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BY KOUEI SEKIGAWA

i 1. Introduction.

This paper is devoted to the study of almost Hermitian manifolds satisfy-
ing some curvature conditions, for example, R(X, Y)-R=0. Let (M, g) be an
m-dimensional connected Riemannian manifold with a positive-definite metric
tensor g=(gjί). Let 7, R—(Rkjί

h), R1=(Rjί) and S=gjiRji be the Riemannian
connection, the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature, respectively. In this paper, manifolds and tensor fields are assumed
to be of class C°° unless otherwise specified. In 1965, Nomizu and Yano (cf.
[10]) proved the following

THEOREM 1.1. Let g be an irreducible locally symmetric Riemannian metric
on an m-dimensional manifold M (m^3). If gr is another Riemannian metric on
M whose curvature tensor R' coincides with the curvature tensor R of g, then
g'=cg, where c is a positive constant and hence, g' is also an irreducible locally
symmetric Riemannian metric on M.

In a locally symmetric space (M, g), at each point of M, we have

(*) R{X, Y)-R=0, for all tangent vectors X, Y,

where the linear transformation R(X, Y) operates on the curvature tensor R
as a derivation defined on the tangent tensor algebra at each point. Conversely,
does the algebraic condition (*) on the curvature tensor R imply that Vi?=0 ?
Nomizu gave a conjecture as follows.

CONJECTURE. Let (M, g) be an m-dimensional complete, irreducible Rieman-
nian manifold with m^3. // (M, g) satisfies the condition (*), then (M, g) is
locally symmetric.

Now, if the conjecture is valid, it must follow that as long as there is an
irreducible and locally symmetric Riemannian metric g on M, any metric g'
on M such that Rf—R is also locally symmetric. This is nothing but Theorem
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1.1. Next, we denote by H the tensor field of type (1, 5) on (M, g) defined by
H(X, Y)=—R(X, Y)-R. If the conjecture is valid, the tensor field H represents
a deviation of a Riemannian metric from a locally symmetric one. However,
by examples given by Takagi [19] and the present author [13], the conjecture
is negative. In [14], the present author proved that the conjecture is valid in
the case where (M, g) is compact and irreducible, provided dim M=3. Thus
the following problem will be naturally set.

PROBLEM. Does the algebraic condition (*) on the curvature tensor of a
compact and irreducible Riemannian manifold (M, g) with dimM>3 imply the
fact that (M, g) is locally symmetric ?

On the other hand, it might be interesting to study relations between the
Riemannian structure g and the almost complex structure F. For example,
how does the Riemannian structure g affect the almost complex structure F in
an almost Hermitian manifold (M, F, g)? In § 2, we recall a theorem due to
Lichnerowicz for later use. § 3 will be devoted to give some formulas and
theorems concerning almost Hermitian manifolds. In §4, we shall study some
/Γ-spaces satisfying the condition (*). In § 5, we shall give by using the tensor
fields H, R and etc., a sufficient condition for a 6-dimensional /Γ-space to be a
homogeneous almost Hermitian manifold. In § 6, we shall study 4-dimensional
F-spaces and //-spaces satisfying the condition (*).

§ 2. A theorem of A. Lichnerowicz.

Let (M, g) be a Riemannian manifold. Lichnerowicz [26] obtained the fol-
lowing formula

(2.1) yΔ/=2//^^*^-4(V*V^

where f=RkjιhR
kjih, and Hpqk3ih=-~(lvlqRkj%h-lqlpRkjιh) (cf. §1).

In each local coordinate neighborhood, (*) is equivalent to

(2.2) Hpqkjih=0, or

Rpqk RtjιhJrRpqj Rktih^Rpqi R kjthΛ'Rpqh R kjit — Q

From (2.1) and (2.2), Lichnerowicz proved the following

THEOREM 2.1. Let (M, g) be a compact Riemannian manifold satisfying the
condition (*). // τ7kRjί=0 holds on M, then (M, g) is locally symmetric.

Fujimura [3], and Sekigawa and Takagi [17] gave some generalizations of
Theorem 2.1.
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§ 3. Curvature tensors in an almost Hermitian manifold.

Let (M, F, g) be an m(=2n)-dimensional almost Hermitian manifold with
almost Hermitian structure (F, g). If we now put

1
(3.1) RJ^—FjtRuk Fh ,

then, by definition, we have

(3.2) FbaRba/ = -2RfΨJ

t, and FbaRjba

l=RflF/ .

Applying the Ricci identity to Ft

h, we obtain

From (3.3), contracting with respect to k and h, we get

(3.4) ltl3Fτ

t-\-ljFi={Rjt-Rf>)Ft

t,

where Fι~—lkFι

k.

Now, operating V, to FjίFih=—δh

J gives

FΨih+F'%Fih=0.

Operating 7Λ= (g
 Λ t 7 ι to the both sides of this equation and taking account of

(3.4), we have

where S*=gJίRfi.
Next, we shall recall the definitions of special kinds of almost Hermitian

manifolds. If (F, g) satisfies

(3.6) V ; F ^ = 0 ,

then (M, F, g) is called a Kaehlerian space. If (F, g) satisfies

(3.7) VjFι

hJ

Γ

τ7iFJ

h=0,

then (M, F, g) is called a ϋf-space (or a Tachibana space). If (F, g) satisfies

(3.8) V,F

then (M, F, g) is called an //-space (or an almost Kaehlerian space). If (F, g)
satisfies

(3.9) VjVkFt

h-VkVjF%*=RJkt*F%

t-RjkxΨt

h=Q,

then (M, F, g) is called an F-space (or a para-Kaehlerian space). When {M, F, g)
is a Kaehlerian space, a /f-space or an //-space, the condition Ft=0 is satisfied.
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Suppose that (M, F, g) is an //-space. Then, by (3.8), we have

( V Λ F " ) ( V F V F ) y

and hence, by (3.5)

(3.10) S - S * = - y ( 7 Λ F ^ ) 7 Λ F i i g 0 .

Thus, we have the following (cf. [26])

THEOREM 3.1. In an H-space, we have S^S*, and the equality sign occurs if
and only if the space is a Kaehlenan space.

Next, suppose the (M, F, g) is a /ί-space. Then, by (3.7), we have

Thus, we have the following (cf. [26])

THEOREM 3.2. In a K-space, we have S^S*, and the equality sign occurs if
and only if the space is a Kaehlenan space.

We denote by Λ(M, F, g) (/(M, F, g), resp.) the group of all automorphisms
of (M, F, g) (the group of all isometries of (M, F, g) resp.) which acts effec-
tively on M, and by A0(M, F, g) (I0(M, F, g), resp.) the identity component of
A(M, F, g) (/(M, F, g), resp.). Then, it is evident that A(M, F, g)dI(M, F, g)
(and A0(M, F, g)dI0(M, F, g)). Especially, if there exists a subgroup G of
A(M, F, g) which acts transitively on M, then (M, F, g) is called a homogene-
ous almost Hermitian manifold. Recently, concerning with the result of
Ambrose and Singer [1], the present author proved the following (cf. [16])

THEOREM 3.3. Let (M, F, g) be a homogeneous almost Hermitian manifold.
Then, there exists a skew-symmetric tensor field T=(Tjι

h) of type (1, 2) on M
satisfying the following conditions

(A) ^pRkji^T^R^-T.^R^-T./R^-T^R^,

I D ) Ίpi ji — l p t l ji l pj i tι i pi i jt ,

vpΓj — l pt Γj l pj r t .

Conversely, if a complete and simply connected almost Hermitian manifold
(M, F, g) admits a skew-symmetric tensor field T of type (1, 2) on M satisfying
the conditions (A), (B) and (C), then (M, F, g) is a homogeneous almost Hermi-
tian manifold.

In the above Theorem, the skew-symmetricity of T—iTjf) means that
Tjih=-TJht holds, where T y i Λ = r y < ^ Λ f t . The rough sketch of the proof of
Theorem 3.3 is as follows. Let O(M, F, g) (U(M, F, g), resp.) be the ortho-
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normal frame bundle (the unitary frame bundle, resp.) over M with respect to
the Riemannian structure g (the almost Hermitian structure (F, g), resp.) We
denote by G the holonomy subbundie of U(M, F, g) with respect to the linear
connection 1$=1X-1\X), where T(X)Y=T\X, Y). Then, G acts effectively
and transitively on M as a group of automorphisms of (M, F, g).

§4. /ί-spaces satisfying the condition (*).

In this section, in connection with Theorem 3.3 and the conjecture stated
in § 1, we shall prove the following main Theorems 4.1 and 4.2.

THEOREM 4.1. Let (M, F, g) be a complete and irreducible non-Kaehlenan
K-space satisfying the condition (*). Then (M, F, g) is a compact and locally
symmetric space.

In this paper, when an almost Hermitian manifold (M, F, g) is irreducible
with respect to the Riemannian connection V, we say that (M, F, g) is a irre-
ducible almost Hermitian manifold.

THEOREM. 4.2. Let (M, F, g) satisfy the same hypothesis as in Theorem 4.1.
Assume moreover that M is simply connected. Then (M, F, g) is a compact and
irreducible Riemannian symmetric space and furthermore, M admits two actions
of compact Lie groups which are effective and transitive on M. But these two
actions are not similar to each other {cf. Remark below).

Remark. Let Gλ and G2 be two compact, connected Lie groups which acts
on a manifold M effectively and transitively, Kλ and K2 the isotropy subgroups
of Gx and G2 respectively at some point of M. Denote by qlt g2, lλ and ϊ2 the
Lie algebras of Glf G2, Kλ and K2, respectively. When there is an isomorphism
Φ : Qi-*$2 such that 0(ϊi)=ϊ2, we say that the action of Gλ is similar to that
of G2 (cf. [22]). Let (M, g) be a compact and simply connected, irreducible
Riemannian symmetric space, and M=I0(M, g)/K. Let G be a compact Lie
group which acts on M transitively and effectively. Then, it is known that,
for some kinds of such (M, g), for example,

SO(2/+l)/SO(2m)xSO(2/-2m+l) ( 2 < m < / - l ) , SO(2Z+1)/SO(2Z)

SO(2Z)/SO(2m)xSO(2/-2m) ( K m < / - 1 ) , Sp(l)/Sp(m)xSp(l-m),

E6/SU(2)-SU(6), E7/SU*(8) (Sί/*(8)=S£/(8)/Z8), EΊ/SU(2)-Spm(12),

E8/S(K16), E8/SU(2)ΈΊ, FJSU(2)-SpO), FJSpmQ), G2/SO(4) (cf. [22]),

the action of G is always similar to the standard transitive action of I0(M, g)
on M as a Riemannian symmetric space. In [4], Fukami and Ishihara showed
that there exists a Tachibana structure (F, g) on a β-dimensional sphere S6
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with the canonical Riemannian metric g by making use of the properties of
the algebra of Cayley numbers and Λ(S 6 , F, g)=G2, Sβ=G2/SU(3). Now, let
(M, F, g) be a Λf-space. First of all, we shall write down some fundamental
formulas in a ΛΓ-space (cf. [9], [20], [23], etc.) as follows:

(4.1) F)Ψι«Rta=Rίi, F*F%

ΛRtΛ=R%,

(4.2) R%=R%,

(4.3) (!}Fts)!iFts=Sμ,

(4.4) V7jFts)ΨFts=S-S*^0 (by (4.3) and Theorem 3.2),

(4.5) Ψ!tF3

h=FhtSjt,

(4.6) Rjin-RianFJ

bFS=-{ljFS)lsFtr,

(4.7) Rjihk-Raic<ιFjaFι

bFh

cFk

d=O,

(4.8) "J^jFth =

(4.9) (Rk^-

(4.10) ( V * g

where Sj^Rji-Rfi.
For the sake of later use, we shall establish the following formula (4.11).

Taking account of (4.3) and (4.6), we have

Y (Vf trXΨFhr)(VvFtq)?7jFkη

= -jSrKRhrkq-RhτbaFtΨq').

Thus, from the above equation and (4.9), we have
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(4.11) Rkn
vFtuRm»uF*-RkJt°F

tuRmaΨh

a=^

Now, we define a tensor field T={Tjt

h) of type (1, 2) on M by

(4.12) TJt*=-jF»VuF*.

Then, we have

(4.13) T3i*=-T%*, and TJih=-TJh%.

By the second equation of (4.13), T is skew-symmetric. We shall here prove
the following

LEMMA 4.3. In a K-space, T satisfies the conditions (B) and (C) in Theorem 3.3.

Proof. From the definition of T and (4.6), we have

V T Λ — — (J? h_p bp ap h__p ίT7 T7 p h\

t—_±_p uhηr t—_±_p up v( n n D h p bp a\
pt 1 ji — A

 Γ p Γ 3 K1^ u vi Λ u baΓ v Γ i J >

and

tψ h—±_p upυίjD h_JD hp bp a\

ί j h—Ji_p upυ(u h_u hp bp a\
pi -L jt — A

 Γ p Γ j V^ uiυ Λ baυ Γ u Γ i J*• pi + 31 ^

From the above equations, taking account of (4.6), (4.8) and the first Bianchi
identity, we have

J-(P up h_p hp u_p up h__p up h_p up h_pup h\
Λ \ ΓP -"• kiu Γ u ft kip Γp ftuki Γk ftpui Γp ftuik Γ ι ftpuk J

Thus, T satisfies the condition (B). Next, using (3.7), we have
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Taking account of the above equations, we have

Ί PΓ3 * Pt Γ 3 i L VJ Γ ι — V PΓ 3 ' O J P ' O J P —

Thus, T satisfies the condition (C). Q. E. D.

As a consequence of Lemma 4.3, we can now prove Theorem 4.4 given
later. Suppose that a iΓ-space (M, F, g) is locally symmetric. Then, by (4.7),
we have

Thus, the above equation together with (3.7), (4.12) and (4.13) implies

* P3 K-tihkJΓ ί pi ^•jthkJΓ 1 ph Kjitk^Γ * pk ^ jiht — V >

which means that T satisfies the condition (A). Consequently, from Theorem
3.3 and Lemma 4.3, we have the following

THEOREM 4.4. Let (M, F, g) be a complete, simply connected and locally sym-
metric K-space. Then (M, F, g) is a homogeneous almost Hermitian manifold.

Proof of Theorem 4.1. Let (M, F, g) be a complete and irreducible non-
Kaehlerian if-space satisfying the condition (*). Then the condition (*) implies
in particular

(**) R^RS-R^R^O.

By the definition of Rft and the condition (*), we have

(4.14) RpRS-Rt'R^Q.

By a straightforward calculation, we get

Taking account of (3.2), (3.3) and (*), we have, from the above equation

(4.15) V^kR^-l^pR^-Rpk/RTi-RpkSRft
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=Rpk

bF^RbaliF/-R*iFt\RpksΨ/-Rpk/Fs

t)

=Rpks

bFsaRbatiFJ

t-R*tRpks

tFt«F:°-R*iRvk«.

Now, by making use of the definition of SjU we have easily

(4.16) {Rkjilί-RkmF^Fh

a)Sjι

To obtain a new formula (4.21), we shall compute the right hand side of (4.16).
Taking account of the formula (**) given above, we have

(4.17) RkJihR
ii=-Rk}h

ιRι>=-Rkjι>Rh

t=RkιRh\

By using (3.2), (4.1) and (**), we have

(4.18) RkjbaFτ

bFh

aRJi=-RkJbaFιΨh

aRib=-Rkji

bRb

aFiΨha

=RfbFk

tRb

aFha=Ft

bRttRiaFh

a=RftRlι

t.

Because of (3.2) and (4.15), we have

(4.19) RkmR*]i=Rk3

)

ιR

=Rk]*FsaRbathF
}t+R*hR*k

a.

Taking account of (3.2), (4.1) and (4.15), we have

(4.20) Λ w t β F t »F f t »Λ«*=-Λ W 4 β

— p t vpsup op I p* n ί

Substituting (4.17)~(4.20) into the right hand side of (4.16), we have

(4.21) (RkJih-RkjoaFι

!'F

This equation (4.21) together with (4.9) and (4.11) implies

(4.22) ^QR

Taking account of (4.14), we have, from (4.22)

(4.23) SΛRkt-5Rft)=0.
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Transvecting (4.23) with Shk and using (4.10), we have finally the formula

(4.24) 7^=0.

Since (M, F, g) is irreducible, as a consequence of (4.24), there exists a
constant c such that

(4.25) Sjt^cgji.

Thus, from (4.23) and (4.25), we have

(4.26) c(/?^-5Λy<)=0.

Since (M, F, g) is non-Kaehlerian, we have cΦO. Thus, from (4.26), we have

(4.27) Rji=5R%.

From (4.25) and (4.27), we have

(4.28) Rj^jcgjt, R%=jcgjί.

Using (4.4) and (4.25), we have c>0. Thus, (M, F, g) is an Einstein space with
positive scalar curvature 5=(5/4) me. Since (M, F, g) is complete, by Myers'
theorem, we see that M is compact, and its diameter d(M) satisfies d(M)S
2(V(m—l)/5c)π. Consequently, because of Theorem 2.1, Theorem 4.1 is proved
completely. Q. E. D.

Proof of Theorem 4.2. We assume furthermore that M is simply connected.
Then, by Theorem 4.1, (M, F, g) is a compact, simply connected and irreducible
Riemannian symmetric space, and furthermore, by Theorem 4.4, (M, F, g) is a
homogeneous almost Hermitian manifold. Since (M, F, g) is a Riemannian
symmetric space, of course, the tensor field Tx=0 of type (1, 2) on M satisfies
the conditions (A) and (B) in Theorem 3.3. Let Gλ and G be the holonomy
subbundles over M of O(M, F, g) through a point of £/(M, F, g) with respect
to the linear connections Vx and 1%=1X — T(X), respectively, where T is the
tensor field on M defined by (4.12). Then, G1 (G, resp.) acts on M effectively
and transitively as a group of isometries of (M, F, g) (automorphisms of (M, F, g),
resp.). Since M is compact, A0(M, F, g) and /0(M, F, g) are both compact Lie
groups (cf. [7]). Now, we assume that A0(M, F, g)=I0(M, F, g) holds. Then,
GiCA>(M, F, g) and hence, dcί/CM, F, g). However, since (M, F, g) is non-
Kaehlerian, this is a contradiction. Thus, A0(M, F, g) is a proper subgroup of
70(M, F, g). Thus, dim A0(M, F, g )<dim I0(M, F, g) holds, and hence, the actions
of AQ(M, F, g) and /0(M, F, g) on M are not similar to each other. Consequently,
we have Theorem 4.2. Q. E. D.

Recently, Ogawa [11] proved the following

THEOREM 4.5. Let (M, F, g) be a compact Kaehlenan space satisfying the
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condition (*). // the scalar curvature of (M, F, g) is constant, then (M, F, g) is
locally symmetric.

From Theorems 4.1 and 4.5, in connection with the problem stated in § 1,
we have immediately the following

COROLLARY 4.6. Let (M, F, g) be a compact and irreducible K-space satisfy-
ing the condition (*). // the scalar curvature of (M, F, g) is constant, then
(M, F, g) is locally symmetric.

§5. 6-dimensional iί-spaces.

Let (M, F, g) be a 6-dimensional complete non-Kaehlerian if-space. Then,
besides the formulas (4.1)~(4.10), the following identities hold (cf. [9], [20]).

vp U v k* jΓ ιh— r^r\\gkjf ih i gkι* hj~TgkK* ji) >

From (5.2), we have

(5.3) Fp

tRkjth=-Fh

tRkJpt + —(F

Transvecting (5.2) with gkh, we get

p /?*— rr
KJi~~Kβ—~ΐβgji >

from which and (4.9), taking account of Theorem 3.2,

From the above equations, we have

(54) R i — ~-g R*=z—g..

From (3.2) and (5.4), we have

Now, we shall establish the integral formula (5.26) given later, which im-
plies the following

THEOREM 5.1. Let (M, F, g) be a ̂ -dimensional complete and simply connected
non-Kaehlerian K-space satisfying the condition
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Then, {M, F, g) is a homogeneous almost Hermitian manifold.

For the sake of later use, we shall prepare the following formulas (5.6)~
(5.9), (5.11) and (5.13). By making use of (5.2)~(5.5), we have

(5.6) R'^FSFJRw^-FSFSR'WRw

The formulas (5.4) and (5.5) imply

ΏJpihr? τpktn

30/ 150*

Now, making use of (5.2)~(5.5) and taking account of (5.6), we have

(5.8) W^F^F^R^^-F/F^R^^R^^F^F^R^Ru^

=—R'pih(jtpihj——{gPJgih—gphglJ—FpjFih+FphFlJ))

By making use of (5.2), (5.4) and (5.5), we find

(5.9) R\ihFkΨ™Rujίh

= _Rkviκ^RvHh—~Agkτgvh—gmgkh--FkιFvh-\-FviFkflyj

75 -

Furthermore, from (5.2) and (5.4), we have

(5.10)

Substituting (5.6) and (5.7) respectively into the third term and the forth term
in the parenthesis of the right hand side of (5.10), we have
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(5.11)

From (5.1) and (5.4), we have

(5.12) RWFSΦ'

kjth r )

Substituting (5.8) into the second term in the parenthesis of the right hand side
of (5.12), we have

(5.13) Λ J p i Λ F p

β ( 7 * 7 i F α

ί ) i ? ^ t Λ =

To obtain the integral formula (5.26), we define a tensor field L=(Lpkjih)
by

(5.14) Lpkjih=lpRkjitιJrTpk

tRtjth

JrTPJ

tRktih

J

ΓTpι

tRkjth + Tp^Rkjit,

where T=(Tjih) is the tensor field defined by (4.12). We here compute the
square of the length ||L|| of the tensor field L, that is,

+2{l"R^)(Tpk

lRtjih+TP]

tRktlh+Tpl

tRkjth+T1>h

tRk}it)

Thus we have

(5.15) l

We now compute each of four terms appearing in the expression (5.15)
above. In the first step, we compute the second term of (5.15). From the de-
finition of T and the second Bianchi identity, we have

(5.16) 4
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Substituting (5.11) and (5.13) into the second term and the third term of the
right hand side of (5.16) respectively, we have

(5.17) {

In the second step, we compute the third term in the right hand side of
(5.15). By making use of (4.3) and (5.4), we have

(5.18) Tp^Ruj

" 3 0 kj

In the third step, we compute the forth term of the right hand side of
(5.15). By making use of (5.2) and (5.5), we have

1
4

Substituting (5.9) into the last term in the parenthesis of the right hand side
of (5.19), we have

(5.20) Tpk»RujihT^R\ih=-

Similarly, by making use of (5.2), (5.4) and (5.5), we have

(5.21) Tpk«RujihT*™R>"v
h
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ς / A
±7

Substituting (5.6) into the last term in the parenthesis of the right hand side
of (5.21), we have

1

Finally, substituting (5.17), (5.18), (5.20) and (5.22) into the right hand side
of (5.15), we have

25

On the other hand, because of (4.4) and (5.4), (M, F, g) is an Einstein space
with positive scalar curvature. Thus, by Myers' theorem, M is compact, and
the formula (2.1) implies in particular

(5.24) & p R t i t l ί j

Substituting (5.24) into (5.23), we have

(5.25) \\Lr=^

From (5.25), by taking account of Green's theorem, we have finally the integral
formula

r r / S/ S2w

JM jM\ 15\ 15//

where dM denotes the volume element of (M, F, g).

Proof of Theorem 5.1. If (M, F, g) satisfies the inequality

then, we see from (5.26) that Lpkjih=0 on M, and hence, the tensor field T
satisfies the condition (A) in Theorem 3.3. Consequently, from Lemma 4.3 and
Theorem 3.3, we have Theorem 5.1. Q. E. D.
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By direct computation, we have

(σ σ —σ σ \\( T?k3ih — (σ^1 σkh σkισih\\—
kjίh— 2?\gjίg kh g kigjhjjyί 3 0 ^ ^ ~~^ ^ ) J —

Thus, from (5.26) and the above identity, if a β-dimensional complete and non-
Kaehlerian /Γ-space is simply connected and satisfies the condition (*), then it
is isometric with a β-dimensional sphere S\ in which the tensor field T defined
by (4.12) satisfies the conditions (A), (B) and (C) in Theorem 3.3. However, we
have other examples of /ί-spaces in which the tensor field T defined by (4.12)
satisfies the conditions (A), (B) and (C) in Theorem 3.3. The rest of this section
will be devoted to show the fact. Let M=G/K be a compact homogeneous
space with X(M)ΦO, where G is a compact simple Lie group acting effectively
on M and K is the isotropy subgroup at some point x^M. Then, 1(M)ΦQ
implies rank G=rank K. We now assume that the Riemannian metric g of M
is determined by a biinvariant metric <,> on G. Furthermore, we assume that
G admits an automorphism Θ of order 3 and K is the fixed point set of θ.
Since rank G=rank if, θ is an inner automorphism (cf. [6], [24]). Then M=G/K
is a reductive homogeneous space. Let Q=ϊ+m be the corresponding ortho-
gonal direct sum decomposition of $, where g and ! are the Lie algebras of G
and K respectively. The subspace m can be naturally identified with the
tangent space at x=K^G/K. Let θ be the automorphism of α determined by

1 /^
θ. And we put θ\m= — ~τrI-\—τr-F, where / denotes the identity. Then F:

m-^m gives rise to a G-invariant almost complex structure (also denoted by F)
on M. This almost complex structure F is called the canonical almost complex
structure determined by θ. The almost complex structure F satisfies

<FX, FY)=(X, Y>
and

(5.27) [FZ, r ] « = - F [ * , F ] m , IX, Ylt=[FX9 FY-]l9

for X, Y^m (cf. [5], [24]). On the other hand, since (G/K, g) is a homogene-
ous Riemannian manifold, the Riemannian connection 7 of (G/K, g) is given at
x=K by the formula:

(5.28) 2<vxy, z>=-<x, [r, z]Jn>-<r, [z, z]m>+<z, [z, y]w>,

for X, Y, Z 6 E Since <,> is biinvariant, (G/K, g) is naturally reductive with
respect to the decomposition β=ϊ+m, i.e., <Z, [F, Z]m>+<[F, Z] t π, Z)=0 holds
for X, Y, Z^m, and furthermore, because of (5.28),

(5.29) lχY=\lX, Γ L , for X, Fern,

holds at x=K. Taking account of (5.27) and (5.29), we have at x=K

(5.30) {
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for X, Fern. Thus, (G/K, F, g) is a #-space (cf. [5], [24]). It is well known
that the curvature tensor R of (G/K, g) is given at x=K by the formula (cf.
[8]):

(5.31) R(X, Y)Z=-LZX, F],, Zl-±llX, F]m, Z]m

+ jlX, IY, Z ] M ] n - j C F , IX, Z ] m ] m , for X, F,

Now, let T be a G-invariant tensor field of type (1, 2) on M—G/K determined
by

(5.32) T\X, Y)=jZX, F ] m , for X, Fern.

Since (G/K, g) is naturally reductive, T is skew-symmetric. Taking account of
(5.30), we obtain at x=K

γ)=jiχ, n»

= jF(VxF)Y, for X,

Thus, the tensor field T coincides with the tensor field given by (4.12) and
hence, satisfies by Lemma 4,3 the conditions (B) and (C) in Theorem 3.3. Fur-
thermore, taking account of (5.29), (5.31) and (5.32), we can easily show that T
satisfies the condition (A) in Theorem 3.3. The following spaces are examples
of 6-dimensional compact, simply connected and non-Kaehlerian if-spaces (cf.
[5], [24]):

S£/(3)/S(ί/(l)x t/(l)χ ί/(l)), SO(5)/t/(2), G2/SU(3)=S«.

§ 6. Some 4-dimensional F-spaces and //-spaces.

In [12], Sawaki and the present author proved that any F-space with non-
vanishing pointwise constant holomorphic sectional curvature is a Kaehlerian
space. On the other hand, in [21], Tricerri and Vanhecke gave an exampJe of
non-Kaehlerian locally flat almost Hermitian manifolds of dimension 4. Obvi-
ously, any locally flat almost Hermitian manifold is an F-space. Therefore, it
might be interesting to give some sufficient conditions for an almost Hermitian
manifold to be Kaehlerian in terms of the curvature tensor and others. In
connection with this, we shall prove the following
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THEOREM 6.1. Let (M, F, g) be a 4-dimensιonal H-space satisfying the condi-
tion (*). // the scalar curvature S of (M, F, g) is non-negative on M, then
(M, F, g) is a Kaehlenan space.

Taking account of Theorem 3.1, Theorem 6.1 follows immediately from the
following

LEMMA 6.2. Let (M, F, g) be a ^-dimensional almost Hermitian manifold
satisfying the condition (*). // the scalar curvature S of (M, F, g) is non-nega-
tive on M, then SΞ^S* holds on M.

Proof. We now put BkJih—g{R{ek, ef)e%, eh), l^k, j , i, h^4, for an ortho-
normal basis (eι)=(e1, e2, e3, e4) in TX(M) at each point I G M . Taking account
of the arguments developed in [15], at each point xeM, we may choose an
orthonormal basis (et) in TX(M) in such a way that one of the following con-
ditions (I Hi), (I)-(ii), ( iHi iy , (I)-(iii), (Π), (ΠI), (IV) and (V) holds:

otherwise, Bkjih being zero, and 4λ~S

( I )~(ll) D 1212::=: £> 3434=I:: 2,λ/3, B 1 3 1 3 = JD 2424 : = : -D 1 4 1 4 = β 2 3 2 3 = Λ/6,

^1234 = ^ / 3 , ^1423= — Λ/6, B1U2— ~Λ/6 (Λ Φ 0) ,

otherwise, 5^ t f t being zero, and 4λ=S

( I )-(ii)/ B1212=B3iM=—2Λ/3, 51313=JB2424~5i4i4=^2323——Λ/β,

^i234=-Λ/3, £1423=Λ/6, 51342-Λ/6 ( ^ 0 ) ,

otherwise, J5feJίft being zero, and 4Λ=S;

( I )-(iii) B1212=BU3i=-λ (λΦO),

otherwise, Bkjih being zero, and 4Λ=S;

(Π) B1212=-λ, BMU=-μ (λφμ,λ,μφQ),

otherwise, Bkjίh being zero, and 2(λ+μ)=S;

(HI) B1212=Bniz=B232z=—λ/2 (λΦO),

otherwise, Bkjιh being zero, and 3Λ=5;

(IV) B1212=-λ (λΦO),

otherwise, Bkjίh being zero, and 2^=S;

(V) BhJih=Q,
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We now put fμ—g{Fe}, et), ίύj, ι^4. Then, taking account of g{Fe}, Feι)-
g(e}, eι)=δ}i, we have

i 0 /12 / „ fu )

(6.1)

or

(6.2) (/,.)=

-/i, o -flt Λ

-/i, /» o - Λ

o /12 /„ /M 1

-/i, o /14 - Λ ,

-/» -/H o /„

\ 7l4 7l3 7l2 V /

where (/ ί 2 ) 2 +(/ I 3 ) 2 +(Λ4) 2 -l .

We here consider eight cases (A)~(H) as followings. By the definition of
we have

(6.3) 2S*— Σ fbaBbakjfkj-
a.b.j, k

(A) In the case ( I )-(ii), we have from (6.3)

^ * = ^(7l2^1212/l2^7l2^1234/34~H/l3-Ol0137l3"T"713-^1324/24

"T"7l4-C> 1414/l4H~/l4-Ol423 723 4~ 723^2314/l4~{"723 O 2323 723

'3434 734)

Thus, when (fjι) has the form (6.1), we have

S*
and hence

(6.4) S*

When (fJl) has the form (6.2), we have

and hence

(6.5) S*=S/3.

(B) In the case ( I )-(ii)/, we have similarly

(6.6) S*
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when (fji) has the form (6.1), and

(6.7) S*=S(/ 1 ! )
i ,

when (fji) has the form (6.2).

(C) In the case ( I )-(i), we have

(6.8) S*

(D) In the case (I )-(iii), we have

(6.9) S*=(2^)((/12)
a+(/84)2)=(«)(/12)

2

(E) In the case (Π), we have

(6.10) S*

=S(/ 1 8) 8

(F) In the case (IΠ), we have

(6.11) S*=λ=S/3.

(G) In the case (IV), we have

(6.12) 5*-24/ 1 2 ) 2 -S(/ 1 2 ) 2 .

(H) In the case (V), it is evident that

(6.13) S*=S=0.

Taking account of (β.4)~(6.13), we can prove Lemma 6.2. Q. E. D.

Taking account of the arguments developed in the proof of Lemma 6.2, we
can prove the following Propositions 6.3 and 6.4.

PROPOSITION 6.3. Let (M, FQ, g0) be a Kaehlenan space of constant holomor-
phic sectional curvature c(>0) of complex dimension 2 and F be an almost complex
structure on M such that (M, F, g0) is an H-space. Then, F=F0 or F=—Fo.

Proof From the hypothesis for (M, FQ, g0), at each point xεM, only the
case (I )-(ii)' with λ=3c/2 occurs with respect to any orthonormal basis (et)=
(elf e2—F0eu e3, eά=F0e3) in TX(M). Since the scalar curvature of (M, F, g0) is
positive and constant on M, from Theorem 6.1, (F, g0) is a Kaehlerian struc-
ture on M. Thus, from Theorem 3.1, and (6.6), (6.7), we have finally
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or
Fe1=—e2=—F0e1, Fe3=—ei=—F0e3. Q. E. D.

PROPOSITION 6.4. Let (M, Fo, g0) be a Kaehlenan space of constant holomor-
phic sectional curvature c (Φθ) and F be an almost complex structure on M such
that (M, F, g0) is an F-space. Then, F—Fo or F=—Fo.

Proof. In general, in an F-space (M, F, g), from (3.3) and (3.4), it follows

that S=S*. Thus, taking account of (6.6) and (6.7), we have finally

Fe1=e2=F0e1, Fe3=e4=F0e3,
or

Fe1=-e2=-F0e1, Fe3=-e4=-F0e3. Q. E. D.
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