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PERMUTABILITY AND UNIQUE FACTORIZABILITY
OF CERTAIN ENTIRE FUNCTIONS

BY TADASHI KOBAYASHI

Let f{z) and g(z) be entire functions. We say that f(z) and g{z) are
permutable if they satisfy the relation

/(#(*))=£(/(*))

for every complex number z. Recently by several authers the permutability
of entire functions have been discussed and various entire functions whose
permutable functions can be determined have been listed up. However, as far
as the present auther knows, there are a few methods for attacking this
subject.

The purpose of this paper is to indicate a method by which permutable
functions of some certain entire functions can be determined. The functions
which we shall consider below are of a rather different kind from those
previously investigated. Our method is very elementary in principle.

' Let f(z) be z+ez, and let g{z) be zez. Then Urabe [6] has shown the
unique factorizability of the function g(f(z)). Naturally we are led to the
problem of whether the function f(g(z)) is uniquely factorizable. In the final
section, as an application of our technique, we shall prove the unique factori-
zability of this entire function.

In what follows, we freely use the symbols and the fundamental concepts
of Nevanlinna theory.

1. In the factorization theory, it is well known that the entire function
z+ez is prime. Firstly we shall decide all the entire functions of finite order
which are permutable with z-\-ez.

THEOREM 1. Let f(z) be zJrCeaz, where a and C are constants with
Let g{z) be a nonconstant entire function of finite order which is permutable with
f{z). Then either g(z)=f(z)JrC*, or g(z)=zJ

ΓC*> where C* is a constant with
exp (αC*)=l.

Evidently f(z)=z+Ceaz satisfies the following differential equation

(1.1) f'(z)-l=a(J(z)-z)=aCea'.
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PERMUTABILITY AND UNIQUE FACTORIZABILITY 9

Further let us set F(z)=f(f(z)). Then for an arbitrary finite complex number
w, the order of N(r, w, F) is infinite. This fact is easily verified by the
second main theorem of Nevanlinna theory.

Now let g(z) be a nonconstant entire function of finite order satisfying

(1.2) /(*(*))=*(/(*))

Then we have

(1.3) f'(g(z))g'(z)=g'(f(z))nz).

Assume that g'(z) has no zeros. Then it follows from (1.3) that

N{r, w» g)+ft(r, w2, g)^N{r, 0, /')

for values of r, where w1 and w2 are two distinct zero-points of f(z). Hence
g(z) has at most order one, so that

g'(z)=exp(Az+B)

with suitable constants A and B. If AφO, then g{z) has one finite lacunary
value. This is clearly untenable. Therefore g'(z) must be constant, so that
g{z) is a linear function. Thus we have the desired result from the relation
(1.2).

Hereafter we may assume that g'{z) has at least one zero-point. Let s be
a zero-point of g'(z). Then from (1.3), all the roots of f(z)=s satisfy

(1-4) f(g(.z))g\z)=g'(s)f'(z)=0.

Firstly assume that all the roots of f(z)=s satisfy g'(z)—0. Let t be a root
of F(z)=s. Since f(f(t))=s, g'(f(t))=0. Thus from (1.3), g'(t)=0 or f'(g{t))=0.
If f'(g(t))=0, then from the relation (1.1),

gif(t))-g(t)=Cexp (ag(t))=~.

Hence

g(s)=f(g(f(t)))

=g(f(t))+Cexp(ag(f(t)))

Consequently all the roots of F{z)=s must satisfy either g'(z)=0, or

Thus we have

N(r, s, F)£N(r, 0, g')+N(r, A, g)
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for values or r. However, since the order of g{z) is finite and that of N{r, s, F)
is infinite, it is a contradiction.

Secondly we assume that there are two different roots u and v of f(z)—s
such that g\u)=^Q and g'(v)φθ. Then f\g(v))=0 by (1.4). It thus follows from
(1.1) that

(1.5) a(g(s)-g(v))= aC exp (ag(v))= - 1 .

Here we further assume that there is a root w of f(z)=u such that g'(w)Φθ.
Then since f'(g(w))=0,

a(g(u)—g(w))=aCexp(ag(w))= — l.

Hence we obtain

(1.6) g(s)=g(w)-
ea

It therefore follows from these (1.5) and (1.6) that

ea(g(w)-g(v))=l

and

exp(ag(w)—ag(v))=l.

This is clearly impossible. Accordingly all the roots of f(z)=u must be zeros
of g'(z). However this is also untenable as shown just above. Consequently
if 5 is a zero-point of g'(z), then gf(z)Φθ at every root of f(z)=s.

By this fact, we can claim that g'(f(z))Φΰ at every zero-point of g'(z).
In fact, if there is a zero-point s of g'(z) such that ^/(/(s))=0, then by what
mentioned just above, g'{z)Φθ at every root of f(z)=f(s). In particular, ^ ( s ^ O .
This is impossible. Furthermore from (1.3), we can conclude that all the zeros
of g'(z) are also zeros of f(z).

Let s be a zero-point of g\z) again. Then by the above fact and by (1.4),
f'(g(z))=0 at every root of f(z)=s. Hence from the equation

all the roots of f(z)=s satisfy

(1.7) f"(£(

Here let us notice that af(z)~aJ

Γf
//(z) for each complex number z. Then

a+f"(£(z))=0, so that by (1.7),

(1.8) a(g'(z)Y+g\s)(f'(z)Y=0

at every root of f(z)=s. Further we have g"(s)Φθ.
Now let t be a root of F(z)=s. Then
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(1.9) g'(At))f{t)=f\g{t))g'{t).

Since f(f(t))=s, the above (1.8) implies

(1.10) a(g'(f(t))Y+g"(s)(f'(f(tW=O.

Furthermore by (1.1),

(1.11) / '(/(0)=l + αs-α/(ί),

f(g(t))=l+ag(Λt))~ag(t),

and

f'(g(f(t)))=l+a(f(g(f(t)))-g(f(t)))

= l+ag(s)-ag(f(t)).

Since /(/(f))=s, f(g(f(t)))=0. We therefore have

l+ag(s)-ag(f(t))=0,

so that

(1.12) f'(g(t))=2+ag(s)-ag(t).

Substituting these (1.9), (1.11) and (1.12) into (1.10), we finally obtain

-a(g'(t))\2+ag(s)-ag(t)Y
(1.13)

=g"(s){f'(t))Xl + as-af{t)γ.

This (1.13) means that all the roots of F(z)—s must be zeros of the entire
function G(z) defined by

G(z)= a(g'{z))\2+ ag(s)-ag(z)Y

+g"(s)(f(zmi+as-af(z)Y.

Therefore

N{r, s, F)^N(r, 0, G)

for values of r. On the other hand it is clear that the order of G{z) is finite.
Hereby the function G(z) must be identically equal to zero. Accordingly with
a suitable non-zero constant A, we have

Af'(z)(l+as-af(z))
(1.14)

=g'{z){2+ag{s)-ag{z))

for each complex number z. Further from this (1.14), we can assert that

aA(f(z)Y-2(l+as)Af(z)+B
(1.15)

= a(g(z)Y-2(2+ag(s))g(z),
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where B is a certain constant. Here we must determine this constant B. To
do so, let x be a root of af(z)=l + as. Then fXχ)=2+as — ax by (1.1). Hence
we may assume that f'(x)Φθ. Thus g'(x)Φθ and ag(x)=2+ag(s) by (1.14).
Therefore the equation (1.15) implies

aB+(2+ag(s))2=A(l + as)2,

sα that

{z)-2-ag(s)y=A(af(z)-l-asY

for every complex number z. Consequently g{z) can be written in the form

g(z)=A*f(z)+B*,

where A* and B* are constants with A*Φθ. Here taking into account of (1.2),
we obtain the desired result immediately. This completes the proof of
Theorem 1.

2. We shall consider one more function whose permutable functions can be
determined by our method.

Let f(z) be £+sin(2r+c) with a constant c. Then/(z) satisfies the following
differential equations

( / ( )
(2.1)

Hereafter let us denote the function f(f{z)) by F(z). Then for every finite
complex number w, N(r, w, F) is of infinite order.

Now let g(z) be a nonconstant entire function of finite order which is
permutable with f{z). Then

(2.2)

so that

(2.3) f\g{z))g\z)=g\f{z))Γ(z)

for every complex number z. For a moment assume that g'{z) has no zeros.
Then g{z) must be linear by the same reason as in the proof of Theorem 1.
Since g{z) satisfies (2.2), we can conclude that either g(z)=z+C* with a con-
stant C* satisfying cosC*=l, or g(z)=C*—z with a constant C* such as
cos(C*+2c)=l.

In what follows we therefore assume that g'(z) has at least one zero-point.
Let s be a zero-point of g\z). Then by (2.3),

f'(g(z))g'(z)=g'W'(z)=0

at every root of f(z)=s. Here assume that there is a root t of f(z)=s such
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that f'(g(t))Φθ. Then g'(t)=O and all the roots of f(z)=t satisfy

Hence if there is a root u of f(z)=t such that g'(u)Φθ, then f'(g(u))=0, so
that g(u)=f(g(u))=g(t) by (2.1). This implies f'(g(t))=0, which is absurd.
Therefore all the roots of f(z)=t are zeros of g'(z). Further let w be a root
of F(z)=t. Then g'(f(w))=0, so that f'(g(w))=0 or g'(w)=0 by (2.3). If
f'(g(w))=0, then f{g{w))—g{w), so g(w)=g(t). This is absurd again. By these
facts, all the roots of F(z)=t must be zeros of g\z). Since the order of g(z)
is finite and N(r, t, F) is of infinite order, this is clearly impossible. Con-
sequently all the roots of f(z)=s satisfy f(g(z))=0. Hence by (2.1), g(z)=g(s)
at these roots.

Again let s be a zero-point of g'(z). Then by what mentioned just above,
f'(g(z))=0 and g(z)=g(s) at every root of f(z)=s. Therefore from (2.1), all the
roots of f{z)—s satisfy

Further it follows from (2.3) that

so that

(2.4)

at these roots. Evidently by (2.1), with one possible exception, all the roots
of f{z)—s are simple. Hence the above (2.4) implies g"(s)=0. Accordingly by
these facts, we obtain

(2.5) teW=£C8)(s)(/'(*))8

at every root of f(z)=s. Here we can claim that g^(s)Φθ. Indeed if £(3)(s)=0,
all the roots of f(z)=s are zeros of g'{z). Thus for each root u of F(z)=s,
g'(fM)=0, so that either f'(g(u))=0 or g'(u)=0. If f'(g(u))=0, then (2.1)
yields g(u)=g(f(u))=g(s). Hence we have

N(r, s, F)^N(r, 0, g')+N(rf g(s), g)

for values of r. This is clearly absurd. Hereby gm(s)Φθ as we claim.
Now let t be a root of F(z)=s. Then the above (2.5) implies

(2.6) (g'(Λt))y=gw(sXf'(Λt))γ

Further since f(g(t))=g(f(t))=g(s), (2.1) and (2.3) yield

f'(g(t))g'(t)=g'W))f'(t),

(2.7) (
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Here by Alf Λ2 and As, we denote the three roots of zs=gCΌ(s). With these
An, let us introduce the following entire functions Gn(z) defined by

Further let us set

Sn(z)^{Gn{z)f-±Anf\z){Anf{z)-g\z))Gn{z)

+AAn\s-f{z))\f{z))\Anf'{z)-g'{z)f,

Obviously these entire functions Gn(z), Sn(z) and S(z) are of finite order.
We are now in a position to obtain our desired result at hand. Substitut-

ing (2.7) into (2.6), and by making use of the above functions, after a simple
calculation, we can finally see that S(t)=0. This means that all the roots of
F(z)=s must be zeros of S(z), so that

N(r, s, F)^N(r, 0, S)

for values of r. Since the order of S(z) is finite and that of N(r, s, F) is
infinite, the entire function S(z) must be identically equal to zero. Therefore
at least one of the three functions Sn(z) vanishes identically. Consequently
we find

(G(z)Y-4Af(zXAf(z)-g'(z))G(z)

+4A\f\z))Ks-f(z))\Af'(z)-g'(z))*=0

for each complex number z, where

G(z)=A\f'{z))\s-f{z)Y

and A is a constant with A3~gw(s)φ0. Let us set

L{z)=2Af'{z){Af'{z)-g'{z)).

Then the above (2.8) can be rewritten as

(G(z)-L(z))2=(L(z))2(l-(s-/(2))2).

We now assume that L(z) is not identically zero. Then

H{Z)- L{z)

is an entire function and satisfies
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for every complex number z. On the other hand it is possible to find a number
x such that f(x)=s—l and f(x)Φθ. Clearly H(x)=0 and

2(s-f(x))f(x)=2H(x)H'(x)=0,

so that 2f'(x)=0. This is a contradiction. Therefore L(z) must be identically
equal to zero. Hereby

g'(z)=Af'(z)

for every complex number z. Consequently g{z) can be written in the form

g(z)=Af(z)+B,

where A and B are constants with AφO. By taking into account of (2.2), we
now obtain the following theorem.

THEOREM 2. Let f(z) be z+sin(z+c) with a constant c. Let g(z) be a trans-
cendental entire function of finite order which is permutable with f(z). Then
either g(z)—f(z)+c* with a constant c* satisfying cosc*=l, or g(z)=c*—f(z)
with a constant such as cos(c#+2c)=l.

3. In this final section we shall present an example on unique factori-
zability.

THEOREM 3. Let f(z) be z-\-e\ and let g(z) be zez. Then the entire function
f(g(z)) is uniquely factorizable.

The proof of this fact depends on our principle. Before proceeding with
the proof, we sum up some properties of these functions f(z) and g{z) which
we require in the sequel.

Let us set H(z)=f(g(z)). Then H(z) satisfies

H'(z)=f'(g(z))g'(z)

(3.1) ={l+exp(ze'))(X+z)e'

In particular, i/(0)=l and H'(0)=2. Furthermore all the zeros of H\z) are
simple.

Let c be a real positive number with l+logc>0. Now we consider the
level line L(c)={z: \g(z)\=c}. Then by an elementary calculation, we can
assert that L(c) is a single analytic curve in the whole finite plane and is
symmetric with respect to the real axis. Furthermore L(c) is contained
entirely in the closed domain

{z: Rez^c, |arg^| ^θ(c)} ,

where θ(c) is the root of cos x= — l/ec with 0<x<π.
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Finally let us notice that

lim N{r,w,B) =l_
r-oo r π

for every finite complex number w other than w=0. This fact is easily veri-
fied by the second main theorem.

Proof. Let F(z) and G(z) be nonconstant entire functions satisfying

(3.2) H(z)=f(g(z))=F(G(z)).

Then

(3.3) H'{z)

Since i/(0)=l and i/'(0)=2, we may assume that G(0)=0, F(0)=l, G'(0)=l and
ίv(0)=2. Our goal is to show that (1) G(z)=z and F(z)=H(z), (2) i7(z)=2;r+l
and 2G(z)=H(z)-l, or (3) G(z)=g(z) and F(z)=f(z). Hereafter our consider-
ation is divided into several steps, since it needs a little bit complicated
process.

The first step. Assume that Ff(z) has no zeros. It then follows from (3.1)
and (3.3) that

(3.4) N(r, 0, G'(*))=Λf(r, - 1 , exp (g(z)))+log+ r

for values of r. Here remark that

N(r, w, exp(g(z)))
r-oo T(r, exp (^(2r)))

for every finite complex number w other than w—^d. This less trivial fact
can be verified by making use of the second main tneorem. Therefore (3.4)
and (3.5) imply

N(r, 0, G\z))
l i m = 1

T(r, H(z))

so that

(3.6) limiπf-H

On the other hand if F(z) is transcendental, then T(r, G)—o{T{r, H)), so that

r . . T(r, GO π
h^inf"τfrΓJϊΓ=0

This clearly contradicts (3.6). Hence F{z) reduces to a polynomial. Accordingly,
F(z)=2z+1, so G(^)=(i7(^)-l)/2.

The second step. In this step, let us assume that F'(z) has only one zero-
point s. Then
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N(r, s, G(z))+N{r, 0, G'(z))

=N(r, —1, Qxp(g(z)))+\og+r

for values of r. Hence by the same reason as in the above step,

N(r, s, G)+N(r, 0, G')
(3.7) hm ψ^jjj -1,

r-*oo

so that F(z) must be a polynomial. Therefore F{z) can be written in the form

where A and B are constants with ^4^0, and n is an integer with n^2. It
thus follows that

(3.8) H/(z)=nA(G(z)-s)n-1G\z)

Let t be a root of G(z)=s. Then by (3.8), either t = — l or
This means that

N{χ, 5, G ) ^

so that ΛΓ(r, s, G)=O(χ). Hereby from (3.7), we have

Furthermore we can express the function G(z) as

(3.10) G(z)=s + L(z) exp (ΛΓ(̂ )),

where K(z) is entire and Liz) is the canonical product formed^ by the zeros of
Giz)-s. Since

G'(z)=(L'(z)+L(z)K'(z)) exp (#(*)),

we thus find

iV(r, 0, G')=N(χ, 0, L'+LK')

^T{r, L')+T{r, L)+Tiχ, K'

^o(r2)+Tir, K').

Combining this inequality with (3.9), we obtain

(3.11) limsup-^-§-^
r->oo i {r} ti)

On the other hand, by virtue of (3.8) and (3.10),
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T(r, exp (#(*)))
lim-

T(r, H(z))

Hence T(r, K)=o(T(r, H)), which is absurd by (3.11).
The third step. Next we assume that F'(z) has finitely many zeros

. Here we may assume that n^2. From (3.1),

H\z)=F(G(z))G'(z)

(3.12) = d + e x p (*(

Hence every root of G{z)=w3 is simple and satisfies either g'(z)=0 or else
g(z)=l+F(wj). It thus follows that

N(r, w3, G)^N{r, 1+F(M/,), £)+log+ r=O(r)

for each w3 ( l ^ ^n), so that the order of G(z) is at most one. On the other
hand the relation (3.12) also gives

N(r, - 1 , expte(s)))^tf(r, 0, G\z))

+ Σ Mr, w,9 G{z))

for values of r. Since the right hand side is of finite order but the left hand
side is of infinite order, this inequality is clearly impossible.

The fourth step. In what follows, by the results of the above three steps,
we may assume that F(z) is transcendental and that F\z) has infinitely many
zeros. As in the third step, for each zero-point w of F'(z), all the roots of
G(z)=w satisfy exp(g(z))— — l and g(z)=l+F(w) unless z= —1. Hence we have
T(r, G)=O(r).

Now assume that G'(—l)Φθ. Then we can assert that G(z) takes the
value G(—1) only at the point z=—l. In fact, let ί be a root of G(z)=G(—l).
Evidently H(t)=H(-ΐ), so that H{t) is real. Further since G'(-ϊ)Φθ, F(G(-1))
=0. Hence F(G(t))=0 and H'(t)=0. It thus follows from (3.12) that exp(g(0)
=—1, so that H(t)=g(t)—1 unless f=—1. Therefore if tφ—l, H(t) is not
real. This is absurd. Hereby G(z)—G(—1) has no zeros other than z= — l,
provided G'(-ΐ)φQ.

Let cn be (2n+T)πi for each integer n. By En, we denote the set defined by

(3.13) {w: F(w)=0, F(w)=cn-1} .

Here let us assume that for some integer k, the set Ek consists of infinitely
many points. Let wu •••, wm be arbitrary m points of Ek. Then by virtue
of the relation (3.12), all the roots of G(z)=Wj satisfy g(z)—ck unless z— — \.
Hence we have
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m

Σ N{r, to,, G)^N{r, cky g)+log+r

for values of r. Therefore the second main theorem implies

G)^N(r, ck, g),
so that

T(r, G)
hm sup = (m-l)τr *

Since the set Ek is infinite, we can choose m as large as we please. We thus
have T(r, G)=o(r). Furthermore it is clear that the set Ek is unbounded and
for each point w of Ek, all the roots of G(z)=w satisfy g(z)=ck unless z=—l.
Hence these roots are distributed in the half plane Rez^\ck\. By these facts,
G(z) must reduce to a polynomial of degree at most two [2]. If G'(— l)=0,
then we can write G(z) as

G(z)=A(z+ΐ)*+B

with constants A and B. Hence G(0)=G(—2), so ϋΓ(O)=i/(—2). This is absurd.
Therefore G'(—Ϊ)ΦO. Hereby G(z) takes the value G(—1) only at the point
z= —1. Consequently G(z) is linear, so that G(z)=z.

The fifth step. Taking account of the result just above, we may assume
that all the sets En are finite sets. In this step we show some other pro-
perties of the function G{z).

Firstly we shall prove that G'(—1)=0 unless G(z)=z. To do so, let us
assume that G'(—1)^0 again. Then G(z)—G{—1) has no zeros other than
2= — l. Since T(r, G)=O(r), with suitable constants α and b, we can write
G(z) as

?+l) exp (

Here we may assume that aφO. Evidently

Now we choose a number cm—(2m+l)πι such as H(u)Φcm—l, where u= — l—l/a.
Then for every root s of g(z)=cm, G(s) is a point of the set Em which is
defined by (3.13). Actually if g(s)=cn, then H(s)=cm-1 and ///(5)=0 by (3.12).
Hence F/(G(s))=0 since s^w. Clearly G(s) is a point of Em. Conversely let w
be a point of Em and let t be a root of G(z)=w. Then F/(G(ί))=0 and H(t)
= c m - l . Since ί^=-l, H(t)=g(t)-1, so that g(t)=cm. Setting

.7 = 1

where Wi, ••• , w;̂  are all the points of the set Em, we therefore see that the
functions Q(G(z)) and g(z)—cm have the same zeros. Hence with suitable
constants α* and b*,
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(3.14) g(z)-cn=Q(G(z)) exp (a*z+b*).

Further let s* be a zero-point of F'(z) other than wlf •••, 10#• and G(—1). Then
by (3.12), all the roots of G(z)=s* must satisfy g(z)=l+F(s*). It thus follows
from (3.14) that the two equations

g(z)=ze'=l+F(s*),

ζ?(s*) exp (a*z+b*)=l+F(s*)-cn

have infinitely many common roots. By this fact and by the value distribution
of g(z), we therefore assert that α*—0. Hence

so that g'(u)=0. This is a contradiction. Accordingly, G'(—1)=0 unless
G(z)=z. Hereafter we assume that G'(—l)=0.

Secondly we want to prove that G(̂ ) converges to the value 0 as z tends
to infinity along the negative real axis. In order to prove this fact, let us
consider the two curves

I={G(x): x^-1} , J={G(x): x^-l] ,

where x stands for the real variable. Then these curves are simple and
smooth, since G'(x)φQ for real values of x except for x= — l. Furthermore
by (3.2), the function F(z) maps the curve / to the half straight line {t: t^
H(—ϊ)} on the real axis, and maps the curve / to the segment {t: H(—l)^t<l}
on the real axis. Evidently F'(z)Φθ at every point of / and /. In particular,
F\G(—ϊ))Φθ. It therefore follows that / coincides with a part of / and / ends
at the point G(0)=0. This is the desired result. Hence using the value dis-
tribution of g(z), we easily see that for an arbitrarily fixed number ί* with

(3.15) lim G(reu)=O
r-»+oo

uniformly for \t — π\t^t*. Here recall the relation

/ ^ ( G ^ G ' ^ ^ l + e x p (g(z)))g'(z).

Then (3.15) implies

r̂ +oo g (re11)

uniformly for | /— π\ i^t*<π/2. Hence by a simple estimation, we also obtain

G(reu) Λ1 i m •—.— ==z 1

uniformly for 11 — π\ ̂ t*<π/2. It thus follows that
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m{r, 0, GO ^ 1
hm mf

liminf

Assume now that £ n contains two points u/j and w2. Since F'φ)=2,
neither wx nor wz is equal to 0. Then all the roots of G{z)—w3 are also roots
of g(z)=cn ϋ = l , 2). Hence

(3.17) N(r, wl9 G)+N(r, w2, G)^N(r, cn, g),

so that the second main theorem yields

(l+0(l))T(r, G)+N(r, 0, G0^iV(r, cn, ^)

for values of r. Therefore

r . , T(r, G) , τ. N(r, 0, GO ^ 1
hm mf———^- + hmsup -—^—^ ~ ^ — .

r-oo r r-oo r π

Combining this with (3.16), we thus find N{r, 0, G')=o(r), so that

lira Γ f r . G > = l .

Hence (3.16) also gives ΛΓ(r, 0, G)=o(r). By these facts, we have

lim ^ ' W' G ) = 1
r-oo r π

for every finite complex number w unless w=0. However this clearly con-
tradicts (3.17). Hereby each set En does not contain more than one point.

Next let us assume that En is empty. Then all the roots of g(z)=cn must
satisfy G'C?)=0. Hence

N(r, cn, g)£N(r, 0, GO,
so that

(3.18) U m i n f M r , 0, GO 1
r-oo r π

Combining this with (3.16), we at once obtain

(3.19) lim iπf T(r' G) * lim inf T ( r ' G>) > *
r

* lim inf .
r r-oo r π

On the other hand by the second main theorem, it follows that

(X+oQ))T(r, G)+N(r, 0, G')£N(r, a, G)+7V(r, b, G)

£N(χ, 1+F(α), g)+N(r9

where a and b are two different zeros of F'(z). Therefore
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r . , T(r, G) , r . , N(r, 0, G') . 2
lim mf— -Him inf—Λ-L—* — ̂  — .

r-oo r r-co r π

This is impossible by (3.18) and (3.19). Consequently, each set En consists of
only one zero-point of F'(z).

The sixth step. Let w* be the point of the set Eo. Then by the definition
(3.13),

F(w*)=0, F(w*)=ιπ-l.

Further all the roots of G(z)=w* satisfy g(z)=ιπ. Conversely, since the set
Eo consists of only the point w*, each root of g(z)=ιπ is either a root of
G(z)=w* or else a zero-point of G'(z). Now with {an}, we denote all the
roots of g(z)=ιπ. These points are distributed on the level line L(π)={z:
\g(z)\=π}. Here we may assume that Reα^O, α 2 = - i π and Re an<0 for
n ^ 3 . Evidently, g'(z)Φθ unless z= — l. Hence by using the inverse function
of g(z), for each natural number n, we can define the simple smooth curve

Ln={zn(t): 0^t<l}

such that zn(θ)=an and

(3.20) g(zn(t))=ιπa-t)

for real values of t with 0 ^ ί < l . All these curves Ln are contained in the
simply connected domain {z: | g{z) \ < π) except for their initial points. The
curve Llf which starts from z1(Q)=a1, must end at the origin. Furthermore
except for this Llf every curve Ln satisfies

lim Rezn(t)=—oo , lim argzn(ί)—^
ί-»l ί->l

These facts can be verified by an elementary estimation. Hence by (3.15), we
can see that

lim G(*n(0)=0
ί->l

for each curve Ln. Therefore the function G{z) maps Ln to the curve

which starts from G{an) and converges to the origin. On the other hand by
virtue of (3.2) and (3.20), it is clear that

(3.21)

—iπ(l — t)—exp(—iπt)

for real values of t with Ogf<1. Since f(iπ(l — t)) is univalent for O ^ ί ^ l and

F'(G(zn(t)))G'(zn(t))z'n(t)=iπ exp (~iπt)-iπ,
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we can see that every curve G(Ln) is simple and smooth, and that F'(z)φQ at
every point of the curve G(Ln) with the possible exception of the point G(an).
Here let us note the assumption F'(0)=2. Then by using the inverse function
of F(z) and by (3.21), we can conclude that the curves G(Ln) must coincide
with one another. In particular, G(an)=G(an+1) for every natural number n.
For a moment we assume that G(an)Φw*. Then since the set Eo consists of
only the point w*, all the roots of g(z)—ιπ must be zeros of G'{z). Accord-
ingly (3.18) and (3.19) hold. We thus have a contradiction. Hence G(an)=w*
for each natural number n. Therefore the functions G(z)—w* and g(z)—ιπ
have the same zeros. It thus follows that

(3.22) ^g~™ =exp(A?+l?),

where A and B are suitable constants. Furthermore by (3.15),

lim expCΛre^+β)--^-

for real values of t with π/2<t<3π/2. Hence A=0, so that (3.22) implies

G(z)=A*g(z)+B*,

where 4̂* and B* are constants with ^4*^0. Consequently G(z)=g(z), which
is to be proved. Now we have shown that f(g(z)) is uniquely factorizable
relative to the family of entire functions.

The final step. Let F*(z) and G*(z) be nonconstant meromorphic functions
which satisfy

(3.23) H(z)=f(g(z))=F*(G*(z))

for each complex number z. If F*(z) is entire and G*(z) has poles, then it is
clearly absurd by (3.23).

Assume that G*(z) is entire and F*(z) is not entire. Then by (3.23), F*(z)
has exactly one pole s and G*(z)—s never vanishes. Hence

A(z)=(z-s)nF*(z),
(3.24)

J3(z)=log(G*(*)-s)

are both entire functions with n ^ l and A(s)Φθ. It thus follows from (3.23)
and (3.24) that

Wz)=f(g(z))=A*(B(z)),
(3.25)

A*(z)=e-nzA(s+ez).

Since n ^ l and A(s)Φθ, the entire function A*(z) does not reduce to a poly-
nomial. Therefore by the result of the above steps, (3.25) implies either B{z)
is linear or else
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Since A*(z) is periodic and f(z) is not periodic, the latter never occurs. Hence
B(z) must be linear, so that

(3.26) H(z)=f(g(z))=A*{az+b),

where a and b are constants with aΦO. Evidently

limH(reu)=fφ)=l,
r-»+oo

lim A*(reu)=oo
r-+oo

for real values of t with π/2<t<3π/2. By this fact and (3.26), the number a
is real negative. It therefore follows from (3.25) that

lim A*(ax+b) exp {nax+nb)=A(s),
α;-*+oo

so that
lim H(x) exp (nax-\-nb)=A(s).

This is a contradiction.
Assume that neither F*(z) nor G*(z) is entire. Then by the relation (3.23),

F*(z) reduces to a rational function which has at most two poles and is
bounded at a neighborhood of the point at infinity. If F*(z) has two poles u
and v, then F*(z) can be written in the form

(3.27) F*(z)=(z-u)-m(z-v)-nP(z),

where m and n are natural numbers, P{z) is a polynomial with

P(u)P(v)Φθ, degP(z)^m+n.

Further with a suitable entire function S(z), we can express G*(z) as

(3.28) g ^

Combining (3.27) and (3.28), we therefore have

(3.29) H(z)=(u-v)-m-n(l-es^)m+ne-m

Here let us define the polynomial

Q(z)= Σ ak(u-vz)k(l-z)m+n-k,

where P(z)=ao+a1z-i \-aqz
q with α5^0. Since O^q^m+n and P(u)P(y)Φθ,

the degree of Q(̂ ) must be m+n. Furthermore 0(0)^0. It thus follows from
(3.29) that

H(z)=f(g(z))=L(S(z)),
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Since L(z) is a periodic entire function of order one, we finally obtain

with constants α* (Φθ) and b*. However it is untenable by the periodicity of

L(z). From this observation, the function F*(z) has only one pole s. Hence

F*(z) is representable as

F*(z)=(z-s)-nP*(z),

where n is a natural number and P*(z) is a polynomial of degree at most n

with P*(s)Φθ. Since G*(z)—s has no zeros,

must be entire. Thus we have

Σ
.7 = 0

where P^(z)=bo+b1z
Ji \-bpz

p with frp^0. Setting

we obtain

Since O^p^n and P*(s)^0, (?*(*) is a polynomial of degree n. Therefore by
the result of the above steps, Q*(z) must be linear. Hence n = l , so that F*(z)

is a linear transformation. Consequently, the entire function f(g(z)) is uniquely
factorizable. The proof of Theorem 3 is now complete.
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