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§ 0. Introduction.

Many authors have been studying the so-called generic (anti-holomorphic)
submanifold of a Kaehlerian manifold by the method of Riemannian fibre bundles
(see [6], [9], [10] and [12] etc.).

But, the present authors [17] studied a generic submanifold M of an odd-
dimensional unit sphere S2 m + 1(l) under the condition that the structure tensor /
induced on M and the second fundamental tensor h commute. Moreover, one of
the present authors [4] gives characterizations of a generic minimal submanifold
of S2m+1(l) that h and / anticommute.

The purpose of the present paper is devoted to generalize the notions of the
previous facts and characterize a generic submanifold of S2 m + 1(l) tangent to the
Sasakian structure vector field defined on S2 m + 1(l).

In § 1, we recall fundamental properties and structure equations for generic
submanifolds immersed in a Sasakian manifold and define the structure tensor
induced on the submanifold to be antinormal.

In § 2, we prepare a theorem on submanifolds of S2 m + 1(l) which is used
later very usefully.

In §3, we find some results of generic submanifolds of S2 m + 1(l) with ξx-~0,
where ξx is the normal part of the Sasakian structure vector ξ.

In §4, we investigate (??z+l)-dimensional generic submanifolds of S2 m + 1(l)
with ξxΦ0.

In § 5, we determine generic submanifolds with antinormal structure of
52 m + 1(l) with ξxΦ0.

In the last § 6, we characterize generic submanifolds of 52 m + 1(l) tangent to
the Sasakian structure vector field.

§ 1. Generic submanifolds of a Sasakian manifold

Let M2m+1 be a (2m-f-l)-dimensional Sasakian manifold covered by a system
of coordinate neighborhoods {U yh} and (φjh, gJt, ξh) the set of structure
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tensors of M2m+1, where here and in the sequel, the indices h, i, j and k run

over the range {1, 2, •••, 2772 + 1}. We then have

(1.1) φ/φi^

and

(1.2) V£h = φjh, Vjφih=-gjiξh+δϊζτ,

where 7^ denotes the operator of covariant differentiation with respect to g3l.

Let Mn be an n-dimensional Riemannian manifold isometrically immersed in

M2m+i b y t h e i m m e r s i o n i: Mn->M2m+1 and identify i(Mn) with Mn itself and

represent the immersion i by yh=yh(xa) (throughout this paper the indices

a, b, c, d and e run over the range {1, 2, •••, n}). If we put Bb

h—dby
h, db=

d/dxh, then Bb

h are n linearly independent vectors of M 2 m + 1 tangent to Mn.

Denoting by gcb the fundamental metric tensor of Mn, we then have

(1.3) gcb=Bc

hBb

kghk

because of the immersion isometric.

We now denote Cx

h by 2m + l — n mutually orthogonal unit normals of M71

(the indices u, v, w, x, y and z run over the range {n + 1, •••, 2771+1}). Thus,

denoting by 7C the operator of van der Waerden-Bortolotti covariant differenti-

ation with respect to the Christoffel symbols {c

a

b} formed with gcb, we obtain

equations of Gauss and Weingarten

(1.4) lcBb

h = hcb

xCx

h,

(1.5) VcCx

h = -he

a

xBa

h

respectively, where hcb

x are the second fundamental tensors with respect to the

normals Cx

h and hc

a

x—hcb

vgabgyx, gyx being the metric tensor of the normal

bundle of Mn given by gyx=gjiC^Cx\ and (^ c δ )=(^ c 6 )- 1 .

A submanifold Mn of a Sasakian manifold M 2 m + 1 is called a generic (an

anti-holomorphtc) submanifold if the normal space NP(Mn) of Mn at any point

P^Mn is always mapped into the tangent space TP(Mn) by the action of the

structure tensor φ of the ambient manifold M 2 m + 1 , that is, φNP(Mn)C.TP(Mn)

for all P^Mn (see [4], [7] and [12]).

A submanifold Mn of a Sasakian manifold M 2 m + 1 is said to be anti-invariant

{totally real) if φTP(Mn)dNP(Mn) for all P G M B (see [11]).

From now on, we consider throughout this paper generic submanifolds

immersed in a Sasakian manifold M 2 m + 1 . Then we can put in each coordinate

neighborhood

(1 fλ (h hR J— faRh—fxrh

VJ- 'y ' ψj ^x —J x D a >
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(1.8) ζh = ηaBa

h + ξ*Cx

h ,

where fc

a is a tensor field of type (1, 1) defined on Mn, fc

x a local 1-form for
each fixed index x, ηa a vector field and ξx a function for each fixed index x,
and fx

a=fe*gacgyx.
Applying φ to (1.6) and (1.7) respectively and using (1.1) and these equations,

we easily find ([4], [7])

where ηa=geaη
e. But, the last relationship follows from (1.3), (1.8) and the

fact that ς ; ς
; = l .

Putting fcb=fcagab and fCχ=fcygyx, then we easily verify from (1.9) that
Jcb Jbo J ex—Jxc*

When the submanifold Mn is a hypersurface of M 2 m + 1 , (1.9) becomes the
so-called (/, g, u, v, Λ)-structure ([1], [2]), where we have put fc

x=uc, rja=va

y

The aggregate (/c

α, gcb, fc

x, ηa, ξx) satisfying (1.9) is said to be antinormal
( M , [8]) if

(1.10) hcexfeajrfcehe

ax=0

holds, or equivalently

(1.11) hcexfbe=hbe

xfc

e.

In characterizing a generic submanifold of an odd-dimensional sphere, we
shall use the following theorem.

THEOREM A ([1], [8]). Let M2m be a complete hypersurface with antinormal
(/, g, u, v, ^-structure of an odd-dimensional unit sphere S2 m + 1(l). // the func-
tion λ does not vanish almost everywhere and the scalar curvature of M2m is a
constant, then M2m is a great sphere 52 m(l) or a product of two spheres
Sm(l/V2~)xSm(l/V~2").

Transvecting (1.11) with fa

b and using the first relation of (1.9), we find

from which, taking the skew-symmetric part,

(1.12) (hce

xfz

e)fb

z-(hbexfz

e)
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Differentiating (1.6)—(1.8) covariantly along Mn and using (1.1)~(1.5), we
find respectively (see [4], [7])

(1.13) ^/cf^^-gc^+

(1.14) lcfb

x=gcbζ
xΛ-hce

xfh\

(1.15) hc°xfβy=hc

eyfex,

(1.16) VcVt>=U+heι>
xξχ,

(1.17) lcζ
x=-fcx-hce

xrje

with the help of (1.6)~(1.8).
For an anti-invariant submanifold of an odd-dimensional unit sphere, Yano

and Kon proved in Chapter 4, Theorem 6.5 of [11]

THEOREM B. Let M be an (n + iydimensional compact orientable anti-invariant
submanifold with parallel mean curvature vector of S2 n + 1(l). // the normal
connection of M is flat, then we have M=S1(r1)X ••• xS\rn+i), ^?+ ••• + r ? i + i = l .

§ 2. Submanif olds of S2 m + 1(l)

Let Mn be an n-dimensional submanifold of an odd-dimensional unit sphere
S2 m + 1(l), then the equations of Gauss, Codazzi and Ricci for Mn are respectively
given by

(2.1) Kdeb

a=δigeb-δϊgdb+hd

a

xheb*-hc

a

xhdb

x,

(2.2) VdλC6*-VcAd6*=0,

(2.3) Kdcy

x^= hdβ

xhc

e

y — hce

xhd

e

y ,

Kdcb

a and Kdcy

x being the curvature tensor of Mn and that of the connection
induced in the normal bundle respectively.

We now suppose that the connection induced in the normal bundle of Mn is
flat, that is, Kdcy

x=Q. From the Ricci identity

ydVchba

x-VcVdhba

x=~Kdcb

ehae

x~Kdca

ehbe

x,
we have

(2.4) (^αV,Vα/ι c^)/z c^-(V cV 6/ί^

because of (2.2), where we have put hx=gcbhch

x, Kdcha^Kdch

egae, Kcb=gdaKdcba.
We have from (2.1)

(2.5) Kcb=(n-ΐ)geb+hxheb*-he

e

rhb.*

which implies
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(2.6) K=n(n-l)+hxh
x-heb

xheb

x,

K being the scalar curvature of Mn.
Moreover we have from (2.3)

(2.7)

Substituting (2.1) and (2.5) into (2.4) and taking account of the identity

A(hxhc\)(da^^hx)hc

we have

(2.8)

with the help of (2.7), where Δ=gdaldla.
If the mean curvature vector of Mn is parallel in the normal bundle, that

is, lch
x=-0, then (2.8) implies

(2.9) ^A(hcb

xhcb

x)=nhcb

xhcb

x-hxh
x + hxhce

xhb

eyhcb

y

For a submanifold of an 772-dimensional sphere Sm, Yano and Kon [12]
proved the following theorem:

THEOREM C. Let M be a complete n-dimensional submamfold of Sm with flat
normal connection. If the second fundamental form of M is parallel, then M is a
small sphere, a great sphere or a Pythagorean product of a certain number of
spheres. Moreover, if M is of essential codimenswn m-n, then M is a Pythagorean
product of the form

) , rξ+ ••• + r% = l, N=m-n+l,

or a Pythagorean product of the form

r\+ ••• +r?y-=r2<l, N'=m-n.

§3. Generic submanifolds with ξxφ0 of S2 m + 1(l)

In this section we consider a generic submanifold satisfying (1.11) of an
odd-dimensional sphere 52 m + 1(l).

Transvecting (1.12) with rjb and taking account of (1.9), we find
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(3.1) -(hbe

xηbf2

e)fc

z + a-μ2)hce

xηe-(hde^
drjηηc = O}

where μ2=ξxξ
x, from which, transvecting fy

c and using (1.9),

μ*hee*η<fv

e=(hbβ*ηbftφ)ξy .

Thus (3.1) becomes

(3.2) μKl-μ2)hce*V

e=μ\hde*V

d

VηVΛ(hb/ff2ψ)ξyfc
y.

We now suppose that the function μ does not vanish almost everywhere
and nΦm, then so does μ(l—μ2). In fact, if 1—μ2 vanishes identically, then we
see from the last relation of (1.9) that ηc=0 and hence fcb=0 because of (1.16).
Thus, it follows that 0=fcbf

cb=2(n-m) with the help of (1.9). Therefore
μ{l—μ2) is nonzero almost everywhere.

Consequently (3.2) implies

(3.3) heβ*η*=B*Vc+A*ξzfe*,

where we have put

Ax=(hde

xη*fSξ>)/μKl-μ2), Bx=(hde

x

V

d

V*)/(l-μ2).

Substituting (3.3) into (1.12), we find

from which, transvecting fy

b and making use of (1.9),

(3.4) hce

xfy

e-(hce

xfzψ)ξy-(hde

xfz

efy

d)fc

z-(l-μ2)AxξyVc=O.

Using (1.9), (1.11) and (3.3), we have

hceXf,eξt=-hcβ

xηafa

e=-haeXVafce='-Bxξtfc' + μtAx

V€.

Thus, (3.4) becomes

(3.5) hee

xfy<=Pυ,
xfe'+AxξυVc,

where we have put
p x, L x f d f e Ώχ£ £

Γyz •—nde Jz Jy u s z^ y >

which implies Pyz

x—Pzy

x.
Putting Pyzx — Pyz

wgwx and taking account of (1.15), we see from (3.5) that

(3.6) (Pyzχ-Pχzy)

where Ax—gxyA
y. Transvection ηc and fa

c gives respectively

(3.7) Axξυ-Ayξx=0,

(3.8) (Pv,χ-Px,v)ξ'=0,
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because 1—μ2 does not vanish almost everywhere. If we transvect (3.6) with
fw

c and use (1.9) and (3.8), then we obtain Pyzx—Pxzy. Hence Pxyz is symmetric
for any index.

Transvecting (3.5) with fa

c and taking account of (1.9), we find

u xfefc—__p x£z I A x£ (£ f z\nce J y J a — Γyz s 'Ja\ ^ ζy\ζzj a J >

from which, using (1.9), (1.11) and (3.3),

(3.9) Py,
xξ'+Bxξy=0,

which implies

(3.10) Bxξv-Bυξx=0,

because Pxyz is symmetric for all indices.

μ being nonzero almost everywhere, (3.7) and (3.10) give respectively

(3.11) Ax=βξx, Bx=aξx,

where β=Axξx/μ2, a=Bxξx/μ2.

Thus (3.3), (3.5) and (3.9) reduce respectively to

(3.12) hee

xηe=ξx(aηe+βξtfe'),

(3.13) heβ

xfye=Py,
xfe

z+βξ*ζyVe,

(3.14) PyZ

xξz=-aξxξy.

Transvection (1.11) with fcb yields

with the help of (1.9), (3.12), (3.13) and (3.14), where Px=gyzPyz

x. Hence, it
follows that

(3.15) hx=Px+aξx.

Transvecting (2.7) with fz

b and using (3.13), we get

/- x(p five i Ω£ μ e\—U e (p x f w \ D^x £ r \
'he \Γwyzj Π^ pζyζz'J ) — Lc y\Γwz Je ^ p^> ^z'je) >

from which, using (3.12)^(3.14),

/ q i β \ p pwxfυ.— p xp wfυ
\ό.lΌ) *u>yz

rv Jc ' — Γ w z Γυy Jc

If we transvect (3.16) with fa

c and fu

c and take account of (1.9), we get

respectively

p pwxtυ^, — p xp wtv^ p pwxfsv £ £v\—p xp wffiv £ £υ\
Γwyz

Γυ ζ 'Ja — Γwz Γυy S 'Ja > ΓwyzΓυ \uu ζus, J — *VJZ Γ vy \uu ^u-s /•
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The last two relationships give

Π17Ί P P W—P P w

\yj,xι j l wyzx vx x wzxx vy

because 1 — μ2 does not vanish almost everywhere, which implies

(3.18) PxyzP
xyz=PxP

x,

where Px=Pzgzx.

LEMMA 3.1. Let Mn (nφm) be an n-dimensional generic submanifold with
flat normal connection of S2 m + 1(l). // the induced structure (fc

a, gCb, //> ηa> ?*)
on Mn ts antinormal and the function ξxξ

x is nonzero almost everywhere. Then
we have a(n—m—l)—§.

Proof. From (3.12) we have

Differentiating this covariantly and substituting (1.14), (1.16) and (1.17), we
obtain

^

from which, taking the skew-symmetric part and using (1.11), (2.2) and (2.7),

(3.19) (V,(αμ 2 ))^ c -(V c (α//))^4^^

with the help of (3.12).
If we transvect (3.19) with ηc and take account of (1.9), then we get

(3.20) a-μ2)"7d(aμ2) = V

e(Ve(aμ2))Vd+ {η«le{βμ2)-2aμ2-a{βμ*+l)(l-μ2)}ξxfd

x .

Next, transvecting (3.20) with ξ*fz

d and using (1.9), we get

(3.21) efze

because l~μ2 does not vanish almost everywhere.
In the next step, transvect (3.19) with / / and use (1.9). Then we have

If we transvect this with ξz, then we have
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+ a(βμ2+l)(l~μ2)μ2

Vd.

Substituting (3.21) into this equation gives

(3.22) μ\l-μ2)la{βμ2)=μ*{η*le{βμ2)} V*+ {ξzf^e{βμ2)}ξJax .

Substituting (3.20) and (3.22) into (3.19), we get

because μ(l—μ2) does not vanish almost everywhere, from which, transvecting
fdc and making use of (1.9), 2α(l-^ 2 )(n-m-l)=0, that is, α(n-m-l)=0. This
completes the proof of the lemma.

§4. (m+l)-dimensional generic submanifolds with ξxφ0 of S2m+1(l)

In this section we consider an (m+l)-dimensional generic submanifold of an
odd-dimensional unit sphere S2 m + 1(l).

First of all, we prove

LEMMA 4.1 Let Mm+1 be an (m+l)-dimensιonal genenc submanifold with flat
normal connection of S2m+1(l). If the induced structure on Mm+1 is antinormal
and the function μ is nonzero almost everywhere. Then we have

(4.1) hcb*hcb

v=P*Pyt

x + (a*+2β2μ2)ζ*ξv.

Proof. We now compute

with the help of (1.9). Hence we have

(4.2) {l-μ*)fdc=ξχfa

Using this, we have

because of (3.12) and (3.13), from which, taking account of (3.12)^(3.14),

Thus, it follows that
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(4.3) he.'hi\fΛ

b={at+βtμ*)ξxξvfde

because of (4.2) and the fact that 1—μ% does not vanish almost everywhere,
which derived from n = m + l .

Transvecting (4.3) with fdc and making use of (1.9), we find

hc.'hb

t

y(g°t-ft'f.t-η<η*)=2μ>(al + β*μt)ξ*ζv

because of n = m + l , from which, using (3.12)~(3.14),

or, taking account of (1.9), (3.14) and (3.17),

Hence, (4.1) is valid.

LEMMA 4.2. Under the same the assumptions as those stated in Lemma 4.1,
we have a=β=0 if m>l.

Proof. Applying the operator Ψ to (1.11) and substituting (1.13), we find

(^eh')fb

t=-ht

c'(-getη'+δe

cηt+heb

tf,'ι-he

t,ft')

+ ht,e

x{-(m+l)ηe+7ί

e+h°fz

e-hc

e

zf"}

with the help of (2.2), from which, using (3.12), (3.13) and (4.1),

or, taking account of (3.14), (3.15) and (3.17),

(4.4) (Vehx)fb

e=-(m-l)ζx(aVb+βξJbη-

On the other hand, we have from (3.14) and (3.15)

(4.5) hxξ
x=O.

If we differentiate (4.5) covariantly and substitute (1.17), we find

{ldh
x)ξx-hx{fdx-hiexη

e)=Q,
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or, use (3.12) and (4.5), ζx{!dh
x)=hxfdx. Therefore, we have

(4.6) ξχCVeh*)fb

e=h*fexfb

e=-hxζxηb=O

with the help of (1.9) and (4.5).
Transvecting (4.4) with ξx and making use of (4.5) and (4.6), we get

Thus, it follows that a=β—0 because μ(l—μ2) does not vanish almost everywhere.
Hence, Lemma 4.2 is proved.

Using Lemma 4.1 and Lemma 4.2, we now prove

THEOREM 4.3. Let Mm+1 (m>l) be an (m+l)-dimensional complete generic
submanif old with flat normal connection of an odd-dimensional unit sphere S2 m + 1(l).
// the mean curvature vector is parallel in the normal bundle, the induced struc-
ture on Mm+1 is antinormal and the function ξxξ

x does not vanish almost every-
where, then Mm+1 is a great sphere Sm + 1(l).

Proof. From Lemma 4.1 and 4.2, we get

(4.7) hcb

xhcb

x=hxh
x

with the help of (3.15) with α=0.

Since we see from (1.9), (3.13), (3.14), (3.15), (3.18) and Lemma 4.2 that

\\hcb

x-pyz

xfc

yfbψ=hcb

xhcb

x-pxyzp
χyz=hcb

xhcb

x-hxh
x,

the following relationship is valid:

(4.8) heb

x=Pyt*feyfb*.

On the other hand, the mean curvature vector being parallel, (2.9) becomes

because of (4.7). Substituting (4.7) and (4.8) into this and taking account of (1.9),
(3.13), (3.14), (3.18) and Lemma 4.2, we find

mhxh
x+hxPxytPyP'-PxygP

xPυPz+\\Vdheb

x\\2=0,

from which, using (3.15) with α=0, hx=0 and ydhcb

x=0 and hence hcb

x~0 by
virtue of (4.7). Thus, by completeness, Mm+1 is a great sphere Sm + 1(l). This
completes the proof of the theorem.

§5. Complete generic submanif olds with ξxφ0 of S2?r+1(l)

In this section, we consider that Mn (nψm) is an n-dimensional generic
submanifold with flat normal connection of an odd-dimensional sphere 52 m + 1(l).
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Moreover, we suppose that the induced structure on Mn is antinormal and the
function ξxξ

x does not vanish almost everywhere. Then we see from Lemma
3.1 and Lemma 4.2 that a=0 on Mn. Thus, (3.12)^(3.15) reduce respectively to

(5.1) hce

xrje=βξ*ξjc

z,

(5.2) llceXfye = PyΛ

X

(5.3) J V £ * = 0 ,

(5.4) hx=Px.

From (5.2) and (5.4), we have

(5.5) h e e * π = h x V

We first prove

LEMMA 5.1. Let Mn (nΦm, m>l) be an n-dimensional generic submamfold
with flat normal connection of S2 m + 1(l). Suppose that the mean curvature vector
is parallel, the induced structure on Mn is antinormal and the function μ does
not vanish almost everywhere. If the scalar curvature of Mn is a constant, then
we have β~0 or βμ2~l.

Proof. Differentiating (5.5) covariantly and substituting (1.14) and (1.16), we
find

(5.6) φdhee*)fx

e+he

e*(gdeξx+hdaxfβ

a)

because the mean curvature vector is parallel, from which, taking the skew-
symmetric part and using (1.11), (2.2) and (2.7),

(5.7) 2h™hdaxfe«=2βμ*fdc+{ld{βμ*))ηc~{lc{βμ2))ηd.

If we transvect (5.7) with ηc and take account of (1.9) and (5.1), then we
obtain

(5.8) a-μ2WAβμ*)= {r]ele{βμ2

Substituting this into (5.7), we get

(5.9) {l-μ2)hc

exheaJd

a^βμ\l-μηf

because of (1.11).
On the other hand, we have

(5.10) hc

eXheazfd

afdC



GENERIC SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR 365

with the help of (1.9), (3.17) and (5.1)~(5.4).
Transvecting (5.9) with fdc and using (1.9) and (5.10), we find

= βμ2(X-μ*)(2n-2m-2+2μ2)+2βμXβμ2-iχi-μ2),
from which,

(5.11) hcb
xh€b

x^hx

because 1—μ2 does not vanish almost everywhere. Thus, we see from (2.6) that
the scalar curvature K of Mn is given by K—n(n — l)—2βμ'2(n—m—l-{-βμ2).
Since K is a constant, by differentiating we find (n—m—l+2βμ2)yc(βμ2)~0,
which implies that β=0 or Vc(βμ2)=0 because of n —ra—l+2/3μ2^0. Therefore,
we see from (5.8) that βμ2=l in the case of βφO, that is, Vc(βμ2)=0. This
completes the proof of the lemma.

THEOREM 5.2. Let Mn {nφm, m>l) be an n-dimensional complete generic
submanifold with flat normal connection of odd-dimensional unit sphere S2 m + 1(l).
Suppose that the mean curvature vector is parallel in the normal bundle, the
induced structure on Mn is antinormal and the function ξxξ

x does not vanish
almost everywhere. If the scalar curvature of Mn is a constant, then Mn is a
great sphere Sn(l) or a product of two spheres Sm(l/V'2)xSm(l/V2).

Proof. By Lemma 5.1, we consider two cases that β=0 and βμ2=L In
the first case, we have from (5.11)

(5.12) hcb

xhcb

x=hxh*.

Hence, as in the proof of Theorem 4.3, we see that Mn is a great sphere Sn(l).
In the next place, we consider the case in which βμ2—l. Differentiation

covariantly yields

(5.13) (

from which, taking account of (1.17) and (5.1),

μ2Wcβ)
and consequently

(5.14)

because of βμ2=l.
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Differentiating (5.2) covariantly and substituting (1.14), (1.16), (1.17) and (5.14),
we find

with the help of (5.1), from which, taking the skew-symmetric part and making
use of (1.11) and (2.2),

(5.15) 2he

e

xhdayfe

a=WdPytx)fe'-φePytx)U+2β^

Transvecting (5.15) with fw

cηd and taking account of (1.9) and (5.1)~(5.3),
we get

from which, using (5.3) and the fact that βμ2=l,

Ve^ePyWX + PzyXV^ee)ξW-2β(β-l)ξx

or, taking account of (1.17), (5.1) and (5.3),

ηeVePyvX-2β(β-l)ξxξyζw+(β

If we transvect this with gxw and use (5.4), we obtain

Since the mean curvature vector is parallel in the normal bundle, it follows that
n=2m because of βμ2=l. Hence Mn is a hypersurface of S2m+1(l). According
to Theorem A in § 1, Mn is a product of two spheres 5m(l/V2~)x5m(l/V"2~).
Therefore Theorem 5.2 is proved.

§6. Generic submanifolds with ζx=0 of S2m+1(l)

In this section we suppose that a generic submanifold with ξx=0 and flat
normal connection of S2 m + 1(l) satisfies (1.11). Then (1.9) reduces to

(6.1)
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and (1.14)^(1.17) to

(6.2) Vcfb*=hc/fb

e,

(6.3) he

e

xfS=hc

evfβx,

(6.4) lcηb=fcb,

(6.5) hCΛ*η'=-fe

x.

Transvecting (1.11) with fy

bfdc and taking account of (6.1), we find

from which, using (6.5),

(6.6) hce

xf/=Pyz

xfc

z-δx

Vc,

where we have put Pyz

x=hcb

xfy

cf2

b.

We put Pyzx—Pyz

wgWχ> then as in the proof of § 1, we see from (6.3) that
Pyzx is symmetric for all indices.

If we transvect (1.11) with fcb and make use of (6.1), then we get

or, use (6.5) and (6.6),

(6.7) hx=Px

where we have put Px—gyzPyz

x.
Since the normal connection of the submanifold is flat, by transvecting (2.7)

with fb and taking account of (6.5) and (6.6)} we get

p w(p x f v _ _ ^ x γ i \ \ σ fx— p x/p w f v^SWγ, \\fix f
*yz \ Γ w υ j c vw7Jc)-T gyZJ c — Γ W 2 \Γvy Jc Uy iJc)\VzJ c y >

from which, transvecting fu

c and using (6.1),

(6.8) Py2

wPwu

x+gyzδϊ=PWzxPuy

WJrδxgyu.

Contraction with respect to z and x yields

(6.9) PyzχPuXZ = PXPy

where p=2m-rl — n, and consequently

(6.10) pxyzp
χyz=h

with the help of (6.7).
Differentiating (6.6) covariantly and substituting (6.2) and (6.4), we find
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from which, taking the skew-symmetric part with respect to d and c, and using
(1.11) and (2.2),

(6.11) 2hc

exheayfd

a^(ΊdPyz

x)fc

z-(ΊcPyz

x)fd

z-2δxfdc.

If we transvect (6.11) with fw

d and use (6.1), then we obtain

^cryz — \ J z Ve-Γyiυ JJ c

Using Pyz

x~Pzy

x and substituting this into (6.11), we have

i^cex^a yjd — g y x j c d

Transvection fb

d gives

from which, using (6.5) and (6.6),

(6.12) hcexhb%=Pyz

wPw

Transvecting (6.12) with gcb and taking account of (6.1) and (6.9), we get

hcbxh
cb

y=PzPzyx + (2p+2-n)gyx,

from which,

(6.13) hcb

xhcb

x = hxh
x + p(2p+2-n)

and

(6.14) (hcb

xhcbη(hdaxh
da

y)=Pyzxh^hzhx+(p-l)hxh
x

with the help of (6.7) and (6.9).
Since we have from (6.9) and (6.12)

it follows that

(6.15) hxhbaxhc%hcby=Pyzxh
yhz

with the help of (6.6)~(6.9).
Substituting (6.13) and (6.14) into (2.8), we find

Δ ( / / / ^ ) ( / l ) { 3 / ^ + 2 ^

from which, using (6.13) and the fact that p^2mJ

rl — n,
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(6.16) yΔ(/z c //ι c ^2(n-m-l)^

Now, assuming the mean curvature vector is parallel in the normal bundle,
that is, lch

x=Q, then we know that hcb

xhcb

x is a constant because of (6.13).
Thus, (6.16) implies

(6.17) {n-m

and Vdhcbx=z0. Since we see from (6.1) that

(6.18) fcbf
cb=2(n-m~

If 2hcb

xhcb

x+hj:h
x=0 and hence hcb

x=0, then (6.5) means Pyz

xfcz-dfjηc=0.

Transvection rjc gives /)=2ra+l —n—0. It contradicts the fact that the codimen-
sion p^L Thus, (6.17) implies n=m+l. From (6.18) and the fact that the
submanifold is (m+l)-dimensional, we have / c 6 =0. Therefore, we see from (1.6)
that the submanifold is anti-invariant. Moreover, if Mn is compact oπentable,
according to Theorem B in § 1, then we have

THEOREM 6.1. Let Mn be an n-dimensional compact onentable generic sub-

manifold with flat normal connection of an odd-dimensional unit sphere S2 m + 1(l).
Suppose that the mean curvature vector is parallel tn the normal bundle and the

induced structure on Mn is antinormal. If the Sasakian structure vector ξ defined

on S2 m + 1(l) is tangent to the submanifold, then Mn is

SKrJX ••• xS\rm+1), r\+ - + r 2 ^ + 1 - l .
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