

Here, if there s a fixed point P of ¢ so that N(P)=1{4,5, 6, 8, then deg A=2
and deg B=1 and if there 1s no such a point, then deg A<3, deg B=2 and
A(xP—B(x)*x(x —1)(x—a) has at least one double zevo. The definition of N(P)
s given in the next section.

Case (). If there is a fixed point P of ¢ so that N(P)={3, 5, 6, 8}, then the
equation 1

&) ¥ 4(ax®—p)y+x(x*—D(x*—7)=0.

If there 1s a fixed point P of ¢ so that N(P)=1{3, 6,7, 8, then the equation 1s
@) yit(axt+ a1y +x(x*—1)(x*—0)(x®—e)=0.

If there is a fixed point P of ¢ so that N(P)={4, 5,7, 8}, then the equation s
5) ¥ =2A(x)y* - A(x)*—x(x = D(x —a)(x — ) (x —7)=0.

Here, deg A=2 and A(x)*—x(x—1)(x —a)(x —B)(x—7) has at least one double zero.

If both of the fixed ponts P, Q of ¢ satisfy that N(P)=N(Q)=1{5, 6, 7, 8} and
if 3P+3Q is a canonical divisor, then the equation is

(©) Y=t D) o (fa)
or

@ Y@ et o)y —0)=0.
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If 3P-+3Q s not a canonical divisor, then the equation 1s
8) Yt ax®+ Bx 1)y +Hox(x —1)%(x —e)*=0.

Case (IV). If there 1s a fixed point P of ¢ so that N(P)=1{3, 5, 6, 8}, then the
equation 18

©) yi=x(x—Dx—a)(x—Blx—7).
If there s no such a pownt, then the equation is
(10) y=x¥(x—D(x—a)(x—p)Nx—7).

Case (V). If S is hyperelliptic, then the equation is
(11) Y= =D —a)(x’—f) .

If S s non-hyperelliptic, then the equation is

(12) Y =2(Bx 41y +(Bx+7)—x(x —D(x —a}=0.
Case (VI).

(13) y4-(ax®+ x4y x+0)y*+1=0

or

(14) Yo+ (ax®+ pxtyx+d)y+x°=0.

Case (V).

(15) y'=x(x—D(x—a),

(16) Y =x(x—D(x—a)

or

a7 YV=x'(x—Dx—a).

Studying Cases (IV)-(Vl) carefully, we have

THEOREM 2. Let S be a compact Riemann surface of genus 4. Then the
order of the automorphisms group of S 1s three 1f and only if S s defined by
9), (10) or (12), where a, B and 7y are chosen generically.

§3. Preparations.

In this section we shall state some known results which are used in the
proof of our theorems. Let S be a compact Riemann surface of genus g (=2)
and let P be a point on S. Then there are g orders n,, l=n,<n,<---<n,<2g
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such that there is no meromorphic function on S which has a pole of order n,
at P and is holomorphic elsewhere. The sequence G(P)={n,, ---, n,} is called
the gap sequence at P. The sequence N(P)={l, ---, 2g} —G(P) is often called
the Weierstrass sequence. If a positive integer m is not a member of G(P),
then m is called a non-gap value and there is a non-constant meromorphic
function on S which has a pole of order m at P and is holomorphic elsewhere.
If G(P) is known, then we have a defining equation of S as follows:

LEMMA 1. [2,5, 9] Let m be the first non-gap at P and let n be the least
non-gap which s prume to m. If x and y are meromorphic functions on S with
poles of order m and n at P, vespectwely, and being holomorphic elsewhere, then
S 1s defined by

A ()Y e A (0 Y+ Ap(x)=0,
where Ay(x) =1, -+, m) are polynomuals in x and deg Alg% (z#=m), deg Ap=mn.

Let ¢ be an automorphism of S of prime order V. Put
H,={010 is a holomorphic differential on S satisfying @-¢==p’0},

(y=0, -, N—1), where p=exp(2zz/N). Let n, be the dimension of H,. Then
Lewittes [7] proved

LEMMA 2. Suppose that ¢ has t fixed points and that the genus of S/{$)> 1s
g. Then

i) ne=4g.

ii) If t=0, then n,=g—1 for 1=j=<N—1.

iii) If t>1, then there 1s at least one index k, 1=k =<N—1, such that n,+0
and for any such index

N
N

~ ~ t
8—1+ tznkég—l—kw.

To examine the order of the automorphisms group of surfaces the following
lemma due to Igusa is convenient.

LEMMA 3. [4] Let S and S’ be compact Riemann surfaces of positive genera.
Let P(x, v)=0 and P’(x, v)=0 be defimung equations of S and S’, respectively.
Suppose that P’ is a specialization of P. Then the automorphisms group of S 1s
isomorphic to a subgroup of the automorphisms group of S’.

For a non-hyperelliptic surface of genus 4, we have

LEMMA 4. [3,5, 8] Let S be a non-hyperelliptic Riemann surface of genus 4.
If S admits a half-canomical divisor of dimension 2, then, up to a linear
transformation, S can be expressible as a 3-sheeted covering of P* only in one way.
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If S admits no half-canonical divisor of dimension 2, then, up to a linear
transformation, S can be expressible as a 3-sheeted covering of P in two ways.
Furthermore, 1f D, and D, are divisors of degree 3 and of dimension 2 and if
these are not linearly equivalent, then D,~+ D, 1s a canonical divisor.

§4. Proof of Theorem 1.
Case (1). In this case, S is hyperelliptic. Then we easily have an equation
oy Pi=x(x—Dlx—ay) - (x—aq),

where «ay, -+, a, are mutually distinct complex numbers.

Case (II). Let = be the natural projection of S onto S/{¢)>. Let P,, .-+, Ps
be the fixed points of ¢. Let Y?=x(x—1)(x—a) be a defining equation of the
torus S/<{¢> where (x, ¥Y)=(co, co) corresponds to =(P;). Since x-zx and Y-z
are meromorphic functions on S, N(P;) is {4, 5,6, 8 or {4,6,7,8}. Let f be
a meromorphic function on S whose polar divisor is 5P, or 7P;. Put y=f—/f-¢.
Then ye¢=—y and y(P)=0 (=2, -, 6). If (f)=5P,, then (y)=Py+ -+ +PF;
—5P; and if (f)=7P;, then (y)=P,+ - +Ps-+Q+¢(Q)—7P,, where Q is a
point on S. Since y® can be viewed as a meromorphic function on S/<{¢> whose
polar divisor is 5x(P;) or 7=x(P,), we have

(18) y*=A(x)+Bx)Y .

Here A(x) and B(x) are polynomials in x such that deg A<2, deg B=1 if
(/)==5P, and that deg A<3, deg B=2 if (f).=7P;. From (18) we have

2) y*—2A(x)y*+ A(x)*— B(x)*x(x —1)(x —a)=0.
In case of (f).=7P,, since n(Q)=r-3(Q),
A(x)2—B(x)*x(x—D)(x—a)

has at least one double zero.

Case (I). Let P, and P, be the fixed points of ¢. Since S/{(¢) 1s of genus
2, N(P) is {3,5,6,8}, {3,6,7,8}, {4,5,7,8 or {5 6,7, 8}.

Suppose that N(P,) is {3, 5, 6, 8}. There are meromorphic functions x, y
such that xe¢=—x, ye¢=—7y and that the polar divisors of x and y are 3P,
and 5P, respectively. Then we have

19 ¥+ Ax)y -+ B(x)y +C(x)=0,

where A(x), B(x) and C(x) are polynomials in x such that deg A<1, deg B=3
and deg C=5. Since xe¢=—x and y-g=—y,

(20) — '+ A(=x)y*—B(—x)y+C(—x)=0.
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Adding (19) and (20), we have
(AxX)+A(—=x)y*+(B(x)— B(—x)y +C(x)+C(—x)=0.

Since S is not hyperelliptic, A(x)+A(—x)=0, B(x)—B(—x)=0 and C(x)+C(—x)
=0. Thus A(x)=a;x, B(x)=p:x*+B: and C(x)=rx°+7.x°+7sx, where 7,+0.
In (19), replacing y to y-+a;x/3 and applying a suitable linear transformation in
x, we have

3 ¥ H(ax®=p)y+x(x*—1(x*—7)=0.

Suppose that N(P,) is {3, 6,7, 8}. There are meromorphic functions x, y
such that xe.¢=—x, yed=—y and that the polar divisors of x and y are 3P,
and 7P,, respectively. Then we have

Y3+ Ax)yE -+ B(x)y+C(x)=0,

where A(x), B(x) and C(x) are polynomials in x such that deg A<2, deg B<4
and deg C=7. As in the preceding paragraph we have A(x)=a,x, B(x)=px*
4 Box®+B; and C(x)=71x"+7.x°+7:x°+7,x, where 7,#0. Hence, applying suit-
able transformations we have

4) Yi(axt+ Bty +x(x*—1)(x*—0)(x*—e)=0.

Suppose that N(P,) is {4,5,7,8}. Let = be the natural projection of S
onto S/<{¢>. There are meromorphic functions x, y on S such that x-¢=x,
ye¢p=—y and that the polar divisors of x and y are 4P, and 5P,, respectively.
Since x°¢=x and y-¢=—y, x and y* can be viewed as meromorphic functions
on S/<{¢> whose polar divisors are 2z(P,) and 5z(P,), respectively. Since z(P,)
is a Weierstrass point of S/<{¢>, we may assume that S/{¢) is defined by

Vi=x(x—Dx—a)x—p)x—7).
Since the polar divisor of Y is 5z(P,), multiplying a suitable constant we have
Y=Ax)+Y,
where A(x) is a polynomial in x such that deg A<2. Thus we have
®) y'—=2Ax)y*+ A —x(x —D(x —a)(x— B)(x—7)=0.
Since y(P,)=0 and x has the multiplicity at least 2 at x(P,),
A(x)—x(x—D(x—a)(x—B)x—7)

has at least one double zero.

Suppose that both N(P;) and N(P,) are {5, 6, 7, 8}. Let § be a holomorphic
differential on S such that ()=3P,. Considering #-+0-¢ we may assume that
0=0-¢. Then (0)=3P,+P,+Q+¢(Q), where P,+#Q.
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First, assume that P,# Q. Since {((3P,+Q+¢(Q))=3 and /(3P,)=1, we have
I(3P;+Q)=2, where /(D) is the dimension of the space of meromorphic functions
whose divisors are multiples of D. If there is a meromorphic function / on S
whose polar divisor is 2P,+Q or P,;+@Q, then the polar divisor of f—/-¢ is
P4+Q+¢(Q). If (flo=2P,;+Q, then using Lemma 4 we have that (2P,+Q)-+
(Pi+Q+¢(Q)) is a canonical divisor which contradicts the fact that 3P,+P,
+Q-+¢(Q) is also a canonical divisor. If (/)o=P;+Q, then S is hyperelliptic
and there is no meromorphic function whose polar divisor is of degree 3. This
is a contradiction. Therefore, there is a meromorphic function f on S whose
polar divisor is 3P;+Q+¢(Q). Put x=f+f-¢ and y=f—fo¢. Then (x)o=
2P, +Q+¢(Q) and (y)=P,+D-+¢(D)—(3P,+Q+¢(Q)), where D is a positive
divisor of degree 2. Viewing x and y* as functions on S/<{¢>, we have (x).=
o(P)+x(Q) and (y*)=n(P.)+2x(D)—Br(P)+2x(Q)). Since deg(x).=2, S/{¢>
is defined by Y?=A(x) where A(x) is a polynomial in x whose degree is 6.
Since y* is a meromorphic function on S/{¢>, there are rational functions B(x)
and C(x) such that

y2=B(x)+C(x)Y .
Let ¢ be the hyperelliptic involution of S/{¢>. Then Y=—Y-¢ and x=x-0
and n(Q)=n-0(P,). Therefore,
y2eo=DB(x)—C(x)Y .
Hence,
(B(x))eo=(y*-+y200)0=37(P)+37(Q)
and

(C()Y )= (y*— %0 0)o=37(Py)+37(Q) .

Since (V)w=3xn(P,)-+3x(Q), B 1s a polynomial of degree 3 and C is a non-zero
constant. Since

(B(x)*—(CY)*)=(y* - y*e0)
=n(Py)+0°m(Py)+2n(D)+20n(D)—5x(P)—5z(Q),

B(x)?*—(CY)* is of degree 5 and at least 2 double zeros. Thus, noting that
D=+2P, and applying suitable transformations we have

® PG et Bxb )y (1 (r e =0.

Next, assume that P,=Q, i.e. (§)=3P,+3P,. Using the Riemann-Roch
theorem we have [(3P,+P.,)=2 and [(2P,+2P,)=2. If there is a meromorphic
function x on S whose polar divisor is P;+P., then S is hyperelliptic and
defined by

©6) Y= (x2—1)(x2—a)(x?— B)(x—7)(x>*—3).
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If there is a meromorphic function f on S whose polar divisor is 2P, P,,
then the polar divisor of x=f—f+¢ is P,+P,. This is absurd.

Hence, if there is no meromorphic function on S whose polar divisor is
P,+P,, then there are meromorphic functions x and y whose polar divisors are
2P,+2P, and 3P,+P,, respectively, and x-¢=x, ye¢=—y. Viewing x and y?
as functions on S/<{¢>, we have (x)o=n(P)+nr(Py) and (y*)e=3r(P,)+n(P,). Let
S/<{¢> be defined by Y*=A(x), where A(x) is a polynomial in x of degree 6 and
let y*=B(x)+C(x)Y. As above, since y*.o0=B(x)—C(x)Y, B is a polynomial in
x of degree 3 and C is a non-zero constant. Putting (y)=D+@(D)—(3P;+P,),
where D is a positive divisor of degree 2, we have (y2)=2x(D)—Br(Py)+z(P,))
on S/<¢> and (y*-y*eo)=2n(D)+20°n(D)—4(x(P,)+=(P;:)). Hence,

B(x)—(CY)Y=a(x—b)*(x—c),
where a, b and ¢ are constants. On the other hand, the divisor of x—b is
D'+¢(D")—2P,—2P, for a positive divisor D’ of degree 2. Therefore, it is
viewed as 2z(D")—zn(P))—n(P,) on S/{¢>. Thus y*'—2A(b)y* has two double

zeros or one fourth order zero. Hence, A(b)=0. Applying suitable transforma-
tions we have

) yi+(xitaxi4 px)y -y x*(x—0)'=0.

Case (IV). Let Py, ---, P; be the fixed points of ¢. Since S/{¢) is of genus
zero, N(P,) is {3, 5, 6, 8} or {3, 6,7, 8. Then there are meromorphic functions
x, y such that x°¢=x, yed=wy or 0’y and that the polar divisor of x is 3P,
and that of y is 5P, or 7P,. By Lemma 1 we have

21D y3+A(x)yi+B(x)y+C(x)=0,

where deg A<2, deg B=<4 and deg C=5 or 7. Noting that x.¢=x and y-¢dg=wy
or w’y we have

(22) 8+ A(x)w?y?+ B(x)wy+C(x)=0
and
(23) 4+ Ax)wy*+ B(x)w*y+C(x)=0.

Adding (21), (22) and (23) we have
(24) y¥+C(x)=0,

that is, A(x)=0 and B(x)=0. Since y(P,)=y-¢(P)=wy(P;) or o*y(P;), (1=2,
-+, 6), we have y(P,)=0. Hence, x—x(P,) divides C(x). If y(Q)=0 for Q=P,
(j=1, -+, 6), then considering local expansions of x and y at Q, ¢(Q), ¢*Q)
we know that (x —x(Q)(x —xp(Q))(x —x°¢*(Q))=(x—x(Q))* divides C(x). Thus,

Clx)= II (x—x(P))7,
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where 3 v,=1 and X v,=5 or 7. Hence, applying suitable transformations we
have that S is defined by

) V=x(x—Dx—a)x—BNx—r), if NP)={3,5, 6, 8
and
(10) Y=xx—D(x—a)x— B x~7), if NP)={3,6,7, 8},

where «, 3, 7 are mutually distinct complex numbers.

Case (V). Let P, P, P; be the fixed points of ¢. By Lemma 2, we have
holomorphic differentials #,, §, whose divisors are 2P,+2P,+2P; and P;+P,+
P+ Q+¢(Q)+¢%(Q), respectively. Furthermore, 6,0¢0=0,, 0.c¢=wl, or w?f,,
where w*+o-+1=0.

If Q=P,, say, then 2P,=P,+P, and S 1s hyperelliptic. Thus S is defined
by

11) V= =D’ —a)(x*—p).

Suppose that Q@+#P,, P,, P,. Put y=6,/0,. Viewing y® as a function on
S/{¢>, we have that the divisor of y* is n(P,)+n(Py)+r(Ps)—3x(Q), where =
is the natural projection of S onto S/<{¢>. Let the torus S/{¢> be defined by
YVi=x(x—1)(x—a) so that =(Q) corresponds to (X, Y)=(co, o). Putting y*=
A(x)+B(x)Y, since (x)=27(Q) and (V).=37(Q), we have that A is a poly-
nomial in x of degree at most 1 and B is a non-zero constant. Thus we have

yi=patr+Y
and

(12) Y —2Bx A7)y H(Bx+7)—x(x—1)x—a)=0,

where 3 is a non-zero constant.

Case (VI). Let = be the natural projection of S onto S/{¢> and let ¢ be
the hyperelliptic involution of S/{¢>. Using Lemma 2 we can choose a basis
01, 05, 05, 0, of the space of holomorphic differentials on S such that 0,°¢=cw0,,
020 p=w?0,, 052¢0=0; and 0,o¢=0,. Let the divisor of 8, be P+¢(P)+¢*(P)+Q
+6(Q)+¢%Q). Since 6, and 6, are the liftings of holomorphic differentials on
S/<{¢>, we may assume that the divisor of @; is P+@(P)+¢*(P)-+P +¢(P’)
+@*P’), where n(P')=cen(P). If Q=P or Q=P’, then we shall not need 6,
in the proof and if Q+#P and Q=+ P’, then we assume that the divisor of 4, is
Q+¢(Q)+¢%(Q)+ Q' +¢(Q")+¢*Q"), where n(Q)=0c°7(Q).

Assuming that Q=P’ we have that #;/60, is a constant, which is a contra-
diction.

Assume that Q=P. Put y=6,/6,. Viewing y*® as a function on S/<{¢) we
have (y*)=3z(P’)—3x(P). Let S/{¢> be defined by Y?=C(x), where C(x) is a
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polynomial of degree 6 and both x(P) and =(P’) correspond to x:=-o. Put
yi=A(x)+B(x)Y, where A(x) and B(x) are rational functions in x. Then we
have

yleo=A(x)—B(x)Y,
(Dee=(y*+y*e0)e=3(x(P)+x(P"),

(BY )= (y*—y*00).=3(x(P)+x(P"))
and
(y?+y*eg)=(A*— B*C)=0.

Hence, A is a polynomial of degree 3 and both B and A?—B?C are non-zero
constants. Therefore, applying suitable transformations we have

13) YoH(ax’+BxP+rx+0)y*+1=0.

Suppose that Q@+ P and Q+P’. First, we avoid the case that =(P)=z(P’).
Suppose that P=P’. The divisor of a function /=86,/0, is P+¢(P)~¢*P)—Q
—d(Q)—9%(Q) and P-+¢(P)+¢*P) is a half-canonical divisor. Put g=6,6,/6,%
Since ge¢=wg, g is not a constant. Then the polar divisors of / and g are
Q+¢(Q)+¢*Q) both. Using Lemma 1 we have f=ag+b for some constants a
and b. Since W’f=f-¢=ag-¢p+b=awg+b, we have (w*—1)f=a(w—1)g, which
is a contradiction. Thus we have P#P’. Since ¢ is fixed point free, we have
n(P)#n(P’). Put y=1/f=6,/6:. Viewing y* as a function on S,/{é> we have
(3*)=3n(Q)—3x(P’) and (y*-¢)=37(Q")—3x(P). Let S/<{¢> be defined by Y2=
C(x), where C(x) is a polynomial in x of degree 6 and both =(P) and =(P’)
correspond to x=co. Put y*=A(x)+B(x)Y. As above we have A(x) is a
polynomial of degree 3 and B(x) is a non-zero constant. Viewing (y®-y%g)=
3(r(Q)+7(Q")—n(P)—=(P’)) and applying suitable transformations we have

A(x)*—B(x)?Y?*=x"’
and

(14) Yo+ (axi+ Bt +rx+0)y*+x*=0.

Case (VI). Let P, P, P;, P, be the fixed points of ¢. There are mero-
morphic functions x, y on S such that (x).=5P; and (y).=3P,, 4P, or 6P,. We
may assume that x-¢=x and y-¢=yxy, where » is a primitive fifth root of
unity. Then x has the multiplicity 5 at each of P,, P; and P, and we have

Yo =(x—x2(P))* (x — x(Py) (x — x(Py)”,
where A-+p+v=deg(y).. Applying a suitable linear transformation we have
15) y=x(x—1)(x—a),
(25) y=xx—D(x—a),
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(16) Y=x(x—1)*(x—a)
or
17) y=x(x—1D(x—a).

Apply the birational transformation X=1/x, Y=a ' yx~' to (25). Then the
surface defined by (25) is conformally equivalent to the surface defined by

y5:x(,\'*1)(,\'— i—) R

which is the same type as (15).
This completes the proof of Theorem 1.

§5. Details of Case (VII).

To prove Theorem 2 we shall discuss Cases (IV)-(VI) more closely. First
we do with Case (VI).

Suppose that S admits an automorphism ¢ of order 5. Then S/{¢) is the
sphere, ¢ has 4 fixed points and S is defined by (15), (16) or (17). We have
easily the following observation.

“If S is defined by (15), then the gap sequence of the point corresponding
to x=co is {3, 5, 6, 8} and those to x=0, 1, « are {4,5,7,8}. If S is defined
by (16), then the points corresponding to x=0, 1, a, oo i.e. all of the fixed
points of ¢ are not Weierstrass points. If S is defined by (17), then S is
hyperelliptic and the fixed points of ¢ are not Weierstrass points ”.

§6. Details of Case (IV).

Suppose that S admits an automorphism ¢ of order 3 such that S/{¢) is
of genus zero. Then S is defined by (9) or (10). It is noted that ¢ may be
defined by &(x, y)=(x, wy).

Suppose that S is defined by (9). Then the points (x, y)=(0, 0), (1, 0), (a, 0),
(B, 0), (7, 0) and (co, o) are Weierstrass points of weight 4 and these are all of
such points. Let ¢ be another automorphism of S. Since ¢ maps these 6
points onto themselves, @=¢@'oh~'oPo¢ fixes these 6 points. Using the Riemann-
Hurwitz formula we have that @ is the identity, ¢ or ¢% If @=¢? then ¢-¢
=¢. This is a contradiction. Hence, ¢op=¢g or degp=¢-¢>. Put ¢(x, y)=
(X, 7). U degp=¢e¢, then X(x, y)=X(x, wy). Hence, X(x, y)=X(x). If ¢o¢p=
¢o¢? then X(x, y)=X(x, *y). Hence, X(x, y)=X(x). Thus ¢ induces an
elliptic linear transformation of the x-sphere.

Suppose that S is defined by (10). Let vy be the number of Weierstrass
points whose gap sequences are {1, 2, 4, 5}. Since all the fixed points of ¢ are
Weierstrass points with the gap sequences {1, 2, 4, 5}, v=12, 9 or 6.
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Suppose that y=12. These 12 Weierstrass points are divided into two
groups A={P,, ---, P4 and B={P,, -+, P;,} such that 3P,= .- =3P, and
3P,= .- =3P,,. This is shown from Lemma 4. There is an automorphism ¢
such that o(A)=B, d(B)=A. ([5] Theorem 4). Suppose that ¢ 1s another
automorphism of S. If ¢(A)=A, then as in the above discussion we have that
¢ induces an elliptic linear transformation of the x-sphere. If ¢({P;, ---, P;})CA
(k=4 or 5), then for j=1, ---, k, O(P))=¢ tep"*opoh(P;)=P,. Using the Riemann-
Hurwitz formula we have that @ is the identity or ¢. Thus, as above, ¢
induces an elliptic linear transformation of the x-sphere. Hence, ¢(A)=A. If
G({Py, =+, Pr})CB (k=4 or 5), then g°¢)({Py, -+, P} )TA. Hence, o-¢p(A)=A.
Thus ¢p(A)=B, $(B)=A. If ¢({P;, P,, Ps})TA, then Q(P)=¢ op tepoch(Pj)=P,
for yj=1, 2, 3. Suppose that neither @ is the identity nor ¢. Then <@, ¢>, the
group generated @ and ¢, is a cyclic group of order 3y (#=2, integer). Since
¢ fixes P,, ---, Ps and no other point, P,, P; and P, are projected into the same
point on S/<{®, ¢>. Hence, p=3. Using the Riemann-Hurwitz formula we have
a contradiction. Thus @ is the identity or ¢. Hence, ¢(A)=A.

Suppose that v=9. These 9 Weierstrass points are divided into two groups
A={P,, -, P} and B={P,, Ps, Py} such that 3P,=-..- =3P, 3P,=3P;=3P,.
Suppose that ¢ is another automorphism. As in the case of yv=12, we have
¢(A)=A. Thus ¢ induces an elliptic linear transformation of the x-sphere.

Suppose that v=6. These 6 Weierstrass points P, ---, P, satisfy 3P,= ---
=3P,. Thus, as in the above discussion, every automorphism ¢ of S induces
an elliptic linear transformation of the x-sphere.

Thus a generic surface defined by (9) or (10) has the automorphisms group
of order exactly three.

§7. Details of Case (V).

Suppose that S admits an automorphism ¢ of order 3 such that S/{(¢> 1s a
torus. Then S is defined by (11) or (12).
If S is defined by (11), then the order of the automorphisms group of S is

at least 6.
Discussing the automorphisms groups of surfaces defined by (12), we shall
consider a particular surface. Let S be defined by

(26) Yt (ax—1—B)y*+x*—ax+ 5=0,

where a+#0, 8#1 and x*—ax-+8—(ax—1—0)*/4 has distinct three zeros. Let
S’ be defined by

27) Y3+3aw(l—o) X(X—1)(X+o?Y
+30(1—0) X(X—1)(X+w)*— S(X+0*)*)=0.

Applying the birational transformation



RIEMANN SURFACES OF GENUS FOUR 455

x=— YOy 31y,

’

we have that S is conformally equivalent to S’. The points P;, P,, P, on S
corresponding to y=1, w, @? i.e. to X=o00, 1, 0 on S’, are Weierstrass points
of weight 4. Since 3P, (j=1, 2, 3) are half-canonical divisors of dimension 2,
by Lemma 4 there is no other Weierstrass point of weight 4. Let ¢ be the
automorphism of S defined by ¢(x, y)=(x, wy). Then, ¢(P,)=P,, ¢(P,)=P, and
&(P;)=P; and S/{¢> is a torus.

Let ¢ be an automorphism of S. Using the fact that ¢ preserves {P;, P,, Ps}
we shall show that ¢ is the identity, ¢ or ¢

First, suppose that ¢(P,)=P, (=1, 2, 3). We shall show that ¢ is the
identity. If the order of <¢) is two, then the genus of S/{¢> is zero, one or
two. If it is zero, then S is hyperelliptic. If it is one, then 4 is a non-gap
value of P,. If it is two, then there are exactly two fixed points of ¢. All of
these are absurd. If the order of {(¢> is three, then the genus of S/{(¢)>
is zero, one or two. If it is zero, then there are 6 Weierstrass points of
weight 4 or there is no Weierstrass point of weight 4. If it is one, then P,
are not Weierstrass points of weight 4. If it is two, then there is no fixed
point of ¢. All of these are absurd. If the order of {¢) is five, then S is
defined by (15), (16) or (17). By the result of the section 5 it cannot occur that
there are exactly 3 Weierstrass points of weight 4. Suppose that the order of
{¢> is a composite number. Considering subgroups of <{¢) of prime orders and
applying the above results successively we have that ¢ is the identity.

Secondly, suppose that ¢(P,)=P,, ¢(P,)=P, and ¢(P;)=P,. Then ¢*J(P,)
=P, (j=1, 2, 3). Hence, ¢*-¢ is the identity and ¢=¢. Similarly, if ¢(P;)=PF,,
H(Py)=P,, $(Ps)=P,, then ¢-¢ is the identity and ¢=¢*

Lastly, suppose that ¢(P))=P,, ¢(P;)=P; and ¢(P;)=P,. Then ¢*(P,)=P,
(j=1,2,3) and ¢* is the identity. Put @=¢ tepleop=p*hpoc>¢). Since
O(P)=P,, O(P;)=P, and O(P,)=P,, we have O=¢ and ¢-p=¢%*¢. Let Q be
a fixed point of ¢. Since @*(Q)=¢ d(Q)=¢(Q), H(Q) is also a fixed point of
¢. Since there are 3 fixed points of ¢ and the order of <¢) is two, there must
be a common fixed point of ¢ and ¢. Thus (¢, ¢) is a cyclic group. This
contradicts @=¢.

Summing up we have that the automorphisms group of S is {¢).

The equation (26) is a specialization of (12). Hence, by Lemma 3 a generic
surface defined by (12) has the automorphisms group of order three.

§8. Details of Case (VI).

Suppose that S admits an automorphism ¢ of order 3 such that S/{(@) is of
genus two. Then S is defined by (13) or (14).

Consider the birational transformations (X, Y)=(x, 1/y), if S is defined by
(15) and (X, Y)=(x, x/v), if S is defined by (16). Then we have that the order
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of the automorphisms group of S is at least 6.

Conclusion. Summing up the results of the sections 6 and 7 and this
section, we can conclude Theorem 2.

Adaed n proof. Recently, R. Tsuji (Thesis, Nihon Univ. 1981) studied
related problems. He proved several results which overlap a part of Theorem 1.
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