K. KAWAMURA KODAI MATH. J. 2 (1979), 337–345

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION

By Kazutomo Kawamura

Summary

In this paper we shall derive a multivariate Poisson distribution and we shall discuss its structure.

Notations and Definitions

n	positive integer					
$X = (X_1, X_2, \cdots, X_n)$	n dimensional random vector					
$\mathbf{i} = (i_1, i_2, \cdots, i_n)$	n dimensional vector with 0, 1 components					
$\boldsymbol{k} = (k_1, k_2, \cdots, k_n)$	n dimensional vector with nonnegative integer					
	components					
$\boldsymbol{x} = (x_1, x_2, \cdots, x_n)$	observation of X					
$p(x, \lambda)$	Poisson density with parameter λ					

Main Results

1. Multivariate Bernoulli distribution $B(1, p_i)$ Multivariate Bernoulli distribution is defined by

$$P(X=i)=p_i$$

where $p_i \ge 0$ and $\sum_i p_i = 1$.

The moment generating function (m.g.f.) is given by

 $g(\mathbf{s}) = \sum_{i} p_{i} s_{1}^{i_{1}} s_{2}^{i_{2}} \cdots s_{n}^{i_{n}}.$

The marginal distribution of this multivariate Bernoulli distribution is also degenerated Bernoulli.

The covariance matrix of $B(1, p_i)$ is given by

$$\begin{aligned} & \operatorname{Cov}(X_{j}, X_{k}) = \sum_{i_{j}=i_{k}=0} p_{i} \sum_{i_{j}=i_{k}=1} p_{i} - \sum_{i_{j}=1, i_{k}=0} p_{i} \sum_{i_{j}=0, i_{k}=1} p_{i} ,\\ & \operatorname{Var}(X_{j}) = \sum_{i_{j}=0} p_{i} \sum_{i_{j}=1} p_{i} . \end{aligned}$$

Received May 18, 1978

Proof.

$$\begin{aligned} \operatorname{Cov}(X_{j}, X_{k}) &= \sum_{i_{j}=i_{k}=1}^{\sum} x_{j} x_{k} p_{i} - \sum_{i_{j}=1}^{\sum} p_{i} \sum_{i_{k}=1}^{\sum} x_{k} p_{i} \\ &= \sum_{i_{j}=i_{k}=1}^{\sum} p_{i} - \sum_{i_{j}=1}^{\sum} p_{i} \sum_{i_{k}=1}^{\sum} p_{i} \\ &= \sum_{i_{j}=i_{k}=1}^{\sum} p_{i} \left(\sum_{i_{j}=i_{k}=0}^{\sum} p_{i} + \sum_{i_{j}=i_{k}=1}^{\sum} p_{i} \right) (\sum_{i_{j}=0,i_{k}=1}^{\sum} p_{i} + \sum_{i_{j}=i_{k}=1}^{\sum} p_{i}) \\ &- \left(\sum_{i_{j}=1,i_{k}=0}^{\sum} p_{i} + \sum_{i_{j}=i_{k}=1}^{\sum} p_{i} \right) (\sum_{i_{j}=1,i_{k}=0}^{\sum} p_{i} \sum_{i_{j}=1}^{\sum} p_{i} - \sum_{i_{j}=1,i_{k}=0}^{\sum} p_{i} \sum_{i_{j}=1}^{\sum} p_{i} - (\sum_{i_{j}=1}^{\sum} x_{j} p_{i})^{2} \\ &= \sum_{i_{j}=1}^{\sum} p_{i} - (\sum_{i_{j}=1}^{\sum} p_{i})^{2} . \end{aligned}$$

2. Multivariate binomial distribution $B(N, p_i)$ Multivariate binomial distribution is defined by

$$P(\boldsymbol{X}=\boldsymbol{k}) = \sum_{\sum \alpha_i \imath_j = k_j} \frac{N!}{\prod \alpha_i!} \prod_{\boldsymbol{i}} p_{\boldsymbol{i}}^{\alpha_i}$$

This distribution is derived by N time convolution of $B(1, p_i)$. The m.g.f. of the distribution is given by

$$g_N(s) = (\sum_i p_i s_1^{i_1} s_2^{i_2} \cdots s_n^{i_n})^N$$
.

The marginal distribution of this multivariate binomial distribution is also degenerated binomial.

Covariance matrix of $B(N, p_i)$ is given by

$$\begin{aligned} & \operatorname{Cov}(X_{j}, X_{k}) = N(\sum_{i_{j}=i_{k}=0} p_{i} \sum_{i_{j}=i_{k}=1} p_{i} - \sum_{i_{j}=1..i_{k}=0} p_{i} \sum_{i_{j}=0..i_{k}=1} p_{i}), \\ & \operatorname{Var}(X_{j}) = N(\sum_{i_{j}=0} p_{i} \sum_{i_{j}=1} p_{j}). \end{aligned}$$

3. Multivariate Poisson distribution

Multivariate Poisson distribution is a limiting distribution of $B(N, p_i)$ as $N \rightarrow \infty$ under the condition of $N p_i = \lambda_i$ where λ_i is a non-negative fixed parameter. If a random vector X has a binomial distribution $B(N, p_i)$ and if we assume $N p_i = \lambda_i$ then we have

$$\lim_{N\to\infty} P(X=k) = \sum_{\sum \alpha_i \iota_j = k_j} \prod_{\iota\neq 0} p(\alpha_\iota, \lambda_\iota)$$

where $p(\alpha_i, \lambda_i)$ is an univariate Poisson density.

THEOREM 1. If a random vector X has a distribution $B(N, p_i)$ then we have

$$\lim_{N p_i = \lambda_i, N \to \infty} P(X = k) = \sum_{\sum \alpha_i i_j = k_j} \prod_{i \neq 0} p(\alpha_i, \lambda_i),$$

Proof. By the condition we get

$$P(\boldsymbol{X}=\boldsymbol{k}) = \sum_{\sum \alpha_{i} i_{j} = k_{j}} \frac{N!}{\prod_{i} \alpha_{i}!} \prod_{i} p_{i}^{\alpha_{i}},$$

therefore the limit value of each term is

$$\lim_{N p_{i}=\lambda_{i}, N \to \infty} \frac{N!}{\prod_{i} \alpha_{i}!} \prod_{i} p_{i}^{\alpha_{i}}$$

$$= \lim \frac{N!}{\alpha_{0}! \prod_{i\neq 0} \alpha_{i}!} \left(1 - \frac{\sum_{i\neq 0} \lambda_{i}}{N}\right)^{\alpha_{0}} \prod_{i\neq 0} \frac{\lambda_{i}^{\alpha_{i}}}{N^{\alpha_{i}}}$$

$$= \lim \frac{N!}{\alpha_{0}! N^{i\sum_{i\neq 0} \alpha_{i}}} \lim \left(1 - \frac{\sum_{i\neq 0} \lambda_{i}}{N}\right)^{N-i\sum_{i\neq 0} \alpha_{i}} \prod_{i\neq 0} \lambda_{i}^{\alpha_{i}} / \prod_{i\neq 0} \alpha_{i}!$$

$$= \exp \left\{-\sum_{i\neq 0} \lambda_{i}\right\} \prod_{i\neq 0} \lambda_{i}^{\alpha_{i}} / \prod_{i\neq 0} \alpha_{i}!$$

$$= \prod_{i\neq 0} p(\alpha_{i}, \lambda_{i}).$$

Therefore we have

$$\lim_{N p_i = \lambda_i, N \to \infty} P(X = k) = \lim_{N p_i = \lambda_i, N \to \infty} \sum_{\sum \alpha_i \nu_j = k_j} N! \prod_{\iota} \frac{p_i^{\alpha_{\iota}}}{\alpha_{\iota}!}$$
$$= \sum_{\sum \alpha_i \nu_j = k_j} \exp\{-\sum_{\iota \neq 0} \lambda_i\} \prod_{\iota \neq 0} \frac{\lambda_i^{\alpha_{\iota}}}{\alpha_{\iota}!}$$
$$= \sum_{\sum \alpha_i \nu_j = k_j} \prod_{\iota \neq 0} p(\alpha_{\iota}, \lambda_{\iota}).$$

THEOREM 2. The moment generating function of the limiting distribution is given by

$$h(s) = \exp \left\{ -\sum_{i \neq 0} \lambda_i + \sum_{i \neq 0} \lambda_i s^i \right\}$$
$$= \prod_{i \neq 0} \exp \left\{ -\lambda_i + \lambda_i s^i \right\} .$$

Proof.

$$h(\mathbf{s}) = \lim_{\substack{N \ p_i = \lambda_i, N \to \infty}} g(\mathbf{s})^N = \lim_{\substack{N \ p_i = \lambda_i, N \to \infty}} (\sum_{\iota} p_i s_1^{\iota_1} s_2^{\iota_2} \cdots s_n^{\iota_n})^N$$
$$= \lim_{\substack{N \to \infty}} (1 - \sum_{\iota \neq 0} p_i + \sum_{\iota \neq 0} \frac{\lambda_\iota}{N} \mathbf{s}^\iota)^N$$
$$= \lim_{\substack{N \to \infty}} (1 - \sum_{\iota \neq 0} \frac{\lambda_i}{N} + \sum_{\iota \neq 0} \frac{\lambda_i}{N} \mathbf{s}^\iota)^N$$

$$= \exp\{-\sum_{i\neq 0}\lambda_i + \sum_{i\neq 0}\lambda_i s^i\}.$$

where $s' = s_1' s_2' \cdots s_n''$.

THEOREM 3. If a random vector X has the Poisson law, then we have an unique decomposition of the random vector by $X_j = \sum_{i,j=1} X_i$ where $X_i(i \neq 0)$ are mutually independent, univariate Poisson variables with parameter λ_i .

Proof. This is a direct conclusion from the definition of the distribution of convolution type. Mathematical proof is given as followings. In the bivariate case n=2, if $X=(X_1, X_2)$ has the Poisson law, our m.g.f. h(s) becomes

$$h(s) = \exp\{-(\lambda_{10} + \lambda_{01} + \lambda_{11}) + \lambda_{10}s_1 + \lambda_{01}s_2 + \lambda_{11}s_1s_2\}$$

= $\exp(-\lambda_{10} + \lambda_{10}s_1)\exp(-\lambda_{01} + \lambda_{01}s_2)\exp(-\lambda_{11} + \lambda_{11}s_1s_2)$.

If we put $s_2=1$, then we get the m.g.f. of X_1

$$\exp(-\lambda_{10}+\lambda_{10}s_1)\exp(-\lambda_{11}+\lambda_{11}s_1).$$

This is a m.g.f. of convolution type, and if we put $s_1=1$, we get

$$\exp(-\lambda_{01}+\lambda_{01}s_2)\exp(-\lambda_{11}+\lambda_{11}s_2)$$

the m.g.f. of X_2 of convolution type. Then we have a decomposition

$$X_1 = X_{10} + X_{11}', \quad X_2 = X_{01} + X_{11}''.$$

If we put $X_{11}' \neq X_{11}''$ with positive probability then this is contradictory to the fact that X_{11}' , X_{11}'' has a bivariate m.g.f.

$$\exp(-\lambda_{11}+\lambda_{11}s_1s_2).$$

Therefore we have $X_{11}' = X_{11}'' = X_{11}$ with probability one. And we can express the decomposition of given $X = (X_1, X_2)$ as

$$X_1 = X_{10} + X_{11}, \quad X_2 = X_{01} + X_{11}.$$

In this equality X_{10} , X_{01} and X_{11} are mutually independent Poisson distribution with parameter λ_{10} , λ_{01} and λ_{11} respectively, as to be proved.

THEOREM 4. The covariance matrix of the multivariate Poisson distribution is given by

$$\operatorname{Var}(X_j) = \sum_{i_j=1} \lambda_i, \quad \operatorname{Cov}(X_j, X_k) = \sum_{i_j=i_k=1} \lambda_i.$$

Proof. This is a direct conclusion using the m.g.f. of the distribution (Theorem 2) or the preceding decomposition Theorem. Generally a m.g.f. is given by

$$h(s) = \sum_{k} s^{k} P(X = k).$$

And we have

$$\frac{\partial^2 h(\mathbf{s})}{\partial s_i \partial s_j} = \sum_{\mathbf{k}} k_i k_j s_1^{k_1} \cdots s_i^{k_i - 1} \cdots s_j^{k_j - 1} \cdots s_n^{k_n} P(\mathbf{X} = \mathbf{k}),$$
$$\left[\frac{\partial^2 h(\mathbf{s})}{\partial s_i \partial s_j}\right]_{s_1 = s_2 = \cdots = s_n = 1} = \sum_{\mathbf{k}} k_i k_j P(\mathbf{X} = \mathbf{k}) = E(X_i X_j).$$

We use the result of Theorem 2, h(s) becomes

$$h(s) = \exp\{-\sum_{i\neq 0} \lambda_i + \sum_{i\neq 0} \lambda_i s^i\}$$

then

$$\frac{\partial h(s)}{\partial s_{k}} = h(s) \left\{ \sum_{i \neq 0} \iota_{k} \lambda_{i} s_{1}^{\iota_{1}} \cdots s_{k}^{\iota_{k}-1} \cdots s_{n}^{\iota_{n}} \right\}$$

$$\frac{\partial^{2} h(s)}{\partial s_{j} \partial s_{k}} = \frac{\partial h(s)}{\partial s_{j}} \left\{ \sum_{i \neq 0} \iota_{k} \lambda_{i} s_{1}^{\iota_{1}} \cdots s_{k}^{\iota_{k}-1} \cdots s_{n}^{\iota_{n}} \right\}$$

$$+ h(s) \frac{\partial}{\partial s_{j}} \left\{ \sum_{i \neq 0} \iota_{k} \lambda_{i} s_{1}^{\iota_{1}} \cdots s_{k}^{\iota_{k}-1} \cdots s_{n}^{\iota_{n}} \right\}$$

$$= h(s) \left\{ \sum_{i \neq 0} \iota_{j} \lambda_{i} s_{1}^{\iota_{1}} \cdots s_{j}^{\iota_{j}-1} \cdots s_{n}^{\iota_{n}} \right\} \left\{ \sum_{i \neq 0} \iota_{k} \lambda_{i} s_{1}^{\iota_{1}} \cdots s_{j}^{\iota_{k}-1} \cdots s_{n}^{\iota_{n}} \right\}$$

$$+ h(s) \left\{ \sum_{i \neq 0} \iota_{j} \iota_{k} \lambda_{i} s_{1}^{\iota_{1}} \cdots s_{j}^{\iota_{j}-1} \cdots s_{k}^{\iota_{k}-1} \cdots s_{n}^{\iota_{n}} \right\}$$

$$\left[\frac{\partial^{2} h(s)}{\partial s_{j}} \right]$$

$$\frac{\left[\frac{\partial^{2}h(S)}{\partial S_{j}\partial S_{k}}\right]_{S_{1}=S_{2}=\cdots=S_{n}=1}}{=h(\mathbf{s})|_{S_{1}=S_{2}=\cdots=S_{n}=1}\left[\left(\sum_{i\neq0}\iota_{j}\lambda_{i}\right)\left(\sum_{i\neq0}\iota_{k}\lambda_{i}\right)+\sum_{i\neq0}i_{j}i_{k}\lambda_{i}\right]}$$
$$E(X_{j}X_{k})=\sum_{\iota_{j}=\iota_{k}=1}\lambda_{i}+\left(\sum_{\iota_{j}=1}\lambda_{i}\right)\left(\sum_{\iota_{k}=1}\lambda_{i}\right).$$

And $E(X_j)$, $E(X_k)$ is given by $E(X_j) = \operatorname{Var}(X_j) = \sum_{i_j=1} \lambda_i$, $E(X_k) = \operatorname{Var}(X_k) = \sum_{i_k=1} \lambda_i$. Finally we have

$$\begin{aligned} \operatorname{Cov}(X_j, X_k) &= E(X_j X_k) - E(X_j) E(X_k) = \sum_{i_j = i_k = 1} \lambda_i, \\ \operatorname{Var}(X_j) &= E(X_j) = \sum_{i_j = 1} \lambda_i. \end{aligned}$$

THEOREM 5. If a random vector X has the Poisson law, then the marginal distribution is also a degenerated Poisson.

Proof. Since X has a m.g. f. h(s), it follows that $X^{(j)} = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_n)$ $(j=1, 2, \dots, n)$ has a m.g. f. $h(s)|_{s_j=1}$.

KAZUTOMO KAWAMURA

$$h(\mathbf{s})|_{s_{j}=1} = \exp\{-\sum_{i\neq 0}\lambda_{i} + \sum_{i\neq 0}\lambda_{i}\mathbf{s}^{i}\}_{s_{j}=1} \\ = \exp\{-\sum_{i(j)\neq 0}(\sum_{i_{j}=0,1}\lambda_{i}) + \sum_{i(j)\neq 0}(\sum_{i_{j}=0,1}\lambda_{i})s_{1}^{i_{1}}\cdots s_{j-1}^{i_{j-1}}s_{j+1}^{i_{j+1}}\cdots s_{n}^{i_{n}}\}.$$

This means that if X has a Poisson distribution, it follows that $X^{(j)}$ has also a generated Poisson distribution. And, similarly, if we put

 $X^{(j_1, j_2, \cdots, j_k)} = (X_1, \cdots, X_{j_1-1}, X_{j_1+1}, \cdots, X_{j_2-1}, X_{j_2+1}, \cdots, X_{j_k-1}, X_{j_k+1}, \cdots, X_n)$

then the m.g.f. of the vector is given by

$$h(\mathbf{s})|_{s_{j_{1}}=s_{j_{2}}=\cdots=s_{j_{k}}=1} = \exp\{-\sum_{i(j_{1},j_{2},\cdots,j_{k})\neq 0} (\sum_{i_{j_{1}},i_{j_{2}},\cdots,i_{j_{k}}} \lambda_{i}) + \sum_{i(j_{1},j_{2},\cdots,j_{k})\neq 0} \\ \times (\sum_{i_{j_{1}},i_{j_{2}},\cdots,i_{j_{k}}} \lambda_{i}) S_{1}^{i_{1}}\cdots S_{j_{1}-1}^{i_{j_{1}-1}} S_{j_{1}+1}^{i_{j_{1}+1}}\cdots S_{j_{2}-1}^{i_{j_{2}-1}} S_{j_{2}+1}^{i_{j_{2}+1}}\cdots S_{j_{2}+1}^{i_{j_{2}+1}} \\ S_{j_{k}-1}^{i_{j_{k}}} S_{j_{k}+1}^{i_{j_{k}}} S_{j_{k}+1}^{i_{j_{k}}} S_{j_{k}+1}^{i_{j_{k}}}\cdots S_{n}^{i_{n}}\}.$$

Therefore, the random vector $X^{(j_1, j_2, \cdots, j_k)}$ has a degenerated Poisson distribution as to be proved.

COROLLARY 1. The marginal distribution X_j of X is Poisson with a parameter $\sum_{i,j=1} \lambda_i$.

COROLLARY 2. If $Cov(X_j, X_k)=0$ $(j \neq k)$, then X_j and X_k are mutually independent random variables.

THEOREM 6. If X_1, X_2, \dots, X_N are mutually independent random vectors of the multivariate Poisson distribution, then the sum $\sum_{j=1}^{N} X_j$ has a multivariate Poisson distribution.

Proof. The m.g.f. of the sum vector is given by

$$h(s)^{N} = \exp N\{-\sum_{i\neq 0} \lambda_{i} + \sum_{i\neq 0} \lambda_{i}s^{i}\}$$
$$= \exp\{-\sum_{i\neq 0} N\lambda_{i} + \sum_{i\neq 0} N\lambda_{i}s^{i}\}$$

This means that the sum vector is also a multivariate Poisson distribution with parameter $N\lambda_i$ $(i \neq 0)$.

Estimation of covariance matrix

We assume that X_1, X_2, \dots, X_N are mutually independent multivariate Poisson random vectors with unknown parameter λ_i . Given a sequence of the

random vectors, we shall estimate the mean vector and the covariance matrix, in this section.

A sequence of multivariate Poisson random vectors

This sequence of random vectors is of n=8 dimensional Poisson distribution and the sample size N=20. In this paper, we use

$$\begin{split} \bar{X}_{i} &= \frac{1}{N} \sum_{k=1}^{N} X_{ik}, \quad S_{ij} = \frac{1}{N} \sum_{k=1}^{N} (X_{ik} - \bar{X}_{i}) (X_{jk} - \bar{X}_{j}) \\ &= \frac{1}{N} \sum_{k=1}^{N} X_{ik} X_{jk} - \bar{X}_{i} \bar{X}_{j} \qquad (1 \le i, j \le n), \end{split}$$

where we get easily $S_{ij} = S_{ji}$.

Estimated mean values and standard deviations

$ar{X}_{\iota}$,	$S_{i}^{2} = \frac{1}{N} \sum_{k=1}^{N} (X_{ik} - X_{ik})$	\overline{X}_{ι}) ² ($\iota=1, 2, \cdots$)	, n)
$\overline{X}_1 = 0.4$	$\overline{X}_2 = 0.3$	$\overline{X}_3 = 0.8$	$\bar{X}_{4} = 0.95$
$S_1 = 0.5831$	$S_2 = 0.4583$	$S_3 = 0.8124$	$S_4 = 1.0235$
$\overline{X}_{5}=7.85$	\overline{X}_{ϵ} =7.3	$\overline{X}_{7}=0.85$	$\bar{X}_{8} = 1.2$
$S_{5}=3.3208$	S ₆ =3.2573	$S_7 = 0.8529$	$S_8 = 1.0770$
Sample mean of the sum Standard deviation of the sum		19.65 5.9521	

Estimated covariance matrix

The estimated covariance matrix is given by

$$\begin{split} \boldsymbol{S} = & \begin{bmatrix} S_{i_j} \end{bmatrix} \\ = & \begin{bmatrix} 0.34 & -0.02 & 0.03 & 0.07 & -0.64 & -0.32 & -0.14 & -0.23 \\ -0.02 & 0.21 & 0.06 & 0.015 & 0.145 & -0.14 & 0.045 & 0.09 \\ 0.03 & 0.06 & 0.66 & 0.44 & -0.43 & -0.09 & 0.32 & 0.09 \\ 0.07 & 0.015 & 0.44 & 1.05 & -0.86 & -0.085 & 0.49 & 0.06 \\ -0.64 & 0.145 & -0.43 & -0.86 & 11.03 & 6.445 & -0.42 & -0.12 \\ -0.32 & -0.14 & -0.09 & -0.085 & 6.445 & 10.61 & 0.145 & -0.56 \\ -0.14 & 0.045 & 0.32 & 0.49 & -0.42 & 0.145 & 0.73 & 0.53 \\ -0.23 & 0.09 & 0.09 & 0.06 & -0.12 & -0.56 & 0.53 & 1.16 \end{split}$$

The main components

$$S_{ii} = S_i^2 = \frac{1}{N} \sum_{k=1}^{N} (X_{ik} - \overline{X}_i)^2 \qquad (i = 1, 2, \dots, n)$$

will be refined by using estimated mean vector

$$\bar{X}_{i} = \frac{1}{N} \sum_{k=1}^{N} X_{ik}$$
 (*i*=1, 2, ..., *n*).

And the estimated sample covariances in S with negative values are not natural, because all parameters $\sum_{i_i=i_j=1}^{\infty} \lambda_i$ estimated by S_{ij} must be nonnegative. Therefore we shall refine the estimeter S as $S^+ = [S_{ij}^+]$ where S_{ij}^+ equals to S_{ij} iff $S_{ij} \ge 0$ and 0 iff $S_{ij} < 0$. And a more refined estimater will be given by $\tilde{S} = [\tilde{S}_{ij}]$ where \tilde{S}_{ij} is defined by

$$\widetilde{S}_{ij} = \begin{cases} \overline{X}_i & \text{iff } i = j, \\ S_{ij}^+ & \text{iff } i \neq j. \end{cases}$$

Because the parameter estimated by S_{ii} is the variance value of X_i and equals to the mean value of X_i . And we get easily $S_{ii}^+=S_{ii}\geq 0$, $S_{ij}^+=S_{ji}^+$ and $\tilde{S}_{ij}=\tilde{S}_{ji}$. Then we have

1	0.4	0	0.03	0.07	0	0	0	0)
$\widetilde{S}=$	0	0.3	0.06	0.015	0.145	0	0.045	0.09
	0.03	0.06	0.8	0.44	0	0	0.32	0.09
	0.07	0.015	0.44	0.95	0	0	0.49	0.06
	0	0.145	0	0	7.85	6.445	0	0
	0	0	0	0	6.445	7.3	0.145	0
	0	0.045	0.32	0.49	0	0.145	0.85	0.53
l	0	0.09	0.09	0.06	0	0	0.53	1.2

Conclusion of this section.

1. The unknown mean values of (X_1, \dots, X_n)

$$EX_1 = \sum_{i_1=1} \lambda_i, \dots, EX_n = \sum_{i_n=1} \lambda_i$$

are to be estimated by

$$ar{X}_{1}$$
, \cdots , $ar{X}_{n}$,

where

$$\bar{X}_{i} = \frac{1}{N} \sum_{k=1}^{N} X_{ik}$$
 (*i*=1, 2, ..., *n*).

2. The unknown covariance matrix of (X_1, \dots, X_n)

$$[\operatorname{Cov}(X_i, X_j)]; \qquad \operatorname{Cov}(X_i, X_j) = \sum_{i_i = i_j = 1} \lambda_i$$

will be estimated by the sample covariance matrix S or S^+ .

3. And a more refined covariance matrix will be given by \tilde{S} .

References

- [1] FELLER, W., An introduction to probability theory and its applications, Vol. 1, sec. ed. 6-th print (1961).
- [2] KAWAMURA, K., The structure of trivariate Poisson distribution, Vol. 28, No. 1, 1-8 (1976). Kōdai Math. Sem. Rep.
- [3] KENDALL, M.G. and A. STUART, The advanced theory of statistics, Vol. 1. Distribution theory, second ed. Criffin (1963).

Department of Mathematics Tokyo Institute of Technology