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REPRESENTATION OF ADDITIVE FUNCTIONALS

ON VECTOR-VALUED NORMED KOTHE SPACES

BY FUMIO HIAI

§ 1. Introduction.

Integral representation theory has been developed by many authors for
nonlinear additive functionals and operators on measurable function spaces
such as Lebesgue spaces and Orlicz spaces see Alό and Korvin [1], Drewnowski
and Orlicz [3-5], Friedman and Katz [6], Martin and Mizel [11], Mizel [12],
Mizel and Sundaresan [13-15], Palagallo [16], Sundaresan [19], and Woyczyήski
[21]. Representation theorems have been obtained also for additive operators
on continuous function spaces see Batt [2] and references therein. The pur-
pose of this paper is to establish representation theorems for additive func-
tionals on Banach space-valued normed Kothe spaces.

In this paper, let (£?, Jί, μ) be a <7-flnite measure space and X a real
separable Banach space. Let LP(X) be an Z-valued normed Kδthe space equip-
ped with an absolutely continuous function norm p. A functional Φ : LP(X)
-*R is called to be additive if Φ(f+g)=Φ(f)+Φ(g) for each /, g^Lp{X) such
that /i(Supp/πSupp^ )=0. For several types of additive functionals Φ : LP(X)

-* R, we shall establish integral representations of the form φ(f)=\ φ(ω, f{ω))dμ

with certain kernel functions φ : ΩxX —» R. Representation theorems have been
so far obtained for additive functionals which are continuous or rather equi-
continuous in some senses. However our method via measurable set-valued
functions is applicable to additive lower semicontinuous functionals on LP(X).

In § 2, we give definitions and some elementary facts on function norms
and normed Kothe spaces. In § 3, a characterization theorem for closed decom-
posable subsets in Lp(X)xL1 is established by means of measurable set-valued
functions. This characterization will be useful in constructing a set-valued
function whose values are closed subsets of XxR corresponding to epigraphs
of an integral kernel function. In §4, we provide several lemmas on additive
functionals and integral functionals on LP(X). Finally in §5, we discuss in-
tegral representations for the following cases:

(1) Additive lower semicontinuous functionals on LP(X).
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(2) Additive continuous functionals on LP(X).
(3) Bounded linear functionals on LP(X).
(4) Additive lower semicontinuous convex functionals on LP(X).
The author wishes to express his gratitude to Professor H. Umegaki for

his constant encouragement and valuable suggestions.

§ 2. Preliminaries.

Throughout this paper, let (Ω, Jί, μ) be a fixed σ-finite measure space and
Jί the completion of Jί with respect to μ. Let M+ be the collection of all
nonnegative real-valued measurable functions on Ω. A mapping p on M+ to
i?=[—oo, oo] is called a function norm if p satisfies the following conditions :

( i ) jθ(f)^0 and p(ξ)=O if and only if f(ω)=0 a. e.,

(ϋ) p(ξ+ζ)^p(ξ)+p(Q,

(iii) p(aξ)=ap(ξ) for

(iv) ξ(ω)^ζ(ω) a.e. implies

Let p be a fixed function norm, and let X be a real separable Banach space
with dual space X*. Note that the notions of strong and weak measurability
of functions / : Ω —> X are identical, since X is separable. Let LP(X)=
LP(Ω, Jί, μ; X) denote the space of all measurable functions / : Ω—> X such
that jθ(||/H)<°o where | |/ | | = ||/( )ll Then LP(X) becomes a normed linear space
with the norm p(\\f\\) where //-almost everywhere equal functions are identified.
For X=R, the space LP = LP(R) is called a normed Kδthe space, and also called
a Banach function space if it is complete. Usual Lp(l^p^co) spaces and Orlicz
spaces are Banach function spaces. The function norm p is said to have the
Fatou property if p(ξn) ] ρ(ξ) whenever ^ G M + and ξn | ξ, and said to have the
weak Fatou property if p(ζ)<oo whenever ζneM+, ξn ] ζ, and sup 1o(f7l)<°°.
The weak Fatou property implies the completeness of Lp and LP(X). In this
paper, we shall not require p to have the weak Fatou property.

The characteristic function of a set A G J is denoted by 1A. A set
with μ(A)>Q is called unfriendly relative to p if p(lB)=00 for every
with Be A and μ(B)>0. The function norm p is called saturated if Jί contains
no unfriendly sets. There exists a maximal (up to //-null sets) unfriendly set
Ωoo and so ξ(ω)=0 a.e. on Ω^ for every ξ^Lp. In order to give representations
of additive functionals on LP{X), we may assume by removing Ω^ from Ω
without loss of generality that p is saturated. As a consequence of this assump-
tion, there exists a p-admissible sequence, i. e., a sequence {Ωn} in Jί with Ωn\ Ω
such that /z(i2n)<oo and io(l1βj<oo for all n. The associate norm pf is defined by
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which is also a saturated function norm having the Fatou property.
A function ξ^Lp is said to be of absolutely continuous norm if ρ(lAn\ζ\) l§

for every sequence {Λn} in Jί such that Anl0. The space L% of all ξ^Lp of
absolutely continuous norm is a closed order ideal of Lp, that is, Lp is a closed
subspace of Lp such that ζ e L g and |ξ(ω)| g |ζ(ω)| a.e. imply feLjJ. Then the
dominated convergence theorem holds as follows : If ξn(ω) —»£(α>) a. e. and
|fn(ω)|^ζ(ω) a.e. with ζeZ,?, then pdfn—f | ) -*0 . We shall always assume
that p is an absolutely continuous norm, i.e., L%=LP. It is well known that
La

β — Lp when Lp = Lp(l^p<oo) or more generally when L̂ , is an Orlicz space
with a Young's function obeying Δ2-condition. After all, it will be assumed in
this paper that p is a saturated absolutely continuous norm. Therefore the
dual space Lp* of Lp is isometrically isomorphic to the Banach function space

Lp, with the associate norm pf under the bilinear form <f, ζ>=\ ζζdμ of ξ^Lp

and ζ^Lp,. For detailed arguments on normed Kothe spaces, see [22, Chap.
15]. The proofs of above stated facts can be found there.

It is worth while remarking that even when p is not absolutely continuous,
the representation theorems in § 5 hold for additive functionals restricted on
L%(X)={f^Lp(X): | | / | | eL?} . However, for the uniqueness of kernel functions,
it must be assumed that the carrier of La

9 (cf. [22, p. 481]) is the whole set Ω.
See also Remark 1 to Theorem 5.3.

§3. Decomposable subsets in Lp(X)xL1.

For a set-valued function F: Ω -+2X where 2X is the collection of all subsets
of X, let D(F)={ωtΞΩ: F(ω)Φ®\ and G(F)={(ω, i ) e f l x l : xt=F(ω)}. The in-
verse image F~\U) of U(ZX is defined by F-\U)={ω^Ω:F{ω)r\UΦ9}. As to
the following conditions for F: Ω —> 2X such that F(ώ) is closed for every ω<=Ω,
the implications (1) => (2) <=> (3) => (4) hold, and moreover if (Ω, Jί, μ) is complete,
then all the conditions (l)-(4) are equivalent :

(1) F-\C)ΪΞJI for every closed subset C of X;
(2) F'\O)^Ji for every open subset 0 of X;
(3) D(F)^Jl and there exists a sequence {/J of measurable functions

/ „ : D(F)-»X such that F(ω)=c\{fn(ω)} for all OX=ΞD(F);
(4) G{F)^Jί®Bχ where <$x is the Borel σ-field of X.
A set-valued function F: Ω-+2X is called measurable (resp. weakly measurable)

if F satisfies the above condition (1) (resp. (2)). We shall denote by 3L\_Ω X~]
the collection of all weakly measurable set-valued functions F: Ω->2X such
that F(ω) is nonempty and closed for every ω^Ω. We observe that if
G{F)^Jί®^x and F(ω) is nonempty and closed for every ω^Ω, then there
exists an Ff^M\_Ω\ X~] such that F'(ω)=F(ω) a.e. Indeed, since there exists
a sequence {/J of c^-measurable functions such that F(ω)=cl{fn(ω)} for all
ω^Ω, we obtain a desired F'^3L\_Ω\ X] by taking ^-measurable functions
fn with fn/(o))=fn(ω) a.e. and defining F'(ω)=cl{fn'(ω)}. For more complete
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discussions of measurability of set-valued functions whose values are closed
subsets in a separable metric spaces, see [9] and [20].

Let M be a set of measurable functions / : Ω-* X. We call M decomposable
if l^Z+l^vigeM for each /, g^M and Λ^cΛ. It is clear that if M is decom-

posable, then Σ I A fi^M for each finite measurable partition {Λu •••, Λn} of

Ω and {/2, •••, fn}cM. We showed in [8, Theorem 3.1] that any closed decom-
posable subset of LP(X), l ^ £ < o o , is characterized as a set of the form SP(F)
= {f^Lp(X): f(ω)^F(ω) a. e.} with F<Ξ.M[_Ω Z ] . In this section, we obtain an
analogous result for subsets of Lp{X)xL± which will play an important role in
the proof of Theorem 5.1. The product space Lp(X)xL1 is equipped with the
norm /θ(||/| |)+||f | |i for f^Lp(X) and f e Z ^ where Wξ^ is the L2-norm. A subset
M of Lp(X)xL1 is decomposable if and only if (UZ+lfiWΓ* ^A^+^Q\AQ^M for
each (/, ξ), (g, ζ ) e M and AeJl. For given F^3i[_Ω XxR~], we define the
subset Sptl{F) of Lp{X)xLτ by

i : (/(ω), £(ω))eF(ω) a.e.}.

We first give some properties of subsets SPil(F) in the following lemmas.

LEMMA 3.1. // F^.3έ\_Ω\ XxR~\, then Sp,λ{F) is closed in Lp(X)xL1.

Proof. Let {(/„, ξn)} be a sequence in Sptl(F) convergent to (/, ξ)<=Lp(X)
xLi. Passing to a subsequence, we may assume that ρ{\\fn—f\\)<l/2n for all
n and f n(ω) —> <f(α>) a.e. To prove (/, ξ)^Sp>1(F), it now suffices to show that
||/w(ω)—/(ω)|| —> 0 a.e. Taking a ^-admissible sequence, we may assume in ad-
dition that 1Ω^LP. For each k>ϋ, let An={ω^Ω: \\M(o)—f(ώ)\\^l/k} and

^00= Π 0 ^ n . Since p(lAn)^p(k\\fn-f\\)<k/2n, we have

p ( l j ^ Σ I O C U J + ^ I u An)<k/2^ + p(l υ Λ J
n=7ϊi n>J n'P J

for each ^ m ^ l . Since 0 is absolutely continuous, it follows that ^(1 y ^ ) | 0
n>3

as 7 —> 00, so that pO-AtJ—O ^ n d hence μ(Λoo)=0. Letting k = l, 2, •••, we obtain

^ = 1 m = l n =
Γ\ 0

m = l n=m

which shows that \\fn(ω)—f(ω)\\-^0 a.e. Thus the lemma is proved.

LEMMA 3.2. If F^M\_Ω\ XxR~\ and Sptl(F) is nonempty, then there exists
a sequence {(/n, ξn)} in Sptl(F) such that F(ω)=cl{(fn(ω), ξn(o)))} for all ω^Ω.

Proof. T h e r e e x i s t s a s e q u e n c e {(gk, ζk)} o f m e a s u r a b l e f u n c t i o n s gk:

Ω-^X and ζk: Ω—> R such that F(ω)=cl{(gk(ω), ζk(ω))} for all ω^Ω (see the
above condition (3)). Since SPιl(F)Φ&, we can select an element (/, ξ)^Sp,1(F)
such that (f(ω), ξ(ω))^F(ω) for all ω^Ω. Taking a ^-admissible sequence {Ω3}y

we define
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j , rn, k ^ 1.

Then it is easy to see that {(/,„*, ξjmk)} cSO l l(F) and F(ω)=cl{(fjnk(kω), ξjmk(ω))}
for all ωefl, completing the proof.

LEMMA 3.3. If F^3ί[_Ω\ XxR~] and SPtl(F) is nonempty and convex, then
F(ώ) is convex for a.e. ω^Ω.

Proof. By Lemma 3.2, there exists a sequence {(fn, ξn)} in SPll(F) such
that F(ω)=d{(/n(ω), Mω))} for all ω e β . Since ((/,+Λ )/2, (&+£j)/2)εS. f t
we can take an N<=Jl with μ(N)—0 such that

This shows that F{ω) is convex for every ω(=Ω\N, and the lemma is proved.

THEOREM 3.4. Let M be a nonempty subset of Lp{X)xL1. Then there exists
an F^M{_Ω\ XxR~\ such that M=SPtl(F) if and only if M is closed and decom-
posable in Lp(X)xL1.

Proof If there exists an F^3έ\_Ω\ XxR~\ such that M=Sptl(F), then M
is closed by Lemma 3.1 and clearly decomposable.

To prove the converse, let M be a nonempty closed and decomposable
subset of LP(X)XL1. Take an element (/0, ξo)^M and let Mo= {(/—/<>, ξ—ξo):
(/, f)£M}. Then Mo is a closed decomposable subset of Lp(X)xL1 containing
(0, 0). If there exists an F0^3L[_Ω) XxR~\ such that M0=SPtl(F0), then defining
F(ω)=Fo(ω)+(fo(ω), ξo(ω)) we obtain F^3i[_Ω\ XxR~] and M^Sp.^F). Thus
we may assume that M contains (0, 0). Now let M1=Mr\(L1(X)xL1) and M2

the closure of Mx in L1(X)xL1. Then it follows that M2 is a nonempty closed
and decomposable subset of L1(X)xL1. Noting L1(X)xL1=L1(XxR) where
the norm of XxR is taken by \\(x, α)|| = ||x|| + | α | , we obtain, by [8, Theorem
3.1], an F^3i\_Ω) XxR~] such that

Ma={(/, ξ)^L1(X)xL1: (f{ω), ξ(ώ))^F{ω) a.e.}.

We shall then prove that M=SP>1(F). For each (/, ξ)^Lp(X)xLu taking a p-
admissible sequence {Ωn} we put Λn={ω^Ωn: \\f(ώ)\\^n} for n ^ l . Then
O-Anf> ^-AJ)^L1(X)XL1 for all n and it follows from An\ Ω that

iθ(iιun/-/ιi)+ιιune-fiii=/ί(wjι/ιi)+ιιiiMnfiii i o.

Thus we deduce in view of ( 0 , 0 ) G M that Mx and S /

SP>1(F)Γ\M2 are dense in Mand SPtl(F), respectively. Since both M and SRίl(F)
are closed, it remains to show that MidSp.^F) and Sp>1(F)r\M2c:M. The first
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inclusion is obvious. To see the second inclusion, let (/, ξ)^Sp,1(F)r\M2. Then
there exists a sequence {(fk, ξk)} in Mλ convergent in L1(X)xL1 to (/, ξ). It
can be assumed that ||/*(ω)—f(ω)\\ -» 0 a. e. Taking a ^-admissible sequence
{Ωn}, we put Bnk={ω<=Ωn: ||/*(ω)||^||/(ω)|| + l} for n, k^l. As k -> oo for
each fixed n, it follows from μ(Ωn\Bnk)-*0 that

Moreover, since

IU/,nΛΛ(ω)-lΛn/(ω)|| -> 0 a. e.,

we obtain p(\\lBnkfk — lβΛ/ll) -* 0 by the dominated convergence theorem. Since
(1BΛΛ/*, l 5 B i f*)eM by (0, 0)eM, it follows that (lΩnf, UJ)^M for all n, so
that (/, £)eM. Thus M=SP.1(F) is proved.

4. Additive functionals and integral functionals.

A functional 0: V—>i? on a topological vector space V is called proper if
0(x)>—oo for all I G F and φ^oo. The epigraph Epiφ of 0 is defined by Epi φ
= {(x, a)(ΞVxR: φ(x)^a}. A functional φ: V —> R is lower semicontinuous
(resp. convex) if and only if Epi φ is closed (resp. convex) in VxR. Let φ:
ΩxX-^R be an c^®^z-measurable function. For a measurable function / :
Ω-+X, since the function φ(ω, f(ω)) is measurable, we define Iφ(f)=

\ φ(ω, f(ώ))dμ if the integral exists permitting ±oo. We call Iφ the integral

functional associated with the kernel function φ. A function φ: ΩxX-*R is
called normal if φ is <J£(g)^χ-measurable and φ(ω, •) is lower semicontinuous
for every ωefl. Let Epi φ: Ω->2XxR be defined by (Epi φ)(ω)=Epi φ(ω, •).
By way of the measurability of the function (ω, x, a)ι->φ(ω, x)—a with respect
to Jl®$XxR=<JlξZ)$x®$R, it is seen that φ is normal if and only if G(Eρi φ)

x*R and (Epi^)(ω) is closed for every ωeίλ Thus φ is normal if Epi0
) XxRΊ, and vice versa when (Ω, Jl, μ) is complete.

For a measurable function / : Ω—> X, let Suppf={ω^Ω: f(ώ)Φθ\. A func-
tional Φ: LP(X)-*R is called to be additive if Φ(f+g)^Φ(f)+Φ(g), where
the addition oo+(— oo) is not permitted, for each /, g^Lp{X) such that
μ(Suρp/nSuρp£)=0. The additivity of Φ means that for each f^Lp{X) the
set function A *-> Φ(lAf) is finitely additive on JL. If Φ : L^(Z) -> ̂  is additive
and proper, then Φ(0)=0 is readily verified. The integral functional Iφ with
φ(Wf 0)=0 a. e. is obviously additive on LP(X), if it is defined on LP(X). In
the remainder of this section, we provide lemmas which will be needed in the
next section.

LEMMA 4.1. If Φ : LP(X)->R is an additive lower semicontinuous proper
functional, then for each f^Lp(X) the set function A •—> Φ(l^/) is countably
additive on Jl.



306 FUMIO HIAI

Proof. Let f^LΛX) and Λ= U Λn with disjoint AneJl. Then we have
r π = l

1=1

where Bn=\JA%. Since lim inf Φ(ljBn/)^Φ(O)=O by p(lBJf\\) 1 0, it follows

that

φ(lAf)^ lim sup Σ Φ(lAtf) + lΊm inf Φ(lBnf)

^ lim sup Σ ΦHAJ) .
7l-»oo 1 = 1

On the other hand, since p{\\ Σ U ι/-U/ll)=iθ(l^ll/ll) 1 0, we have
1 = 1

)^lim inf Φ{ Σ l ii ι/)=lim inf Σ Φ(UZ/)

Thus Φ(lAf)= Σ ΦIXAJ) is obtained.
1 = 1

The following three lemmas are concerned with the relationship between
integral functionals and their kernel functions.

LEMMA 4.2. Let φlf φ2: ΩxX-^R be two Jl®^x-measurable functions with
φlω, 0)=φ2(ω, 0)=0 a.e. such that Iφl(f)^Iφ2(f) (resp. Iφl(f)=Iφ2(f)) for each
f&Lp(X) whenever both IΦl(f) and Iφ2(f) are defined. Then there exists an
with μ(N)=0 such that φλ{ω, x)^φ2(ω, x) {resp. φλ{ω, x)=φ2(ω, x)) for all
and

Proof. Taking Epi φlf Epiφ2: Ω->2XxR, we define H: Ω-+2XxR by H{ω)
= (Epi φ2)(ω)\(EQiφ1)(ω). Since G(Epi φλ), G(Epi ̂ 2 ) ε J ® J I x ί , it follows that
G(H)=G(Epiφ2)\G(Eρiφ1) is ^(g)^Xxi2-measurable. Thus it follows (cf. [17,

Theorem 4]) that D(H)^cΛ. To prove the lemma, it suffices to show that
D(H) is //-null. Now suppose the contrary. By von Neumann-Aumann's

selection theorem (cf. [9, Theorem 5.2], [17, Theorem 3]), there exists an Jl-
measurable function (g,ζ): Ω^XxR such that (g(ω), ζ(ω))^H(ω) for all
ω£ΞD(H). Taking an cJ-measurable function (/, ξ): Ω->XxRwith (f(ω), ξ(ω))
=(g(ω), ζ(ω)) a.e., we can choose an A^Jί with μ(Λ)>0 such that (/(ω), ξ(ω))
G//(ω) for a.e. ω^Λ and moreover (lAf, lAξ)^Lp(X)xL1. Since φ^ω, f(ώ))
>ξ{ω)^φ2{ω, f{ω)) a.e. on A, it is seen that both IφjO-A.f) and Iφ2(lAf) are
defined, and hence we have

= [ φi(ω,f(ω))dμ>[ ζ dμ
J A J A
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>\ φ&0,f(fi>))dμ=IφΛf),
J A

a contradiction. This completes the proof.

LEMMA 4.3. Let φ\ ΩxX-> R be a normal function with φ(ω, 0)=0 a. e. such
that Iφ is defined on LP(X). If Iφ is convex on LP(X), then φ{ω, •) is convex on
X for a.e. ω^Ω.

Proof. Since G(Epiφ)^Jl(g)$χxR and (Epi φ)(ω) is closed for every ω^Ω,
we can take, as observed in §3, an F^Jέ{_Ω\ XxR~\ such that F(ώ)—(Epi φ)(ω)
a.e. To prove the lemma, it suffices by Lemma 3.3 to show that SP>1(F) is
nonempty and convex. It is immediate that (0, 0)^Sp,1(F). The convexity
assumption of Iφ means that Epilφ is convex in Lp(X)xR. Thus the convexity
of Sfitl(F) follows from the following observation: For each (/, ξ)<^Lp(X)xL1,

(/, ξ)zΞSPtl(F) if and only if (lΛf, \ ξdμ)^EpiIφ for all ASΞJI. Indeed, (/, ζ)

^SP>1(F) if and only if (/(ω), f(ω))e(Epi φ)(ω) a. e., i. e., φ(ω, f(ω))^ξ(ω) a. e.

which is equivalent to I φ(ω, f(ω))dμ^\ ξ dμ for all Λ^Jl. This means in
JA JA

view of φ(ω, 0)̂ =0 a.e. that (lΛf, \ ξ dμ)^EρiIφ for all A(ΞJI. Thus the lemma

is proved.
LEMMA 4.4. Let φ be as in Lemma 4.3. // there is an a^R such that Iψ{f)

^a for all f^Lp(X), then there exists a ξ^Lx such that φ(ω, x)^ξ(ω) on X for
a. e.

Proof. Take an F^3ί\_Ω XxR'] as in the proof of Lemma 4.3. Since
(0, 0)^SPil(F), there exists, by Lemma 3.2, a sequence {(/„, ζn)} in SPll(F) such
that F(ω)=cl{(fn(ω), ξn(o>))} for all ω^Ω. Then it is easy to see that

inf φ(ω, x)= inf ξn(ω) a. e.

Let ζ(α>)=inf ξn((o). Since ζ(ω)^φ(ω, 0)=0 a. e., it now suffices to show that
n

\ ζ dμ^a. Suppose \ ζ dμ<a. Then a ζ 'eLi can be chosen so that ζ(ω)<ζ'(ω)
JΩ JΩ

a.e. and I ζ' dμ<a. It follows that there exists a countable measurable parti-

tion {An} of Ω such that ξn(ω)<ζ'(ω) a.e. on /!„ for n ^ l . Taking an integer

* ζr dμ<a and defining £ = Σ lAnfn^Lp(X), we have

U ^n w=i

IΦ(g)= Σ ( ^(ω, fnίω))dμ^ Σ ( f» ^
n=lJAn

J n = lJAn

ζ'dμ<a,
A r
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a contradiction, which completes the proof.

§ 5. Representation theorems.

We now present integral representation theorems for several types of ad-
ditive functionals on LP(X).

THEOREM 5.1. Let Φ : LP(X) -* R be an additive lower semicontinuous proper
functional. Then there exists a normal function φ: ΩxX-*R with φ(ω, 0)=0
a.e. such that φ{ω, •) is proper for every ω^Ω and Φ—lφ on LP{X). Moreover
such a normal function φ is unique up to sets of the form NxX with μ(N)=0.

Proof. The final uniqueness assertion follows immediately from Lemma 4.2.
Since Φ is additive and proper, we get Φ(0)=0. Define a subset M of LP(X)
xLi by

M={(f, ξ)^Lp{X)xLx'. Φ(lAf)^[ ξdμ for all

Let {{fn, ξn)} be a sequence in M convergent to (/, ξ)^Lp(X)xL1. Then we
have

ξn dμ=\ ζdμ,
JA

and hence (/, ξ)εM. Thus M is closed in Lp(X)xL1. For each (/, ξ), (g, ζ)
ε M and B<^.Jl, we have

if ξdμ+[ ζdμ=\{lBξ+lΩ,Bζ)dμ, AeJl,
jAf]B J A\B JA

and hence (lβ/+la\B£, l5f+li2\sζ)^M. Thus M is decomposable. Moreover
M is nonempty since (0, 0)eM. Thus, by Theorem 3.4, there exists an JPG
Jέ\_Ω\ XxR~\ such that M=SP>1(F). We can choose, by Lemma 3.2, a sequence
{(fι> ζι)) in Sp,i(F) such that F(ω)=c\{(fi(ω), ξi(ω))} for all wefl, and a sequence
{ζj} in L2 such that {ζj(ω)} is dense in [0, oo) for every ω^Ω. Since (/t, ft+ζj )
G M for all i, ^ l , we obtain

( ) , f»(ω)+C/α>)): x, >^1} a.e.,

which shows that there exists an N^Jl with μ(N)=0 such that (#, α)eF(ω)
implies {x} X[α, co)cF(ω) for each ω^Ω\N. Now define 0: ΩxX-> R by

ί inf {α: (x, « ) £ % ) } if ω<=Ω\N
φ{ω, x)=\

{ 0 if

Then we have
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F(ω) if ω^Ω\N

Zx[0, CXD) if COΪΞN,

and hence Epi 0<Ξc3ί[ί2 Zxi?] which implies that φ is normal. We shall then
prove that Φ=IΦ on LP(X) in the following three parts:

(I) Let f<ΞLp(X) and Φ(/)<co. We show that Iφ(f) is defined and Iφ{f)
^Φ(f). In view of Lemma 4.1, the set function A •-> Φ(lAf) is a //-continuous
bounded signed measure on Jl, and hence it has a Radon-Nikodym derivative
ξ^Li with respect to μ. Then we have (/, 0 G M and hence (/(α>), ξ(ώ))^F(ω)
a. e., so that φ(ω, f(ω))^ξ(ω) a. e. This implies that /^(Z) is defined and Iφ(f)

(II) Let f^Lp(X) and assume that Iφ(f) is defined. We show that Φ(f)
Assuming Iφ(f)<oo, we can select a sequence {ξn} in Lj such that

ζn(ω)lφ(ω,f(ω)) a.e. Since (/(ω), fn(ω))e(Epi φ)(ω)=F(ω) a. e., we get (/,£„)

E M for all n, and hence Φ(f)^\ ξn dμ j Iφ(f) by the monotone convergence

theorem. Thus Φ(f)^Iφ(f).
(III) We now deduce that Iφ{f) is defined for every f^Lp(X). To see this,

suppose that Iφ(f) is not defined, and let Λ={ω^Ω: φ(ω, f(ω))<0}. Then it

follows that [ φ(ω, f(ω))dμ= — oo. By part (I), we obtain /^(0)^Φ(0)=0 and so

L φ(ω, Q)dμ<<yo. Hence we have

\ \Aφ(ω, ΰ)dμ=-co,

so that by part (II) we have Φ{lAf)——°° contradicting the assumption of Φ
being proper.

The above three parts (I)-(III) yield that Φ=IΦ on LP(X). We shall finally
show that φ can be modified so as to satisfy the conditions in the theorem.
Define H: Ω^2X by H(ω)={x^X: φ(ω, *)=-oo}. Since G(H)<ΞJI®BX, D(H)
(=Jί and there exists an ^-measurable function g: Ω—>X such that g{ω)^H(ω)
for all ω^D(H). Suppose that D(H) is not //-null. Taking an cJ-measurable
function f:Ω->X with f(ω)=g(ω) a. e., we can choose an i e J with μ(Λ)>0
such that f(ω)^H(ώ) for a. e. ω<=A and moreover lAf&Lp(X). Then we have
ΦCL/)= —°°> a contradiction, which implies that D(H) is //-null. Since φ may
be modified appropriately on a set iVx ! with μ(N)=0, φ can be taken so that
φ{ω, •) is proper for every ω^Ω. Furthermore, in view of Φ(0)=0, replacing
φ(ω, •) by φ(ω, )—φ(ω, 0) for ω^Ω with φ(ω, 0)<oo, we can let φ(ω, 0)=0 a. e.
Thus the proof is completed.

We call a function φ: ΩxX-+ R to be of Caratheodory type if 0 satisfies
the following two conditions:

(i) φ( , x): Ω —• R is measurable for each
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(ii) φ(ω, -): X^R is continuous for each ωefl,
It is known (cf. [9, Theorem 6.1]) that a function of Caratheodory type as
above is cJ^^^-measurable. In the usual definition of Caratheodory function,
the condition (ii) is weakened so that φ(ω, •) is continuous for a. e. ω^Ω.
Whenever a function φ: ΩxX-^R is considered as an integral kernel function,
we may modify φ appropriately on a set NxX with μ(N)=0. Hence we adopt
here the above definition. Let CELTP(Ω X) denote the collection of all functions
φ: ΦxX-*R of Caratheodory type such that for each f<ΞJLp(X) the function
φ(ω, f(ω)) is in L1#

THEOREM 5.2. // Φ: LP{X) - » R is an additive continuous functional, then
there exists a φ<^Carp(Ω X) with φ(ω, 0)=0 a. e. such that Φ—lφ on LP(X).
Moreover such a function φ is unique up to sets of the form NxX with μ(N)=0.

Proof. By Theorem 5.1, there exist two normal functions φ, ψ: ΩxX-*R
with φ{ω, 0)=ψ(ω, 0)=0 a. e. such that Φ=IΦ=—IΦ on LP(X). Then, applying
Lemma 4.2, we can take an N^Jί with μ(N)=Q such that φ(ω, x)——ψ{ω, x)
for all ω^Ω\N and I E ! Redefining φ(ω, x)=0 on NxX, we obtain a desired
φ(ΞCaτp(Ω; X).

REMARK. When LP(X) is a Banach space (for example, when p has the
weak Fatou property), it can be shown as in [10, pp. 22-25] that if φ
e C a r / β ; X), then the operator T : LP(X)-+ Lx defined by Tf(ω)=φ(ω, f{ω)) is
continuous. Thus, in this situation, the converse of Theorem 5.2 holds: If
φ^Cdirp{Ω', X) and φ(ω, 0)=0 a. e., then the integral functional Iφ is additive
and continuous on LP(X).

We denote by XP.(X*) the space of all functions/*: i2-^Z* satisfying
the following two conditions :

(1) <x,f*(-)> : Ω-+R is measurable for each I G I ,
(2) the function | |/*| | = ||/*( )ll is in Lp..

Note that the condition (1) implies the measurability of | |/*( )ll Under the
usual identification of μ-almost everywhere equal functions, XP,(X*) is a normed
linear space (in fact, a Banach space) with the norm //(II/*!!).

THEOREM 5.3. The dual space LP(X)* of LP(X) is isometrically isomorphic

to -CP.(X*) under the bilinear form </, / * > = j </(ω), f*(ώ)>dμ offt=Lp(X) and

f*<ΞXp,(X*).
Proof. Let f*&Xp,(X*). For each f^Lp(X), it follows that the function

</(ω), /*(α>)> is measurable and

Thus the linear functional φ(/)=</, /*> is well-defined on LP(X) and we get

\\Φ\\^p'{\\f*\\).
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Conversely let ΦeL ,(*)*. By Theorem 5.2, there exists a 0<=Car,(β; X)
with φ(ω, 0)=0 a.e. such that Φ=/^ on LP(X). For each/, ^ e L ^ I ) and each
α, β^R, since

( (ω, af(fi))+βg(fi)))dμ=Φ(Uaf+βg))

(̂ω))} dμ, A<=Jl,

it follows that φ(ω, af(ω)+βg(ω))=aφ(ω, f(ώ))+βφ(ω, g(ω)) a. e. There exists,
as in Lemma 3.2, a sequence {fn} in LP(X) such that {/n(ω)} is dense in Z
for every ω^Ω. We can now take an N^^Λ with μ(N)=Q such that

0(α>, aflω)+βfM)=aφ(ω, Mω))+βφ(ω, / » ) , ωGfl\JV,

for each i, ^ l and each rational numbers a, β. This shows that φ(ω,
for every ω^Ω\N. Define

Γ 0(ω, •) if

[ 0 if

Then it is clear that /* satisfies the above condition (1). It remains to show
that //(ll/*!!)^!!^!!. Since p' is a saturated function norm having the Fatou
property, for any given ε>0 there exists a strictly positive η^M+ with p'(rj)
<ε. Then we can select a measurable function u : Ω -+ X such that ||w(ω)||^l
and <w(ω), /*(ω)>^max(0, \\f\ω)\\-η{ω)) for all ω^Ω. Putting ζ(ω)=<a(α>),
/*(ω)>, we have ζ e M + and | | / * | | ^ ζ + ^ . For each f e M + with ^(β^l , it fol-
lows that

which shows /(O^IIΦII and so ρ'(\\f*\\)^p'(ζ)+p'(η)<\\Φ\\ + ε. Thus we have
the desired conclusion.

REMARK 1. When p is not necessarily absolutely continuous, Theorem 5.3
is extended as follows: If the carrier of 1% is the whole set Ω, then L£(Z)*
is isometrically isomorphic to XP,(X*) in the manner as in Theorem 5.3.

REMARK 2. If X* is separable, or equivalently if Z* has the Radon-Nikodym
property (cf. [18]), then Theorem 5.3 asserts that LP(X)* is isometrically iso-
morphic to LP,(X*). This conclusion is a special case of [7, Theorem 3.2],
but p is as- sumed in [7] to have the weak Fatou property.

For the case of lower semicontinuous convex functionals, we give a repre-
sentation theorem in a somewhat detailed form.

THEOREM 5.4. For each proper functional Φ : LP(X) -*R,Φ is additive lower
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semicontinuous and convex if and only if there exists a normal function φ: Ωx
X-^R with φ(ω, 0)=0 a.e. such that

( i ) φ(ω, •) is proper and convex for every ω^Ω,
(ii) there exists an / ^ / ^ ( I * ) and a ξ^Lx satisfying φ(ω, x)^(x, /*(ω)>

+ζ(ω) on X for a.e. ωefl,
(iii) Φ=IΦ on LP(X).

Proof. Let Φ : LP(X) —> R be additive, lower semicontinuous, proper, and
convex. By Theorem 5.1 and Lemma 4.3, there exists a normal function
φ: ΩxX->R with φ(ω, 0)=0 a.e. for which the conditions (i) and (iii) are
satisfied. Since Epi Φ is closed and convex in Lp{X)xR and (0, — l)^EpiΦ,
the separation theorem gives, in view of Theorem 5.3, an f G l ^ t l * ) and a
β<=R such that </, f*}+aβ<-β for all (/, α)eEρiΦ. Then /3<0 follows from
(0, 0)eEpiΦ, and hence we can let β= — l. We now have

{0(α>, Λω))-<f(ω), /*(ω)>} ^

which implies the condition (ii) by Lemma 4.4.
Conversely let 0 be a normal function with 0(ω, 0)=0 a. e. satisfying (i)-

(iii). It is immediate that Φ—Iφ is additive and convex. To show the lower
semicontinuity, let {fn}C.Lp(X),f^Lp(X), and ρ(\\fn— /ID -* 0. As is seen from
the proof of Lemma 3.1, we can select a subsequence {gk} of {fn} such that
\\gk(ω)—f(fi))\\ -*0 a.e. and Φ(gk)-> lim inf Φ(/n). Then, using Fatou's lemma,

7j->oo

we have

{^(ω, Λ<o))-<A<o), f*(ω)>-ξ(ω)} dμ

^f lim inf {̂ (ω, gk(ω))-<gk(ω), /*(α>)>-f(ω

^ lim

= lim inf Φ(/n)-</, /*>-(

and hence Φ(/)^lim inf Φ(fn). The proof is now completed.
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