GENERIC SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF AN ODD-DIMENSIONAL SPHERE

By U-Hang Ki and Young Ho Kim

§ 0. Introduction.

Many authors have been studying the so-called generic (anti-holomorphic) submanifold of a Kaehlerian manifold by the method of Riemannian fibre bundles (see [6], [9], [10] and [12] etc.).

But, the present authors [17] studied a generic submanifold M of an odddimensional unit sphere $S^{2 m+1}(1)$ under the condition that the structure tensor f induced on M and the second fundamental tensor h commute. Moreover, one of the present authors [4] gives characterizations of a generic minimal submanifold of $S^{2 m+1}(1)$ that h and f anticommute.

The purpose of the present paper is devoted to generalize the notions of the previous facts and characterize a generic submanifold of $S^{2 m+1}(1)$ tangent to the Sasakian structure vector field defined on $S^{2 m+1}(1)$.

In $\S 1$, we recall fundamental properties and structure equations for generic submanifolds immersed in a Sasakian manifold and define the structure tensor induced on the submanifold to be antinormal.

In $\S 2$, we prepare a theorem on submanıfolds of $S^{2 m+1}(1)$ which is used later very usefully.

In $\S 3$, we find some results of generic submanifolds of $S^{2 m+1}(1)$ with $\xi^{x} \div 0$, where ξ^{x} is the normal part of the Sasakian structure vector ξ.

In $\S 4$, we investigate $(m+1)$-dimensional generic submanifolds of $S^{2 m+1}(1)$ with $\xi^{x} \neq 0$.

In $\S 5$, we determine generıc submanifolds with antinormal structure of $S^{2 m+1}(1)$ with $\xi^{x} \neq 0$.

In the last $\S 6$, we characterize generic submanifolds of $S^{2 m+1}(1)$ tangent to the Sasakian structure vector field.

§ 1. Generic submanifolds of a Sasakian manifold

Let $M^{2 m+1}$ be a $(2 m+1)$-dimensional Sasakian manifold covered by a system of coordinate neighborhoods $\left\{U ; y^{h}\right\}$ and $\left(\phi_{0}{ }^{h}, g_{\jmath l}, \xi^{h}\right)$ the set of structure

Received December 26, 1979
tensors of $M^{2 m+1}$, where here and in the sequel, the indices h, \imath, \jmath and k run over the range $\{1,2, \cdots, 2 m+1\}$. We then have

$$
\begin{array}{ll}
\phi_{J}{ }^{h} \phi_{i}{ }^{3}=-\delta_{\imath}^{h}+\xi_{i} \xi^{h}, & \xi_{j} \phi_{i}{ }^{j}=0, \quad \phi_{J}{ }^{h} \xi^{j}=0, \tag{1.1}\\
\xi_{j} \xi^{j}=1, \quad \xi_{2}=g_{j i} \xi^{j}, & \phi_{j}{ }^{k} \phi_{i}{ }^{h} g_{k h}=g_{j i}-\xi_{j} \xi_{2}
\end{array}
$$

and

$$
\begin{equation*}
\nabla_{j} \xi^{h}=\phi_{j}{ }^{h}, \quad \nabla_{j} \phi_{i}{ }^{h}=-g_{j i} \xi^{h}+\delta_{j}^{h} \xi_{2} \tag{1.2}
\end{equation*}
$$

where ∇_{j} denotes the operator of covariant differentiation with respect to g_{ν}.
Let M^{n} be an n-dimensional Riemannian manifold isometrically immersed in $M^{2 m+1}$ by the immersion $i: M^{n} \rightarrow M^{2 m+1}$ and identify $i\left(M^{n}\right)$ with M^{n} itself and represent the immersion \imath by $y^{h}=y^{h}\left(x^{a}\right)$ (throughout this paper the indices a, b, c, d and e run over the range $\{1,2, \cdots, n\})$. If we put $B_{b}{ }^{h}=\partial_{b} y^{h}, \partial_{b}=$ $\partial / \partial x^{b}$, then $B_{0}{ }^{h}$ are n linearly independent vectors of $M^{2 m+1}$ tangent to M^{n}. Denoting by $g_{c b}$ the fundamental metric tensor of M^{n}, we then have

$$
\begin{equation*}
g_{c b}=B_{c}{ }^{h} B_{b}{ }^{k} g_{h k} \tag{1.3}
\end{equation*}
$$

because of the immersion isometric.
We now denote $C_{x}{ }^{h}$ by $2 m+1-n$ mutually orthogonal unit normals of M^{n} (the indices u, v, w, x, y and z run over the range $\{n+1, \cdots, 2 m+1\}$). Thus, denoting by ∇_{c} the operator of van der Waerden-Bortolottı covariant differentiation with respect to the Christoffel symbols $\left\{c_{c}{ }^{a}{ }_{b}\right\}$ formed with $g_{c b}$, we obtain equations of Gauss and Weingarten

$$
\begin{align*}
& \nabla_{c} B_{b}{ }^{h}=h_{c b}{ }^{x} C_{x}{ }^{h}, \tag{1.4}\\
& \nabla_{c} C_{x}{ }^{h}=-h_{c}{ }^{a}{ }_{x} B_{a}{ }^{h} \tag{1.5}
\end{align*}
$$

respectively, where $h_{c b}{ }^{x}$ are the second fundamental tensors with respect to the normals $C_{x}{ }^{h}$ and $h_{c}{ }^{a}{ }_{x}=h_{c b}{ }^{y} g^{a b} g_{y x}, g_{y x}$ being the metric tensor of the normal bundle of M^{n} given by $g_{y x}=g_{j i} C_{y}{ }^{3} C_{x}{ }^{2}$, and $\left(g^{c b}\right)=\left(g_{c b}\right)^{-1}$.

A submanifold M^{n} of a Sasakian manıfold $M^{2 m+1}$ is called a generic (an anti-holomorphcc) submanifold if the normal space $N_{P}\left(M^{n}\right)$ of M^{n} at any point $P \in M^{n}$ is always mapped into the tangent space $T_{P}\left(M^{n}\right)$ by the action of the structure tensor ϕ of the ambient manifold $M^{2 m+1}$, that is, $\phi N_{P}\left(M^{n}\right) \subset T_{P}\left(M^{n}\right)$ for all $P \in M^{n}$ (see [4], [7] and [12]).

A submanifold M^{n} of a Sasakian manifold $M^{2 m+1}$ is said to be anti-2nvariant (totally real) if $\phi T_{P}\left(M^{n}\right) \subset N_{P}\left(M^{n}\right)$ for all $P \in M^{n}$ (see [11]).

From now on, we consider throughout this paper generic submanifolds immersed in a Sasakian manifold $M^{2 m+1}$. Then we can put in each coordinate neighborhood

$$
\begin{align*}
& \phi_{J}{ }^{h} B_{c}{ }^{j}=f_{c}{ }^{a} B_{a}{ }^{h}-f_{c}{ }^{x} C_{x}{ }^{h}, \tag{1.6}\\
& \phi_{J}{ }^{h} C_{x}{ }^{j}=f_{x}{ }^{a} B_{a}{ }^{h}, \tag{1.7}
\end{align*}
$$

$$
\begin{equation*}
\xi^{h}=\eta^{a} B_{a}^{h}+\xi^{x} C_{x}{ }^{h} \tag{1.8}
\end{equation*}
$$

where $f_{c}{ }^{a}$ is a tensor field of type $(1,1)$ defined on $M^{n}, f_{c}{ }^{x}$ a local 1 -form for each fixed index x, η^{a} a vector field and ξ^{x} a function for each fixed index x, and $f_{x}{ }^{a}=f_{c}{ }^{y} g^{a c} g_{y x}$.

Applying ϕ to (1.6) and (1.7) respectively and using (1.1) and these equations, we easily find ([4], [7])

$$
\left\{\begin{array}{l}
f_{c}^{e} f_{e}^{a}=-\delta_{c}^{a}+f_{c}{ }^{x} f_{x}{ }^{a}+\eta_{c} \eta^{a}, \tag{1.9}\\
f_{c}^{e} f_{e}=-\eta_{c} \xi^{x}, \quad f_{x}^{e} f_{e}^{y}=\delta_{x}^{y}-\xi_{x} \xi^{y}, \\
\eta^{e} f_{e}^{a}=-\xi^{x} f_{x}{ }^{a}, \quad \eta^{e} f_{e}^{x}=0, \\
g_{d e} f_{c}{ }^{d} f_{b}^{e}=g_{c b}-f_{c}^{x} f_{x b}-\eta_{c} \eta_{b}, \quad \eta_{a} \eta^{a}+\xi_{x} \xi^{x}=1,
\end{array}\right.
$$

where $\eta_{a}=g_{e a} \eta^{e}$. But, the last relationship follows from (1.3), (1.8) and the fact that $\tilde{\xi}_{j} \xi^{\jmath}=1$.

Putting $f_{c b}=f_{c}{ }^{a} g_{a b}$ and $f_{c x}=f_{c}{ }^{y} g_{y x}$, then we easily verify from (1.9) that $f_{c b}=-f_{b c}, f_{c x}=f_{x c}$.

When the submanifold M^{n} is a hypersurface of $M^{2 m+1},(1.9)$ becomes the so-called (f, g, u, v, λ)-structure ([1], [2]), where we have put $f_{c}^{x}=u_{c}, \eta^{a}=v^{a}$, $\xi_{x}=\xi^{x}=\lambda$.

The aggregate $\left(f_{c}{ }^{a}, g_{c b}, f_{c}{ }^{x}, \eta^{a}, \xi^{x}\right)$ satisfying (1.9) is said to be antınormal ([4], [8]) if

$$
\begin{equation*}
h_{c}{ }^{e x} f_{e}{ }^{a}+f_{c}{ }^{e} h_{e}{ }^{a x}=0 \tag{1.10}
\end{equation*}
$$

holds, or equivalently

$$
\begin{equation*}
h_{c e}{ }^{x} f_{b}^{e}=h_{b e}{ }^{x} f_{c}{ }^{e} . \tag{1.11}
\end{equation*}
$$

In characterizing a generic submanifold of an odd-dimensional sphere, we shall use the following theorem.

Theorem A ([1], [8]). Let $M^{2 m}$ be a complete hypersurface with antinormal (f, g, u, v, λ)-structure of an odd-dimensional unit sphere $S^{2 m+1}(1)$. If the function λ does not vanish almost everywhere and the scalar curvature of $M^{2 m}$ is a constant, then $M^{2 m}$ is a great sphere $S^{2 m}(1)$ or a product of two spheres $S^{m}(1 / \sqrt{2}) \times S^{m}(1 / \sqrt{2})$.

Transvecting (1.11) with $f_{a}{ }^{b}$ and using the first relation of (1.9), we find

$$
h_{c e}{ }^{x}\left(-\delta_{a}^{e}+f_{a}{ }^{2} f_{z}^{e}+\eta_{a} \eta^{e}\right)=h_{b e}{ }^{x} f_{c}^{e} f_{a}{ }^{b},
$$

from which, taking the skew-symmetric part,

$$
\begin{equation*}
\left(h_{c e}{ }^{x} f_{z}^{e}\right) f_{b}^{z}-\left(h_{b e}{ }^{x} f_{z}^{e}\right) f_{c}^{z}+\left(h_{c e}{ }^{x} \eta^{e}\right) \eta_{b}-\left(h_{b e}{ }^{x} \eta^{e}\right) \eta_{c}=0 \tag{1.12}
\end{equation*}
$$

Differentiating (1.6) $\sim(1.8)$ covariantly along M^{n} and using (1.1)~(1.5), we find respectively (see [4], [7])

$$
\begin{align*}
\nabla_{c} f_{b}{ }^{a}=- & g_{c b} \eta^{a}+\delta_{c}^{a} \eta_{b}+h_{c b}{ }^{x} f_{x}{ }^{a}-h_{c}{ }^{a}{ }_{x} f_{b}{ }^{x}, \tag{1.13}\\
& \nabla_{c} f_{b}{ }^{x}=g_{c b} \xi^{x}+h_{c e}{ }^{x} f_{b}{ }^{e}, \tag{1.14}\\
& h_{c}{ }^{e} x f_{e}{ }^{y}=h_{c}{ }^{e y} f_{e x}, \tag{1.15}\\
& \nabla_{c} \eta_{b}=f_{c b}+h_{c b}{ }^{x} \xi_{x}, \tag{1.16}\\
& \nabla_{c} \xi^{x}=-f_{c}{ }^{x}-h_{c e}{ }^{x} \eta^{e} \tag{1.17}
\end{align*}
$$

with the help of (1.6)~(1.8).
For an anti-invariant submanifold of an odd-dimensional unit sphere, Yano and Kon proved in Chapter 4, Theorem 6.5 of [11]

Theorem B. Let M be an $(n+1)$-dimensional compact orientable antz-invariant submanfold with parallel mean curvature vector of $S^{2 n+1}(1)$. If the normal connection of M is flat, then we have $M=S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{n+1}\right), r_{1}^{2}+\cdots+r_{n+1}^{2}=1$.

§ 2. Submanif olds of $S^{2 m+1}(1)$

Let M^{n} be an n-dimensional submanifold of an odd-dimensional unit sphere $S^{2 m+1}(1)$, then the equations of Gauss, Codazzı and Ricci for M^{n} are respectively given by

$$
\begin{gather*}
K_{d c b}{ }^{a}=\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+h_{d}{ }^{a}{ }_{x} h_{c b}{ }^{x}-h_{c}{ }^{a}{ }_{x} h_{d b}{ }^{x}, \tag{2.1}\\
\nabla_{d} h_{c b}{ }^{x}-\nabla_{c} h_{d b}{ }^{x}=0, \tag{2.2}\\
K_{d c y}{ }^{x}=h_{d e}{ }^{x} h_{c}{ }^{e}{ }_{y}-h_{c e}{ }^{x} h_{d}{ }^{e}{ }_{y}, \tag{2.3}
\end{gather*}
$$

$K_{d c b}{ }^{a}$ and $K_{d c y}{ }^{x}$ being the curvature tensor of M^{n} and that of the connection induced in the normal bundle respectively.

We now suppose that the connection induced in the normal bundle of M^{n} is flat, that is, $K_{d c y}{ }^{x}=0$. From the Ricci identity

$$
\nabla_{d} \nabla_{c} h_{b a}{ }^{x}-\nabla_{c} \nabla_{d} h_{b a}{ }^{x}=-K_{d c b}{ }^{e} h_{a e}{ }^{x}-K_{d c a}{ }^{e} h_{b c}{ }^{x},
$$

we have

$$
\begin{equation*}
\left(g^{d a} \nabla_{d} \nabla_{a} h_{c b}{ }^{x}\right) h^{c b}{ }_{x}-\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}=K_{c e} h_{b}^{e y} h^{c b}{ }_{y}-K_{d c b a} h^{d a y} h^{c b}{ }_{y} \tag{2.4}
\end{equation*}
$$

because of (2.2), where we have put $h^{x}=g^{c b} h_{c b}{ }^{x}, K_{d c b a}=K_{d c b}{ }^{e} g_{a e}, K_{c b}=g^{d a} K_{d c b a}$.
We have from (2.1)

$$
\begin{equation*}
K_{c b}=(n-1) g_{c b}+h_{x} h_{c b}{ }^{x}-h_{c}{ }_{c}{ }_{x} h_{b c}{ }^{x} \tag{2.5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
K=n(n-1)+h_{x} h^{x}-h_{c b}{ }^{x} h^{c b}{ }_{x}, \tag{2.6}
\end{equation*}
$$

K being the scalar curvature of M^{n}.
Moreover we have from (2.3)

$$
\begin{equation*}
h_{c e}{ }^{x} h_{b}{ }^{e}{ }_{y}=h_{b e}{ }^{x} h_{c}{ }^{e}{ }_{y} . \tag{2.7}
\end{equation*}
$$

Substituting (2.1) and (2.5) into (2.4) and taking account of the identity

$$
\frac{1}{2} \Delta\left(h_{c b}{ }^{x} h^{c b}{ }_{x}\right)=\left(g^{d a} \nabla_{d} \nabla_{a} h_{c b}{ }^{x}\right) h^{c b}+\left\|\nabla_{d} h_{c b}{ }^{x}\right\|^{2}
$$

we have

$$
\begin{align*}
\frac{1}{2} \Delta\left(h_{c b}{ }^{x} h^{c b}{ }_{x}\right)= & n h_{c b}{ }^{x} h^{c b}{ }_{x}-h_{x} h^{x}+h^{x} h_{c e x} h_{b}^{e y} h^{c b}{ }_{y} \tag{2.8}\\
& -\left(h_{c b}{ }^{x} h^{c b y}\right)\left(h_{d a x} h^{d a}{ }_{y}\right)+\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}+\left\|\nabla_{d} h_{c b}{ }^{x}\right\|^{2}
\end{align*}
$$

with the help of (2.7), where $\Delta=g^{d a} \nabla_{d} \nabla_{a}$.
If the mean curvature vector of M^{n} is parallel in the normal bundle, that is, $\nabla_{c} h^{x}=0$, then (2.8) implies

$$
\begin{align*}
\frac{1}{2} \Delta\left(h_{c b}{ }^{x} h_{x}^{c b}\right)= & n h_{c b}{ }^{x} h^{c b}-h_{x} h^{x}+h_{x} h_{c e} h_{b}{ }_{e}^{e y} h^{c b}{ }_{y} \tag{2.9}\\
& -\left(h_{c b}{ }^{x} h^{c b y}\right)\left(h_{d a x} h^{d a}{ }_{y}\right)+\left\|\nabla_{d} h_{c b}{ }^{x}\right\|^{2} .
\end{align*}
$$

For a submanifold of an m-dimensional sphere S^{m}, Yano and Kon [12] proved the following theorem:

Theorem C. Let M be a complete n-dimensional submanıfold of S^{m} with flat normal connection. If the second fundamental form of M is parallel, then M is a small sphere, a great sphere or a pythagorean product of a certain number of spheres. Moreover, if M is of essentzal codimension $m-n$, then M is a pythagorean product of the form

$$
S^{p_{1}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right), \quad r_{1}^{2}+\cdots+r_{N}^{2}=1, \quad N=m-n+1, ~}
$$

or a pythagorean product of the form

$$
S^{p_{1}\left(r_{1}\right) \times \cdots \times S^{p_{N^{\prime}}}\left(r_{N^{\prime}}\right) \subset S^{m-1}(r) \subset S^{m}, \text {, }, \text {. }}
$$

$r_{1}^{2}+\cdots+r_{N^{\prime}}^{2}=r^{2}<1, N^{\prime}=m-n$.
\S 3. Generic submanifolds with $\xi_{x} \neq 0$ of $S^{2 m+1}(1)$
In this section we consider a generic submanifold satisfying (1.11) of an odd-dimensional sphere $S^{2 m+1}(1)$.

Transvecting (1.12) with η^{b} and taking account of (1.9), we find

$$
\begin{equation*}
-\left(h_{b e}{ }^{x} \eta^{b} f_{z}^{e}\right) f_{c}^{z}+\left(1-\mu^{2}\right) h_{c e}{ }^{x} \eta^{e}-\left(h_{d e}{ }^{x} \eta^{d} \eta^{e}\right) \eta_{c}=0, \tag{3.1}
\end{equation*}
$$

where $\mu^{2}=\hat{\xi}_{x} \hat{\xi}^{x}$, from which, transvecting $f_{y}{ }^{c}$ and using (1.9),

$$
\mu^{2} h_{c e}{ }^{x} \eta^{e} f_{y}^{c}=\left(h_{b e}{ }^{x} \eta^{b} f_{z}^{e} \xi^{z}\right) \xi_{y} .
$$

Thus (3.1) becomes

$$
\begin{equation*}
\mu^{2}\left(1-\mu^{2}\right) h_{c e}{ }^{x} \eta^{e}=\mu^{2}\left(h_{d e}{ }^{x} \eta^{d} \eta^{e}\right) \eta_{c}+\left(h_{b e}{ }^{x} \eta^{b} f_{z}^{e} \xi^{e}\right) \xi_{y} f_{c}{ }^{y} . \tag{3.2}
\end{equation*}
$$

We now suppose that the function μ does not vanish almost everywhere and $n \neq m$, then so does $\mu\left(1-\mu^{2}\right)$. In fact, if $1-\mu^{2}$ vanishes identically, then we see from the last relation of (1.9) that $\eta_{c}=0$ and hence $f_{c b}=0$ because of (1.16). Thus, it follows that $0=f_{c b} f^{c b}=2(n-m)$ with the help of (1.9). Therefore $\mu\left(1-\mu^{2}\right)$ is nonzero almost everywhere.

Consequently (3.2) implies

$$
\begin{equation*}
h_{c e}{ }^{x} \eta^{e}=B^{x} \eta_{c}+A^{x} \xi_{z} f_{c}^{z}, \tag{3.3}
\end{equation*}
$$

where we have put

$$
A^{x}=\left(h_{d e}{ }^{x} \eta^{d} f_{z}^{e} \xi^{e}\right) / \mu^{2}\left(1-\mu^{2}\right), \quad B^{x}=\left(h_{d e}{ }^{x} \eta^{d} \eta^{e}\right) /\left(1-\mu^{2}\right)
$$

Substituting (3.3) into (1.12), we find

$$
\left(h_{c e}{ }^{x} f_{z}^{e}\right) f_{b}{ }^{z}-\left(h_{b e}{ }^{x} f_{z}^{e}\right) f_{c}^{z}+A^{x}\left(\xi_{z} f_{c}^{z} \eta_{b}-\hat{\xi}_{z} f_{b}^{z} \eta_{c}\right)=0,
$$

from which, transvecting $f_{y}{ }^{b}$ and making use of (1.9),

$$
\begin{equation*}
h_{c e}{ }^{x} f_{y}^{e}-\left(h_{c e}{ }^{x} f_{z}{ }^{e} \xi^{z}\right) \xi_{y}-\left(h_{d e}{ }^{x} f_{z}{ }^{e} f_{y}{ }^{d}\right) f_{c}{ }^{z}-\left(1-\mu^{2}\right) A^{x} \xi_{y} \eta_{c}=0 . \tag{3.4}
\end{equation*}
$$

Using (1.9), (1.11) and (3.3), we have

$$
h_{c e}{ }^{x} f_{z}^{e} \xi^{z}=-h_{c e}{ }^{x} \eta^{a} f_{a}^{e}=-h_{a e}{ }^{x} \eta^{a} f_{c}^{e}=-B^{x} \xi_{z} f_{c}^{z}+\mu^{2} A^{x} \eta_{c} .
$$

Thus, (3.4) becomes

$$
\begin{equation*}
h_{c e}{ }^{x} f_{y}^{e}=P_{y_{z}}{ }^{x} f_{c}^{z}+A^{x} \xi_{y} \eta_{c} \tag{3.5}
\end{equation*}
$$

where we have put

$$
P_{y z}{ }^{x}=h_{d e}{ }^{x} f_{z}{ }^{d} f_{y}{ }^{e}-B^{x} \hat{\xi}_{z} \xi_{y},
$$

which implies $P_{y z}{ }^{x}=P_{z y}{ }^{x}$.
Putting $P_{y z x}=P_{y_{z}}{ }^{w} g_{w x}$ and taking account of (1.15), we see from (3.5) that

$$
\begin{equation*}
\left(P_{y z x}-P_{x z y}\right) f_{c}^{z}+\left(A_{x} \xi_{y}-A_{y} \xi_{x}\right) \eta_{c}=0, \tag{3.6}
\end{equation*}
$$

where $A_{x}=g_{x y} 4^{y}$. Transvection η^{c} and $f_{a}{ }^{c}$ gives respectively

$$
\begin{align*}
& A_{x} \xi_{y}-A_{y} \xi_{x}=0 \tag{3.7}\\
& \left(P_{y_{z x}}-P_{x z y}\right) \xi^{z}=0 \tag{3.8}
\end{align*}
$$

because $1-\mu^{2}$ does not vanish almost everywhere. If we transvect (3.6) with $f_{w}{ }^{c}$ and use (1.9) and (3.8), then we obtain $P_{y z x}=P_{x z y}$. Hence $P_{x y z}$ is symmetric for any index.

Transvecting (3.5) with $f_{a}{ }^{c}$ and taking account of (1.9), we find

$$
h_{c e}{ }^{x} f_{y}{ }^{e} f_{a}{ }^{c}=-P_{y z}{ }^{x} \xi^{z} \eta_{a}+A^{x} \xi_{y}\left(\xi_{z} f_{a}{ }^{2}\right),
$$

from which, using (1.9), (1.11) and (3.3),

$$
\begin{equation*}
P_{y z}{ }^{x} \xi^{z}+B^{x} \hat{\xi}_{y}=0, \tag{3.9}
\end{equation*}
$$

which implies

$$
\begin{equation*}
B_{x} \xi_{y}-B_{y} \xi_{x}=0, \tag{3.10}
\end{equation*}
$$

because $P_{x y z}$ is symmetric for all indices.
μ being nonzero almost everywhere, (3.7) and (3.10) give respectively

$$
\begin{equation*}
A^{x}=\beta \xi^{x}, \quad B^{x}=\alpha \xi^{x}, \tag{3.11}
\end{equation*}
$$

where $\beta=A^{x} \xi_{x} / \mu^{2}, \alpha=B^{x} \xi_{x} / \mu^{2}$.
Thus (3.3), (3.5) and (3.9) reduce respectively to

$$
\begin{align*}
& h_{c e}{ }^{x} \eta^{e}=\xi^{x}\left(\alpha \eta_{c}+\beta \xi_{z} f_{c}{ }^{z}\right), \tag{3.12}\\
& h_{c e}{ }^{x} f_{y}{ }^{e}=P_{y z}{ }^{x} f_{c}{ }^{z}+\beta \xi^{x} \xi_{y} \eta_{c}, \tag{3.13}\\
& P_{y z}{ }^{x} \xi^{z}=-\alpha \xi^{x} \xi_{y} . \tag{3.14}
\end{align*}
$$

Transvection (1.11) with $f^{c b}$ yields

$$
\begin{aligned}
0=h_{c e}{ }^{x}\left(-g^{c e}+f^{c z} f_{z}^{e}+\eta^{c} \eta^{e}\right) & =-h^{x}+P_{y z}^{x}\left(g^{y z}-\hat{\xi} y \hat{\xi}^{z}\right)+\alpha \xi^{x}\left(1-\mu^{2}\right) \\
& =-h^{x}+P^{x}+\alpha \hat{\xi}^{x}
\end{aligned}
$$

with the help of (1.9), (3.12), (3.13) and (3.14), where $P^{x}=g^{y 2} P_{y z}{ }^{x}$. Hence, it follows that

$$
\begin{equation*}
h^{x}=P^{x}+\alpha \xi^{x} . \tag{3.15}
\end{equation*}
$$

Transvecting (2.7) with f_{z}^{b} and using (3.13), we get

$$
h_{c e}{ }^{x}\left(P_{w y z} f^{w e}+\beta \xi_{y} \xi_{z} \eta^{e}\right)=h_{c}{ }^{e} y\left(P_{w z}{ }^{x} f_{e}^{w}+\beta \xi^{x} \xi_{z} \eta_{e}\right),
$$

from which, using (3.12)~(3.14),

$$
\begin{equation*}
P_{w y z} P_{v}{ }^{w x} f_{c}{ }^{v}=P_{w z}{ }^{x} P_{v y}{ }^{w} f_{c}{ }^{v} . \tag{3.16}
\end{equation*}
$$

If we transvect (3.16) with $f_{a}{ }^{c}$ and $f_{u}{ }^{c}$ and take account of (1.9), we get respectively

$$
P_{w y_{2}} P_{v}{ }^{w x} \xi^{v} \eta_{a}=P_{w z}{ }^{x} P_{v y}{ }^{w} \xi^{v} \eta_{a}, \quad P_{w y_{2}} P_{v}{ }^{w x}\left(\delta_{u}^{v}-\hat{\xi}_{u} \hat{\xi}^{v}\right)=P_{w z}{ }^{x} P_{v y}{ }^{w}\left(\delta_{u}^{v}-\xi_{u} \xi^{v}\right) .
$$

The last two relationships give

$$
\begin{equation*}
P_{w y z} P_{v x}{ }^{w}=P_{w z x} P_{v y}{ }^{w} \tag{3.17}
\end{equation*}
$$

because $1-\mu^{2}$ does not vanish almost everywhere, which implies

$$
\begin{equation*}
P_{x y z} P^{x y z}=P_{x} P^{x}, \tag{3.18}
\end{equation*}
$$

where $P_{x}=P^{z} g_{2 x}$.
Lemma 3.1. Let $M^{n}(n \neq m)$ be an n-dimensional generac submanafold with flat normal connection of $S^{2 m+1}(1)$. If the induced structure ($f_{c}{ }^{a}, g_{c b}, f_{x}{ }^{c}, \eta^{a}, \xi^{x}$) on M^{n} is antinormal and the function $\xi_{x} \xi^{x}$ is nonzero almost everywhere. Then we have $\alpha(n-m-1)=0$.

Proof. From (3.12) we have

$$
h_{c e}{ }^{x} \eta^{e} \xi_{x}=\alpha \mu^{2} \eta_{c}+\beta \mu^{2}\left(\xi_{x} f_{c}{ }^{x}\right) .
$$

Differentiating this covariantly and substituting (1.14), (1.16) and (1.17), we obtain

$$
\begin{aligned}
& \quad\left(\nabla_{d} h_{c e}{ }^{x}\right) \eta^{e} \xi_{x}+h_{c}^{e x} \xi_{x}\left(f_{d e}+h_{d e}{ }^{y} \xi_{y}\right)-h_{c e}{ }^{x} \eta^{e}\left(f_{d x}+h_{d a x} \eta^{a}\right) \\
& =\left(\nabla_{d}\left(\alpha \mu^{2}\right)\right) \eta_{c}+\left(\nabla_{d}\left(\beta \mu^{2}\right)\right) \xi_{x} f_{c}{ }^{x}+\alpha \mu^{2}\left(f_{d c}+h_{d c}{ }^{x} \xi_{x}\right)-\beta \mu^{2} f_{c}{ }^{x}\left(f_{d x}+h_{d e x} \eta^{e}\right) \\
& +\beta \mu^{2} \xi_{x}\left(g_{d c} \xi^{x}+h_{d e}{ }^{x} f_{c}^{e}\right),
\end{aligned}
$$

from which, taking the skew-symmetric part and using (1.11), (2.2) and (2.7),

$$
\begin{array}{r}
\left(\nabla_{d}\left(\alpha \mu^{2}\right)\right) \eta_{c}-\left(\nabla_{c}\left(\alpha \mu^{2}\right)\right) \eta_{d}+\left(\nabla_{d}\left(\beta \mu^{2}\right)\right) \xi_{x} f_{c}^{x}-\left(\nabla_{c}\left(\beta \mu^{2}\right)\right) \xi_{x} f_{d}^{x}+2 \alpha \mu^{2} f_{d c} \tag{3.19}\\
+\alpha\left(\beta \mu^{2}+1\right)\left(\xi_{x} f_{d} \eta_{c}^{x}-\xi_{x} f_{c}^{x} \eta_{d}\right)=0
\end{array}
$$

with the help of (3.12).
If we transvect (3.19) with η^{c} and take account of (1.9), then we get

$$
\begin{equation*}
\left(1-\mu^{2}\right) \nabla_{d}\left(\alpha \mu^{2}\right)=\eta^{e}\left(\nabla_{e}\left(\alpha \mu^{2}\right)\right) \eta_{d}+\left\{\eta^{e} \nabla_{e}\left(\beta \mu^{2}\right)-2 \alpha \mu^{2}-\alpha\left(\beta \mu^{2}+1\right)\left(1-\mu^{2}\right)\right\} \xi_{x} f_{d}{ }^{x} . \tag{3.20}
\end{equation*}
$$

Next, transvecting (3.20) with $\xi^{2} f_{z}{ }^{d}$ and using (1.9), we get

$$
\begin{equation*}
\xi^{z} f_{z}^{e} \nabla_{e}\left(\alpha \mu^{2}\right)=\left\{\eta^{e} \nabla_{e}\left(\beta \mu^{2}\right)-2 \alpha \mu^{2}-\alpha\left(\beta \mu^{2}+1\right)\left(1-\mu^{2}\right)\right\} \mu^{2} \tag{3.21}
\end{equation*}
$$

because $1-\mu^{2}$ does not vanish almost everywhere.
In the next step, transvect (3.19) with $f_{2}{ }^{c}$ and use (1.9). Then we have

$$
\begin{array}{r}
\left(1-\mu^{2}\right) \xi_{z}\left\{\nabla_{d}\left(\beta \mu^{2}\right)\right\}=f_{z}{ }^{e}\left\{\nabla_{e}\left(\alpha \mu^{2}\right)\right\} \eta_{d}+f_{2}{ }^{e}\left\{\nabla_{e}\left(\beta \mu^{2}\right)\right\} \xi_{x} f_{d}{ }^{x}+2 \alpha \mu^{2} \xi_{z} \eta_{d} \\
+\alpha\left(\beta \mu^{2}+1\right)\left(1-\mu^{2}\right) \xi_{z} \eta_{d} .
\end{array}
$$

If we transvect this with ξ^{2}, then we have

$$
\begin{array}{r}
\mu^{2}\left(1-\mu^{2}\right)\left\{\nabla_{d}\left(\beta \mu^{2}\right)\right\}=\xi^{z} f_{z}^{e}\left\{\nabla_{e}\left(\alpha \mu^{2}\right)\right\} \eta_{d}+\xi^{z} f_{z}^{e}\left\{\nabla_{e}\left(\beta \mu^{2}\right)\right\} \xi_{x} f_{d}{ }^{x}+2 \alpha \mu^{4} \eta_{d} \\
+\alpha\left(\beta \mu^{2}+1\right)\left(1-\mu^{2}\right) \mu^{2} \eta_{d} .
\end{array}
$$

Substituting (3.21) into this equation gives

$$
\begin{equation*}
\mu^{2}\left(1-\mu^{2}\right) \nabla_{d}\left(\beta \mu^{2}\right)=\mu^{2}\left\{\eta^{e} \nabla_{e}\left(\beta \mu^{2}\right)\right\} \eta_{d}+\left\{\xi^{2} f_{z}^{e} \nabla_{e}\left(\beta \mu^{2}\right)\right\} \xi_{x} f_{d}^{x} . \tag{3.22}
\end{equation*}
$$

Substituting (3.20) and (3.22) into (3.19), we get

$$
\alpha\left\{\left(1-\mu^{2}\right) f_{d c}-\left(\xi_{x} f_{d}^{x} \eta_{c}-\xi_{x} f_{c}^{x} \eta_{d}\right)\right\}=0,
$$

because $\mu\left(1-\mu^{2}\right)$ does not vanish almost everywhere, from which, transvecting $f^{d c}$ and making use of (1.9), $2 \alpha\left(1-\mu^{2}\right)(n-m-1)=0$, that is, $\alpha(n-m-1)=0$. This completes the proof of the lemma.
§4. ($m+1$)-dimensional generic submanifolds with $\xi_{x} \neq 0$ of $S^{2 m+1}(1)$
In this section we consider an $(m+1)$-dimensional generic submanifold of an odd-dimensional unit sphere $S^{2 m+1}(1)$.

First of all, we prove
Lemma 4.1 Let M^{m+1} be an $(m+1)$-dimensional generic submanafold with flat normal connection of $S^{2 m+1}(1)$. If the induced structure on M^{m+1} is antinormal and the function μ is nonzero almost everywhere. Then we have

$$
\begin{equation*}
h_{c b}{ }^{x} h^{c b}{ }_{y}=P^{z} P_{y z}{ }^{x}+\left(\alpha^{2}+2 \beta^{2} \mu^{2}\right) \xi^{x} \xi_{y} . \tag{4.1}
\end{equation*}
$$

Proof. We now compute

$$
\begin{aligned}
\left\|\left(1-\mu^{2}\right) f_{d c}-\eta_{c} \xi_{x} f_{d}{ }^{x}+\eta_{d} \xi_{x} f_{c}{ }^{x}\right\|^{2} & =\left(1-\mu^{2}\right)^{2} f_{d c} f^{d c}-2\left(1-\mu^{2}\right)\left(\xi_{z} f^{c z}\right)\left(\xi_{x} f_{c}{ }^{x}\right) \\
& =\left(1-\mu^{2}\right)^{2}\left(f_{d c} f^{d c}-2 \mu^{2}\right)=0
\end{aligned}
$$

with the help of (1.9). Hence we have

$$
\begin{equation*}
\left(1-\mu^{2}\right) f_{d c}=\xi_{x} f_{d}^{x} \eta_{c}-\xi_{x} f_{c}^{x} \eta_{d} . \tag{4.2}
\end{equation*}
$$

Using this, we have

$$
\begin{aligned}
\left(1-\mu^{2}\right) h_{c e}{ }^{x} h_{b}{ }^{e}{ }_{y} f_{d}{ }^{b} & =h_{c e}{ }^{x} h_{b}{ }^{e}{ }_{y}\left(\xi_{z} f_{d}{ }^{z} \eta^{b}-\xi_{z} \int^{b z} \eta_{d}\right) \\
& =h_{c e}{ }^{x} \xi_{y}\left(\alpha \eta^{e}+\beta \xi_{w} f^{e w}\right) \xi_{z} f_{d}{ }^{2}-h_{c}^{e x} \xi_{z}\left(P_{w y}{ }^{2} f_{e}^{w}+\beta \xi^{2} \xi_{y} \eta_{e}\right) \eta_{d}
\end{aligned}
$$

because of (3.12) and (3.13), from which, taking account of (3.12) $\sim(3.14)$,

$$
\left(1-\mu^{2}\right) h_{c e}{ }^{x} h_{b}{ }^{e}{ }_{y} f_{d}{ }^{b}=\left(\alpha^{2}+\beta^{2} \mu^{2}\right) \xi^{x} \xi_{y}\left(\xi_{z} f_{d}{ }^{2} \eta_{c}-\xi_{z} f_{c}{ }^{2} \eta_{d}\right) .
$$

Thus, it follows that

$$
\begin{equation*}
\left.h_{c e}{ }^{x} h_{b}{ }_{y}^{e} f_{d}{ }^{b}=\left(\alpha^{2}+\beta^{2} \mu^{2}\right)\right)^{x} \xi_{y} f_{d c} \tag{4.3}
\end{equation*}
$$

because of (4.2) and the fact that $1-\mu^{2}$ does not vanish almost everywhere, which derived from $n=m+1$.

Transvecting (4.3) with $f^{d c}$ and making use of (1.9), we find

$$
h_{c e}{ }^{x} h_{b}{ }^{e}{ }_{y}\left(g^{c b}-f^{c z} f_{z}^{b}-\eta^{c} \eta^{b}\right)=2 \mu^{2}\left(\alpha^{2}+\beta^{2} \mu^{2}\right) \xi^{x} \xi_{y}
$$

because of $n=m+1$, from which, using (3.12) $\sim(3.14)$,

$$
\begin{aligned}
& h_{c b}{ }^{x} h^{c b}-\left(P_{w}{ }^{x z} f_{e}{ }^{w}+\beta \xi^{x} \xi^{z} \eta_{e}\right)\left(P_{y z v} f^{e v}+\beta \xi_{y} \xi_{z} \eta^{e}\right)-\xi^{x} \xi_{y}\left(\alpha \eta_{e}+\beta \xi_{z} f_{e}{ }^{2}\right)\left(\alpha \eta^{e}+\beta \xi_{w} f^{e w}\right) \\
& \quad=2 \mu^{2}\left(\alpha^{2}+\beta^{2} \mu^{2}\right) \xi^{x} \xi_{y}
\end{aligned}
$$

or, taking account of (1.9), (3.14) and (3.17),

$$
\begin{gathered}
h_{c b}{ }^{x} h^{c b}{ }_{y}-P^{z} P_{y z}{ }^{x}+\alpha^{2} \mu^{2} \xi^{x} \xi_{y}-\beta^{2} \mu^{2}\left(1-\mu^{2}\right) \xi^{x} \xi_{y}-\alpha^{2}\left(1-\mu^{2}\right) \xi^{x} \xi_{y} \\
=2 \mu^{2}\left(\alpha^{2}+\beta^{2} \mu^{2}\right) \xi^{x} \xi_{y} .
\end{gathered}
$$

Hence, (4.1) is valid.
Lemma 4.2. Under the same the assumptions as those stated in Lemma 4.1, we have $\alpha=\beta=0$ if $m>1$.

Proof. Applying the operator ∇^{c} to (1.11) and substituting (1.13), we find

$$
\begin{aligned}
\left(\nabla_{e} h^{x}\right) f_{b}^{e}= & -h_{e}{ }^{c x}\left(-g_{c b} \eta^{e}+\delta_{c}^{e} \eta_{b}+h_{c b}{ }^{z} f_{z}{ }^{e}-h_{c}{ }_{2}{ }_{z} f_{b}{ }^{z}\right) \\
& +h_{b e}{ }^{x}\left\{-(m+1) \eta^{e}+\eta^{e}+h^{z} f_{z}{ }^{e}-h_{c}{ }^{e}{ }_{z} f^{c z}\right\}
\end{aligned}
$$

with the help of (2.2), from which, using (3.12), (3.13) and (4.1),

$$
\begin{aligned}
\left(\nabla_{e} h^{x}\right) f_{b}^{e}= & -(m-1) \xi^{x}\left(\alpha \eta_{b}+\beta \xi_{z} f_{b}^{z}\right)-h^{x} \eta_{b}+h^{z}\left(P_{y_{z}}^{x} f_{b}^{y}+\beta \xi^{x} \xi_{z} \eta_{b}\right) \\
& -2 P_{y_{z}}{ }^{x}\left(P_{w}{ }^{z y} f_{b}^{w}+\beta \xi^{z} \xi^{y} \eta_{b}\right)-2 \beta \mu^{2} \xi^{x}\left(\alpha \eta_{b}+\beta \xi_{z} f_{b}{ }^{2}\right) \\
& +P^{z} P_{y_{z}} f_{b}^{y}+\left(\alpha^{2}+2 \beta^{2} \mu^{2}\right) \xi^{x} \xi_{z} f_{b}^{z},
\end{aligned}
$$

or, taking account of (3.14), (3.15) and (3.17),

$$
\begin{equation*}
\left(\nabla_{e} h^{x}\right) f_{b}^{e}=-(m-1) \xi^{x}\left(\alpha \eta_{b}+\beta \xi_{z} f_{b}{ }^{2}\right)-h^{x} \eta_{b}+\beta\left(h^{2} \xi_{z}\right) \xi^{x} \eta_{b} . \tag{4.4}
\end{equation*}
$$

On the other hand, we have from (3.14) and (3.15)

$$
\begin{equation*}
h_{x} \xi^{x}=0 \tag{4.5}
\end{equation*}
$$

If we differentiate (4.5) covariantly and substitute (1.17), we find

$$
\left(\nabla_{d} h^{x}\right) \xi_{x}-h^{x}\left(f_{d x}-h_{d e x} \eta^{e}\right)=0,
$$

or, use (3.12) and (4.5), $\xi_{x}\left(\nabla_{d} h^{x}\right)=h^{x} f_{d x}$. Therefore, we have

$$
\begin{equation*}
\xi_{x}\left(\nabla_{e} h^{x}\right) f_{b}^{e}=h^{x} f_{e x} f_{b}^{e}=-h^{x} \xi_{x} \eta_{b}=0 \tag{4.6}
\end{equation*}
$$

with the help of (1.9) and (4.5).
Transvecting (4.4) with ξ_{x} and making use of (4.5) and (4.6), we get

$$
(m-1) \mu^{2}\left(\alpha \eta_{b}+\beta \xi_{z} f_{b}^{z}\right)=0 .
$$

Thus, it follows that $\alpha=\beta=0$ because $\mu\left(1-\mu^{2}\right)$ does not vanish almost everywhere. Hence, Lemma 4.2 is proved.

Using Lemma 4.1 and Lemma 4.2, we now prove
Theorem 4.3. Let $M^{m+1}(m>1)$ be an $(m+1)$-dimensional complete generic submanifold with fat normal connection of an odd-dimensional unit sphere $S^{2 m+1}(1)$. If the mean curvature vector is parallel in the normal bundle, the induced structure on M^{m+1} is antinormal and the function $\xi_{x} \xi^{x}$ does not vanish almost everywhere, then M^{m+1} is a great sphere $S^{m+1}(1)$.

Proof. From Lemma 4.1 and 4.2, we get

$$
\begin{equation*}
h_{c b}{ }^{x} h^{c b}{ }_{x}=h_{x} h^{x} \tag{4.7}
\end{equation*}
$$

with the help of (3.15) with $\alpha=0$.
Since we see from (1.9), (3.13), (3.14), (3.15), (3.18) and Lemma 4.2 that

$$
\left\|h_{c b}{ }^{x}-P_{y z}{ }^{x} f_{c}{ }^{y} f_{b^{2}}\right\|^{2}=h_{c b}{ }^{x} h^{c b}{ }_{x}-P_{x y z} P^{x y z}=h_{c b}{ }^{x} h^{c b}{ }_{x}-h_{x} h^{x},
$$

the following relationship is valid:

$$
\begin{equation*}
h_{c b}^{x}=P_{y z}{ }^{x} f_{c}^{y} f_{b}^{z} . \tag{4.8}
\end{equation*}
$$

On the other hand, the mean curvature vector being parallel, (2.9) becomes

$$
m h_{x} h^{x}+h^{x} h_{c e x} h_{b}^{e y} h^{c b}{ }_{y}-\left(h_{c b}{ }^{x} h^{c b y}\right)\left(h_{d a x} h^{d a}{ }_{y}\right)+\left\|\nabla_{d} h_{c b}\right\|^{x} \|^{2}=0
$$

because of (4.7). Substituting (4.7) and (4.8) into this and taking account of (1.9), (3.13), (3.14), (3.18) and Lemma 4.2, we find

$$
m h_{x} h^{x}+h^{x} P_{x y z} P^{y} P^{z}-P_{x y z} P^{x} P^{y} P^{z}+\left\|\nabla_{d} h_{c b}\right\|^{x}=0,
$$

from which, using (3.15) with $\alpha=0, h^{x}=0$ and $\nabla_{d} h_{c b}{ }^{x}=0$ and hence $h_{c b}{ }^{x}=0$ by virtue of (4.7). Thus, by completeness, M^{m+1} is a great sphere $S^{m+1}(1)$. This completes the proof of the theorem.
§5. Complete generic submanifolds with $\xi_{x} \neq 0$ of $S^{2 m+1}(1)$
In this section, we consider that $M^{n}(n \neq m)$ is an n-dimensional generic submanifold with flat normal connection of an odd-dimensional sphere $S^{2 m+1}(1)$.

Moreover, we suppose that the induced structure on M^{n} is antinormal and the function $\xi_{x} \xi^{x}$ does not vanish almost everywhere. Then we see from Lemma 3.1 and Lemma 4.2 that $\alpha=0$ on M^{n}. Thus, (3.12) $\sim(3.15)$ reduce respectively to

$$
\begin{gather*}
h_{c e}{ }^{x} \eta^{e}=\beta \xi^{x} \xi_{z} \int_{c}^{z}, \tag{5.1}\\
h_{c e}{ }^{x} f_{y}{ }^{e}=P_{y z}{ }^{x} f_{c}^{z}+\beta \xi^{x} \xi_{y} \eta_{c} \tag{5.2}\\
P_{y z}{ }^{x} \xi^{z}=0, \tag{5.3}\\
h^{x}=P^{x}
\end{gather*}
$$

From (5.2) and (5.4), we have

$$
\begin{equation*}
h_{c e}{ }^{x} f_{x}^{e}=h_{x} f_{c}^{x}+\beta \mu^{2} \eta_{c} . \tag{5.5}
\end{equation*}
$$

We first prove
Lemma 5.1. Let $M^{n}(n \neq m, m>1)$ be an n-dimensional generic submanafold with flat normal connection of $S^{2 m+1}(1)$. Suppose that the mean curvature vector is parallel, the induced structure on M^{n} is antinormal and the function μ does not vanish almost everywhere. If the scalar curvature of M^{n} is a constant, then we have $\beta=0$ or $\beta \mu^{2}=1$.

Proof. Differentiating (5.5) covariantly and substituting (1.14) and (1.16), we find

$$
\begin{align*}
& \left(\nabla_{d} h_{c e}{ }^{x}\right) f_{x}^{e}+h_{c}^{e x}\left(g_{d e} \xi_{x}+h_{d a x} f_{e}^{a}\right) \tag{5.6}\\
& =h_{x x}\left(g_{d c} \xi^{x}+h_{d e}{ }^{x} f_{c}^{e}\right)+\beta \mu^{2}\left(f_{d c}+h_{d c x} \xi^{x}\right)+\left(\nabla_{d}\left(\beta \mu^{2}\right)\right) \eta_{c}
\end{align*}
$$

because the mean curvature vector is parallel, from which, taking the skewsymmetric part and using (1.11), (2.2) and (2.7),

$$
\begin{equation*}
2 h_{c}^{e x} h_{d a x} f_{e}^{a}=2 \beta \mu^{2} f_{d c}+\left(\nabla_{d}\left(\beta \mu^{2}\right)\right) \eta_{c}-\left(\nabla_{c}\left(\beta \mu^{2}\right)\right) \eta_{d} \tag{5.7}
\end{equation*}
$$

If we transvect (5.7) with η^{c} and take account of (1.9) and (5.1), then we obtain

$$
\begin{equation*}
\left(1-\mu^{2}\right) \nabla_{d}\left(\beta \mu^{2}\right)=\left\{\eta^{e} \nabla_{e}\left(\beta \mu^{2}\right)\right\} \eta_{d}+2 \beta \mu^{2}\left(\beta \mu^{2}-1\right) \xi_{x} f_{d}^{x} \tag{5.8}
\end{equation*}
$$

Substituting this into (5.7), we get

$$
\begin{equation*}
\left(1-\mu^{2}\right) h_{c}^{e x} h_{e a x} f_{d}{ }^{a}=\beta \mu^{2}\left(1-\mu^{2}\right) f_{d c}+\beta \mu^{2}\left(\beta \mu^{2}-1\right)\left(\xi_{x} f_{d}{ }^{x} \eta_{c}-\xi_{x} f_{c}{ }^{x} \eta_{d}\right) \tag{5.9}
\end{equation*}
$$

because of (1.11).
On the other hand, we have

$$
\begin{align*}
& h_{c}^{e x} h_{e a x} f_{d}{ }^{a} f^{a c} \tag{5.10}\\
& =h_{c}^{e x} h_{e a x}\left(g^{a c}-f^{c z} f_{z}^{a}-\gamma_{l}^{c} \eta^{a}\right)
\end{align*}
$$

$$
\begin{aligned}
& =h_{c b}{ }^{x} h^{c b}{ }_{x}-\left(P_{y}{ }^{z x} f^{e y}+\beta \xi^{x} \xi^{z} \eta^{e}\right)\left(P_{w z x} f_{e}^{w}+\beta \xi_{x} \xi_{z} \eta_{e}\right)-\left(\beta \xi_{x} \xi_{z} f^{e z}\right)\left(\beta \xi^{x} \xi_{y} f_{e}^{y}\right) \\
& =h_{c b^{x}} h^{c b}{ }_{x}-P_{y}{ }_{y}{ }^{z x} P_{w z x}\left(g^{y w}-\xi^{y} \xi^{w}\right)-\beta^{2} \mu^{1}\left(1-\mu^{2}\right)-\beta^{2} \mu^{2} \xi_{z} \xi_{y}\left(g^{y z}-\xi^{y} \xi^{z}\right) \\
& =h_{c b^{x}} h^{c b}-h_{x} h^{x}-2 \beta^{2} \mu^{1}\left(1-\mu^{2}\right)
\end{aligned}
$$

with the help of (1.9), (3.17) and (5.1)~(5.4).
Transvecting (5.9) with $f^{d c}$ and using (1.9) and (5.10), we find

$$
\begin{aligned}
& \left(1-\mu^{2}\right)\left\{h_{c{ }^{x}} h^{c b}{ }_{x}-h_{x} h^{x}-2 \beta^{2} \mu^{4}\left(1-\mu^{2}\right)\right\} \\
& =\beta \mu^{2}\left(1-\mu^{2}\right)\left(2 n-2 m-2+2 \mu^{2}\right)+2 \beta \mu^{1}\left(\beta \mu^{2}-1\right)\left(1-\mu^{2}\right)
\end{aligned}
$$

from which,

$$
\begin{equation*}
h_{c b}{ }^{x} h^{c b}{ }_{x}=h_{x} h^{x}+2 \beta \mu^{2}\left(n-m-1+\beta \mu^{2}\right) \tag{5.11}
\end{equation*}
$$

because $1-\mu^{2}$ does not vanish almost everywhere. Thus, we see from (2.6) that the scalar curvature K of M^{n} is given by $K=n(n-1)-2 \beta \mu^{2}\left(n-m-1+\beta \mu^{2}\right)$. Since K is a constant, by differentiating we find $\left(n-m-1+2 \beta \mu^{2}\right) \nabla_{c}\left(\beta \mu^{2}\right)=0$, which implies that $\beta=0$ or $\nabla_{c}\left(\beta \mu^{2}\right)=0$ because of $n-m-1+2 \beta \mu^{2} \geqq 0$. Therefore, we see from (5.8) that $\beta \mu^{2}=1$ in the case of $\beta \neq 0$, that is, $\nabla_{c}\left(\beta \mu^{2}\right)=0$. This completes the proof of the lemma.

Theorem 5.2. Let $M^{n}(n \neq m, m>1)$ be an n-dimensional complete generic submanifold with flat normal connection of odd-dimensional unit sphere $S^{2 m+1}(1)$. Suppose that the mean curvature vector is parallel in the normal bundle, the induced structure on M^{n} is antinormal and the function $\xi_{x} \xi^{x}$ does not vamish almost everywhere. If the scalar curvature of M^{n} is a constant, then M^{n} is a great sphere $S^{n}(1)$ or a product of two spheres $S^{m}(1 / \sqrt{ } 2) \times S^{m}(1 / \sqrt{ } 2)$.

Proof. By Lemma 5.1, we consıder two cases that $\beta=0$ and $\beta \mu^{2}=1$. In the first case, we have from (5.11)

$$
\begin{equation*}
h_{c b}{ }^{x} h^{c b}{ }_{x}=h_{x} h^{x} . \tag{5.12}
\end{equation*}
$$

Hence, as in the proof of Theorem 4.3, we see that M^{n} is a great sphere $S^{n}(1)$.
In the next place, we consider the case in which $\beta \mu^{2}=1$. Differentiation covariantly yields

$$
\begin{equation*}
\left(\nabla_{c} \beta\right) \mu^{2}+2 \beta \xi_{x} \nabla_{c} \xi^{x}=0, \tag{5.13}
\end{equation*}
$$

from which, taking account of (1.17) and (5.1),

$$
\mu^{2}\left(\nabla_{c} \beta\right)-2 \beta\left(\xi_{x} \int_{c}^{x}+\beta \mu^{2} \xi_{x} f_{c}^{x}\right)=0
$$

and consequently

$$
\begin{equation*}
\nabla_{c} \beta=4 \beta^{2} \xi_{x} f_{c}^{x} \tag{5.14}
\end{equation*}
$$

because of $\beta \mu^{2}=1$.

Differentiatıng (5.2) covariantly and substituting (1.14), (1.16), (1.17) and (5.14), we find

$$
\begin{aligned}
& \left(\nabla_{d} h_{c e x}\right) f_{y}^{e}+h_{c}^{e} x\left(g_{d e} \xi_{y}+h_{d a y} f_{e}{ }^{a}\right) \\
& =\left(\nabla_{d} P_{y z x}\right) f_{c}{ }^{2}+P_{y z x}\left(g_{d c} \xi^{z}+h_{d e}{ }^{2} f_{c}^{e}\right)+4 \beta^{2}\left(\xi_{z} f_{d}{ }^{2}\right) \eta_{c} \xi_{x} \xi_{y} \\
& \quad-\beta\left(f_{d x}+\beta \xi_{x} \xi_{z} f_{d}{ }^{2}\right) \xi_{y} \eta_{c}-\beta \xi_{x} \eta_{c}\left(f_{d y}+\beta \xi_{y} \xi_{z} f_{d}\right)+\beta \xi_{x} \xi_{y}\left(f_{d c}+h_{d c z} \xi^{2}\right)
\end{aligned}
$$

with the help of (5.1), from which, taking the skew-symmetric part and making use of (1.11) and (2.2),

$$
\begin{align*}
2 h_{c}{ }^{e}{ }_{x} h_{d a y} f_{e}{ }^{a}= & \left(\nabla_{d} P_{y z x}\right) f_{c}{ }^{2}-\left(\nabla_{c} P_{y z x}\right) f_{d}{ }^{2}+2 \beta^{2} \xi_{x} \xi_{y}\left(\xi_{z} f_{d}{ }^{z} \eta_{c}-\xi_{z} f_{c}{ }^{z} \eta_{d}\right) \tag{5.15}\\
& +2 \beta \xi_{x} \xi_{y} f_{d c}-\beta\left\{\left(\xi_{x} f_{d y}+\xi_{y} f_{d x}\right) \eta_{c}-\left(\xi_{x} f_{c y}+\xi_{y} f_{c x}\right) \eta_{d}\right\} .
\end{align*}
$$

Transvecting (5.15) with $f_{w}{ }^{c} \eta^{d}$ and taking account of (1.9) and (5.1)~(5.3), we get

$$
\begin{aligned}
- & 2 \beta^{2} \mu^{2}\left(1-\mu^{2}\right) \xi_{x} \xi_{y} \xi_{w} \\
= & \eta^{e} \nabla_{e} P_{y w x}-\left(\eta^{e} \xi^{2} \nabla_{e} P_{z y x}\right) \xi_{w}-2 \beta^{2}\left(1-\mu^{2}\right)^{2} \xi_{x} \xi_{y} \xi_{w} \\
& -2 \beta\left(1-\mu^{2}\right) \xi_{x} \xi_{y} \xi_{w}+\beta\left(1-\mu^{2}\right)\left\{\xi_{x}\left(g_{y w}-\xi_{y} \xi_{w}\right)+\xi_{y}\left(g_{w x}-\xi_{w} \xi_{x}\right)\right\}
\end{aligned}
$$

from which, using (5.3) and the fact that $\beta \mu^{2}=1$,

$$
\eta^{e} \nabla_{e} P_{y w x}+P_{z y x} \eta^{e}\left(\nabla_{e} \xi^{z}\right) \xi_{w}-2 \beta(\beta-1) \xi_{x} \xi_{y} \xi_{w}+(\beta-1)\left(\xi_{x} g_{y w}+\xi_{y} g_{x w}\right)=0
$$

or, taking account of (1.17), (5.1) and (5.3),

$$
\eta^{e} \nabla_{e} P_{y w x}-2 \beta(\beta-1) \xi_{x} \xi_{y} \xi_{w}+(\beta-1)\left(\xi_{x} g_{y w}+\xi_{y} g_{x w}\right)=0
$$

If we transvect this with $g^{x w}$ and use (5.4), we obtain

$$
\eta^{e} \nabla_{e} h^{y}-2(\beta-1) \xi^{y}+(\beta-1)(2 m-n+2) \xi^{y}=0 .
$$

Since the mean curvature vector is parallel in the normal bundle, it follows that $n=2 m$ because of $\beta \mu^{2}=1$. Hence M^{n} is a hypersurface of $S^{2 m+1}(1)$. According to Theorem A in $\S 1, M^{n}$ is a product of two spheres $S^{m}(1 / \sqrt{ } 2) \times S^{m}(1 / \sqrt{ } 2)$. Therefore Theorem 5.2 is proved.

§6. Generic submanifolds with $\xi_{x}=0$ of $S^{2 m+1}(1)$

In this section we suppose that a generic submanifold with $\xi^{x}=0$ and flat normal connection of $S^{2 m+1}(1)$ satisfies (1.11). Then (1.9) reduces to

$$
\left\{\begin{array}{l}
f_{c}^{e} f_{e}{ }^{a}=-\delta_{c}^{a}+f_{c}^{x} f_{x}{ }^{a}+\eta_{c} \eta^{a}, \tag{6.1}\\
f_{c}^{e} f_{e}{ }^{x}=0, \quad \quad^{e} f_{e}^{a}=0, \quad \eta_{e} f^{e x}=0, \quad f_{x}^{e} f_{e}{ }^{y}=\delta_{x}^{y} \\
g_{e d} f_{c}{ }_{c}^{e} f_{b}^{d}=g_{c b}-\int_{c}{ }^{x} f_{x b}-\eta_{c} \eta_{b}, \quad \eta_{e} \eta^{e}=1
\end{array}\right.
$$

and (1.14)~(1.17) to

$$
\begin{align*}
& \nabla_{c} f_{b}^{x}=h_{c e}{ }^{x} f_{b}^{e}, \tag{6.2}\\
& h_{c}^{e}{ }^{e} f_{e}^{y}=h_{c}{ }^{e y} f_{e x}, \tag{6.3}\\
& \nabla_{c} \eta_{b}=f_{c b}, \tag{6.4}\\
& h_{c e}{ }^{x} \eta^{e}=-f_{c}{ }^{x} . \tag{6.5}
\end{align*}
$$

Transvecting (1.11) with $f_{y}{ }^{b} f_{d}{ }^{c}$ and taking account of (6.1), we find

$$
-h_{b d}{ }^{x} f_{y}{ }^{b}+\left(h_{b e}{ }^{x} \eta^{e}\right) f_{y}{ }^{b} \eta_{d}+\left(h_{b e}{ }^{x} f_{y}{ }^{b} f_{z}^{e}\right) f_{d}{ }^{z}=0,
$$

from which, using (6.5),

$$
\begin{equation*}
h_{c e}{ }^{x} f_{y}{ }^{e}=P_{y z}{ }^{x} f_{c}{ }^{z}-\delta_{y}^{x} \eta_{c}, \tag{6.6}
\end{equation*}
$$

where we have put $P_{y z}{ }^{x}=h_{c b}{ }^{x} f_{y}{ }^{c} f_{z}{ }^{b}$.
We put $P_{y z x}=P_{y z}{ }^{w} g_{w x}$, then as in the proof of $\S 1$, we see from (6.3) that $P_{y z x}$ is symmetric for all indices.

If we transvect (1.11) with $f^{c b}$ and make use of (6.1), then we get

$$
h^{x}=h_{c e}{ }^{x} f^{c z} f_{z}^{e}+h_{c e}{ }^{x} \eta^{c} \eta^{e},
$$

or, use (6.5) and (6.6),

$$
\begin{equation*}
h^{x}=P^{x} \tag{6.7}
\end{equation*}
$$

where we have put $P^{x}=g^{y z} P_{y z}{ }^{x}$.
Since the normal connection of the submanıfold is flat, by transvecting (2.7) with $f_{z}{ }^{b}$ and taking account of (6.5) and (6.6), we get

$$
P_{y z}{ }^{w}\left(P_{w v}{ }^{x} f_{c}{ }^{v}-\delta_{w}^{x} \eta_{c}\right)+g_{y z} f_{c}{ }^{x}=P_{w z}{ }^{x}\left(P_{v y}{ }^{w} f_{c}{ }^{v}-\delta_{y}^{w} \eta_{c}\right)+\delta_{z}^{x} f_{c y},
$$

from which, transvecting $f_{u}{ }^{c}$ and using (6.1),

$$
\begin{equation*}
P_{y z}{ }^{w} P_{w u}{ }^{x}+g_{y z} \delta_{u}^{x}=P_{w z}{ }^{x} P_{u y}{ }^{w}+\delta_{z}^{x} g_{y u} . \tag{6.8}
\end{equation*}
$$

Contraction with respect to z and x yields

$$
\begin{equation*}
P_{y z x} P_{u}{ }^{x z}=P_{x} P_{y u}{ }^{x}+(p-1) g_{y u}, \tag{6.9}
\end{equation*}
$$

where $p=2 m+1-n$, and consequently

$$
\begin{equation*}
P_{x y z} P^{x y z}=h_{x} h^{x}+p(p-1) \tag{6.10}
\end{equation*}
$$

with the help of (6.7).
Differentiating (6.6) covariantly and substituting (6.2) and (6.4), we find

$$
\left(\nabla_{d} h_{c e}{ }^{x}\right) f_{y}{ }^{e}+h_{c}^{e x} h_{d a y} f_{e}^{a}=\left(\nabla_{d} P_{y z}{ }^{x}\right) f_{c}^{z}+P_{y z}{ }^{x} h_{d e}{ }^{z} f_{c}^{e}-\delta_{y}^{x} f_{d c},
$$

from which, taking the skew-symmetric part with respect to d and c, and using (1.11) and (2.2),

$$
\begin{equation*}
2 h_{c}^{e x} h_{e a y} f_{d}^{a}=\left(\nabla_{d} P_{y z}{ }^{x}\right) f_{c}^{z}-\left(\nabla_{c} P_{y z}{ }^{x}\right) f_{d}^{z}-2 \delta_{y}^{x} f_{d c} \tag{6.11}
\end{equation*}
$$

If we transvect (6.11) with $f_{w}{ }^{d}$ and use (6.1), then we obtain

$$
\nabla_{c} P_{y z}{ }^{x}=\left(f_{z}^{e} \nabla_{e} P_{y w}{ }^{x}\right) f_{c}{ }^{w}
$$

Using $P_{y z}{ }^{x}=P_{z y}{ }^{x}$ and substituting this into (6.11), we have

$$
h_{c e x} h_{a}{ }^{e}{ }_{y} f_{d}{ }^{a}=g_{y x} f_{c d}
$$

Transvection $f_{b}{ }^{d}$ gives

$$
h_{c e x} h_{a}{ }^{e}{ }_{y}\left(-\delta_{b}^{a}+f_{b}{ }^{z} f_{z}^{a}+\eta_{b} \eta^{a}\right)=g_{y x}\left(g_{c b}-f_{c}^{z} f_{z b}-\eta_{c} \eta_{b}\right),
$$

from which, using (6.5) and (6.6),

$$
\begin{align*}
h_{c e x} h_{b}^{e}{ }_{y}= & P_{y z}{ }^{w} P_{w v x} f_{c}{ }^{v} f_{b}{ }^{z}-P_{y z x}\left(f_{b}{ }^{z} \eta_{c}+f_{c}{ }^{z} \eta_{b}\right) \tag{6.12}\\
& +2 g_{y x} \eta_{c} \eta_{b}+f_{c x} f_{b y}-g_{y x}\left(g_{c b}-f_{c}^{z} f_{z b}\right) .
\end{align*}
$$

Transvecting (6.12) with $g^{c b}$ and taking account of (6.1) and (6.9), we get

$$
h_{c b x} h^{c b}{ }_{y}=P^{z} P_{z y x}+(2 p+2-n) g_{y x},
$$

from which,

$$
\begin{equation*}
h_{c b}{ }^{x} h^{c b}{ }_{x}=h_{x} h^{x}+p(2 p+2-n) \tag{6.13}
\end{equation*}
$$

and

$$
\begin{align*}
\left(h_{c b}^{x} h^{c b y}\right)\left(h_{d a x} h^{d a}{ }_{y}\right)= & P_{y z x} h^{y} h^{z} h^{x}+(p-1) h_{x} h^{x} \tag{6.14}\\
& +2(2 p+2-n) h_{x} h^{x}+p(2 p+2-n)^{2}
\end{align*}
$$

with the help of (6.7) and (6.9).
Since we have from (6.9) and (6.12)

$$
h_{c e}{ }^{x} h_{b}^{e} x=P^{x} P_{x y z} f_{c}{ }^{y} f_{b}{ }^{z}+2 p\left(f_{b}{ }^{x} f_{c x}+\eta_{c} \eta_{b}\right)-P^{x}\left(f_{b x} \eta_{c}+f_{x c} \eta_{b}\right)-p g_{c b},
$$

it follows that

$$
\begin{equation*}
h^{x} h_{b a x} h_{c}{ }^{a}{ }_{y} h^{c b y}=P_{y z x} h^{y} h^{z} h^{x}+(2 p+1) h_{x} h^{x} \tag{6.15}
\end{equation*}
$$

with the help of (6.6)~(6.9).
Substituting (6.13) and (6.14) into (2.8), we find

$$
\frac{1}{2} \Delta\left(h_{c b}{ }^{x} h^{c b}{ }_{x}\right)=(n-p-1)\left\{3 h_{x} h^{x}+2 p(2 p+2-n)\right\}+\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}+\left\|\nabla_{d} h_{c b^{x}}\right\|^{2},
$$

from which, using (6.13) and the fact that $p=2 m+1-n$,

$$
\begin{equation*}
\frac{1}{2} \Delta\left(h_{c b}{ }^{x} h^{c b}{ }_{x}\right)=2(n-m-1)\left\{2 h_{c b}{ }^{x} h^{c b}{ }_{x}+h_{x} h^{x}\right\}+\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}+\left\|\nabla_{d} h_{c b}\right\|^{x} \|^{2} . \tag{6.16}
\end{equation*}
$$

Now, assuming the mean curvature vector is parallel in the normal bundle, that is, $\nabla_{c} h^{x}=0$, then we know that $h_{c b}{ }^{x} h^{c b}{ }_{x}$ is a constant because of (6.13). Thus, (6.16) implies

$$
\begin{equation*}
(n-m-1)\left\{2 h_{c b}{ }^{x} h^{c b}{ }_{x}+h_{x} h^{x}\right\}=0 \tag{6.17}
\end{equation*}
$$

and $\nabla_{d} h_{c b}{ }^{x}=0$. Since we see from (6.1) that

$$
\begin{equation*}
f_{c b} f^{c b}=2(n-m-1) \geqq 0 . \tag{6.18}
\end{equation*}
$$

If $2 h_{c b}{ }^{x} h^{c b}{ }_{x}+h_{x} h^{x}=0$ and hence $h_{c b}{ }^{x}=0$, then (6.5) means $P_{y z}{ }^{x} f_{c}{ }^{z}-\hat{\sigma}_{y}^{c} \gamma_{c}=0$. Transvection η^{c} gives $p=2 m+1-n=0$. It contradicts the fact that the codimension $p \geqq 1$. Thus, (6.17) implies $n=m+1$. From (6.18) and the fact that the submanifold is $(m+1)$-dimensional, we have $f_{c b}=0$. Therefore, we see from (1.6) that the submanifold is anti-invariant. Moreover, if M^{n} is compact orientable, according to Theorem B in $\S 1$, then we have

Theorem 6.1. Let M^{n} be an n-dimenstonal compact orientable generic submanifold with flat normal connection of an odd-dimensional unit shere $S^{2 m+1}(1)$. Suppose that the mean curvature vector is parallel in the normal bundle and the induced structure on M^{n} is antinormal. If the Sasakian structure vector ξ defined on $S^{2 m+1}(1)$ is tangent to the submanifold, then M^{n} is

$$
S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{m+1}\right), \quad r_{1}^{2}+\cdots+r_{m+1}^{2}=1
$$

Bibliography

[1] Blair, D.E., G.D. Ludden and K. Yavo, Hypersurfaces of an odd-dimensional sphere, J. Diff. Geo., 5 (1971), 479-486.
[2] Ishihara, S. and U-Hang Ki, Complete Riemannian manifolds with (f, g, u, v, k)structure, J. Diff. Geo., 8 (1973), 541-554.
[3] Kenmotsu, K., Some remarks on minimal submanifolds, Tôhoku Math. J., 22 (1970), 240-248.
[4] KI, U-HaNg, On generic submanifolds with antinormal structure of an odd-dimensional sphere, to appear in Kyungpook Math. J.
[5] Ki, U-Hang and J.S. Pak, Generic submanifolds of an even-dimensional Euclidean space, to appear in J. Diff. Geo.
[6] Ki, U-Hang, J.S. Pak and Y H. Kim, Generic submanifolds of a complex projective space with parallel mean curvature vector, Kodaı Math. J.. 4 (1981), 137-151.
[7] Ki, U-Hang and Y. H. Kim, Generic submanifolds of an odd-dimensional sphere, to appear.
[8] Ki, U-Hang, J.S. Pak and Y.W. Choe, Compact hypersurfaces with antinormal (f, g, u, v, λ) -structure, J. of Korean Math. Soc., 12 (1975), 63-70.
[9] Okumura, M., Submanifolds of real codimension of a complex projective space,

Attı della Accademıa Nazıonale dei Lınceı, 4 (1975), 544-555.
[10] Pak, J. S., Note on anti-holomorphic submanifolds of real codimension of a complex projective space, to appear in Kyungpook Math. J.
[11] Yano, K. and M. Kon, Anti-invariant submanifolds, Marcel Dekker, Inc., New York and Basel (1976).
[12] Yano, K. and M. Kon, Generıc submanifolds, to appear in Annali di Math.

Kyungrook University
Taegu, Korea

