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ON ALMOST CONTACT STRUCTURES BELONGING

TO A Ci?-STRUCTURE

BY KUNIO SAKAMOTO AND YOSHIYA TAKEMURA

§ 0. Introduction.

A Ci?-structure on an odd dimensional differentiate manifold is a pair
(3), J) of a 1-codimensional subbundle 3) of the tangent bundle and a complex
structure / on 3) with certain integrability condition. In this paper we shall
consider almost contact structures belonging to a Ci?-structure.

Ci?-structures are recently developed by Burns-Shneider [3], Burns-Diederich-
Shneider [2], Chern-Moser [4], Tanaka [10], Webster [11] [12] and so on. In
particular, Tanaka [10] has treated almost contact structures with certain
conditions belonging to a Ci?-structure and found canonical connections associ-
ated with them. Ishihara [5] has also considered almost contact structures in
the Ci?-category and studied pseudo-conformal mappings. Our standpoint is
similar to [5]. Our main purpose is to give a change of canonical connections
associated with almost contact structures belonging to a Cff-structure. An
almost contact structure (φ, ξ, θ) defines a hyperdistribution 3) and a complex
structure / on 3). We shall also show that there is an affine connection with
respect to which all structure tensors are parallel and whose torsion tensor is
proportional to the Nijenhuis tensor formally defined by / when they are
restricted to 3).

In § 1, we shall recall definitions of a Ci?-structure and its integrability.
Some facts about almost contact structures belonging to a Ci?-structure will
also given. §2 will be devoted to the study of affine connections associated
with almost contact structures. In §3, we shall obtain a change of canonical
connections.

The authors wish to express their hearty thanks to Professor S. Ishihara
for his constant encouragement and valuable suggestions.

§ 1. CR-structures and almost contact structures.

Let M be a connected C°°-manifold of dimension 2n + l (n^l). Let 3) denote
a 1-codimensional subbundle of the tangent bundle TM, what is called a hyper-
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distribution. A cross-section / of the bundle 3)® 3)* satisfying P——I is called
a complex structure on 3) where 3)* is the dual bundle of 3) and / is the
identity transformation. Let (3), J) be a pair of a hyperdistribution 3) and a
complex structure / on 3). Then the complexiίication CTM of the tangent
bundle TM is decomposed as CTM=C3)@X where C3) is the complexiίication
of 3) and X is a line bundle isomorphic with TM/C3). It is clear that if M
is orientable, then X is a trivial line bundle. The complex structure / on 3)
can be uniquely extended to a complex linear endomorphism of C3) and the
extended endomorphism, denoted also by /, satisfies the equation /2——/. Thus
/ has two eigenvalues i and — i. Let 3)1'0 (resp. 3)0'1) be a subbundle of C3)
composed of the eigenspaces corresponding to i (resp. —z). Then we have

A pair (3),J) is said to be integrable if 3)lt0 is involutive and integrable pair
(3),J) is called a CR-structure on M. Since a cross-section X of 3)1>0 can be
uniquely written as

X=X-iJX

for some vector field X contained in 3), the pair (3), J) is integrable if and
only if the following two conditions hold:

(1.1) κr]

(1.2) UX, JY1-IX, Yl-MLX, JY1+ZJX, YX=0

for any X, Y&Γ(3)) where Γ(3J) denotes the set of all vector fields contained
in 3). If M admits a Ci?-structure (3), J), then (M, 3), J) is called a CR-rnani-
foίd. Let H e a local 1-form annihilating the hyperdistribution 3), which is
determined up to non-vanishing smooth functions. Noting that

(1.3) -2dθ(X, Y)=Θ(IX,

for every X, Y^Γ{3)), we see that the condition (1.1) for the pair (3),J) is
equivalent to

(1.4) dθ(JX,JY)=dθ(X, Y)

for arbitrary X, YGΓ(3)). Moreover we have

(1.5) d(aff)(X, Y)=adθ(X, Y)

for every X, Y<E.Γ{3)) and smooth function a, which allows us to call (3), J) a
non-degenerate pair if dθ is non-degenerate on 3).

Now let there be given a pair (3), J) of a hyperdistribution 3) on M and a
complex structure / on 3). An almost contact structure (φ, ζ, θ) is a triplet of
(1,1) tensor field φ, a vector field ξ and 1-form θ defined on M satisfying
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0(0 = 1, φξ=O, θ*φ = O,
(1.6)

φ2=-I+θ®ξ, rank φ=2n .

If the 1-form θ annihilates 0 and the restriction of φ to 0 coincides with /,
then we say that the almost contact structure (φ, ξ, θ) belongs to the pair
(0, J). Defining a 2-form ω by

(1.7) ω=-2dθ,

we see from (1.3) and (1.4) that if the almost contact structure (φ, ξ, θ) belongs
to the pair (0, J), then the equation

(1.8) ω(X, Y)=Θ(£X, YD

hold and the condition (1.1) is equivalent with

(1.9) ω(JX, JY)=ω(X, Y)

for every X, Y<=Γ(£D). Also it is easily verified that

(1.10) ω(ξ, X)=θ(£ξ, XI)

for any X^Γ{0). Define a tensor field g of type (0, 2) by

(1.11) g(X, Y)=ω(φX, Y),

X and Y being vectors tangent to M and denote its restriction to 2) by g.
Then the equation (1.9) implies that if X, Y^Γ{Φ), then

(1.12) g{X, Y)=g{Y, X)

and

(1.13)

that is, g is symmetric and Hermitian when (<D, J) satisfies (1.1).
Next we give following lemma for later use.

LEMMA 1.1. Two almost contact structures {φ, ξ, θ) and (φ', f, θ') belong to
the same pair {3), J) of a hyper distribution W and a complex structure J on 2) if
and only if they satisfy

(1.14) θ'=εexθ, f '=ee- ' (04+f), φ'=φ+θ®A

for some smooth function λ and vector field A<^Γ{2)) where ε = ± l .

Proof. The if part is clear. Thus suppose that (φ, ξ, θ) and (φ', ξ'', θ')
belong to the same pair (0, J). Since the 1-form θ' does not vanish and is
proportional to θ, we find

θ'=εeλθ, (ε=±l).

Note that εeλ=θ'(ξ). Putting A= — εeλφξ', we have
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φA=-ee*φ*ζ'=-eeλ(-ξ'+θ(ξ')ξ)

= εeλξf-θ\ζ')ζ=εeλξ'-ξ

which implies ξ'=εe~λ(φA+ξ). Furthermore we have

If X® denotes the ^-component of a tangent vector X with respect to ξ, i. e.,
Xa=X—θ(X)ξ, then we see that

which shows φ'=φ+θ®A. Q.E.D.

Remark. Given an almost contact structure (φ, ξ, θ) on M, it is easy to
verify that φ', ζ' and θr defined by (1.14) satisfy the equations (1.6).

PROPOSITION 1.2. Let (β, J) be a non-degenerate pair and (φ, ξ, θ) be an
almost contact structure belonging to (.0,/). Then there exists an almost contact
structure (φf', ξ', θ') belonging to the same non-degenerate pair (£), J) such that
K', Γ(£>)1CZΓ&) holds.

Proof. Putting ξ'=ξ+B for some BSΞΓ(3)), we sees that [£', Γ(&)lC.Γ(W)
holds if and only if ω(B, X)=ω(X, ξ) for every X^Γ{$), because we have

==ω(B, X)-ω(X, ξ).

Our assumption ω is non-degenerate when it is restricted to £> shows that such
B uniquely exists. Therefore if we put

A=:-φB, θ'=θ, ξ'=ξ+φA, φf^φΛ-θ®A)

then we obtain an almost contact structure (φ'f ξ
f, θ') belonging to the same

non-degenerate pair {β)y ]) by virtue of Lemma 1.1 and Remark. Of course it
satisfies [f, Γ(^))]cΓ(5)). Q. E. D.

The condition

(1.15) K, Γ{3))-]c:Γ{2))

for an almost contact structure (φ, ξ, θ) belonging to a pair (β, J) is equivalent
to

(1.16) ω(X, f)=0

or

(1.17)
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Let (φ, ξ, θ) be an almost contact structure belonging to a pair {β, J). We
introduce a tensor field N of type (1,2) defined by

(1.18) N(X, Y)=ZφX, φYl-lX, Yl-φlX, φYl-φlφX, 7] .

We have

PROPOSITION 1.3. A pair {β, J) is a CR-structure if and only if

N(X, Y)=0
for every X, Y<ΞΓ(£D).

Proof. Note that when [X, JY~] + ίJX, 7 ] is contained in Γ{3)\ we have

N(X, Y)=ux,

Thus if (£), J) is a Ci?-structure, then clearly N(X, F)=0 because of (1.2).
Conversely, suppose that N vanishes on 2). Since f-component of N(X, Y) is
given by

Θ(N(X, Y))=Θ(LJX, JY1-IX, YD,

we have the condition (1.1). It follows that [X, JY1 + ZJX, Y~] is contained in
Γ{3)\ Therefore we obtain (1.2). Q. E. D.

Let (φ/', ξ', θ') be another almost contact structure belonging to the pair
{βt J). Then the difference between N and N' is

N\X9 Y)-N(X, Y)=-θ(tX,jn+ZJX, YDA

when X, Y^Γ(£D). Taking account of the above proof, we see that the vanish-
ing property of N on S) is independent of the choice of almost contact struc-
tures belonging to the pair {β, J).

In the sequel we shall denote the ^-component of N(X, Y) (X, Y<^£)) by
Ng(X, Y), so that N® is a cross-section of the bundle Λ2W*§Z)g). It can be
easily shown that if (2), J) satisfies the condition (1.1), then NΦ does not depend
on the choice of the almost contact structure (φ, ξ, θ) which belongs to the
pair (£), /) .

§ 2. Connections associated with almost contact structures.

In this section, we shall study the relation between the integrability of a
pair (β, J) and the existence of linear connections with certain torsion condi-
tions associated with almost contact structures belonging to (3), J). Let H be
a Lie group

lu 0 \
: Cereal rep. of GL(n, C), X^Cn=R2n , u^R- {0}

U C)
It is clear that pairs of a hyperdistribution Q defined on M and a complex
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structure on 3) are in a one to one correspondence with reductions of the
linear frame bundle L(M) to the group H. Let C> be a //-subbundle in L(M)
corresponding to a pair (3), J). Let 7 be a covariant differentiation with respect
to a linear connection reducible to a connection of ξ), in other words, whose
connection form takes values in the Lie algebra of H (cf. [7]). Then 7 satisfies

(2.1) lxΓ{3))dΓ{3))

for every vector field X tangent to M and hence we have an induced con-
nection in the vector bundle 3) whose covariant differentiation will be denoted
by D. Under this notation, we have

(2.2) DXJ=O (XZΞTM).

Conversely if a linear connection satisfies (2.1) and (2.2), then it is reducible to
a connection of ξ>. Moreover there is a one to one correspondence between
almost contact structures belonging to (3), J) and reduction of § to a Lie group
H* which is defined by

ι ° \
: C£ΞGL(n, C)

0 C)

If (φ, ξ, θ) is an almost contact structure belonging to (3), J) and €>* is the
corresponding //*-subbundle of €>, then we see that a linear connection is
reducible to a connection of £>* when and only when all structure tensors
φ, ξ, θ satisfy

(2.3) 7 ^ = 0 , V£=0, 75=0.

We say that a linear connection is associated with an almost contact structure
(φ, ξ, θ) when the equations (2.3) hold.

Well let there be given a pair (3), J). We have the following

PROPOSITION 2.1. // there exists a linear connection reducible to a connection
of €> such that the torsion tensor T satisfies

(2.4) TUXy JY)=T(X, Y), X, Y^S),

then (3), J) is mtegrable.

Proof. From (2.1) and (2.4), we have (1.1). Furthermore we see from (2.2)
that the left-hand-side of the equation (1.2) is equal to

T(X, Y)-T(JX,JY)+J(T(X,JY)+T(JX, Y))

which vanishes. Q. E. D.
Let (φ, ξt θ) be an almost contact structure belonging to the pair (3), J).

The torsion tensor field T of a linear connection associated with (φ, ξ, θ)
satisfies
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(2.5) Θ(T(X, Y))=-ω(X, Y), X, Y^S)

because of (1.8). Thus the ^-component T0(X, Y) of T(X, Y) is given by

(2.6) TdX, Y)=T(X, Y)+ω{X, Y)ξ, X,

Here we note that T ® is a cross-section of the bundle
As a corollary of Proposition 2.1, we obtain

COROLLARY. Assume that the pair (£), J) satisfies the condition (1.1) and
there is a linear connection associated with (φ, ξ, θ) such that T $—0. Then
{β, J) is integrable.

Next we shall show the existence of a linear connection associated with
arbitrary almost contact structure (φ, ξ, θ) belonging to the pair (β, J) such
that ATg—Ng). First we prepare

LEMMA 2.2. There is a linear connection such that V£=0, lθ—0 and

T(X, Y)=-ω(X, Y)ς (Z, F e ^ ) .

Proof. It is well-known that there is a torsion-free linear connection such

*
that the vector field ζ is parallel (cf. [6]). Let V denote the covariant differ-
entiation of such connection. Putting

for each vector fields X, Y tangent to M, we easily see that 7?=0 and V#=0.
Since the auxiliary connection is torsionfree, we have T(X, Y)——ω{X1 Y)ξ
X, Fe^). In this way, we have obtained a linear connection satisfying the
required conditions. Q. E. D.

Secondly we need

LEMMA 2.3. Let 1 be the covariant differentiation with respect to such a
linear connection as in Lemma 2.2. Put

ΨXY=VXY+S(X, Y)

where S is a tensor field of type (1,2). Then 7 r defines a linear connection as-
sociated with the almost contact structure (φ, ξ, θ) such that ATg^N® if and only
if S satisfies

(2.7) S(X, ξ)=0, Θ(S(X, Y))=0 X,

(2.8) (lxφ)Y=φS(X, Y)-S(X, φY), X, Y^TM

and

(2.9) S(X, Y)S(Y, X)=^Ng{X, Y), X,
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Proof. Straightforward computation shows that 7' also satisfies 7'£=0
and 7'0=O if and only if (2.7) holds. Since

(Ψxφ)Y=ΨxφY-φΨxY

=lxφY+S{X, φY)-φlxY-φS(X, Y)

, φY)-φS(X, Y),

we see that 7 ^ = 0 if and only if (2.8) holds. Taking the equation T(X, Y)
= — ω(X, Y)ξ into account, we have, for X,

T'(X, Y)=ΨxY-ΨγX-tX, F]

= -ω(X, Y)ξ+S(X, Y)-S(Y, X)

which implies that T%(X, r)=^-component of S(X, Y)—S(Y, X). From these
facts, we conclude our assertion. Q. E. D.

Finally we state

THEOREM 2.4. Let (φ, ξ, Θ) be an arbitrary almost contact structure belonging
to a pair (β> /). Then there exists a linear connection associated with (φ, ξ, θ)
such that the torsion tensor field T satisfies iTg^Ng.

Proof. Let 7 be the covariant differentiation of a linear connection as in
Lemma 2.2. By virtue of Lemma 2.3, we have only to find a tensor field S
satisfying the equations (2.7), (2.8) and (2.9). We define S as following

±S{X,Y)=θ{Y)φ{lξφ)X-{lφγφ)X-φ{lγφ)X

-2φ(lxφ)Y, X, Y^TM.

The remainder of the proof is devoted to verify that the above tensor field 5
satisfies (2.7), (2.8) and (2.9). Let X and Y be arbitrary vector fields. We have

and
iθ(S(X, Y))=-θ{{lφγφ)X)

= -θ{ΊφγφX-φl<ί>γX)

which prove the equation (2.7). The equation (2.8) can be obtained as follows:

4{φS(X, Y)-S(X,φY)}

=θ(Y)φ\ltφ)X-φ{VφYφ)X-φXlγφ)X-2φ\lχφ)Y
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where we have used the fact that θ°lzφ=§ for every vector field Z and the
equality φ(yxφ)φ=^xφ- If X and Y are vector fields contained in £), then we
see

Y)-s(y, x)}

On the other hand, from the defining equation of the tensor field TV we have

N(X, Y)=VφxφY-VφγφX+ω(φX, φY)ξ

-lxY+ΊγX-ω{X, Y)ξ

-φ{lxφY-lφγX+ω{Xy φY)ξ)

, Y)ξ)

+ {ω(φX,φY)-ω(X, Y)}ξ

for every X, Y^Γ(β))9 which implies that the ^-component NΦ(X, Y) of
N(X, Y) is equal to 4{S(Z, Y)-S(Y, X)}. Thus we obtain the equation (2.9)

Q. E. D.

COROLLARY. If a pair (£),J) is a CR-structure, then any almost contact
structure belonging to (£), J) admits an associated linear connection such that 7\z>=0.

§3. Change of associated linear connections.

Let there be given a pair (£), J) on the manifold M. We note that if M
is orientable, then there always exists an almost contact structure belonging
to (.0, /) . First we shall be concerned with associated linear connections which
induce the same connection D on W. Let (φ, ξ, θ) be any almost contact struc-
ture belonging to (D, J). It is trivial that for a given connection D on the
vector bundle S) such that DJ=Q there is a unique linear connection 7 associ-
ated with (φ, ξ, θ) whose restriction to 3) coincides with D. Thus if (φ'f ξ', θr)
is another almost contact structure belonging to {β, J), then we have an
explicit formula for the change of associated linear connections 7 and 7'
extending D.

PROPOSITION 3.1. Let 7 (resp. 7;) be a linear connection associated with
(φ, ξ, θ) {resp. (φ', ξ'', θ')) and suppose that they induce the same connection D on
3). Then the difference

S(X, Y)=ΨXY-1XY
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is given by S(X, Y)=Θ(Y)QX where Q is a tensor field of type (1, 1) defined by

(3.1) QX=dλ(X)φA-φlΣA+dλ(X)ξ

λ and A appearing in Lemma 1.1.

Proof, From our assumption we have S(X, W)=0 for each X^TM. It
follows that

S(X, Y)=S(X, Y$+θ(Y)ξ)=θ(Y)S(X, ξ).

Putting QX=S(X, ξ), we obtain

=dλ(X){φA+ξ)-φ!zA

which proves our assertion. Q. E. D.
From now we study canonical connections and their changes. We assume

that the pair {β, J) is non-degenerate. Let ξ> be the //-bundle corresponding
to (β, J) and π be the projection of C> to M. The canonical form η of £> is
defined by

where the linear frame z is considered as a linear map from Rξ&Cn to
TπCz)M (cf. [7]). Let θ be the /^-component of η. Define a 2-form ώ2:
&κωAS)to-+R by

ώz{Xy Y)=-2d8(X, Ϋ)

where X, F e T 2 § such that π*X=X^a.nά π*Ϋ=Y. It is clear that 8(X)=0 if
and only if π^Ze^). Hence if π*X<Ξ£) andf is vertical, then dθ(X, Ϋ)=0.

I u 0 \
This fact implies that ώ is well-defined. For any h=\ \^H, we easily

\X Cj
obtain ώzh~w1ώz. It follows that if we define gz: £DπωX^Oπ^~^R by

then g is non-degenerate and satisfies

(3.2) gzh=u~1gz.

We moreover assume that the condition (1.1) holds. Then the bilinear
form gg is symmetric and Hermitian. Let a{z) (resp. b(z)) be the dimension
of the maximal subspace in £)π^ on which gz is positive definite (resp. nega-
tive definite). These numbers are necessary even and we see from the equation
(3.2) that 2^=min (a(z), b{z)) depends only on π{z). So γ is a function on M.
Since M is connected, we easily see that y is constant. This fact allows us to
say that a non-degenerate Ci?-structure {β, J) is of index y.



154 KUNIO SAKAMOTO AND YOSHIYA TAKEMURA

In the sequel, the orientability of M will be assumed and the pair (β), J)
will be a non-degenerate Ci?-structure of index γ. Thus the corresponding H-
bundle £> has two connected components. Let Er be a 2nX2n matrix defined by

0

Then we have a principal subbundle gε of £>;

tf={z^ξ>: gz(X> Y)=etxEγy, z~ίX=x> z^Y=y)

with structure group

[I u 0 \

\\X C

where we remark that C^CUr=GL(n, C)r\C0(2γ, 2n-2γ). Let {φ, ζ, θ) be an
almost contact structure belonging to (£D, J). The intersection Q*=€>*ngε is a
principal bundle with structure group

H(i cH*:tc£H
It is easily verified that a linear connection 7 is reducible to a connection of
9* if and only if 7 satisfies

(*) 7 f = 0 , 70=0, 7 ^ = 0 , Dg=0.

Let (0', £', 00 be another almost contact structure belonging to (£D, J). Taking
account of the equation (1.14), we see that the Levi metrics g and gf are
related by

w.o) g =εeλg

Given two linear connections 7 and 7', as before we define a tensor field S by
S(X Y)=ψvY—r7vV

LEMMA 3.2. Let 7 and Ψ be linear connections satisfying (*) {for 7/ on^
needs dash in the equations of (*)). T/ẑ n ί/ie tensor field S satisfies

(3.4) SCY,/;4)+SCY, ξ)=QX,

(3.5) 0(S(Z, F ) ) = ^ ( Z ) 0 ( F ) ,

(3.6) S(X, JV)=JS{X, V),
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(3.7) g(S(X, V), W)+g{V, S(X, W))=dλ{X)g{V, W)

where X, Y^TM and V, W<ΞΦ. The tensor field Q of type (1, 1) is defined as

(3.1).

Proof. Let X, Y be arbitrary vector fields and V, W be elements of Γ{3)).
Since

0=Vi£'=V x f+S(*, ξ')

=Ίx(ee-\φA+ζ))+S(X, εe-χ(φA+ξ))

=εe-χ{S(X, φA)+S(X, ξ)-QX\ ,

we have the equation (3.4). Similarly we have

O=(VXΘ')(Y)=X-Θ'(Y)-Θ'(ΨXY)

=X (εexθ(Y))-εeλθ{!xY+S(X, Y))

= εeι{dλ{X)θ{Y)-θ(S{X, Y))}

which proves (3.5). Moreover

, φ'Y)-φΊxY-φ'S{X, Y)

=S(X, φY)-φS{X, Y)+Θ{Y){1XA+S{X, A)-dλ{X)A) .

In particular if we put Y—V, then the equation (3.6) follows. Finally from
(3.3) we have

v, w)=x g'{y, w)-g\ψxv, w)-g\v, wxw)
=eeλ{dλ{X)g(V, W)-g(S(X, V), W)-g(V, S{X, W))

and hence (3.7) holds. Q. E. D.
Next we want to restrict our attention to linear connections with condition

(*) whose torsion tensors satisfy T^=0. However the existence of such con-
nections imposes restrictions on the class of almost contact structures belonging
to iβ), /) . In the following Lemma we show that 1XY (X, FeΓ(^))) is deter-
mined by the equations Dg=0 and 7^=0.

LEMMA 3.3. // V is a linear connection such that Dg—ΰ and Tg,=0, then

(3.8) 2g{lxY, Z)=X.g(y, Z)+Y-g{X, Z)-Z g(X, Y)

-g(x, cr, zio)-g(γ, zx, z2®)+g{z, zx,

where X, Y, Z<ΞΓ(0) and [ , ]^=C , ]—ω( , )f, that is ^-component of [ , ]
with respect to ξ.
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Proof. Since Dg=Q, we have

, ixz)

for every X, Y, Z^Γ{β). Using usual technique (recall Levi-Civita connection),
we obtain (3.8). Q. E. D.

Therefore three more conditions Vf=0, V0=O, V^=0 impose a restriction
on the almost contact structure (φ, ξ, θ). The following proposition gives a
necessary condition to the existence of linear connections satisfying (*) and

PROPOSITION 3.4. Assume that n^2. // there exists a linear connection
satisfying the condition (*) and T$=0, then we have (1.16).

Proof. First we have

g{DxJ)Y, Z)=gφz(JY), Z)-g(JVxY, Z)

To the tirms on the right we apply the equation (3.8). We note that (3.8) can
be written as

2g{lxY, Z)=X.ω(JY, Z)+Y-ω(JX, Z)-Z ω(JXf Y)

-ω(φίY, Z\ X)-ω(φlX, Z], Y)+ω(φlX, 7 ] , Z).

Using the formula

3dω(X, Y} Z)=X ω(Y, Z)+Y-ω{Z, X)+Z ω(X, Y)

Π , Z)-ω([Z, X], Y)

direct calculation shows

2g((DxJ)Y, Z)=3dω(X, JY, JZ)-3dω(X, Y, Z)

+ω(N(Y, Z), X)

+ω{X, Z)ω(ξ, Y)-ω(X, Y)ω(ξ, Z)

+ω(X, JY)ω(ξ, JZ)-aiX, JZ)ω(ξ, JY)

for every X, Y, Z(ΞΓ(3)). We now have DxJ=0, dω=0 and Λ^=0. It follows
that

ω(X, Z)ω(ξ, Y)-ω(X, Y)ω(ξ, Z)+ω(X, JY)ω(ξ, JZ)

-ω(X, JZ)ω($, JY)=0
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and hence we have

ω(ξ, Y)Z-ω{ξ, Z)Y+ω(ξ, JZ)JY-ω(ξ, JY)JZ=0

for any Y, Z^Γ{^)). Our assumption n^2 implies that ω(ξ, Y)=0. Q. E. D.

Remark. As will be shown in later, the equation (1.16) is also a sufficient
condition to the existence of linear connections satisfying (*) and T&—Q.

According to Proposition 3.4, we from now consider only almost contact
structures with condition (1.15), which always exist in virtue of Proposition
1.2. Let define Λe=Γ(3)) by

(3.9) g(Λ,X)=dλ(X), I E ^ .

Note that the vector field A is uniquely determined because of the non-
degeneracy of the Levi metric g. We need

LEMMA 3.5. Let (φ, ξ, θ) and (φ;, ξ;, θ') be almost contact structures satis-
fying the condition (1.15). Then the vector field A in Lemma 1.1 is given by

(3.10) Λ=-Λ.

Proof. Let X^Γ{0). We have

* K ) , XJ)

=g(A, X)+dλ(X)

from which (3.10) follows. Q. E. D.
Let (φ, ξ, θ) be an almost contact structure with condition (1.15) which

belongs to the non-degenerate Ci?-structure {βy J). Let 7 be a linear connection
satisfying (*) and T1^—0. But such connection is not yet uniquely determined.
Thus we shall demand a condition for T(ξ, X). To do this we need

LEMMA 3.6. Let F be a tensor field of type (1,1) defined by

(3.11) FX=T(ξ,X), XΪΞTM.

Then F satisfies

(3.12) lξX=FX+tξ9 XI X<ΞΓ(&) ,

(3.13) Fξ=0, θ°F=0,

(3.14) Fφ-φF=-Xξφ,

(3.15) g(FX, Y)+g(X, FY)=g(-φ(Xξφ)X, Y), X, Y^nsf).

Proof. The equations (3.12) and (3.13) are immediately derived from the
definition of F and (2.1). Since
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=FφX+lξ, φXl-φFX-φlξ, XI,

we have (3.14). To the formula

0=ξ g(X, Y)-gC7ξX, Y)-g{X, ΊξY)

we apply the equation (3.12). The resulting equation is

g(FX, Y)+g{X, FY)^ξ-ω{φX, Y)-ω(φΛξX, Y)-ω{φX, XξY).

The right of the above equation becomes

~2(dXζθXφX, Y)+ω(Uξφ)X, Y).

Using the equations (1.11) and (1.17), we obtain (3.15). Q. E. D.

Now we demand for F the condition that F is symmetric with respect to
g. Then F must be

(3.16) F=~φΛξφ.

Remark. Tanaka [10] demanded the condition that F anticommutes with
φ. From this condition and equations (3.13) (3.14), we have also (3.16).

Tanaka [10] has mentioned

THEOREM 3.7. Let (φ, ξ, θ) be an almost contact structure with condition
(1.15) which belongs to the non-degenerate CR-structure (β), / ) . Then there is a
unique linear connection V satisfying (*), T ^ = 0 and (3.16), which is given by
(3.8) and (3.12).

Proof. Define V by the equations (3.8), (3.12) and Vf=0. Then direct
calculation shows that it satisfies (*), T ^ = 0 and (3.16).

The linear connection stated in Theorem 3.7 is called a canonical connection
of an almost contact structure with condition (1.15) (cf. [10]).

Before mentioning the change of canonical connections, we give

LEMMA 3.8. Let (φ, ξ, θ) and (φf, ξf, θr) be almost contact structures with
condition (1.15) which belong to (β, / ) . Let 7 and V/ be canonical connections of
(φ, ξ, θ) and (φ't ξ', θr) respectively. Then we have

(3.17) 2εeλFfX-2FX

=ΊjχΛ-JlxΛ-g{Λ,JX)A+g(Λ, X)JΛ

for every X<=Γ(£)).

Proof. From the equation (3.16) we have

', Z]
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where we note that [£', X]eΓ(5)) for X<ΞΓ(D). Substituting (1.14) into the
right of the above equation, we obtain

2εeλF'X=-φlξ, φXl-lξ, Xl-φίφA, φXl-ίφA, X]

+ dλ(φX)A-dλ(XXφA+ξ).

Apply the equation

} Z)ξ, Y,

to the third and fourth tirms of the right. Using the equation (3.10) we get
the equation (3.17). Q. E. D.

Finally we state

THEOREM 3.9. Let (φ, ξ, θ) and (φ'f £', θf) be almost contact structures with
condition (1.15) which belong to the non-degenerate CR-structure {β, / ) . Let 7
and Ψ be canonical connections of (φ, ξ, θ) and (φ\ ξ'', θ') respectively. Then the
tensor field S is given by

(3.18) 2S(X, Y)^dλ(X)Y+dλ(Y)X-g(X, Y)Λ

+g(X, JΛ)JY+g(Y, JΛ)JX-g(JX, Y)JΛ,

(3.19) 2S(f, X)=*JZΛ+JlxA+gU, JX)Λ

+g{Λ, X)JΛ+g(Λ, Λ)JX

where X, 7 G Γ ( ^ ) .

Proof. Let X, Y<ΞΓ(£)). The equation 7^=0 implies that

T'(X, Y)=ΨZY-ΨYX-IX, Y2

= -ω(X, Y)ξ+S(X, Y)-S(Y, X).

On the other hand, noting that ω'(X, Y)=εeλω(X, Y) we have

T'(X, Y)=-ω'{X, Y)ξ'

= -ω(X, Y)JA-ω{X, Y)ξ.

From these equations the equation

(3.20) S(X, Y)S(Y, X)=-ω(X, Y)JA

follows. Rewrite (3.7) as

g(S(X, Y), Z)+g{Y, S{X, Z))=dλ(X)g(Y, Z)

in which we permute the letters cyclically and subtract one from the sum of
the other two. Applying (3.20) to the obtained equation, we have the equation
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(3.18). Next we compute S(ξ, X). Noting that ξ=εeλξ'+φΛ, we have

, X)-FX~lξ, XI

= εeλF'X-FX+tφA, X^ + dλ(X)φΛ-{-dλ(X)ξ+^φΛX+S(φΛ} X).

Substituting (3.17) into the right, we get

-gU, X)JΛ+2S(JΛ, X)

where we have used iφΛ, Xl=-VjAX+JVχΛ-g(Λ, X)ξ. Moreover (3.18)
implies that

2S(JΛ, X)=2g(A, X)JΛ+2g(Λ,JX)Λ+g(Λ, Λ)JX.

Therefore we obtain (3.19). Q. E. D.

Remark. By virtue of the equation (3.4) we can calculate the components
S(X, ξ) ( Z G ^ ) ) and S(ξ, ξ).
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