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§0. Introduction.

Many authors have been studying the so-called generic (anti-holomorphic)
submanifold of a Kaehlerian manifold by the method of Riemannian fibre bundles
(see [6], [9], [10] and [12] etc.).

But, the present authors [17] studied a generic submanifold M of an odd-
dimensional unit sphere S*™*(1) under the condition that the structure tensor f
induced on M and the second fundamental tensor 2 commute. Moreover, one of
the present authors [4] gives characterizations of a generic minimal submanifold
of S*™*%(1) that h and f anticommute.

The purpose of the present paper 1s devoted to generalize the notions of the
previous facts and characterize a generic submanifold of S*™*(1) tangent to the
Sasakian structure vector field defined on S?™*Y(1).

In §1, we recall fundamental properties and structure equations for generic
submanifolds immersed in a Sasakian manifold and define the structure tensor
induced on the submanifold to be antinormal.

In §2, we prepare a theorem on submanifolds of S?™*!(1) which is used
later very usefully.

In §3, we find some results of generic submanifolds of S*™*!(1) with &*+0,
where &% is the normal part of the Sasakian structure vector &.

In §4, we investigate (m-+1)-dimensional generic submanifolds of S*™¥!(1)
with &%+0.

In §5 we determine generic submanifolds with antinormal structure of

S2m+1(1) with £%=0.
In the last §6, we characterize generic submanifolds of S*™*(1) tangent to

the Sasakian structure vector field.

§1. Generic submanifolds of a Sasakian manifold

Let M*™*! be a (Z2m+1)-dimensional Sasakian manifold covered by a system
of coordinate neighborhoods {U; y"} and (¢,", g,, &*) the set of structure
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tensors of M/*™*! where here and in the sequel, the indices A, z, 7 and % run
over the range {1, 2, ---, 2m+1}. We then have

1. o, "¢l =—0r+E£", §;47=0, ¢,"6’=0,

Ejszl y Ez:gﬂs] B ¢Jk¢ihgkh:gji—$f::z
and

(1.2) V=", V,$i"=—g;&"+3d7&.,

where V, denotes the operator of covariant differentiation with respect to g,,.

Let M™ be an n-dimensional Riemannian manifold isometrically immersed in
M?*™+1 by the immersion 7: M"—M?*™*! and identify 7(M™) with M™ itself and
represent the immersion z by y"=3"(x*) (throughout this paper the indices
a, b, ¢, d and e run over the range {1, 2, ---, n}). If we put B,"=0,y", 0,=
0/0x® then B,” are n linearly independent vectors of M?®*™*! tangent to M™.
Denoting by g., the fundamental metric tensor of M™", we then have

(1.3) gcb-“—Bcth”ghk

because of the immersion isometric.

We now denote C,"* by 2m-+1—n mutually orthogonal unit normals of M"
(the indices u, v, w, x, y and z run over the range {n-+1, ---, 2m+1}). Thus,
denoting by V. the operator of van der Waerden-Bortolott: covariant differenti-
ation with respect to the Christoffel symbols {.%;} formed with g, we obtain
equations of Gauss and Weingarten

(1.4) VB =he,*C",
(1.5) vccxh:—hcarBah

respectively, where h.,* are the second fundamental tensors with respect to the
normals C," and h.%,=h,Yg*°gys, gy being the metric tensor of the normal
bundle of M™ given by g,.=g;C,’C,", and (g)=(g.)%

A submanifold M™ of a Sasakian manifold M*™*! is called a generic (an
anti-holomorphic) submanifold if the normal space No(M™) of M™ at any point
PeM™ is always mapped into the tangent space Tp(M™) by the action of the
structure tensor ¢ of the ambient manifold M*™*!, that is, ¢Np(M™)CTT p(M")
for all P=M™ (see [4], [7] and [12]).

A submanifold M™ of a Sasakian manifold M?®*™*+! is said to be antz-tnvariant
(totally real) if ¢Tp(M™)CTNp(M™) for all Pe M™ (see [11]).

From now on, we consider throughout this paper generic submanifolds
immersed in a Sasakian manifold M?>™*!. Then we can put in each coordinate
neighborhood

(1.6) ¢,"BI=f"B,"—f."C.",
(17) ¢Jhcz]:fzaBah ’
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(1.8) gIL:”aBah_I_ézczh ,

where f,* is a tensor field of type (1, 1) defined on M™", f.® a local 1-form for
each fixed index x, »® a vector field and &% a function for each fixed index x,

and f2=fg%gya
Applying ¢ to (1.6) and (1.7) respectively and using (1.1) and these equations,
we easily find ([4], [7])

I [Efet= =0t o nen®,
Cfet=—nE", [o°f=01—E.8Y,
(19) [ 7 f=°f
I ﬁefea:—éxfza , 7}e =0,
gdefcdfbe:gcb—fczfxb”—77c7]1; , 7]a7]a—|—5151:1 s

where 7,=g.,7°% But, the last relationship follows from (1.3), (1.8) and the
fact that £;57=1.
Putting foo=/."ges and f..=f.Yg, then we easily verify from (1.9) that

fcb:—'fbc: fcx:f.zc'
When the submanifold M™ is a hypersurface of M?2™*! (1.9) becomes the

so-called (f, g, u, v, A)-structure ([1], [2]), where we have put f.*=u, 7*°=v%
The aggregate (f.% g fc5 7% &) satisfying (1.9) is said to be antinormal
([4], 18D if

(1.10) /lcezfea‘l_fcehearzo
holds, or equivalently
(1.11) hee™ fol=hpe"f° .

In characterizing a generic submanifold of an odd-dimensional sphere, we
shall use the following theorem.

THEOREM A ([1], [8]). Let M®*™ be a complete hypersurface with antinormal
(f, g, u, v, A-structure of an odd-dimensional unit sphere S*™*'(1). If the func-
tion A does not vanish almost everywhere and the scalar curvature of M*™ 1s a
constant, then M®™ 1s a great sphere S*™(1) or a product of two spheres

S™1/4/ 2)xS™1/V/ 2).
Transvecting (1.11) with f,° and using the first relation of (1.9), we find
hee™(—04+fo’f +1an)=hoe"[°fa’
from which, taking the skew-symmetric part,

(1.12) (hee® 15 — (o™ 1 A (hee™ 7)o — (o™ ) 1 =0
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Differentiating (1.6)~(1.8) covariantly along M" and using (1.1)~(L.5), we
find respectively (see [4], [7])

(1.13) Vefo" =—gan" +0enutha™fa" —he 2 [o*,
(1.14) Ve fo' =gaf+ hee o

(1.15) hetofe! =V fos,

(1.16) Vep=feot+he®Es,

(1.17) Vef™=—f"—he"n*

with the help of (1.6)~(1.8).
For an anti-invariant submanifold of an odd-dimensional unit sphere, Yano
and Kon proved in Chapter 4, Theorem 6.5 of [11]

THEOREM B. Let M be an (n-+1)-dimensional compact orientable anti-invariant
submanifold with parallel mean curvature vector of S***'(1). If the mnormal
connection of M 1s flat, then we have M=S(r,)X -+ XS(¥p4+1), ri+ - +ri =L

§2. Submanifolds of S2™*+%(1)

Let M™ be an n-dimensional submanifold of an odd-dimensional unit sphere
S?m+1(1), then the equations of Gauss, Codazzi and Ricci for M™ are respectively
given by

(21) chba:(sggcb—‘aggdb_i' hdazhcbr_ hcaxhde »
2.2) Vaheo® —Vehey®=0,
(2-3) chyz’:hdexhcey"‘hcezhdey )

Ka® and Ky, © being the curvature tensor of A" and that of the connection

induced in the normal bundle respectively.
We now suppose that the connection induced in the normal bundle of M™ 1s
flat, that is, Ky4.,”=0. From the Ricci identity

VVehyo® =V Vghyo®= —Kieo®hae® —Kacahoo™
we have

2.4) (g% Vo hey®)h s — (T Toh ™) A =Ko hey— Kycoa R4V hYy

because of (2.2), where we have put A?=g%h,% Kiwa=Kaics’Gaer Ken=8""Kycpa-
We have from (2.1)

(25) ch:(n_l)gcb+ hrhcbr‘—hcerhbfr

which implies
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(2.6) K=nn—D+hh®—h,"h®,,

K being the scalar curvature of M™.
Moreover we have from (2.3)

(27) hcexhbey:hberhcey .
Substituting (2.1) and (2.5) into (2.4) and taking account of the identity

%A(hcbrhc”x)=(g"“vﬂahcbf)h”’fr IVaheo|?,
we have
2.8) %A(hcbfh””z):n hey"h® e —hoh®+h* heer Y hY,
—(hep"h®¥)(haqeh®® ) +(T A" A o4 Vo heo™ |2

with the help of (2.7), where A=g%*V,V,.
If the mean curvature vector of M™ is parallel in the normal bundle, that
is, V.h*=0, then (2.8) implies

(2.9) éA(hc,,“h"’I):n he"h®e—heh*+hahe" by Y he,
‘(hcbzhcby)(hdazhday)‘f‘ [Vaheo®|?.

For a submanifold of an m-dimensional sphere S™, Yano and Kon [12]
proved the following theorem :

THEOREM C. Let M be a complete n-dimensional submanifold of S™ with flat
normal connection. If the second fundamental form of M is parallel, then M 1s a
small sphere, a great sphere or a pythagorean product of a certain number of
spheres. Moreover, if M 1s of essential codimension m-n, then M is a pythagorean
product of the form

SPu(r)x - X SP¥(ry), 73t - +ry=1, N=m—n+l1,
or a pythagorean product of the form
SPi(r )X o XSSPV (ry )TS™ ()T S™,

ri+ - % =ri<l, N'=m—n.

§3. Generic submanifolds with £,+#0 of S*™*!(1)

In this section we consider a generic submanifold satisfying (1.11) of an
odd-dimensional sphere S*7*(1).
Transvecting (1.12) with »® and taking account of (1.9), we find
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@.D — (o™ 0" ff "+ A= ) hee™ 7 —(hae™ 7% ) 0.=0,

2

where p?=£,5%, from which, transvecting f,° and using (1.9),

)azhcexﬁefyc:(hbexﬂbfzeéz)sy .
Thus (3.1) becomes
(3.2) 1A= hee® o= (hae" P )9+ (hoe" 9 66 oV .

We now suppose that the function g does not vanish almost everywhere
and n=#m, then so does p(l—g?®). In fact, if 1—p® vanishes identically, then we
see from the last relation of (1.9) that 7,=0 and hence f.,,=0 because of (1.16).
Thus, it follows that 0=f,,f®*=2(n—m) with the help of (1.9). Therefore
p(1—p* is nonzero almost everywhere.

Consequently (3.2) implies

3.3) he*p*=DB%n.+ A%, [,
where we have put
Ar=(hee™ .56 (A=), B*=(ha"n*9)/(1—p?).
Substituting (3.3) into (1.12), we find
(hee™ f:)f 6" = (hoe™ SV f AR P my—E. o’ ) =0,
from which, transvecting f,° and making use of (1.9),
(3.49) ee® [y —(hee® [:6)6y = (hao®f:° 4 )f " — (1= ) A6 1. =0.
Using (1.9), (1.11) and (3.3), we have

hcel‘fzeszz_hcexﬁafae:'_haez afce:_BIEz fcz+ﬂ2AI77’c .
Thus, (3.4) becomes

(35) hcezfye:Pyz'rfcz"l— Axgyﬁc ’
where we have put
Pyzx:hdezfzdfye_BIEzSy )

which implies P,,*=P,,”.
Putting P,,.=P,.” g, and taking account of (1.15), we see from (3.5) that

(36) (Pyzx_szy>fcz+(Az$y_Ay51>77c20:
where A,=g,,.4?. Transvection 7 and f,° gives respectively
3.7 AzEy—AE.=0,

(3~8) (Pyzx—Pzzy)SZZO)



GENERIC SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR 359

because 1—u? does not vanish almost everywhere. If we transvect (3.6) with
f»° and use (1.9) and (3.8), then we obtain P,,,=PF,,,. Hence P,,, is symmetric
for any index.

Transvecting (3.5) with f,¢ and taking account of (1.9), we find

hee™ [y fa’=—Py."Enat A6y, fo),
from which, using (1.9), (1.11) and (3.3),
3.9 P,,*&4-B*¢,=0,
which implies
(3.10) B.&y—By§,=0,

because P,, is symmetric for all indices.
o being nonzero almost everywhere, (3.7) and (3.10) give respectively

(3.11) A*=pE*, B*=af?,

where B=A%¢,/y?, a=DB",/u’
Thus (3.3), (3.5) and (3.9) reduce respectively to

(3.12) he®n*=E%(anc+ B f5),
(313) hcezfye:Pyzrfcz_l_ B‘Ezéy 7]6 4
(3.14) Pt =—af™,.

Transvection (1.11) with f¢ yields
0=he"(—go+ o .4 ) =—h®+ Py, " (g¥*—3V&) +as®(1—p?)
=—h*+P*4aé®

with the help of (1.9), (3.12), (3.13) and (3.14), where P*=g¥*P,,*. Hence, it
follows that

(3.15) h*=P*+at*.
Transvecting (2.7) with f,’ and using (3.13), we get
hee™(Puyo f 204 BEE )= e’ (Pu " fo ¥+ 557¢. 1)
from which, using (3.12)~(3.14),
(3.16) Py Pt f =Py, " Py [

If we transvect (3.16) with f,¢ and f,° and take account of (1.9), we get
respectively

Pwyzpvwrévﬁa:szIvawévﬁa ’ PwszvwI(‘S?L’_Eusv):Puzzszyw(52_§u§v> .
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The last two relationships give

(3.17) Py Por” =PyooPoy™

because 1—g? does not vanish almost everywhere, which implies

(3.18) P,, P*¥*=P P*,

where P,=P’g,,.

LEMMA 3.1. Let M™ (n#m) be an n-dimensional generic submanifold with
flat normal connection of S*™*X(1). If the induced structure (1%, Zeor 25 7% &%)
on M™ 1s antinormal and the function &§,£% is nonzero almost everywhere. Then

we have a(n—m—1)=0.
Proof. From (3.12) we have
I1cez7]e€x:aﬂ2770+ﬁ/f(é.rfcr) .

Differentiating this covariantly and substituting (1.14), (1.16) and (1.17), we
obtain
(vdhcez)ﬂe€x+hcez$x<fde+hdeyEy)_hcezve(de"‘hdax7]a)

=(Valap))netVa(Bp)afe" +ap(facthae"€e) = Bp'f e (faat haean®)
+Bu*eo(gack™+ha"f),
from which, taking the skew-symmetric part and using (1.11), (2.2) and (2.7),
(3.19) Valap)ne—dlap)na+Va(BuNEaf* =V B NEaf " +2a 0% fuc
+a(Brt+DEf " ne—Eaf"na)=0

with the help of (3.12).
If we transvect (3.19) with % and take account of (1.9), then we get

(3.20) (A= )WValap)=n Vlap))na+ {nVBp*)—2ap’—a( B+ 11— p*)} E fo™ .
Next, transvecting (3.20) with &/,% and using (1.9), we get

(3.2 § [ Nelap®) = {n Ve Bp*)—2ap® —a( B+ 1)(1— )} 2

because 1—y* does not vanish almost everywhere.
In the next step, transvect (3.19) with £,¢ and use (1.9). Then we have

A=AV (Be®)t =1 AV )} a4 f.AVLBpO} Eaf o +2a 1,74
+a(Brr4-1)1— .74 .

If we transvect this with &%, then we have
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A=) {Va( B =& 1. Vlap®)} 9a+E A VLB o fu™+2ap' na
+a(Bp+ DA — )y -
Substituting (3.21) into this equation gives
(3.22) Q=N G(Bet)=p* {9V BeP)} na+ A€ V(B E S a” -
Substituting (3.20) and (3.22) into (3.19), we get
a{(l—p)fac—(Eafa"ne—Ec " na)t =0,

because p(1—p*) does not vanish almost everywhere, from which, transvecting
/% and making use of (1.9), 2a(1—p*)(n—m—1)=0, that is, a(n—m—1)=0. This
completes the proof of the lemma.

§4. (m-+1)-dimensional generic submanifolds with &,+#0 of S*"*(1)

In this section we consider an (m-+1)-dimensional generic submanifold of an
odd-dimensional unit sphere S2™+i(1).

First of all, we prove

LEMMA 4.1 Let M™* be an (m+1)-dimensional generic submanifold with flat
normal connection of S*™*+(1). If the induced structure on M™*' is antinormal
and the function p 1s nonzero almost everywhere. Then we have

4.1 hey® Ry =P P, *+(a*+28°u*)E%E, .
Proof. We now compute
I(A—=p2)fae=nebaf e+ na€af T 1P=A— 2 fac f =201 = p2)E. [ ) Ew f )
=1 g fae f *—2p)=0
with the help of (1.9). Hence we have
4.2) A= fae=Esfa"ne—Efc"Na -
Using this, we have
(A= hee™ ho®y fa"=heo ho®y (& fa* 7" —E. /"7 0)
=hee"&y(an®+ BEw ) a" — he"E(Puy fe" - PEE )7
because of (3.12) and (3.13), from which, taking account of (3.12)~(3.14),
A=phee® ho®y fo"=(a*+ B2 (o fa™ ne—E. 1 1) -

Thus, it follows that
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(4.3) hee"ho®y fa"=(a+ B2 u®EEy fae

because of (4.2) and the fact that 1—pg® does not vanish almost everywhere,
which derived from n=m+1.
Transvecting (4.3) with f%¢ and making use of (1.9), we find

hee” Moty (8" — 0 =7y ) =2 pX(a+ BPpME"E,
because of n=m-+1, from which, using (3.12)~(3.14),
heo™ Ry — (P fo¥ + BETE D) (Pyoof -+ BE 6.7 —E7E (amet BE. fe ) an ™+ BEw £°7)
=2p%a’+ B p*)E%E, ,
or, taking account of (1.9), (3.14) and (3.17),
hes” Ry —P*Py, "+ ot u?€76, — BPp*(1— p)6°8  — (1 — )6 "¢,
—&%6, B8 u(g" P —EEY)
=2pMa’+ BA)E7Ey
Hence, (4.1) is valid.

LEMMA 4.2. Under the same the assumptions as those stated in Lemma 4.1,
we have a=f=0 if m>1.

Proof. Applying the operator V¢ to (1.11) and substituting (1.13), we find
(Veh®) fof=—he"*(— geo*+ 0t hey f.0— 5 f37)
Fhpe" {—m+1D)n°+9°+h*f.0—h.’, [}
with the help of (2.2), from which, using (3.12), (3.13) and (4.1),
(Veh?)fyt=—(m—DE an,+ BE. fo) — h™ o+ h*(Py." " + BE"E. 1)
2Py (P fo¥ o+ BETEY o) —2B € (amyt BEL fi7)
+ PPy [l (228 uNE"E, [,
or, taking account of (3.14), (3.15) and (3.17),
4.4) (Veh®) fo* =—(m—D)E N ans+ & [+7)— "o+ B(R*€)ET 7,
On the other hand, we have from (3.14) and (3.15)
4.5) h2§%=0.
If we differentiate (4.5) covariantly and substitute (1.17), we find

(vdllr)éx—hr(fdx—hdex‘/]e):() >
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or, use (3.12) and (4.5), £,(Vah*)=h"f,,. Therefore, we have
(46) Sx(vehr)fbe: xferfbe:_hrgxﬁbzo

with the help of (1.9) and (4.5).
Transvecting (4.4) with &, and making use of (4.5) and (4.6), we get

(m—1)p*(an,+ B, 1,7)=0.

Thus, it follows that a«=8=0 because p(1—p*) does not vanish almost everywhere.
Hence, Lemma 4.2 is proved.
Using Lemma 4.1 and Lemma 4.2, we now prove

THEOREM 4.3. Let M™* (m>1) be an (m-1)-dimensional complete generic
submanifold with flat normal connection of an odd-dimensional unit sphere S*™+(1).
If the mean curvature vector is parallel in the normal bundle, the induced struc-
ture on M™*' 1s antinormal and the function §,6% does not vanish almost every-
where, then M™* 1s a great sphere S™(1).

Proof. From Lemma 4.1 and 4.2, we get
“4.7) hey®h®y=h h®

with the help of (3.15) with a=0.
Since we see from (1.9), (3.13), (3.14), (3.15), (3.18) and Lemma 4.2 that

laey™ =Pyl o 1P =Ry Ry — Py PRV =Ry TR, — R, 1%,
the following relationship is valid:
(4.8) heo® =P, fVfo" .
On the other hand, the mean curvature vector being parallel, (2.9) becomes
Mhph®+ 7 heowhy™ Ry — (R hY)(haazh®® )+ IV ahey™[*=0

because of (4.7). Substituting (4.7) and (4.8) into this and taking account of (1.9),
(3.13), (3.14), (3.18) and Lemma 4.2, we find

mhyh*+h*Pyy,PYP*—P,,,PTPVP*+ |V h,"||*=0,

from which, using (3.15) with =0, A*=0 and V;h.,*=0 and hence h."=0 by
virtue of (4.7). Thus, by completeness, M™*! 1s a great sphere S™*!(1). This
completes the proof of the theorem.

§5. Complete generic submanifolds with £,+0 of S*™*'(1)

In this section, we consider that M™ (n#m) is an n-dimensional generic
submanifold with flat normal connection of an odd-dimensional sphere S?*™+!(1).
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Moreover, we suppose that the induced structure on M™ is antinormal and the
function £.£° does not vanish almost everywhere. Then we see from Lemma
3.1 and Lemma 4.2 that «=0 on M™. Thus, (3.12)~(3.15) reduce respectively to

(5.1) hee™ ' =BE"E, [,

(6.2) hee” [y =Py [+ PEEy e »
(5.3) P,.7&=0,

(5.4) h*=P*,

From (5.2) and (5.4), we have
(5.5) hee"fo*=hafe"+ B .

We first prove

LEMMA 5.1. Let M™ (n#m, m>1) be an n-dimensional generic submanifold
with flat normal connection of S*™*'(1). Suppose that the mean curvature vector
is parallel, the induced structure on M™ is antinormal and the function p does

not vanish almost everywhere. If the scalar curvature of M™ is a constant, then
we have =0 or Bp*=1.

Proof. Differentiating (5.5) covariantly and substituting (1.14) and (1.16), we
find

(5'6) (Vd hcez)fxe+ hcex(gdeéx'l“hdazfea)
- hx(gdc€x+ ]‘ldexfce)'{‘,@/lQ(fdc_‘_ /ldchT)Jr(Vd(ﬁ/f))m ,

because the mean curvature vector is parallel, from which, taking the skew-
symmetric part and using (1.11), (2.2) and (2.7),

&7 20T haaa f* =281 f act(Va(Be))n.— (N Be*))na

If we transvect (5.7) with %° and take account of (1.9) and (5.1), then we
obtain

(5.8 A=AV B )= {nVe(Br*)} na+282(B*—D)Eo fa™ .
Substituting this into (5.7), we get
(5.9) A—=ph heao fo =P A—p)  act BBt —10Ex fa" De—Ecfc Y a)

because of (1.11).
On the other hand, we have

(5.10) hetheqofa®f %
:hcexhear(g f”f a_77 77
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=hey"h®o—(Py o fV 4 BEE 9 N Pooz fo + BEE. 1) —(BELE. [ ) BEZE, [.Y)
=hey" Wy — Py P Py oa(g¥ —EVEY ) — B p'(l—p?) — B8 £ (g VP —£7€7)
=h Ry —h, h*—282p (1 —p?)

with the help of (1.9), (3.17) and (5.1)~(5.4).
Transvecting (5.9) with f¢¢ and using (1.9) and (5.10), we find

A= {hep™h®y—hoh*—282p(1— p?)}

=B (l—p)2n—2m—242p°) 428" (Bp*—1)(1—p?),
from which,
(6.11) hep" R e=hoh*+-2Bp*(n—m—1-+ Bp?)

because 1—y* does not vanish almost everywhere. Thus, we see from (2.6) that
the scalar curvature K of M" is given by K=n(n—1)—28p*(n—m—1+ppu?).
Since K is a constant, by differentiating we find (n—m—14+28p%)V.(34*)=0,
which implies that =0 or V.(Bu*)=0 because of n—m—1+28p*=0. Therefore,
we see from (5.8) that Bup?=1 in the case of [+0, that is, V.(fp*)=0. This
completes the proof of the lemma.

THEOREM 5.2. Let M™ (n#m, m>1) be an n-dimensional complete generic
submanifold with flat normal connection of odd-dimensional unit sphere S*™+(1).
Suppose that the mean curvature vector s parallel i the normal bundle, the
induced structure on M™ is antinormal and the function &% does mot vanish
almost everywhere. If the scalar curvature of M™ 1s a constant, then M™ s a

great sphere S™(1) or a product of two spheres S™1/~/ 2)XS™1/+/ 2).

Proof. By Lemma 5.1, we consider two cases that S=0 and fz°=I1. In
the first case, we have from (5.11)

(5.12) hey®h,=h h®.

Hence, as in the proof of Theorem 4.3, we see that M™ 1s a great sphere S™(1).
In the next place, we consider the case in which Bp*=1. Differentiation
covariantly yields

(5.13) (Ve p+288,N.6=0,
from which, taking account of (1.17) and (5.1),

/«¢2<vc,8)—‘2/3(€.vfcx"!‘ ,Bﬂzé.tfcz):o
and consequently

(5.14) Ve p=45%¢. /"
because of Su’=1.
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Differentiating (5.2) covariantly and substituting (1.14), (1.16), (1.17) and (5.14),
we find

(vdhcer)fye+llcer<gde$y+hda yfea)
:(vdPyzz)fcz'i'Pyzx(gchZ"i_ hdezfce)+4,82(Ezfdz)770€xéy
—,B(fdx‘l',BEszfdz)Ey770"—ﬁfz"?c(fdy+,8§y$zfdz)+‘8$z§y(fdc+ hdczéz)

with the help of (5.1), from which, taking the skew-symmetric part and making
use of (1.11) and (2.2),

(6.15)  2hlfrhaay [ ' =(VaPyoo)f—(VePy.o)fa*+28°6:Ey (& fa* ne—E. 1 a)
2By fae—BEaSay+Ey faa)pe—EafeyTEy feo)al .
Transvecting (5.15) with f,°»? and taking account of (1.9) and (5.1)~(5.3),
we get
=2 (1= &€ €
=0 VePywa— VP, y )60 —285(1— 1) 266w
—2B(0— 8288wt BL— ) {€a(gyw—E1Ew) +E(gue—EwE )}
from which, using (5.3) and the fact that Su’=l1,
NVePywzt Pry e (Ve )Ew —2B(B— 1€ 6w +H(B—1(€2gyw+Ey82w)=0
or, taking account of (1.17), (5.1) and (5.3),
7VeLyu e —2B(f—1)E26 60w +(B—1D(ogyw+Ey82w)=0.
If we transvect this with g“® and use (5.4), we obtain
PN AY—=2(8—1)EV+H(B—1)2m—n+2)Ev=0.

Since the mean curvature vector is parallel in the normal bundle, it follows that
n=2m because of Bp*=I1. Hence M" is a hypersurface of S#”+!(1). According
to Theorem A in §1, M™ is a product of two spheres S™(1/4/2)XS™1/+/2).
Therefore Theorem 5.2 is proved.

§6. Generic submanifolds with £,=0 of S2™*(1)

In this section we suppose that a generic submanifold with £*=0 and flat
normal connection of S2™*!(1) satisfies (1.11). Then (1.9) reduces to

fcefea:—ag"l—fcxfxa’,_ 77c7]u s
©.1) fEfe=0, pfet=0, peftT=0, [of"=0L,
gedfcefbd:gcb_fcrfzb_ﬁﬂ/’b, 7]57}7621
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and (1.14)~(1.17) to
6.2)
6.3)
6.4)
(6.5)

Vef/o"=hee"fo"
hefofe! =he" fea
Vens=/es

he" nP=—fc".

Transvecting (1.11) with f,°f,° and taking account of (6.1), we find

—hoaf P (hoe™ 00 " na+ (oo™ [ .0 f * =0,

from which, using (6.5),

(6.6) hee” [y =Py [ =037,

where we have put P,,"=hq"f,°f.".
We put P,.,=P,,”gws then as in the proof of §1, we see from (6.3) that
P,., is symmetric for all indices.
If we transvect (1.11) with f® and make use of (6.1), then we get

/1I:hcexf02f28_|_ hce‘l‘yicy]e ,

or, use (6.5) and (6.6),
6.7)

where we have put P*=g¥"P,,".

he=P*

367

Since the normal connection of the submanifold is flat, by transvecting (2.7)
with f,° and taking account of (6.5) and (6.6), we get

Pyzw(Pwvxfcv—aﬁﬁc)_!_gyzfcx:szz(vawfcv_‘az)vc)”i"affcy »

from which, transvecting f,° and using (6.1),

(6.8) Py Y P+

gyz5£:Puvz$Puyw+5zxgyu .

Contraction with respect to z and x yields

(6.9 P,.. P,

:Pxpyux"}“(p_l)gyu »

where p=2m+1—n, and consequently

(6.10) nyszyz:/lxllz‘l—p(ﬁ_l)

with the help of (6.7).

Differentiating (6.6) covariantly and substituting (6.2) and (6.4), we find

(vdhcex)fye+ hcexhda yfea:(vdpyzx)fcz_‘_Pyleldezfce—ﬁzfdc s
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from which, taking the skew-symmetric part with respect to d and ¢, and using
(1.11) and (2.2),

(6.11) 2R heay fa*=(NaPy.")f " —(VePy, ") fo* =205 f ac -
If we transvect (6.11) with f,¢ and use (6.1), then we obtain
VP =(f, Ve Pyu®) ™ .
Using P,,*=P,,” and substituting this nto (6.11), we have
heezha®y [a"=gysfea -
Transvection f,¢ gives
hoesha®y(—=08+ 15" f* T 007" )= gy ol @ev—Fe"fo—7e70) »
from which, using (6.5) and (6.6),
(6.12) eeahs®y=Pys" Puva [ fs" = Pyea( [y e+ fe*70)
28yt feafoy—Gyae(ge—f fan) «
Transvecting (6.12) with g and taking account of (6.1) and (6.9), we get

hcbxthy:PZszx+(2p+2_n>gyx ’

from which,

(6.13) heo® P s=h h*+p2p-+2—n)

and

(6.14) (hep®h¥)(hgarh®® ) =Py hV WP h*+(p—1)hh*

+22p-+2—n)h h®+-p2p+2—n)*

with the help of (6.7) and (6.9).
Since we have from (6.9) and (6.12)

hcezhbez:Pxszzfcysz+2p(fbxfcr+ ﬁcﬁb)_PI(szﬂc"‘f‘fxcﬁb)—pgcb s

it follows that
(6.15) hohpazhe®y ROV =Py, hY R*h*=2p+1Dhh*

with the help of (6.6)~(6.9).
Substituting (6.13) and (6.14) into (2.8), we find

%‘A(hcbmhd’x):(n—‘p—"l) {8hah®+2p2p+2—n)} +(VVh*) R+ [V ahe" I,

from which, using (6.13) and the fact that p=2m-+1—n,
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1
(6.16) S Ahey"h?o)=2(n—m—1) Zhey" A x4 hoh™} (VT ) Ao+ [ Vo) |2

Now, assuming the mean curvature vector is parallel in the normal bundle,
that is, V.4*=0, then we know that h.,*h%, is a constant because of (6.13).

Thus, (6.16) implies
6.17) (n—m—1){2h,"h,-+h h*} =0
and YV h.,,*=0. Since we see from (6.1) that

(6.18) feoSP=2(n—m—1)=0.

If 2hey*h s+ h,h*=0 and hence h.,*=0, then (6.5) means P,.*f. —d;7.=0.
Transvection 7° gives p=2m-+1—n=0. It contradicts the fact that the codimen-
sion p=1. Thus, (6.17) implies n=m-41. From (6.18) and the fact that the
submanifold is (m--1)-dimensional, we have f,=0. Therefore, we see from (1.6)
that the submanifold is anti-invariant. Moreover, if M™ is compact orientable,
according to Theorem B in §1, then we have

THEOREM 6.1. Let M™ be an n-dimensional compact orientable generic sub-
manifold with flat normal connection of an odd-dimensional unit sphere S*™*(1).
Suppose that the mean curvature vector 1s parallel in the normal bundle and the
induced structure on M™ is antinormal. If the Sasakian structure vector & defined
on S*™*(1) is tangent to the submanifold, then M™ is

SUr)X e XS rper), 1t s Frha=1.
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