HILBERT $\boldsymbol{B}(\boldsymbol{H})$-MODULES AND STATIONARY PROCESSES

By Masanao Ozawa

1. Introduction.

In the theory of multivariate or Hilbert space valued stationary processes, the Gram matricial structure of the time domain of processes plays an important role. The Gram matricial structure of q-variate processes forms a module over a ring of all $q \times q$-matrices with a $q \times q$-matrix valued inner product, which can be seen as a Hilbert space over a matrix ring but not over the complex number field (cf. Masani [5]). Thus it is desirable to formulate such a structure abstractly free from the underlying probabilistic structure, as Kolmogorov first emphasized in 1940 for the univariate case where unspecified Hilbert spaces are prefered to L^{2}-spaces (cf. [4]). The purpose of the present paper is to establish such an abstact concept of the time domain of processes.

In the next section, we shall give definitions of Hilbert $B(H)$-modules and stationary processes on them. Our definition of a Hilbert $B(H)$-module is similar to the Paschke's definition [6] of inner product modules over B^{*} algebras except that we require the range of the inner product, which we call the Gramian, is contained in the trace class. Such a requirement is always satisfied for the setting of q-variate or Hilbert space valued processes, and plays an essential role in our treatment. In Sect. 3 we shall study, in a general setting, positive sesquilinear maps valued in the predual of a W^{*} algebra, example of which are the Gramian and the operator valued covariance function of stationary processes, and we shall examine the relation with the *-representation and construct a unitary representation which is a module version of Umegaki's construction [10], which are applied to the later sections. In Sect. 4 we shall show that the structure of Hilbert $B(H)$-modules is completely determined by the power of their modular bases, and that a Fourier expansion by the modular basis and Gramian is possible in a parallel way with one on the usual Hilbert spaces. In Sect. 5 applying a general theorem obtained in Sect. 3, the equivalence of stationary processes on Hilbert $B(H)$-modules is established by their covariance functions.

The author would like to express his thanks to Professor H. Umegaki for his valuable advices and encouragements.

2. Hilbert $\boldsymbol{B}(\boldsymbol{H})$-modules and G-stationary processes.

Let H be a Hilbert space over a complex number field C, let $B(H)$ be the algebra of all bounded operators on H, and let $T(H)$ be the ideal of $B(H)$ consisting of all trace class operators on H. For a left $B(H)$-module X we will denote the action of $B(H)$ on X by $a, x \rightarrow a \cdot x$.

Definition 2.1. A pre-Hilbert $B(H)$-module is a left $B(H)$-module X equipped with a map $[\cdot, \cdot] ; X \times X \rightarrow T(H)$ satisfying:
(i) $[x+y, z]=[x, z]+[y, z]$,
(ii) $[a \cdot x, y]=a[x, y]$,
(iii) $[x, y]^{*}=[y, x]$,
(iv) $[x, x] \geqq 0$, and $[x, x]=0$ only if $x=0$,
for all x, y, z in X, a in $B(H)$. The map $[\cdot \cdot \cdot]$ will be called the Gramian on X.

It is easy to see that $1 \cdot x=x$ for the identity 1 in $B(H), x$ in X, and that $[x, a \cdot y]=[x, y] a^{*}$ for all a in $B(H), x, y$ in X (cf. [6]).

For a pre-Hilbert $B(H)$-module X, we define the scalar multiplication by $\alpha x=(\alpha 1) \cdot x$ for complex α, x in X, the inner product by $(x, y)=\operatorname{Tr}[x, y]$, and the norm by $\|x\|_{2}=(x, x)^{1 / 2}$. Then X has also a pre-Hilbert space structure. A pre-Hilbert $B(H)$-module which is complete with respect to the norm $\|\cdot\|_{2}$ is called a Hilbert $B(H)$-module.

When H is one-dimensional, we have $B(H)=T(H)=C$, and hence the concept of a Hilbert $B(H)$-module coincides with that of a Hilbert space.

The Hilbert space H itself is a simple but important example of a Hilbert $B(H)$-module. In fact, for each ξ, η in H, denote by $\xi \otimes \vec{\eta}$ the operator on H given by

$$
(\xi \otimes \bar{\eta}) \zeta=(\zeta, \eta) \xi
$$

for all ζ in H, as in [9], then $[\xi, \eta]=\xi \otimes_{\bar{\eta}}$ defines a Gramian on H, under the natural action of $B(H)$ on H, and the inner product given by $\operatorname{Tr}[x, y]$ coincides with the original one. Moreover, we can show that every Gramian on the left $B(H)$-module H is of this form if $\operatorname{Tr}[\xi, \eta]=(\xi, \eta)$, as follows.

Proposition 2.2. Let H be a left $B(H)$-module with natural action, and F be a $T(H)$-valued function satisfynng the defining conditions of the Gramıan on H. Then there is a posttive λ such that $F[\xi, \eta]=\lambda \xi \otimes_{\bar{\eta}}$ for all ξ, η in H. If $\operatorname{Tr} F[\xi, \xi]=(\xi, \xi)$ for some ξ then $\lambda=1$.

Proof. Let ϕ be a unit vector in H. Then we have that $F[\phi, \phi] \geqq 0,=0$ and that

$$
F[\phi, \phi]=F[(\phi \otimes \bar{\phi}) \phi,(\phi \otimes \bar{\phi}) \phi]=\phi \otimes \bar{\phi} F[\phi, \phi] \phi \otimes \bar{\phi},
$$

and hence there is a positive λ such that $F[\phi, \phi]=\lambda \phi \otimes \bar{\phi}$. For any ξ, γ_{i} in H, we have that

$$
F[\xi, \eta]=F[(\xi \otimes \bar{\phi}) \phi,(\eta \otimes \bar{\phi}) \phi]=\xi \otimes \bar{\phi} F[\phi, \phi] \phi \otimes_{\bar{\eta}}=\lambda \xi \otimes_{\bar{\eta}},
$$

and that $\operatorname{Tr} F[\xi, \eta]=\lambda(\xi, \eta)$.
Q.E. D.

Definition 2.3. Let X be a Hilbert $B(H)$-module, and let G be a locally compact group. A family $\left\{x_{t} ; t\right.$ in $\left.G\right\}$ of elements of X is called a G-stationary process on X if the following conditions are satisfied
(i) the Gramian $\left[x_{s}, x_{t}\right]$ depends only on $t^{-1} s$,
(ii) the function $t \rightarrow\left[x_{t}, x_{e}\right]$ is weakly continuous,
(iii) $\left\{x_{t} ; t\right.$ in $\left.G\right\}$ spans X, that is, the smallest closed submodule containing $\left\{x_{t} ; t\right.$ in $\left.G\right\}$ is X. The function $\Gamma(t)=\left[x_{t}, x_{e}\right]$ is called the covariance function of $\left\{x_{t}\right\}$.

Definition 2.4. Let X and Y be two Hilbert $B(H)$-modules with Gramians $[\cdot, \cdot]_{X}$ and $[\cdot, \cdot]_{Y}$, respectively. A map U from X onto Y is called an $2 s o-$ morphısm if U satisfies that
(i) $U(x+y)=U x+U y$,
(ii) $U(a \cdot x)=a \cdot U x$,
(iii) $[U x, U y]_{Y}=[x, y]_{X}$,
for all x, y in X, a in $B(H)$. We say that two Hilbert $B(H)$-modules are equivalent if there is an isomorphism from one onto another. Let $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ be two G-stationary processes on X and Y, respectively. We say that $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ are equivalent if there is an isomorphism U from X onto Y such that $U x_{t}=y_{t}$, for all t in G.

Our formulations of Hilbert $B(H)$-modules and G-stationary processes may provide a nice setting for the Hilbert space valued stationary processes, in view of the following examples.

Example 2.5. Let K^{q} be the Cartesian product of a Hilbert space K with itself n times, i.e., the set of all vectors $x=\left(x_{1}, \cdots, x_{q}\right)$ such that each x_{2} is in K. For x, y in K^{q}, the $q \times q$-matrix $\left(a_{\imath j}\right)$ defined by $a_{\imath j}=\left(x_{\imath}, y_{j}\right)$ is called the Gramian of the ordered pair x, y. Then K^{q} is a Hilbert $B\left(C^{q}\right)$-module with Gramian $[x, y]=\left(a_{\imath j}\right)$, as explained in the Masani's survey [p. $\left.353 ; 5\right]$.

Example 2.6. Let (Ω, P) be a probability measure space, let H be a separable Hilbert space, and let $L^{2}(H)$ the Hilbert space of all square Bochner integrable H-valued functions on (Ω, P). Then it is easy to see that $L^{2}(H)$ is a left $B(H)$-module in the obvious way. For any pair x, y in $L^{2}(H)$ there corresponds a unique trace class operator $[x, y]$ such that

$$
([x, y] \xi, \eta)=\int_{\Omega}(\xi, y(\omega))(x(\omega), \eta) P(d \omega),
$$

and that $\operatorname{Tr}[x, y]=\int_{\Omega}(x(\omega), y(\omega)) P(d \omega)$. Then it is easy to see that $L^{2}(H)$ is a Hilbert $B(H)$-module with Gramian $[x, y]$, whose properties are investigated
in Umegaki [11] in connection with the tensor product Hilbert space. Let $\left\{x_{t} ; t\right.$ in $\left.R\right\}$ be a family of H-valued random variables in $L^{2}(H)$ such that [x_{s}, x_{t}] depens only on $s-t$, and $\Gamma(t)=\left[x_{t}, x_{0}\right]$ is weakly continuous. Then $\left\{x_{t}\right\}$ is called the H-valued stationary process. In this case usually the time domain X of the process $\left\{x_{t}\right\}$ is defined as the closed submodule of $L^{2}(H)$ spanned by $\left\{x_{t}\right\}$. Thus the H-valued stationary process $\left\{x_{t}\right\}$ with time domain X is a R-stationary process on X in our sense. Further information on such a process will be found in many literatures, for instance [3].

Example 2.7. Let $S(K, H)$ be the set of all bounded linear transformations x from a Hilbert space K to a Hilbert space H, such that $x x^{*}$ is a trace class operator on H where x^{*} is a bounded linear transformation from H to K defined by the relation $(x * \xi, \eta)=(\xi, x \eta)$ for all ξ in H, η in K. Then it is easy to see that $S(K, H)$ is a Hilbert $B(H)$-module with Gramian $[x, y]=x y^{*}$. We call this the Hilbert $B(H)$-module $S(K, H)$.

3. Positive sesquilinear maps.

In order to provide some technical results used in the later sections, we shall study positive sesquilinear maps with values in the predual of a W^{*}-algebra in this section.

Let P be a linear map from a C^{*}-algebra A into a C^{*}-algebra B. Let $M_{n}(A)$ be the C^{*}-algebra of all $n \times n$-matrices with entries in A, and let P_{n} be the linear map from $M_{n}(A)$ into $M_{n}(B)$ obtained by applying P to each entry of an element of $M_{n}(A)$. We say that P is n-positive if P_{n} maps positive elements in $M_{n}(A)$ into positive elements in $M_{n}(B)$, and that P is completely positive if P is n-positive for each positive integer n. It should be remarked [6] that P in n-positive if and only if $\sum_{i, j} b_{i} * P\left(a_{\imath} * a_{j}\right) b_{j} \geqq 0$ for all a_{1}, \cdots, a_{n} in A, b_{1}, \cdots, b_{n} in B.

Let M be a W^{*}-algebra, that is, M is a C^{*}-algebra which is a dual space of a Banach space M_{*}. We denote the norm on M and M_{*} by $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ respectively, and by $\langle\cdot, \cdot\rangle$ the dual pair on $M \times M_{*}$. For f in M_{*} and a in M, we denote by $f^{*}, a \cdot f$ and $f \cdot a$, the elements of M_{*} defined by the relations $\left\langle b, f^{*}\right\rangle=\overline{\left\langle b^{*}, f\right\rangle},\langle b, a \cdot f\rangle=\langle b a, f\rangle$ and $\langle b, f \cdot a\rangle=\langle a b, f\rangle$ for all b in M. For the case in which $M=B(H), M_{*}$ can be regarded as $T(H)$. In this case, $\langle a, f\rangle$ $=\operatorname{Tr} a f, f^{*}$ is the adjoint of $f, a \cdot f=a f$ and $f \cdot a=f a$ for all a in $B(H)$ and f in $T(H)$.

Let L be a linear space. We say that F is an M_{*}-sesquilinear form on L if it is an M_{*}-valued sesquilinear map on $L \times L$ which is conjugate linear in the second variable. In the following we consider an M_{*}-sesquilinear form F on L, and write $[x, y]$ for $F(x, y)$ if no confusion may occur. For a positive integer n, F is said to be n-positive (or positive, when $n=1$) if

$$
\begin{equation*}
\sum_{\imath, j}\left\langle a_{\jmath}^{*} a_{\imath},\left[x_{2}, x_{j}\right]\right\rangle \geqq 0 \tag{1}
\end{equation*}
$$

for all a_{1}, \cdots, a_{n} in M, x_{1}, \cdots, x_{n} in $L . F$ is said to be completely posituve if F is n-positive for all positive integer n. It is easy to see that F is n-positive if and only if $\sum_{i, j} a_{\imath} \cdot\left[x_{2}, x_{\jmath}\right] \cdot a_{3}{ }^{*} \geqq 0$ for all a_{1}, \cdots, a_{n} in M, x_{1}, \cdots, x_{n} in L.

Lemma 3.1. Let N be a self-adjoint subalgebra of a W^{*}-algebra M which is $\sigma\left(M, M_{*}\right)$-dense in M. Then an M_{*}-sesquilinear form F on L is n-positve if it satisfies the inequality (1) for all a_{1}, \cdots, a_{n} in N, x_{1}, \cdots, x_{n} in L.

Proof. Let S be a unit sphere of M. Then by Kaplansky's density theorem, $N \cap S$ is $s\left(M, M_{*}\right)$-dense in S. Since the multiplication on M is jointly $s\left(M, M_{*}\right)$ continuous on S, it is easy to see that the inequality (1) holds for all a_{1}, \cdots, a_{n} in S, and hence multiplying positive numbers it holds for all a_{1}, \cdots, a_{n} in M.
Q.E.D

Obviously n-positivity follows from $n+1$-positivity, and every positive M_{*}-sesquilinear form is symmetric in the sense that $[x, y]=[y, x]^{*}$ for all x, y in L. For a positive M_{*}-sesquilinear form F, each a in M defines a semidefinite inner product $x, y \rightarrow\left\langle a^{*} a,[x, y]\right\rangle$ on L, and so by the usual Schwartz inequality we have that

$$
\left|\left\langle a^{*} a,[x, y]\right\rangle\right|^{2} \leqq\left\langle a^{*} a,[x, x]\right\rangle\left\langle a^{*} a,[y, y]\right\rangle
$$

for all x, y in L. But a more delicate form of a Schwartz inequality characterizes the 2-positivity of F.

Theorem. 3.2. Let F be a positive M_{*}-sesquilinear form on L. Then F is 2-positive if and only if

$$
\begin{equation*}
\left|\left\langle b^{*} a,[x, y]\right\rangle\right|^{2} \leqq\left\langle a^{*} a,[x, x]\right\rangle\left\langle b^{*} b,[y, y]\right\rangle \tag{2}
\end{equation*}
$$

for all a, b in M, x, y in L.
Proof. Suppose that F is 2-positive. Let t be a real number, and α be such that $\alpha=t\left|\left\langle b^{*} a,[x, y]\right\rangle\right|\left\langle b^{*} a,[x, y]\right\rangle^{-1}$. Then we have for $a_{1}=a, a_{2}=b$, $x_{1}=\alpha x, x_{2}=y$,

$$
\begin{aligned}
0 & \leqq \sum_{\imath, j=1}^{2}\left\langle a_{\jmath} * a_{\imath},\left[x_{\imath}, x_{\jmath}\right]\right\rangle \\
& =t^{2}\left\langle a^{*} a,[x, x]\right\rangle+2 t\left|\left\langle b^{*} a,[x, y]\right\rangle\right|+\left\langle b^{*} b,[y, y]\right\rangle
\end{aligned}
$$

Since t is arbitrary, we have the required inequality. Conversely, if the inequality (2) holds, we have

$$
\begin{aligned}
\sum_{\imath, \nu=1}^{2}\left\langle a_{\jmath} *\right. & \left.a_{\imath},\left[x_{\imath}, x_{\jmath}\right]\right\rangle \\
& =\sum_{\imath=1}^{2}\left\langle a_{\imath} * a_{\imath},\left[x_{\imath}, x_{2}\right]\right\rangle+2 \operatorname{Re}\left\langle a_{2} * a_{1},\left[x_{1}, x_{2}\right]\right\rangle \\
& \geqq 2\left(\left\langle a_{1} * a_{1},\left[x_{1}, x_{1}\right]\right\rangle\left\langle a_{2} * a_{2},\left[x_{2}, x_{2}\right]\right\rangle\right)^{1 / 2}+2 \operatorname{Re}\left\langle a_{2} * a_{1},\left[x_{1}, x_{2}\right]\right\rangle \\
& \geqq 2\left(\left|\left\langle a_{2} * a_{1},\left[x_{1}, x_{2}\right]\right\rangle\right|+\operatorname{Re}\left\langle a_{2}{ }^{*} a_{1},\left[x_{1}, x_{2}\right]\right\rangle\right) \geqq 0 \quad \text { Q.E.D. }
\end{aligned}
$$

From the above inequality we can constitute an elementary proof of M. D. Choi's inequality $P\left(a^{*} a\right) \geqq P\left(a^{*}\right) P(a)$ for 2-positive unit-preserving linear maps on a C^{*}-algebra.

Corollary 3.3. If P is a 2-positvve linear map from a C^{*}-algebra A into a C^{*}-algebra B, then $\|P\| P\left(a^{*} a\right) \geqq P\left(a^{*}\right) P(a)$ for all a in A, and $\|P\|=\|P(1)\|$ if A is unital.

Proof. Without any loss of generality, we assume B is faithfully represented on a Hilbert space L, and that P is a restriction of a normal linear map P^{\prime} on $A^{* *}$ into $B(L)$. Define A^{*}-sesquilinear form $[\cdot, \cdot]$ on L by the relation $\langle a,[x, y]\rangle=\left(P^{\prime}(a) x, y\right)$ for all a in $A^{* *}, x, y$ in L. Then it is easy to see that $[\cdot, \cdot]$ is a 2 -positive A^{*}-sesquilinear form, from the 2 -positivity of P and Lemma 3.1. Thus applying the inequality (2) for $b=1$ in $A^{* *}, a$ in A, $y=P(a) x$, the routine calculus shows that $\|P(a) x\|^{2} \leqq\left\|P^{\prime}(1)\right\|\left(P\left(a^{*} a\right) x, x\right)$, so that $\left\|P^{\prime}(1)\right\| P\left(a^{*} a\right) \geqq P\left(a^{*}\right) P(a)$. It follows that $\|P(a)\|^{2}=\left\|P\left(a^{*}\right) P(a)\right\| \leqq$ $\left\|P^{\prime}(1)\right\|\left\|P\left(a^{*} a\right)\right\| \leqq\left\|P^{\prime}(1)\right\|\|P\|\|a\|^{2}$, and thus $\|P\|=\left\|P^{\prime}(1)\right\|$. Q.E.D.

In the following, we denote by (\cdot, \cdot) the semidefinite inner product on L given by $(x, y)=\langle 1,[x, y]\rangle$ and by $\|\cdot\|_{2}$ the seminorm on L given by $\|x\|_{2}{ }^{2}=\|[x, x]\|_{1}$. .

Proposition 3.4. Every 2-positive M_{*}-sesquilinear form F on L satisfies that

$$
\begin{equation*}
\|[x, y]\|_{1}=\|x\|_{2}\|y\|_{2} \tag{3}
\end{equation*}
$$

for all x, y in L.
Proof. By the polar decomposition of elements of $M_{*}[1.14 .4 ; 8]$ there is a partial isometry u in M such that $\|[x, y]\|_{1}=\langle u,[x, y]\rangle$. Thus a simple application of the inequality (2) concludes the inequality (3). Q.E.D.

A positive M_{*}-sesquilinear form F is said to be $M_{* \text {-inner }}$ product if $[x, x]=0$ implies $x=0$. From every positive M_{*}-sesquilinear form F on L, we can obtain an M_{*}-inner product on the factor space L / N where $N=\{x$ in L; $[x, x]=0\}$ as $[x+N, y+N]=[x, y]$. If F is a 2 -positive M_{*}-inner product on L, then the completion \bar{L} of L by the norm $\|\cdot\|_{2}$ is a Hilbert space, to which we can extend F uniquely by continuity shown in Proposition 3.4.

Theorem 3.5. Let F be an n-posituve ($n \geqq 2$) M_{*}-sesquilinear form on L, and W be the Hilbert space obtained by factoring and completing L. Then there is a uuique unt-preserving normal n-positwe linear map ρ on M into $B(W)$ such that

$$
\begin{equation*}
(\rho(a) \dot{x}, \dot{y})=\langle a,[x, y]\rangle \tag{4}
\end{equation*}
$$

for all a in M, x, y in L, where \dot{x}, \dot{y} are the corresponding elements in the factor space, which is $a *$-representation of and only if

$$
\begin{equation*}
[\rho(a) \dot{x}, \dot{y}]=a \cdot[x, y] \tag{5}
\end{equation*}
$$

for all a in M and x in L.

Proof. For each a in M, by the inequality (2) we have

$$
|\langle a,[x, y]\rangle| \leqq\|a\|_{\infty}\|x\|_{2}\|y\|_{2}
$$

for all x, y in L. Thus the sesquilinear form $\dot{x}, \dot{y} \rightarrow\langle a,[x, y]\rangle$ on the factor space defines a unique bounded linear operator $\rho(a)$ on W such that ($\rho(a) \dot{x}, \dot{y})$ $=\langle a,[x, y]\rangle$ for all x, y in L. Now to check the required properties of the map $\rho: a \rightarrow \rho(a)$ is a matter of routine calculation. The last part of the assertion follows from the following relations using the fact that $[x, y]=[\dot{x}, \dot{y}]$,

$$
(\rho(a b) \dot{x}, \dot{y})=\langle a b,[x, y]\rangle,\langle a,[\rho(b) \dot{x}, \dot{y}]\rangle=(\rho(a) \rho(b) \dot{x}, \dot{y})
$$

for all a, b in M, x, y in L. Thus the proof is completed.
Q.E.D.

The map ρ will be called the assoiczate map of F.
Lemma 3.6. Let F be a posituve M_{*}-sesquilinear form on L, and π a map on M whose values are linear transformations on L such that $[\pi(a) x, y]=a \cdot[x, y]$ for all a in M, x, y in L. Then π induces a non-degenerate normal *-representation of M on the Hilbert space W obtanned by factoring and completing L.

Proof. First we observe that $[\pi(a) x, \pi(b) y]=a \cdot[x, y] \cdot b^{*}$. It follows that F is completely positive and that the set $N=\{x$ in $L:[x, x]=0\}$ is invariant under $\pi(a)$. Thus we can consider that $\pi(a)$ acts on the factor space L / N. If ρ is the associate map of F, then we have that

$$
(\rho(a) \dot{x}, \dot{y})=\langle a,[x, y]\rangle=\langle 1, a \cdot[x, y]\rangle=(\pi(a) \dot{x}, \dot{y})
$$

for all x, y in L. Thus $\rho=\pi$, and the conclusion follows from Theorem 3.5.

> Q.E.D.

Let F be a completely positive M_{*}-sesquilinear form on L, and $M \otimes L$ be the algebraic tensor product of M and L. Define an M_{*}-sesquilinear form F^{\prime} on $M \otimes L$ by

$$
F^{\prime}\left[\sum_{2} a_{i} \otimes x_{\imath}, \sum_{j} b_{j} \otimes y_{j}\right]=\sum_{i, j} a_{\imath} \cdot F\left[x_{2}, y_{j}\right] \cdot b_{j}^{*}
$$

Then by the complete positively of F, F^{\prime} is positive. Let $\pi(a)$ be the linear map on $M \otimes L$ such that

$$
\pi(a) \sum_{\boldsymbol{i}} a_{i} \otimes x_{2}=\sum_{\boldsymbol{i}} a a_{2} \otimes x_{2}
$$

Then clearly $F^{\prime}[\pi(a) x, y]=a \cdot F^{\prime}[x, y]$ for all x, y in $M \otimes L$, and hence by Lemma 3.6, π induces a non-degenerate normal *-representation on the Hilbert space obtained by factoring and completing $M \otimes L$. This construction of a *-representation is essentially same to that found by Stinespring [12].

Let G be a locally compact group. An M_{*}-valued function V on G is said to be positive definite if it satisfies that

$$
\sum_{i, j}\left\langle a_{3} * a_{2}, V\left(t_{j}^{-1} t_{2}\right)\right\rangle \geqq 0
$$

for all positive integer n, a_{1}, \cdots, a_{n} in M, and t_{1}, \cdots, t_{n} in G, and it is said to be weakly continuous if $t \rightarrow\langle a, V(t)\rangle$ is continuous on G for all a in M.

It should be remarked that every positive definite M_{*}-valued function V can be extended to the completely positive M_{*}-sesquilinear form F on the linear space $F(G)$ of all complex-valued functions on G with finite support, which satisfies that

$$
F[x, y]=\sum_{s} \sum_{t} x(s) \overline{y(t)} V\left(t^{-1} s\right)
$$

for all x, y in $F(G)$.
Theorem 3.7. Let V be a weakly continuous positive definte M_{*}-valued function on G. Then there is a Hilbert space W, a non-degenerate normal *representation π of M on W, a strongly continuous unitary representation U of G on W and a vector ξ in W satisfying.
(i) $U(t)$ is in $\pi(M)^{\prime}$ for all t in G,
(ii) the linear span of the set $\{\pi(a) U(t) \xi$; a in M, t in $G\}$ is dense in W,
(iii) $\langle a, V(t)\rangle=(\pi(a) U(t) \xi, \xi)$ for all a in M and t in G.

Proof. Let $F(G, M)$ be the linear space of all M-valued functions on G whose value is 0 outside a finite set of G. Define an M_{*}-sesquilinear form $[\cdot \cdot \cdot]$ on $F(G, M)$ by

$$
[f, g]=\sum_{s} \sum_{t} f(s) \cdot V\left(t^{-1} s\right) \cdot g(t)^{*}
$$

and put $(f, g)=\langle 1,[f, g]\rangle$ for all f, g in $F(G, M)$. Then $[\cdot, \cdot]$ is positive, and (\cdot, \cdot) is a semidefinite inner product on $F(G, M)$. For a in M, t in G, define linear maps $\pi(a), U(t)$ on $F(G, M)$ by the relations

$$
\begin{aligned}
& (\pi(a) f)(s)=a f(s) \\
& (U(t) f)(s)=f\left(t^{-1} s\right)
\end{aligned}
$$

for all f in $F(G, M), s$ in G. Then it is easy to see that

$$
\begin{aligned}
& {[\pi(a) f, g]=a \cdot[f, g]} \\
& {[U(t) f, U(t) g]=[f, g]}
\end{aligned}
$$

for all f, g in $F(G, M)$. Then the subset $N=\{f$ in $F(G, M) ;[f, f]=0\}$ is invariant under $\pi(a)$ and $U(t)$. Let W be the Hilbert space obtained by completing $F(G, M) / N$. Then by Lemma 3.6, π induces a non-degenerate normal *-representation of M on W, and similarly U induces a unitary representation of G. Since it is easy to see that $\pi(a) U(t) f=U(t) \pi(a) f$ for all f in $F(G, M)$, the condition (i) is clearly satisfied. Let ξ be the vector in W induced from 1_{e} in $F(G, M)$ such that $1_{e}(e)=1$ and that $1_{e}(s)=0$ if $s \neq e$, where e is the unit of G. Then clearly the set $\left\{\pi(a) U(t) 1_{e} ; a\right.$ in M, t in $\left.G\right\}$ spans $F(G, M)$ and hence the condition (ii) is obvious. Observing that $\left[U(t) 1_{e}, 1_{e}\right]=V(t)$, we have
that $\langle a, V(t)\rangle=\left(\pi(a) U(t) 1_{e}, 1_{e}\right)$, and so we obtain the condition (iii). Now we have only to show the strong continuity of U. Since the routine calculus shows that

$$
(U(u) f, g)=\sum_{s} \sum_{t}\left\langle g(t)^{*} f(s), V\left(t^{-1} u s\right)\right\rangle
$$

for all u in G, f, g in $F(G, M)$, the weak continuity of U implies the weak continuity of U. Thus the strong continuity of U is concluded from the fact that the strong and weak topologies coincide on the unitary group of W.

Q.E.D.

The above construction of a unitary representation is a variation of that found by Umegaki [10].

4. The structure of Hilbert $B(H)$-modules.

In this section we shall study the structure of Hilbert $B(H)$-modules, and show that Hilbert $B(H)$-modules have a quite similar structure to that of usual Hilbert spaces except that $B(H)$ is not a field.

Let $\left\{X_{i}\right\}$ be a family of Hilbert $B(H)$-modules and let $\sum_{i} X_{\imath}$ be the Hilbert space direct sum of $\left\{X_{i}\right\}$ which is a left $B(H)$-module in the obvious way. Let $x=\left(x_{2}\right)$ and $y=\left(y_{2}\right)$ be in $\sum_{i} X_{2}$. By Proposition 3.4 we have $\left\|\left[x_{2}, y_{2}\right]\right\|_{1}$ $\leqq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$, where $[\cdot, \cdot]$ is the Gramian on $X_{i},\|\cdot\|_{1}$ is the trace norm on $T(H)$, and $\|\cdot\|_{2}$ is the Hilbert space norm on X_{2}. Then it is easy to see that the family of trace class operators $\left\{\left[x_{2}, y_{2}\right]\right\}$ is summable in the trace norm. Now we define the Gramian on $\sum_{i} X_{2}$ by $[x, y]=\sum_{i}\left[x_{2}, y_{2}\right]$. Then we have that $(x, y)=\sum_{i}\left(x_{2}, y_{2}\right)=\operatorname{Tr}[x, y]$, and hence $\sum_{i} X_{2}$ is a Hilbert $B(H)$-module which is called the direct sum of the family $\left\{X_{i}\right\}$ of Hilbert $B(H)$-modules.

Lemma 4.1. Let X and Y be two Hilbert $B(H)$-modules, and U be a map from X onto Y. Then the following three conditions are equivalent:
(i) U is an isomorphism from X to Y;
(ii) U is a unitary operator from X to Y such that $a \cdot U x=U(a \cdot x)$ for all x in X;
(iii) U satisfies $[U x, U y]=[x, y]$ for all x, y in X.

Proof. It is trivial that (i) implies (ii). The routine calculus shows that (ii) implies that $\operatorname{Tr}(a[U x, U y])=\operatorname{Tr}(a[x, y])$ for all a in $B(H), x, y$ in H. Thus (ii) implies (iii). It is easy to verify that (iii) implies that $[U(x+y)-U x$ $-U y, U(x+y)-U x-U y]=0$ and that $[U(a \cdot x)-a \cdot U x, U(a \cdot x)-a \cdot U x]=0$ for all a in $B(H), x, y, z$ in X. Thus clearly (iii) implies (i).
Q.E.D.

Theorem 4.2. Every Hilbert $B(H)$-module X is equivalent to a direct sum ΣH of (possibly infinitely many) copy of the Hilbert $B(H)$-modules H.

Proof. By Lemma 3.6 there is a non-degenerate normal *-representation π of $B(H)$ on the Hilbert space X such that $(\pi(a) x, y)=\langle a,[x, y]\rangle$ for all x, y in X. Since every ${ }^{*}$-representation of the C^{*}-algebra $C(H)$ of all compact operators on H is unitarily equivalent to a direct sum of the identity representation on H, and since $C(H)$ is weakly dense in $B(H)$, we can conclude that π is untarily equivalent to a direct sum of the identity representation of $B(H)$ on H. Thus by Lemma 4.1 this unitary equivalence induces the equivalence between two Hilbert $B(H)$-modules X and ΣH.
Q.E. D.

Corollary 4.3. Every Hilbert $B(H)$-module X is equivalent 10 the Hilbert $B(H)$-module $S(K, H)$ for some Hilbert space K.

Proof. By Theorem 4.2 there is an index set I such that X is equivalent to $\sum_{\imath}\left\{H_{\imath} ; i\right.$ in $\left.I\right\}\left(H_{\imath}=H\right.$ for all $\left.i\right)$. Let K be a Hilbert space with basis $\left\{\xi_{2} ; i\right.$ in $\left.I\right\}$. For every element $x=\left(x_{2}\right)\left(x_{2}\right.$ in H), define an operator $U x=$ $\sum_{2} x_{i} \otimes \xi_{2}$ from K to H. Then it is easy to verify that $U x$ is in $S(K, H)$ and that the correspondence $U: x \rightarrow U x$ is an isomorphism from X onto $S(K, H)$.
Q.E. D.

In order to proceed to the Fourier expansion of elements of a Hilbert $B(H)$-module, in which the Fourier coefficients are given by the Gramian, we shall define the basis of the Hilbert $B(H)$-module, as follows,

Definition 4.4. Let $\left\{x_{i}\right\}$ be a family of elements of a Hilbert $B(H)$ module X. We say that $\left\{x_{i}\right\}$ is modular othonormal if
(i) $\left[x_{i}, x_{j}\right]=0$, if $i \neq j$,
(ii) $\left[x_{2}, x_{2}\right]^{2}=\left[x_{2}, x_{2}\right]$ and $\left\|x_{i}\right\|_{2}=1$ for each 2.

A maximal modular orthonormal family is called a modular basis.
By Zorn's lemma, every Hilbert $B(H)$-module has a modular basis.
Theorem 4.5. The following conditoons for a modular orthonormal family $\left\{x_{i}\right\}$ of elements of a Hilbert $B(H)$-module X are all equivalent.
(i) The family $\left\{x_{i}\right\}$ is a modular basis of X.
(ii) If x is in X and if $\left[x, x_{2}\right]=0$ for all i, then $x=0$.
(iii) If, for each i, X_{2} is the set $\left\{a \cdot x_{2} ; a\right.$ is in $\left.B(H)\right\}$, then $X=\sum_{2} X_{2}$ (the Hilbert space direct sum).
(iv) For all x in $X, x=\sum_{i}\left[x, x_{2}\right] \cdot x_{2}$.
(v) For all x in $X,[x, y]=\sum_{2}\left[x, x_{2}\right]\left[x_{2}, y\right]$, where the infinite sum is defined as unconditionaly covergence in $\|\cdot\|_{1}$-norm.
(vi) For all x in $X,[x, x]=\sum_{2}\left|\left[x_{2}, x\right]\right|^{2}$, where $|\cdot|$ is such that $|a|=\left(a^{*} a\right)^{1 / 2}$.

Proof. (i) implies (ii): If x is in X, if $\left[x, x_{2}\right]=0$ for all i, and if $x \neq 0$, then the non-zero positive trace class operator $[x, x]$ on H has a positive eigen value λ with eigen vector $\phi,\|\phi\|_{2}=1$. Let a be the operator on H defined by $a \xi=\lambda^{-1 / 2}(\xi, \phi) \phi$ for all ξ in H, and x_{0} be such an element in X that $x_{0}=a \cdot x$. Then the routine calculus shows that $\left[x_{0}, x_{0}\right]^{2}=\left[x_{0}, x_{0}\right]$ and that $\left\|x_{0}\right\|_{2}=1$. Thus we can add x_{0} to the family $\left\{x_{i}\right\}$. This contradicts the assumed maximality of the family.
(ii) implies (iii): If $X \neq \sum_{2} X_{2}$, then there is a vector x in X such that $(x, y)=0$ for all y in $\sum_{2} X_{2}$ but that $x \neq 0$. Thus

$$
\left\|\left[x, x_{2}\right]\right\|_{1}=\operatorname{Tr}\left(u\left[x, x_{\imath}\right]\right)=\left(x, u^{*} \cdot x_{2}\right)=0
$$

where u is an partial isometry on H, and hence $\left[x, x_{2}\right]=0$ for all \imath, since $u^{*} x_{\imath}$ is in X_{\imath}. This contradicts (ii).
(iii) implies (iv): Assuming (iii), any x in X can be written as $x=\sum_{2} a_{2} \cdot x_{2}$ where a_{2} is in $B(H)$. Then a routine calculus using the fact that $\left[x_{2}, x_{2}\right] \cdot x_{2}=x_{2}$ shows that $a_{1} \cdot x_{2}=\left[x, x_{2}\right] \cdot x_{2}$. Thus we have the required formula.

The remaining part of the proof is now an easy matter. Q.E.D.
Corollary 4.6 Any two modular basis of a Hilbert $B(H)$-module have the same power.

Proof. Let $\left\{x_{\imath} ; \imath\right.$ in $\left.I\right\},\left\{y_{j} ; \jmath\right.$ in $\left.J\right\}$ be two modular basis of a Hilbert $B(H)$-module X. Then from (iii) of Theorem 4.5, we can see that X is equivalent to $\sum_{2} H_{2}$ and $\sum_{\jmath} H_{j}$, where $H_{2}=H_{j}=H$, since $X_{2}=\left\{a \cdot x_{2} ; a\right.$ in $\left.B(H)\right\}$ (or $=\left\{a \cdot y_{j} ; a\right.$ in $\left.B(H)\right\}$) is equivalent to H. Thus the powers of I and J are same, since they are two multiplicities of the two unitarily equivalent representations of $B(H)$.
Q.E.D.

The common power of all modular basis of a Hilbert $B(H)$-module X is called the modular dimention of X and written as $\operatorname{Dim}(X)$.

The following Theorem is now an immediate consequence of Theorem 4.2.
Theorem 4.7. Two Hilbert $B(H)$-modules are equivalent if and only if they have the same modular dimension.

It should be remarked that $\operatorname{Dim}(X) \cdot \operatorname{dim}(H)=\operatorname{dim}(X)$ and that $\operatorname{Dim}(S(K, H))$ $=\operatorname{dim}(K)$, where $\operatorname{dim}(\cdot)$ is the usual dimention of Hilbert spaces.

5. Equivalence of G-stationary processes.

In the following, we shall consider a fixed locally compact group G. Recall that a $T(H)$-valued function V on G is positive definite if and only if for any positive integer n, we have that $\sum_{2, \rho} \operatorname{Tr}\left(a_{0} * a_{\imath} V\left(t_{0}{ }^{-1} t_{2}\right)\right) \geqq 0$ for all
a_{1}, \cdots, a_{n} in $B(H), t_{1}, \cdots, t_{n}$ in G. Let X be a Hilbert $B(H)$-module, and let $\left\{x_{t}\right\}$ be a G-stationary process on X. Then it is easy to see that the covariance function Γ of the process $\left\{x_{t}\right\}$ is a $T(H)$-valued positive definite function on G. Now we shall show that every positive definite $T(H)$-valued function is the covariance function of some, but unique up to equivalence, G-stationary process on a Hilbert $B(H)$-module.

Theorem 5.1. Let Γ be a weakly continuous positive definte $T(H)$-valued function on G. Then there exist a Hilbert $B(H)$-module X and a G-stationary process $\left\{x_{t}\right\}$ on X whose covariance function is Γ. In thes case there is a strongly continuous unitary representation U of G on X such that $x_{t}=U(t) x_{e}$ and that $U(t)(a \cdot x)=a \cdot U(t) x$ for all t on G, a in $B(H), x$ in X.

Proof. Applying Theorem 3.7 to the case $M=B(H)$, we have a Hilbert $B(H)$-module X, a non-degenerate normal *-representation π of $B(H)$ on X, a strongly continuous unitary representation U of G on X and a vector x_{e} in X which satisfy the conditions in that theorem. Put the process $\left\{x_{t}\right\}$ as $x_{t}=$ $U(t) x_{e}$ for all t in G, and define the Gramian $[\cdot, \cdot]$ on X by $\operatorname{Tr}(a[x, y])$ $=(\pi(a) x, y)$ for all a in $B(H), x, y$ in X. Then the routine calculus shows that

$$
\operatorname{Tr}\left(a \Gamma\left(t^{-1} s\right)\right)=\left(\pi(a) U(s) x_{e}, U(t) x_{e}\right)=\operatorname{Tr}\left(a\left[x_{s}, x_{t}\right]\right)
$$

for all a in $B(H), s, t$ in G. Thus the conclusion follows from Theorem 3.7. Q.E. D.

Theorem 5.2. Let X and Y be two Hilbert $B(H)$-modules. Let $\left\{x_{t}\right\}$ be a G-stationary process on X with covariance function Γ_{x}, and let $\left\{y_{t}\right\}$ be a G stationary process on Y with convariance function Γ_{y}. Then $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ are equivalent if and only if $\Gamma_{x}(t)=\Gamma_{y}(t)$ for all t in G.

Proof. Since the "only if" part is trivial, we assume $\Gamma_{x}(t)=\Gamma_{y}(t)$ for all t in G. First we observe that

$$
\begin{aligned}
{\left[\sum_{\imath} a_{\imath} \cdot x_{t_{i}}, \sum_{\jmath} b_{\jmath} \cdot x_{s_{\jmath}}\right] } & =\sum_{\imath, j} a_{i} \Gamma_{x}\left(s_{\jmath}{ }^{-1} t_{\imath}\right) b_{\jmath}^{*} \\
& =\left[\sum_{\imath} a_{\imath} \cdot y_{t_{i}}, \sum_{j} b_{\jmath} \cdot y_{s_{j}}\right]
\end{aligned}
$$

for all $a_{\imath}, \cdots, a_{n}, b_{1}, \cdots, b_{m}$ in $B(H), t_{1}, \cdots, t_{n}, s_{1}, \cdots, s_{m}$ in G, and given n, m. Thus putting $U^{\prime}\left(\sum_{2} a_{2} \cdot x_{t_{2}}\right)=\sum_{2} a_{2} \cdot y_{t_{i}}$, we can define a map U^{\prime} from X^{\prime} onto Y^{\prime} such that $\left[U^{\prime} x, U^{\prime} y\right]=[x, y]$ for all x, y in X^{\prime}, where X^{\prime} and Y^{\prime} are submodules spanned by $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$, respectively. Then since U^{\prime} is isometry, and since X^{\prime} and Y^{\prime} are dense in X and Y, we can extend U^{\prime} to a map U on X onto Y such that $[U x, U y]=[x, y]$ for all x, y in X. Thus the conclusion follows from Lemma 4.1.
Q.E.D.

From Theorem 4.3, every G-stationary process on a Hilbert $B(H)$-module X can be regarded as a G-stationary process on the Hilbert $B(H)$-module $S(K, H)$ for some Hilbert space K with $\operatorname{dim}(K)=\operatorname{dim}(X)$. Thus the following theorem shows that every G-stationary process on a Hilbert $B(H)$-module X is equivalent to such as given by the theorem.

Theorem. 5.3. Let K be a Hilbert space, and let $\left\{x_{t}\right\}$ be a G-statoonary process on the Hilbert $B(H)$-module $S(K, H)$ with covaraance function Γ. Then there is a strongly contrnuous unitary representation U of G on K such that $x_{t}=x_{e} U(t)^{*}$ for all t in G, where $x_{e} U(t)^{*}$ is the product of two operators x_{e} and $U(t)^{*}$, and that $\Gamma(t)=x_{e} U(t)^{*} x_{e}{ }^{*}$.

Proof. Let $H \otimes K$ be the tensor product Hilbert space of H and K, and fix a basis $\left\{\psi_{i}\right\}$ of K. Then we can identify $S(K, H)$ and $H \otimes K$ by the correspondence $\sum_{\imath} \phi_{i} \otimes \bar{\psi}_{i} \rightarrow \sum_{\imath} \phi_{i} \otimes \psi_{l}$. By Theorem 5.1 and 5.2 , we have a strongly continuous unitary representation V of G on $H \otimes K$ such that $x_{t}=V(t) x_{e}$ and that $V(t) a \cdot x=a \cdot V(t) x$ for all t in G, x in $S(K, H), a$ in $B(H)$. Since the all actions of $B(H)$ on $H \otimes K$ constitutes the von Neumann algebra $B(H) \otimes 1$ on $H \otimes K$, and $V(G)$ is contained in $(B(H) \otimes 1)^{\prime}$ which is equal to $1 \otimes B(K)$, we have a strongly continuous unitary representation U of G on K such that $V(t)=1 \otimes U(t)$ for all t in G. Thus the conclusion follows from the computations that

$$
\begin{gathered}
x_{t}=V(t) x_{e}=(1 \otimes U(t)) \sum_{2} \phi_{i} \otimes \bar{\psi}_{i}=\sum_{\imath} \phi_{i} \otimes \overline{U(t) \psi_{i}} \\
=\left(\sum_{\imath} \phi_{i} \otimes \overline{\psi_{i}}\right) U(t)^{*}=x_{e} U(t)^{*},
\end{gathered}
$$

where $\phi_{i}=x_{e} \psi_{\imath}$ for all i, and that

$$
\Gamma(t)=\left[x_{t}, x_{e}\right]=x_{t} x_{e}^{*}=x_{e} U(t)^{*} x_{e}^{*} . \quad \text { Q. E. D. }
$$

References

[1] Chor, M. D., A Schwartz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math. 18 (1974), 565-574.
[2] Halmos, P.R., Introduction to Hilbert spaces and the theory of spectral multiplicity, Chelsea, New York, 1951.
[3] Kallianpur, G. and Mandrekar, V., Spectral theory of stationary H-valued processes, J. Multivariate Anal. 1 (1971), 1-16.
[4] Kolmogorov, A.N., Stationary sequences in Hilbert spaces, Bull. Math. Univ. Moscow, 2 (1941), 1-40.
[5] Masani, P., Recent trends in multivariate prediction theory, in Krishnaiah, P. R., Multivariate Analysis, Academic Press, New York, 1966.
[6] Paschke, W.L., Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[7] Payen, R., Fonctions aleatoires du second ordre a valeurs dans un espace de Hilbert, Ann. Inst. H. Poincare 3 (1967), 323-396.
[8] SAKAI, S., C^{*}-algebras and W^{*}-algebras, Ergebn. Math. Grenzgeb. Vol. 60 (Springer, Berlin, 1971).
[9] Schatten, R., Norm ideals of completely continuous operators, Springer, Berlin, 1960.
[10] Umegaki, H., Positive definite function and direct product Hilbert space, Tohoku Math. J. 7 (1955), 206-211.
[11] Umegaki, H. and Bharucha-Reid, A. T., Banach space-valued random variables and tensor products of Banach spaces, J. Math. Anal. Appl. 31 (1970), 49-67.
[12] Stinespring, W.F., Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

Department of Information Sciences
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo, Japan

