F HIAI KODAI MATH. J. 2 (1979), 300-313

REPRESENTATION OF ADDITIVE FUNCTIONALS ON VECTOR-VALUED NORMED KÖTHE SPACES

By Fumio Hiai

§1. Introduction.

Integral representation theory has been developed by many authors for nonlinear additive functionals and operators on measurable function spaces such as Lebesgue spaces and Orlicz spaces; see Alò and Korvin [1], Drewnowski and Orlicz [3-5], Friedman and Katz [6], Martin and Mizel [11], Mizel [12], Mizel and Sundaresan [13-15], Palagallo [16], Sundaresan [19], and Woyczyński [21]. Representation theorems have been obtained also for additive operators on continuous function spaces; see Batt [2] and references therein. The purpose of this paper is to establish representation theorems for additive functionals on Banach space-valued normed Köthe spaces.

In this paper, let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space and X a real separable Banach space. Let $L_{\rho}(X)$ be an X-valued normed Köthe space equipped with an absolutely continuous function norm ρ . A functional $\Phi: L_{\rho}(X)$ $\rightarrow \overline{R}$ is called to be additive if $\Phi(f+g)=\Phi(f)+\Phi(g)$ for each $f, g \in L_{\rho}(X)$ such that $\mu(\operatorname{Supp} f \cap \operatorname{Supp} g)=0$. For several types of additive functionals $\Phi: L_{\rho}(X)$ $\rightarrow \overline{R}$, we shall establish integral representations of the form $\Phi(f)=\int_{g}\phi(\omega, f(\omega))d\mu$ with contain logarithm formal functions $f \in \Omega \setminus X$.

with certain kernel functions $\phi: \Omega \times X \to \overline{R}$. Representation theorems have been so far obtained for additive functionals which are continuous or rather equicontinuous in some senses. However our method via measurable set-valued functions is applicable to additive lower semicontinuous functionals on $L_{\rho}(X)$.

In §2, we give definitions and some elementary facts on function norms and normed Köthe spaces. In §3, a characterization theorem for closed decomposable subsets in $L_{\rho}(X) \times L_1$ is established by means of measurable set-valued functions. This characterization will be useful in constructing a set-valued function whose values are closed subsets of $X \times R$ corresponding to epigraphs of an integral kernel function. In §4, we provide several lemmas on additive functionals and integral functionals on $L_{\rho}(X)$. Finally in §5, we discuss integral representations for the following cases:

(1) Additive lower semicontinuous functionals on $L_{\rho}(X)$.

Received May 4, 1978

(2) Additive continuous functionals on $L_{\rho}(X)$.

- (3) Bounded linear functionals on $L_{\rho}(X)$.
- (4) Additive lower semicontinuous convex functionals on $L_{\rho}(X)$.

The author wishes to express his gratitude to Professor H. Umegakı for his constant encouragement and valuable suggestions.

§2. Preliminaries.

Throughout this paper, let $(\Omega, \mathcal{A}, \mu)$ be a fixed σ -finite measure space and $\overline{\mathcal{A}}$ the completion of \mathcal{A} with respect to μ . Let M^+ be the collection of all nonnegative real-valued measurable functions on Ω . A mapping ρ on M^+ to $\overline{R} = [-\infty, \infty]$ is called a *function norm* if ρ satisfies the following conditions:

- (i) $\rho(\xi) \ge 0$ and $\rho(\xi) = 0$ if and only if $\xi(\omega) = 0$ a.e.,
- (ii) $\rho(\xi+\zeta) \leq \rho(\xi) + \rho(\zeta)$,
- (iii) $\rho(\alpha\xi) = \alpha \rho(\xi)$ for $\alpha \ge 0$,
- (iv) $\xi(\omega) \leq \zeta(\omega)$ a.e. implies $\rho(\xi) \leq \rho(\zeta)$.

Let ρ be a fixed function norm, and let X be a real separable Banach space with dual space X*. Note that the notions of strong and weak measurability of functions $f: \Omega \to X$ are identical, since X is separable. Let $L_{\rho}(X) =$ $L_{\rho}(\Omega, \mathcal{A}, \mu; X)$ denote the space of all measurable functions $f: \Omega \to X$ such that $\rho(\|f\|) < \infty$ where $\|f\| = \|f(\cdot)\|$. Then $L_{\rho}(X)$ becomes a normed linear space with the norm $\rho(\|f\|)$ where μ -almost everywhere equal functions are identified. For X=R, the space $L_{\rho}=L_{\rho}(R)$ is called a normed Köthe space, and also called a Banach function space if it is complete. Usual $L_p(1 \le p \le \infty)$ spaces and Orlicz spaces are Banach function spaces. The function norm ρ is said to have the Fatou property if $\rho(\xi_n) \uparrow \rho(\xi)$ whenever $\xi_n \in M^+$ and $\xi_n \uparrow \xi$, and said to have the weak Fatou property if $\rho(\xi) < \infty$ whenever $\xi_n \in M^+, \xi_n \uparrow \xi$, and sup $\rho(\xi_n) < \infty$. The weak Fatou property implies the completeness of L_{ρ} and $L_{\rho}(X)$. In this paper, we shall not require ρ to have the weak Fatou property.

The characteristic function of a set $A \in \mathcal{A}$ is denoted by 1_A . A set $A \in \mathcal{A}$ with $\mu(A) > 0$ is called *unfriendly* relative to ρ if $\rho(1_B) = \infty$ for every $B \in \mathcal{A}$ with $B \subset A$ and $\mu(B) > 0$. The function norm ρ is called *saturated* if \mathcal{A} contains no unfriendly sets. There exists a maximal (up to μ -null sets) unfriendly set Ω_{∞} and so $\xi(\omega)=0$ a.e. on Ω_{∞} for every $\xi \in L_{\rho}$. In order to give representations of additive functionals on $L_{\rho}(X)$, we may assume by removing Ω_{∞} from Ω without loss of generality that ρ is saturated. As a consequence of this assumption, there exists a ρ -admissible sequence, i.e., a sequence $\{\Omega_n\}$ in \mathcal{A} with $\Omega_n \uparrow \Omega$ such that $\mu(\Omega_n) < \infty$ and $\rho(1_{\Omega_n}) < \infty$ for all n. The associate norm ρ' is defined by

$$\rho'(\zeta) = \sup\left\{\int_{\mathcal{Q}} \xi \zeta \, d\mu : \, \xi \in M^+, \, \rho(\xi) \leq 1\right\}, \qquad \zeta \in M^+,$$

which is also a saturated function norm having the Fatou property.

A function $\xi \in L_{\rho}$ is said to be of absolutely continuous norm if $\rho(\mathbf{1}_{A_n}|\xi|) \downarrow 0$ for every sequence $\{A_n\}$ in \mathcal{A} such that $A_n \downarrow \emptyset$. The space L_{ρ}^a of all $\xi \in L_{\rho}$ of absolutely continuous norm is a closed order ideal of L_{ρ} , that is, L_{ρ}^a is a closed subspace of L_{ρ} such that $\zeta \in L_{\rho}^a$ and $|\xi(\omega)| \leq |\zeta(\omega)|$ a.e. imply $\xi \in L_{\rho}^a$. Then the dominated convergence theorem holds as follows: If $\xi_n(\omega) \to \xi(\omega)$ a.e. and $|\xi_n(\omega)| \leq \zeta(\omega)$ a.e. with $\zeta \in L_{\rho}^a$, then $\rho(|\xi_n - \xi|) \to 0$. We shall always assume that ρ is an absolutely continuous norm, i.e., $L_{\rho}^a = L_{\rho}$. It is well known that $L_{\rho}^a = L_{\rho}$ when $L_{\rho} = L_p(1 \leq p < \infty)$ or more generally when L_{ρ} is an Orlicz space with a Young's function obeying Δ_2 -condition. After all, it will be assumed in this paper that ρ is a saturated absolutely continuous norm. Therefore the dual space L_{ρ}^* of L_{ρ} is isometrically isomorphic to the Banach function space

 $L_{\rho'}$ with the associate norm ρ' under the bilinear form $\langle \xi, \zeta \rangle = \int_{\rho} \xi \zeta \, d\mu$ of $\xi \in L_{\rho}$

and $\zeta \in L_{\rho'}$. For detailed arguments on normed Köthe spaces, see [22, Chap. 15]. The proofs of above stated facts can be found there.

It is worth while remarking that even when ρ is not absolutely continuous, the representation theorems in §5 hold for additive functionals restricted on $L^a_\rho(X) = \{f \in L_\rho(X) : \|f\| \in L^a_\rho\}$. However, for the uniqueness of kernel functions, it must be assumed that the carrier of L^a_ρ (cf. [22, p. 481]) is the whole set Ω . See also Remark 1 to Theorem 5.3.

§ 3. Decomposable subsets in $L_{\rho}(X) \times L_1$.

For a set-valued function $F: \Omega \to 2^X$ where 2^x is the collection of all subsets of X, let $D(F) = \{\omega \in \Omega : F(\omega) \neq \emptyset\}$ and $G(F) = \{(\omega, x) \in \Omega \times X : x \in F(\omega)\}$. The inverse image $F^{-1}(U)$ of $U \subset X$ is defined by $F^{-1}(U) = \{\omega \in \Omega : F(\omega) \cap U \neq \emptyset\}$. As to the following conditions for $F: \Omega \to 2^X$ such that $F(\omega)$ is closed for every $\omega \in \Omega$, the implications $(1) \Rightarrow (2) \Leftrightarrow (3) \Rightarrow (4)$ hold, and moreover if $(\Omega, \mathcal{A}, \mu)$ is complete, then all the conditions (1)-(4) are equivalent:

- (1) $F^{-1}(C) \in \mathcal{A}$ for every closed subset C of X;
- (2) $F^{-1}(O) \in \mathcal{A}$ for every open subset O of X;

(3) $D(F) \in \mathcal{A}$ and there exists a sequence $\{f_n\}$ of measurable functions $f_n: D(F) \to X$ such that $F(\omega) = \operatorname{cl} \{f_n(\omega)\}$ for all $\omega \in D(F)$;

(4) $G(F) \in \mathcal{A} \otimes \mathcal{B}_X$ where \mathcal{B}_X is the Borel σ -field of X.

A set-valued function $F: \Omega \to 2^x$ is called *measurable* (resp. *weakly measurable*) if F satisfies the above condition (1) (resp. (2)). We shall denote by $\mathcal{M}[\Omega; X]$ the collection of all weakly measurable set-valued functions $F: \Omega \to 2^x$ such that $F(\omega)$ is nonempty and closed for every $\omega \in \Omega$. We observe that if $G(F) \in \mathcal{A} \otimes \mathcal{B}_X$ and $F(\omega)$ is nonempty and closed for every $\omega \in \Omega$, then there exists an $F' \in \mathcal{M}[\Omega: X]$ such that $F'(\omega) = F(\omega)$ a.e. Indeed, since there exists a sequence $\{f_n\}$ of \mathcal{A} -measurable functions such that $F(\omega) = cl\{f_n(\omega)\}$ for all $\omega \in \Omega$, we obtain a desired $F' \in \mathcal{M}[\Omega; X]$ by taking \mathcal{A} -measurable functions f_n' with $f_n'(\omega) = f_n(\omega)$ a.e. and defining $F'(\omega) = cl\{f_n'(\omega)\}$. For more complete

discussions of measurability of set-valued functions whose values are closed subsets in a separable metric spaces, see [9] and [20].

Let M be a set of measurable functions $f: \Omega \to X$. We call M decomposable if $1_A f + 1_{Q \setminus A} g \in M$ for each $f, g \in M$ and $A \in \mathcal{A}$. It is clear that if M is decomposable, then $\sum_{i=1}^{n} 1_{A_i} f_i \in M$ for each finite measurable partition $\{A_1, \dots, A_n\}$ of Ω and $\{f_1, \dots, f_n\} \subset M$. We showed in [8, Theorem 3.1] that any closed decomposable subset of $L_p(X), 1 \leq p < \infty$, is characterized as a set of the form $S_p(F)$ $= \{f \in L_p(X): f(\omega) \in F(\omega) \text{ a. e.}\}$ with $F \in \mathcal{M}[\Omega; X]$. In this section, we obtain an analogous result for subsets of $L_p(X) \times L_1$ which will play an important role in the proof of Theorem 5.1. The product space $L_p(X) \times L_1$ is equipped with the norm $\rho(||f||) + ||\xi||_1$ for $f \in L_p(X)$ and $\xi \in L_1$ where $||\xi||_1$ is the L_1 -norm. A subset M of $L_p(X) \times L_1$ is decomposable if and only if $(1_A f + 1_{\Omega \setminus A}g, 1_A \xi + 1_{\Omega \setminus A}\zeta) \in M$ for each $(f, \xi), (g, \zeta) \in M$ and $A \in \mathcal{A}$. For given $F \in \mathcal{M}[\Omega; X \times R]$, we define the subset $S_{\rho,1}(F)$ of $L_p(X) \times L_1$ by

$$S_{\rho,1}(F) = \{ (f, \xi) \in L_{\rho}(X) \times L_1 : (f(\omega), \xi(\omega)) \in F(\omega) \text{ a. e.} \}.$$

We first give some properties of subsets $S_{\rho,1}(F)$ in the following lemmas.

LEMMA 3.1. If $F \in \mathcal{M}[\Omega; X \times R]$, then $S_{\rho,1}(F)$ is closed in $L_{\rho}(X) \times L_1$.

Proof. Let $\{(f_n, \xi_n)\}$ be a sequence in $S_{\rho,1}(F)$ convergent to $(f, \xi) \in L_{\rho}(X) \times L_1$. Passing to a subsequence, we may assume that $\rho(||f_n - f||) < 1/2^n$ for all n and $\xi_n(\omega) \to \xi(\omega)$ a.e. To prove $(f, \xi) \in S_{\rho,1}(F)$, it now suffices to show that $||f_n(\omega) - f(\omega)|| \to 0$ a.e. Taking a ρ -admissible sequence, we may assume in addition that $1_{\mathcal{Q}} \in L_{\rho}$. For each k > 0, let $A_n = \{\omega \in \mathcal{Q} : ||f_n(\omega) - f(\omega)|| \ge 1/k\}$ and $A_{\infty} = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n$. Since $\rho(1_{A_n}) \le \rho(k ||f_n - f||) < k/2^n$, we have $\rho(1_{A_\infty}) \le \sum_{n=m}^{j} \rho(1_{A_n}) + \rho(1_{n \cup I_n}) < k/2^{m-1} + \rho(1_{n \cup I_n})$

for each $j \ge m \ge 1$. Since ρ is absolutely continuous, it follows that $\rho(1_{u \ge A_n}) \downarrow 0$ as $j \to \infty$, so that $\rho(1_{A_{\infty}})=0$ and hence $\mu(A_{\infty})=0$. Letting $k=1, 2, \cdots$, we obtain

$$\mu(\mathop{\bigtriangledown}\limits_{k=1}^{\infty} \mathop{\bigcap}\limits_{m=1}^{\infty} \mathop{\bigotimes}\limits_{n=m}^{\infty} \{ \omega {\in} \mathcal{Q} : \, \|f_n(\omega) {-} f(\omega)\| {\geq} 1/k \}) {=} 0 \text{,}$$

which shows that $||f_n(\omega) - f(\omega)|| \to 0$ a.e. Thus the lemma is proved.

LEMMA 3.2. If $F \in \mathcal{M}[\Omega; X \times R]$ and $S_{\rho,1}(F)$ is nonempty, then there exists a sequence $\{(f_n, \xi_n)\}$ in $S_{\rho,1}(F)$ such that $F(\omega) = \operatorname{cl}\{(f_n(\omega), \xi_n(\omega))\}$ for all $\omega \in \Omega$.

Proof. There exists a sequence $\{(g_k, \zeta_k)\}$ of measurable functions g_k : $\Omega \to X$ and $\zeta_k : \Omega \to R$ such that $F(\omega) = \operatorname{cl}\{(g_k(\omega), \zeta_k(\omega))\}$ for all $\omega \in \Omega$ (see the above condition (3)). Since $S_{\rho,1}(F) \neq 0$, we can select an element $(f, \xi) \in S_{\rho,1}(F)$ such that $(f(\omega), \xi(\omega)) \in F(\omega)$ for all $\omega \in \Omega$. Taking a ρ -admissible sequence $\{\Omega_j\}$, we define

$$\begin{aligned} A_{jm\,k} &= \{ \omega \in \mathcal{Q}_j : \ m-1 \leq \|g_k(\omega)\| + |\zeta_k(w)| < \omega \}, \\ f_{jm\,k} &= 1_{A_{jm\,k}} g_k + 1_{\mathcal{Q} \setminus A_{jm\,k}} f, \qquad \xi_{jm\,k} = 1_{A_{jm\,k}} \zeta_k + 1_{\mathcal{Q} \setminus A_{jm\,k}} \xi, \\ j, \ m, \ k \geq 1. \end{aligned}$$

Then it is easy to see that $\{(f_{jm\,k}, \xi_{jm\,k})\} \subset S_{\rho,1}(F)$ and $F(\omega) = \operatorname{cl}\{(f_{jm\,k}(\omega), \xi_{jm\,k}(\omega))\}$ for all $\omega \in \Omega$, completing the proof.

LEMMA 3.3. If $F \in \mathcal{M}[\Omega; X \times R]$ and $S_{\rho,1}(F)$ is nonempty and convex, then $F(\omega)$ is convex for a.e. $\omega \in \Omega$.

Proof. By Lemma 3.2, there exists a sequence $\{(f_n, \xi_n)\}$ in $S_{\rho,1}(F)$ such that $F(\omega) = \operatorname{cl}\{(f_n(\omega), \xi_n(\omega))\}$ for all $\omega \in \Omega$. Since $((f_i+f_j)/2, (\xi_i+\xi_j)/2) \in S_{\rho,1}(F)$, we can take an $N \in \mathcal{A}$ with $\mu(N) = 0$ such that

$$((f_i(\omega)+f_j(\omega))/2, (\xi_i(\omega)+\xi_j(\omega))/2) \in F(\omega), \quad i, j \ge 1, \omega \in \Omega \setminus N.$$

This shows that $F(\omega)$ is convex for every $\omega \in \Omega \setminus N$, and the lemma is proved.

THEOREM 3.4. Let M be a nonempty subset of $L_{\rho}(X) \times L_1$. Then there exists an $F \in \mathcal{M}[\Omega; X \times R]$ such that $M = S_{\rho,1}(F)$ if and only if M is closed and decomposable in $L_{\rho}(X) \times L_1$.

Proof. If there exists an $F \in \mathcal{M}[\Omega; X \times R]$ such that $M = S_{\rho,1}(F)$, then M is closed by Lemma 3.1 and clearly decomposable.

To prove the converse, let M be a nonempty closed and decomposable subset of $L_{\rho}(X) \times L_1$. Take an element $(f_0, \xi_0) \in M$ and let $M_0 = \{(f - f_0, \xi - \xi_0):$ $(f, \xi) \in M\}$. Then M_0 is a closed decomposable subset of $L_{\rho}(X) \times L_1$ containing (0, 0). If there exists an $F_0 \in \mathcal{M}[\mathcal{Q}; X \times R]$ such that $M_0 = S_{\rho,1}(F_0)$, then defining $F(\omega) = F_0(\omega) + (f_0(\omega), \xi_0(\omega))$ we obtain $F \in \mathcal{M}[\mathcal{Q}; X \times R]$ and $M = S_{\rho,1}(F)$. Thus we may assume that M contains (0, 0). Now let $M_1 = M \cap (L_1(X) \times L_1)$ and M_2 the closure of M_1 in $L_1(X) \times L_1$. Then it follows that M_2 is a nonempty closed and decomposable subset of $L_1(X) \times L_1$. Noting $L_1(X) \times L_1 = L_1(X \times R)$ where the norm of $X \times R$ is taken by $\|(x, \alpha)\| = \|x\| + |\alpha|$, we obtain, by [8, Theorem 3.1], an $F \in \mathcal{M}[\mathcal{Q}; X \times R]$ such that

$$M_2 = \{ (f, \xi) \in L_1(X) \times L_1 : (f(\omega), \xi(\omega)) \in F(\omega) \text{ a. e.} \}$$

We shall then prove that $M=S_{\rho,1}(F)$. For each $(f, \xi) \in L_{\rho}(X) \times L_{1}$, taking a ρ -admissible sequence $\{\Omega_{n}\}$ we put $A_{n}=\{\omega \in \Omega_{n}: ||f(\omega)|| \leq n\}$ for $n \geq 1$. Then $(1_{A_{n}}f, 1_{A_{n}}\xi) \in L_{1}(X) \times L_{1}$ for all n and it follows from $A_{n} \uparrow \Omega$ that

$$\rho(\|1_{A_n}f - f\|) + \|1_{A_n}\xi - \xi\|_1 = \rho(1_{\mathcal{Q}\setminus A_n}\|f\|) + \|1_{\mathcal{Q}\setminus A_n}\xi\|_1 \downarrow 0.$$

Thus we deduce in view of $(0, 0) \in M$ that M_1 and $S_{\rho,1}(F) \cap (L_1(X) \times L_1) = S_{\rho,1}(F) \cap M_2$ are dense in M and $S_{\rho,1}(F)$, respectively. Since both M and $S_{\rho,1}(F)$ are closed, it remains to show that $M_1 \subset S_{\rho,1}(F)$ and $S_{\rho,1}(F) \cap M_2 \subset M$. The first

inclusion is obvious. To see the second inclusion, let $(f, \xi) \in S_{\rho,1}(F) \cap M_2$. Then there exists a sequence $\{(f_k, \xi_k)\}$ in M_1 convergent in $L_1(X) \times L_1$ to (f, ξ) . It can be assumed that $||f_k(\omega) - f(\omega)|| \to 0$ a.e. Taking a ρ -admissible sequence $\{\Omega_n\}$, we put $B_{nk} = \{\omega \in \Omega_n : ||f_k(\omega)|| \le ||f(\omega)|| + 1\}$ for $n, k \ge 1$. As $k \to \infty$ for each fixed n, it follows from $\mu(\Omega_n \setminus B_{nk}) \to 0$ that

$$\|\mathbf{1}_{B_{nk}}\boldsymbol{\xi}_{k}-\mathbf{1}_{\boldsymbol{\mathcal{G}}_{n}}\boldsymbol{\xi}\|_{1} \leq \|\boldsymbol{\xi}_{k}-\boldsymbol{\xi}\|_{1}+\|\mathbf{1}_{\boldsymbol{\mathcal{G}}_{n}\setminus B_{nk}}\boldsymbol{\xi}\|_{1} \to 0.$$

Moreover, since

$$2\|f\|+1\mathfrak{g}_n \geq \|1_{B_{nk}}f_n(\omega)-1\mathfrak{g}_nf(\omega)\| \to 0$$
 a.e.,

we obtain $\rho(\|\mathbf{1}_{B_{nk}}f_k-\mathbf{1}_{\mathcal{Q}_n}f\|) \to 0$ by the dominated convergence theorem. Since $(\mathbf{1}_{B_{nk}}f_k, \mathbf{1}_{B_{nk}}\xi_k) \in M$ by $(0, 0) \in M$, it follows that $(\mathbf{1}_{\mathcal{Q}_n}f, \mathbf{1}_{\mathcal{Q}_n}\xi) \in M$ for all n, so that $(f, \xi) \in M$. Thus $M = S_{\rho, 1}(F)$ is proved.

4. Additive functionals and integral functionals.

A functional $\phi: V \to \overline{R}$ on a topological vector space V is called *proper* if $\phi(x) > -\infty$ for all $x \in V$ and $\phi \not\equiv \infty$. The *epigraph* Epi ϕ of ϕ is defined by Epi $\phi = \{(x, \alpha) \in V \times R : \phi(x) \leq \alpha\}$. A functional $\phi: V \to \overline{R}$ is lower semicontinuous (resp. convex) if and only if Epi ϕ is closed (resp. convex) in $V \times R$. Let $\phi: \Omega \times X \to \overline{R}$ be an $\mathcal{A} \otimes \mathcal{B}_X$ -measurable function. For a measurable function $f: \Omega \to X$, since the function $\phi(\omega, f(\omega))$ is measurable, we define $I_{\phi}(f) = \int_{\Omega} \phi(\omega, f(\omega)) d\mu$ if the integral exists permitting $\pm \infty$. We call I_{ϕ} the *integral functional* associated with the kernel function ϕ . A function $\phi: \Omega \times X \to \overline{R}$ is called *normal* if ϕ is $\mathcal{A} \otimes \mathcal{B}_X$ -measurable and $\phi(\omega, \cdot)$ is lower semicontinuous for every $\omega \in \Omega$. Let Epi $\phi: \Omega \to 2^{X \times R}$ be defined by (Epi $\phi)(\omega) = \text{Epi } \phi(\omega, \cdot)$. By way of the measurability of the function $(\omega, x, \alpha) \mapsto \phi(\omega, x) - \alpha$ with respect to $\mathcal{A} \otimes \mathcal{B}_{X \times R} = \mathcal{A} \otimes \mathcal{B}_X \otimes \mathcal{B}_R$, it is seen that ϕ is normal if and only if $G(\text{Epi }\phi) \in \mathcal{A} \otimes \mathcal{B}_{X \times R}$ and (Epi $\phi)(\omega)$ is closed for every $\omega \in \Omega$. Thus ϕ is normal if Epi $\phi \in \mathcal{M}[\Omega; X \times R]$, and vice versa when $(\Omega, \mathcal{A}, \mu)$ is complete.

For a measurable function $f: \Omega \to X$, let $\operatorname{Supp} f = \{\omega \in \Omega : f(\omega) \neq 0\}$. A functional $\Phi: L_{\rho}(X) \to \overline{R}$ is called to be *additive* if $\Phi(f+g) = \Phi(f) + \Phi(g)$, where the addition $\infty + (-\infty)$ is not permitted, for each $f, g \in L_{\rho}(X)$ such that $\mu(\operatorname{Supp} f \cap \operatorname{Supp} g) = 0$. The additivity of Φ means that for each $f \in L_{\rho}(X)$ the set function $A \mapsto \Phi(1_A f)$ is finitely additive on \mathcal{A} . If $\Phi: L_{\rho}(X) \to \overline{R}$ is additive and proper, then $\Phi(0)=0$ is readily verified. The integral functional I_{ϕ} with $\phi(\omega, 0)=0$ a.e. is obviously additive on $L_{\rho}(X)$, if it is defined on $L_{\rho}(X)$. In the remainder of this section, we provide lemmas which will be needed in the next section.

LEMMA 4.1. If $\Phi: L_{\rho}(X) \to \overline{R}$ is an additive lower semicontinuous proper functional, then for each $f \in L_{\rho}(X)$ the set function $A \mapsto \Phi(1_A f)$ is countably additive on \mathcal{A} .

Proof. Let $f \in L_{\rho}(X)$ and $A = \bigcup_{n=1}^{\infty} A_n$ with disjoint $A_n \in \mathcal{A}$. Then we have

$$\Phi(1_A f) = \sum_{i=1}^n \Phi(1_{A_i} f) + \Phi(1_{B_n} f), \quad n \ge 1,$$

where $B_n = \bigcup_{i>n} A_i$. Since $\liminf_{n\to\infty} \Phi(1_{B_n}f) \ge \Phi(0) = 0$ by $\rho(1_{B_n}||f||) \downarrow 0$, it follows that

$$\begin{split} \varPhi(\mathbf{1}_{A}f) &\geq \limsup_{n \to \infty} \sum_{i=1}^{n} \varPhi(\mathbf{1}_{A_{i}}f) + \liminf_{n \to \infty} \varPhi(\mathbf{1}_{B_{n}}f) \\ &\geq \limsup_{n \to \infty} \sum_{i=1}^{n} \varPhi(\mathbf{1}_{A_{i}}f) \,. \end{split}$$

On the other hand, since $\rho(\|\sum_{i=1}^n 1_{A_i}f - 1_Af\|) = \rho(1_{B_n}\|f\|) \downarrow 0$, we have

$$\Phi(1_A f) \leq \liminf_{n \to \infty} \Phi(\sum_{i=1}^n 1_{A_i} f) = \liminf_{n \to \infty} \sum_{i=1}^n \Phi(1_{A_i} f).$$

Thus $\Phi(1_A f) = \sum_{i=1}^{\infty} \Phi(1_{A_i} f)$ is obtained.

The following three lemmas are concerned with the relationship between integral functionals and their kernel functions.

LEMMA 4.2. Let $\phi_1, \phi_2: \Omega \times X \to \overline{R}$ be two $\mathcal{A} \otimes \mathcal{B}_X$ -measurable functions with $\phi_1(\omega, 0) = \phi_2(\omega, 0) = 0$ a.e. such that $I_{\phi_1}(f) \leq I_{\phi_2}(f)$ (resp. $I_{\phi_1}(f) = I_{\phi_2}(f)$) for each $f \in L_{\rho}(X)$ whenever both $I_{\phi_1}(f)$ and $I_{\phi_2}(f)$ are defined. Then there exists an $N \in \mathcal{A}$ with $\mu(N) = 0$ such that $\phi_1(\omega, x) \leq \phi_2(\omega, x)$ (resp. $\phi_1(\omega, x) = \phi_2(\omega, x)$) for all $\omega \in \Omega \setminus N$ and $x \in X$.

Proof. Taking Epi ϕ_1 , Epi ϕ_2 : $\Omega \to 2^{X \times R}$, we define $H: \Omega \to 2^{X \times R}$ by $H(\omega) = (\text{Epi } \phi_2)(\omega) \setminus (\text{Epi } \phi_1)(\omega)$. Since $G(\text{Epi } \phi_1)$, $G(\text{Epi } \phi_2) \in \mathcal{A} \otimes \mathcal{B}_{X \times R}$, it follows that $G(H) = G(\text{Epi } \phi_2) \setminus G(\text{Epi } \phi_1)$ is $\mathcal{A} \otimes \mathcal{B}_{X \times R}$ -measurable. Thus it follows (cf. [17, Theorem 4]) that $D(H) \in \overline{\mathcal{A}}$. To prove the lemma, it suffices to show that D(H) is μ -null. Now suppose the contrary. By von Neumann-Aumann's selection theorem (cf. [9, Theorem 5.2], [17, Theorem 3]), there exists an $\overline{\mathcal{A}}$ -measurable function $(g, \zeta): \Omega \to X \times R$ such that $(g(\omega), \zeta(\omega)) \in H(\omega)$ for all $\omega \in D(H)$. Taking an \mathcal{A} -measurable function $(f, \xi): \Omega \to X \times R$ with $(f(\omega), \xi(\omega)) = (g(\omega), \zeta(\omega))$ a.e., we can choose an $A \in \mathcal{A}$ with $\mu(A) > 0$ such that $(f(\omega), \xi(\omega)) \geq H(\omega)$ for a.e. $\omega \in A$ and moreover $(1_A f, 1_A \xi) \in L_\rho(X) \times L_1$. Since $\phi_1(\omega, f(\omega)) > \xi(\omega) \geq \phi_2(\omega, f(\omega))$ a.e. on A, it is seen that both $I_{\phi_1}(1_A f)$ and $I_{\phi_2}(1_A f)$ are defined, and hence we have

$$I_{\phi_1}(1_A f) = \int_A \phi_1(\omega, f(\omega)) \, d\mu > \int_A \xi \, d\mu$$

$$\geq \int_{A} \phi_2(\omega, f(\omega)) d\mu = I_{\phi_2}(1_A f)$$
 ,

a contradiction. This completes the proof.

LEMMA 4.3. Let $\phi: \Omega \times X \to \overline{R}$ be a normal function with $\phi(\omega, 0)=0$ a.e. such that I_{ϕ} is defined on $L_{\rho}(X)$. If I_{ϕ} is convex on $L_{\rho}(X)$, then $\phi(\omega, \cdot)$ is convex on X for a.e. $\omega \in \Omega$.

Proof. Since $G(\operatorname{Epi} \phi) \in \mathcal{A} \otimes \mathcal{B}_{X \times R}$ and $(\operatorname{Epi} \phi)(\omega)$ is closed for every $\omega \in \Omega$, we can take, as observed in § 3, an $F \in \mathcal{M}[\Omega; X \times R]$ such that $F(\omega) = (\operatorname{Epi} \phi)(\omega)$ a.e. To prove the lemma, it suffices by Lemma 3.3 to show that $S_{\rho,1}(F)$ is nonempty and convex. It is immediate that $(0, 0) \in S_{\rho,1}(F)$. The convexity assumption of I_{ϕ} means that $\operatorname{Epi} I_{\phi}$ is convex in $L_{\rho}(X) \times R$. Thus the convexity of $S_{\rho,1}(F)$ follows from the following observation: For each $(f, \xi) \in L_{\rho}(X) \times L_{1}$, $(f, \xi) \in S_{\rho,1}(F)$ if and only if $(1_{A}f, \int_{A} \xi d\mu) \in \operatorname{Epi} I_{\phi}$ for all $A \in \mathcal{A}$. Indeed, $(f, \xi) \in S_{\rho,1}(F)$ if and only if $(f(\omega), \xi(\omega)) \in (\operatorname{Epi} \phi)(\omega)$ a.e., i.e., $\phi(\omega, f(\omega)) \leq \xi(\omega)$ a.e. which is equivalent to $\int_{A} \phi(\omega, f(\omega)) d\mu \leq \int_{A} \xi d\mu$ for all $A \in \mathcal{A}$. This means in view of $\phi(\omega, 0) = 0$ a.e. that $(1_{A}f, \int_{A} \xi d\mu) \in \operatorname{Epi} I_{\phi}$ for all $A \in \mathcal{A}$. Thus the lemma is proved.

LEMMA 4.4. Let ϕ be as in Lemma 4.3. If there is an $\alpha \in \mathbb{R}$ such that $I_{\phi}(f) \geq \alpha$ for all $f \in L_{\rho}(X)$, then there exists a $\xi \in L_1$ such that $\phi(\omega, x) \geq \xi(\omega)$ on X for a.e. $\omega \in \Omega$.

Proof. Take an $F \in \mathcal{M}[\Omega; X \times R]$ as in the proof of Lemma 4.3. Since $(0, 0) \in S_{\rho,1}(F)$, there exists, by Lemma 3.2, a sequence $\{(f_n, \xi_n)\}$ in $S_{\rho,1}(F)$ such that $F(\omega) = \operatorname{cl}\{(f_n(\omega), \xi_n(\omega))\}$ for all $\omega \in \Omega$. Then it is easy to see that

$$\inf_{x \in X} \phi(\omega, x) = \inf_{n \ge 1} \xi_n(\omega) \text{ a. e.}$$

Let $\zeta(\omega) = \inf_n \xi_n(\omega)$. Since $\zeta(\omega) \leq \phi(\omega, 0) = 0$ a.e., it now suffices to show that $\int_{\mathcal{Q}} \zeta d\mu \geq \alpha$. Suppose $\int_{\mathcal{Q}} \zeta d\mu < \alpha$. Then a $\zeta' \in L_1$ can be chosen so that $\zeta(\omega) < \zeta'(\omega)$ a.e. and $\int_{\mathcal{Q}} \zeta' d\mu < \alpha$. It follows that there exists a countable measurable partition $\{A_n\}$ of \mathcal{Q} such that $\xi_n(\omega) < \zeta'(\omega)$ a.e. on A_n for $n \geq 1$. Taking an integer k such that $\int_{\substack{\omega \\ n=1}}^{\omega} \zeta' d\mu < \alpha$ and defining $g = \sum_{n=1}^{k} 1_{A_n} f_n \in L_{\rho}(X)$, we have

$$\begin{split} I_{\phi}(g) &= \sum_{n=1}^{k} \int_{A_{n}} \phi(\omega, f_{n}(\omega)) d\mu \leq \sum_{n=1}^{k} \int_{A_{n}} \xi_{n} d\mu \\ &\leq \int_{k} \bigcup_{n=1}^{k} A_{n} \zeta' d\mu < \alpha , \end{split}$$

a contradiction, which completes the proof.

§ 5. Representation theorems.

We now present integral representation theorems for several types of additive functionals on $L_{\rho}(X)$.

THEOREM 5.1. Let $\Phi: L_{\rho}(X) \to \overline{R}$ be an additive lower semicontinuous proper functional. Then there exists a normal function $\phi: \Omega \times X \to \overline{R}$ with $\phi(\omega, 0)=0$ a.e. such that $\phi(\omega, \cdot)$ is proper for every $\omega \in \Omega$ and $\Phi = I_{\phi}$ on $L_{\rho}(X)$. Moreover such a normal function ϕ is unique up to sets of the form $N \times X$ with $\mu(N)=0$.

Proof. The final uniqueness assertion follows immediately from Lemma 4.2. Since Φ is additive and proper, we get $\Phi(0)=0$. Define a subset M of $L_{\rho}(X) \times L_1$ by

$$M = \{ (f, \xi) \in L_{\rho}(X) \times L_1 \colon \varPhi(1_A f) \leq \int_A \xi \, d\mu \text{ for all } A \in \mathcal{A} \}.$$

Let $\{(f_n, \xi_n)\}\$ be a sequence in M convergent to $(f, \xi) \in L_{\rho}(X) \times L_1$. Then we have

$$\Phi(1_A f) \leq \liminf_{n \to \infty} \Phi(1_A f_n) \leq \lim_{n \to \infty} \int_A \xi_n \ d\mu = \int_A \xi \ d\mu , \qquad A \in \mathcal{A} ,$$

and hence $(f, \xi) \in M$. Thus *M* is closed in $L_{\rho}(X) \times L_1$. For each (f, ξ) , $(g, \zeta) \in M$ and $B \in \mathcal{A}$, we have

$$\begin{split} \varPhi(\mathbf{1}_{A}(\mathbf{1}_{B}f+\mathbf{1}_{\mathcal{Q}\backslash B}g)) &= \varPhi(\mathbf{1}_{A\cap B}f) + \varPhi(\mathbf{1}_{A\backslash B}g) \\ \\ &\leq \int_{A\cap B} \xi \ d\mu + \int_{A\backslash B} \zeta \ d\mu = \int_{A} (\mathbf{1}_{B}\xi+\mathbf{1}_{\mathcal{Q}\backslash B}\zeta) d\mu \ , \qquad A \in \mathcal{A} \ , \end{split}$$

and hence $(1_B f + 1_{\mathcal{Q} \setminus B}g, 1_B \xi + 1_{\mathcal{Q} \setminus B} \zeta) \in M$. Thus M is decomposable. Moreover M is nonempty since $(0, 0) \in M$. Thus, by Theorem 3.4, there exists an $F \in \mathcal{M}[\Omega; X \times R]$ such that $M = S_{\rho,1}(F)$. We can choose, by Lemma 3.2, a sequence $\{(f_i, \xi_i)\}$ in $S_{\rho,1}(F)$ such that $F(\omega) = \operatorname{cl}\{(f_i(\omega), \xi_i(\omega))\}$ for all $\omega \in \Omega$, and a sequence $\{\zeta_j\}$ in L_1 such that $\{\zeta_j(\omega)\}$ is dense in $[0, \infty)$ for every $\omega \in \Omega$. Since $(f_i, \xi_i + \zeta_j) \in M$ for all $i, j \geq 1$, we obtain

$$F(\omega) = \operatorname{cl} \{ (f_i(\omega), \xi_i(\omega) + \zeta_j(\omega)) : i, j \ge 1 \}$$
 a.e.

which shows that there exists an $N \in \mathcal{A}$ with $\mu(N) = 0$ such that $(x, \alpha) \in F(\omega)$ implies $\{x\} \times [\alpha, \infty) \subset F(\omega)$ for each $\omega \in \Omega \setminus N$. Now define $\phi: \Omega \times X \to \overline{R}$ by

$$\phi(\boldsymbol{\omega}, x) = \begin{cases} \inf \{\alpha : (x, \alpha) \in F(\boldsymbol{\omega})\} & \text{if } \boldsymbol{\omega} \in \Omega \setminus N \\ 0 & \text{if } \boldsymbol{\omega} \in N. \end{cases}$$

Then we have

REPRESENTATION OF ADDITIVE FUNCTIONALS

$$(\operatorname{Epi} \phi)(\omega) = \begin{cases} F(\omega) & \text{if } \omega \in \mathcal{Q} \setminus N \\ X \times [0, \infty) & \text{if } \omega \in N, \end{cases}$$

and hence Epi $\phi \in \mathcal{M}[\Omega; X \times R]$ which implies that ϕ is normal. We shall then prove that $\Phi = I_{\phi}$ on $L_{\rho}(X)$ in the following three parts:

(I) Let $f \in L_{\rho}(X)$ and $\Phi(f) < \infty$. We show that $I_{\phi}(f)$ is defined and $I_{\phi}(f) \leq \Phi(f)$. In view of Lemma 4.1, the set function $A \mapsto \Phi(1_A f)$ is a μ -continuous bounded signed measure on \mathcal{A} , and hence it has a Radon-Nikodym derivative $\xi \in L_1$ with respect to μ . Then we have $(f, \xi) \in M$ and hence $(f(\omega), \xi(\omega)) \in F(\omega)$ a.e., so that $\phi(\omega, f(\omega)) \leq \xi(\omega)$ a.e. This implies that $I_{\phi}(f)$ is defined and $I_{\phi}(f) \leq \int_{\mathbf{0}} \xi d\mu = \Phi(f)$.

(II) Let $f \in L_{\rho}(X)$ and assume that $I_{\phi}(f)$ is defined. We show that $\Phi(f) \leq I_{\phi}(f)$. Assuming $I_{\phi}(f) < \infty$, we can select a sequence $\{\xi_n\}$ in L_1 such that $\xi_n(\omega) \downarrow \phi(\omega, f(\omega))$ a.e. Since $(f(\omega), \xi_n(\omega)) \in (\text{Epi } \phi)(\omega) = F(\omega)$ a.e., we get $(f, \xi_n) \in M$ for all *n*, and hence $\Phi(f) \leq \int_{\mathcal{Q}} \xi_n d\mu \downarrow I_{\phi}(f)$ by the monotone convergence theorem. Thus $\Phi(f) \leq I_{\phi}(f)$.

(III) We now deduce that $I_{\phi}(f)$ is defined for every $f \in L_{\rho}(X)$. To see this, suppose that $I_{\phi}(f)$ is not defined, and let $A = \{\omega \in \Omega : \phi(\omega, f(\omega)) < 0\}$. Then it follows that $\int_{A} \phi(\omega, f(\omega)) d\mu = -\infty$. By part (I), we obtain $I_{\phi}(0) \leq \Phi(0) = 0$ and so $\int_{\mathcal{Q} \setminus A} \phi(\omega, 0) d\mu < \infty$. Hence we have

$$I_{\phi}(1_{A}f) = \int_{A} \phi(\omega, f(\omega)) d\mu + \int_{\mathcal{Q} \setminus A} \phi(\omega, 0) d\mu = -\infty,$$

so that by part (II) we have $\Phi(1_A f) = -\infty$ contradicting the assumption of Φ being proper.

The above three parts (I)-(III) yield that $\Phi = I_{\phi}$ on $L_{\rho}(X)$. We shall finally show that ϕ can be modified so as to satisfy the conditions in the theorem. Define $H: \Omega \to 2^{x}$ by $H(\omega) = \{x \in X: \phi(\omega, x) = -\infty\}$. Since $G(H) \in \mathcal{A} \otimes \mathcal{B}_{X}, D(H) \in \mathcal{\overline{A}}$ and there exists an $\mathcal{\overline{A}}$ -measurable function $g: \Omega \to X$ such that $g(\omega) \in H(\omega)$ for all $\omega \in D(H)$. Suppose that D(H) is not μ -null. Taking an \mathcal{A} -measurable function $f: \Omega \to X$ with $f(\omega) = g(\omega)$ a.e., we can choose an $A \in \mathcal{A}$ with $\mu(A) > 0$ such that $f(\omega) \in H(\omega)$ for a.e. $\omega \in A$ and moreover $1_{A}f \in L_{\rho}(X)$. Then we have $\Phi(1_{A}f) = -\infty$, a contradiction, which implies that D(H) is μ -null. Since ϕ may be modified appropriately on a set $N \times X$ with $\mu(N) = 0$, ϕ can be taken so that $\phi(\omega, \cdot)$ is proper for every $\omega \in \Omega$. Furthermore, in view of $\Phi(0)=0$, replacing $\phi(\omega, \cdot)$ by $\phi(\omega, \cdot) - \phi(\omega, 0)$ for $\omega \in \Omega$ with $\phi(\omega, 0) < \infty$, we can let $\phi(\omega, 0)=0$ a.e. Thus the proof is completed.

We call a function $\phi: \Omega \times X \to R$ to be of Carathéodory type if ϕ satisfies the following two conditions:

(i) $\phi(\cdot, x): \Omega \to R$ is measurable for each $x \in X$,

(ii) $\phi(\omega, \cdot): X \to R$ is continuous for each $\omega \in \Omega$. It is known (cf. [9, Theorem 6.1]) that a function of Carathéodory type as above is $\mathcal{A} \otimes \mathcal{B}_X$ -measurable. In the usual definition of Carathéodory function, the condition (ii) is weakened so that $\phi(\omega, \cdot)$ is continuous for a.e. $\omega \in \Omega$. Whenever a function $\phi: \Omega \times X \to R$ is considered as an integral kernel function, we may modify ϕ appropriately on a set $N \times X$ with $\mu(N)=0$. Hence we adopt here the above definition. Let $\operatorname{Car}_{\rho}(\Omega; X)$ denote the collection of all functions $\phi: \Phi \times X \to R$ of Carathéodory type such that for each $f \in L_{\rho}(X)$ the function $\phi(\omega, f(\omega))$ is in L_1 .

THEOREM 5.2. If $\Phi: L_{\rho}(X) \to R$ is an additive continuous functional, then there exists a $\phi \in \operatorname{Car}_{\rho}(\Omega; X)$ with $\phi(\omega, 0)=0$ a.e. such that $\Phi=I_{\phi}$ on $L_{\rho}(X)$. Moreover such a function ϕ is unique up to sets of the form $N \times X$ with $\mu(N)=0$.

Proof. By Theorem 5.1, there exist two normal functions $\phi, \phi: \Omega \times X \to \overline{R}$ with $\phi(\omega, 0) = \phi(\omega, 0) = 0$ a.e. such that $\Phi = I_{\phi} = -I_{\phi}$ on $L_{\rho}(X)$. Then, applying Lemma 4.2, we can take an $N \in \mathcal{A}$ with $\mu(N) = 0$ such that $\phi(\omega, x) = -\phi(\omega, x)$ for all $\omega \in \Omega \setminus N$ and $x \in X$. Redefining $\phi(\omega, x) = 0$ on $N \times X$, we obtain a desired $\phi \in \operatorname{Car}_{\rho}(\Omega; X)$.

REMARK. When $L_{\rho}(X)$ is a Banach space (for example, when ρ has the weak Fatou property), it can be shown as in [10, pp. 22-25] that if $\phi \in \operatorname{Car}_{\rho}(\mathcal{Q}; X)$, then the operator $T: L_{\rho}(X) \to L_1$ defined by $Tf(\omega) = \phi(\omega, f(\omega))$ is continuous. Thus, in this situation, the converse of Theorem 5.2 holds: If $\phi \in \operatorname{Car}_{\rho}(\mathcal{Q}; X)$ and $\phi(\omega, 0) = 0$ a.e., then the integral functional I_{ϕ} is additive and continuous on $L_{\rho}(X)$.

We denote by $\mathcal{L}_{\rho'}(X^*)$ the space of all functions $f^*: \Omega \to X^*$ satisfying the following two conditions:

(1) $\langle x, f^*(\cdot) \rangle : \Omega \to R$ is measurable for each $x \in X$,

(2) the function $||f^*|| = ||f^*(\cdot)||$ is in $L_{\rho'}$.

Note that the condition (1) implies the measurability of $||f^*(\cdot)||$. Under the usual identification of μ -almost everywhere equal functions, $\mathcal{L}_{\rho'}(X^*)$ is a normed linear space (in fact, a Banach space) with the norm $\rho'(||f^*||)$.

THEOREM 5.3. The dual space $L_{\rho}(X)^*$ of $L_{\rho}(X)$ is isometrically isomorphic to $\mathcal{L}_{\rho'}(X^*)$ under the bilinear form $\langle f, f^* \rangle = \int_{\mathcal{Q}} \langle f(\omega), f^*(\omega) \rangle d\mu$ of $f \in L_{\rho}(X)$ and $f^* \in \mathcal{L}_{\rho'}(X^*)$.

Proof. Let $f^* \in \mathcal{L}_{\rho'}(X^*)$. For each $f \in L_{\rho}(X)$, it follows that the function $\langle f(\omega), f^*(\omega) \rangle$ is measurable and

$$\int_{\mathcal{Q}} |\langle f(\boldsymbol{\omega}), f^{*}(\boldsymbol{\omega}) \rangle| d\mu \leq \int_{\mathcal{Q}} ||f(\boldsymbol{\omega})|| ||f^{*}(\boldsymbol{\omega})|| d\mu \leq \rho(||f||) \rho'(||f^{*}||) < \infty.$$

Thus the linear functional $\Phi(f) = \langle f, f^* \rangle$ is well-defined on $L_{\rho}(X)$ and we get $\|\Phi\| \leq \rho'(\|f^*\|)$.

Conversely let $\Phi \in L_{\rho}(X)^*$. By Theorem 5.2, there exists a $\phi \in \operatorname{Car}_{\rho}(\Omega; X)$ with $\phi(\omega, 0)=0$ a.e. such that $\Phi=I_{\phi}$ on $L_{\rho}(X)$. For each $f, g \in L_{\rho}(X)$ and each $\alpha, \beta \in R$, since

$$\begin{split} \int_{A} &\phi(\omega, \ \alpha f(\omega) + \beta g(\omega)) d \mu = \varPhi(1_{A}(\alpha f + \beta g)) \\ &= \alpha \varPhi(1_{A}f) + \beta \varPhi(1_{A}g) \\ &= \int_{A} \{ \alpha \phi(\omega, \ f(\omega)) + \beta \phi(\omega, \ g(\omega)) \} \ d \mu \ , \qquad A \in \mathcal{A} \ , \end{split}$$

it follows that $\phi(\omega, \alpha f(\omega) + \beta g(\omega)) = \alpha \phi(\omega, f(\omega)) + \beta \phi(\omega, g(\omega))$ a.e. There exists, as in Lemma 3.2, a sequence $\{f_n\}$ in $L_{\rho}(X)$ such that $\{f_n(\omega)\}$ is dense in X for every $\omega \in \Omega$. We can now take an $N \in \mathcal{A}$ with $\mu(N) = 0$ such that

$$\phi(\omega, \alpha f_i(\omega) + \beta f_j(\omega)) = \alpha \phi(\omega, f_i(\omega)) + \beta \phi(\omega, f_j(\omega)), \qquad \omega \in \Omega \setminus N,$$

for each *i*, $j \ge 1$ and each rational numbers α , β . This shows that $\phi(\omega, \cdot) \in X^*$ for every $\omega \in \Omega \setminus N$. Define

$$f^*(\boldsymbol{\omega}) = \begin{cases} \phi(\boldsymbol{\omega}, \cdot) & \text{if } \boldsymbol{\omega} \in \mathcal{Q} \setminus N \\ 0 & \text{if } \boldsymbol{\omega} \in N. \end{cases}$$

Then it is clear that f^* satisfies the above condition (1). It remains to show that $\rho'(\|f^*\|) \leq \|\mathbf{\Phi}\|$. Since ρ' is a saturated function norm having the Fatou property, for any given $\varepsilon > 0$ there exists a strictly positive $\eta \in M^+$ with $\rho'(\eta) < \varepsilon$. Then we can select a measurable function $u: \Omega \to X$ such that $\|u(\omega)\| \leq 1$ and $\langle u(\omega), f^*(\omega) \rangle \geq \max(0, \|f^*(\omega)\| - \eta(\omega))$ for all $\omega \in \Omega$. Putting $\zeta(\omega) = \langle u(\omega), f^*(\omega) \rangle$, we have $\zeta \in M^+$ and $\|f^*\| \leq \zeta + \eta$. For each $\xi \in M^+$ with $\rho(\xi) \leq 1$, it follows that

$$\begin{split} \int_{\mathcal{Q}} \xi \zeta \, d\mu &= \int_{\mathcal{Q}} \langle \xi(\boldsymbol{\omega}) u(\boldsymbol{\omega}), \, f^*(\boldsymbol{\omega}) \rangle d\mu \\ &= \boldsymbol{\Phi}(\xi u) \leq \|\boldsymbol{\Phi}\| \, \boldsymbol{\rho}(\|\xi u\|) \leq \|\boldsymbol{\Phi}\| \, , \end{split}$$

which shows $\rho'(\zeta) \leq ||\Phi||$ and so $\rho'(||f^*||) \leq \rho'(\zeta) + \rho'(\eta) < ||\Phi|| + \varepsilon$. Thus we have the desired conclusion.

REMARK 1. When ρ is not necessarily absolutely continuous, Theorem 5.3 is extended as follows: If the carrier of L^a_{ρ} is the whole set Ω , then $L^a_{\rho}(X)^*$ is isometrically isomorphic to $\mathcal{L}_{\rho'}(X^*)$ in the manner as in Theorem 5.3.

REMARK 2. If X^* is separable, or equivalently if X^* has the Radon-Nikodym property (cf. [18]), then Theorem 5.3 asserts that $L_{\rho}(X)^*$ is isometrically isomorphic to $L_{\rho'}(X^*)$. This conclusion is a special case of [7, Theorem 3.2], but ρ is as-sumed in [7] to have the weak Fatou property.

For the case of lower semicontinuous convex functionals, we give a representation theorem in a somewhat detailed form.

THEOREM 5.4. For each proper functional $\Phi: L_{\rho}(X) \to \overline{R}, \Phi$ is additive lower

semicontinuous and convex if and only if there exists a normal function $\phi: \Omega \times X \to \overline{R}$ with $\phi(\omega, 0)=0$ a.e. such that

(i) $\phi(\omega, \cdot)$ is proper and convex for every $\omega \in \Omega$,

(ii) there exists an $f^* \in \mathcal{L}_{\rho'}(X^*)$ and a $\xi \in L_1$ satisfying $\phi(\omega, x) \ge \langle x, f^*(\omega) \rangle + \xi(\omega)$ on X for a.e. $\omega \in \Omega$,

(iii) $\Phi = I_{\phi}$ on $L_{\rho}(X)$.

Proof. Let $\boldsymbol{\Phi}: L_{\rho}(X) \to \overline{R}$ be additive, lower semicontinuous, proper, and convex. By Theorem 5.1 and Lemma 4.3, there exists a normal function $\phi: \mathcal{Q} \times X \to \overline{R}$ with $\phi(\omega, 0)=0$ a.e. for which the conditions (i) and (iii) are satisfied. Since Epi $\boldsymbol{\Phi}$ is closed and convex in $L_{\rho}(X) \times R$ and $(0, -1) \notin \text{Epi } \boldsymbol{\Phi}$, the separation theorem gives, in view of Theorem 5.3, an $f^* \in \mathcal{L}_{\rho'}(X^*)$ and a $\beta \in R$ such that $\langle f, f^* \rangle + \alpha \beta < -\beta$ for all $(f, \alpha) \in \text{Epi } \boldsymbol{\Phi}$. Then $\beta < 0$ follows from $(0, 0) \in \text{Epi } \boldsymbol{\Phi}$, and hence we can let $\beta = -1$. We now have

$$\begin{aligned} &\int_{\mathcal{G}} \left\{ \phi(\boldsymbol{\omega}, f(\boldsymbol{\omega})) - \langle f(\boldsymbol{\omega}), f^*(\boldsymbol{\omega}) \rangle \right\} d\mu \\ &= &\Phi(f) - \langle f, f^* \rangle > -1, \quad f \in L_{\rho}(X) \,, \end{aligned}$$

which implies the condition (ii) by Lemma 4.4.

Conversely let ϕ be a normal function with $\phi(\omega, 0)=0$ a.e. satisfying (i)-(iii). It is immediate that $\Phi = I_{\phi}$ is additive and convex. To show the lower semicontinuity, let $\{f_n\} \subset L_{\rho}(X), f \in L_{\rho}(X)$, and $\rho(||f_n - f||) \to 0$. As is seen from the proof of Lemma 3.1, we can select a subsequence $\{g_k\}$ of $\{f_n\}$ such that $||g_k(\omega) - f(\omega)|| \to 0$ a.e. and $\Phi(g_k) \to \liminf_{n \to \infty} \Phi(f_n)$. Then, using Fatou's lemma, we have

$$\begin{split} \varPhi(f) - \langle f, f^* \rangle - \int_{\mathscr{Q}} \xi d\mu \\ &= \int_{\mathscr{Q}} \left\{ \phi(\omega, f(\omega)) - \langle f(\omega), f^*(\omega) \rangle - \xi(\omega) \right\} d\mu \\ &\leq \int_{\mathscr{Q}} \liminf_{k \to \infty} \left\{ \phi(\omega, g_k(\omega)) - \langle g_k(\omega), f^*(\omega) \rangle - \xi(\omega) \right\} d\mu \\ &\leq \lim_{k \to \infty} \left\{ \varPhi(g_k) - \langle g_k, f^* \rangle - \int_{\mathscr{Q}} \xi d\mu \right\} \\ &= \liminf_{n \to \infty} \varPhi(f_n) - \langle f, f^* \rangle - \int_{\mathscr{Q}} \xi d\mu \,, \end{split}$$

and hence $\Phi(f) \leq \liminf \Phi(f_n)$. The proof is now completed.

References

- [1] R. A. ALÒ AND A. DE KORVIN, Representation of Hammerstein operators by Nemytskii measures, J. Math. Anal. Appl., 52 (1975), 490-513.
- [2] J. BATT, Nonlinear integral operators on C(S, E), Studia Math., 48 (1973),

145-177.

- [3] L. DREWNOWSKI AND W. ORLICZ, On orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16 (1968), 883-888.
- [4] L. DREWNOWSKI AND W. ORLICZ, On representation of orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 17 (1969), 167-173.
- [5] L. DREWNOWSKI AND W. ORLICZ, Continuity and representation of orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 17 (1969), 647-653.
- [6] N.A. FRIEDMAN AND M. KATZ, Additive functionals on L_p spaces, Canad. J. Math., 18 (1966), 1264-1271.
- [7] N.E. GRETSKY AND J.J. UHL, JR., Bounded linear operators on Banach function spaces of vector-valued functions, Trans. Amer. Math. Soc., 167 (1972), 263-277.
- [8] F. HIAI AND H. UMEGAKI, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal., 7 (1977), 149-182.
- [9] C.J. HIMMELBERG, Measurable relations, Fund. Math., 87 (1975), 53-72.
- [10] M.A. KRASNOSEL'SKII, Topological Methods in the Theory of Nonlinear Integral Equations, translated by J. Burlak, Macmillan, New York, 1964.
- [11] A.D. MARTIN AND V.J. MIZEL, A representation theorem for certain nonlinear functionals, Arch. Rational Mech. Anal., 15 (1964), 353-367.
- [12] V.J. MIZEL, Characterization of non-linear transformations possessing kernels, Canad. J. Math., 22 (1970), 449-471.
- [13] V.J. MIZEL AND K. SUNDARESAN, Representation of additive and biadditive functionals, Arch. Rational Mech. Anal., 30 (1968), 102-126.
- [14] V.J. MIZEL AND K. SUNDARESAN, Additive functionals on spaces with nonabsolutely-continuous norm, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), 385-389.
- [15] V. J. MIZEL AND K. SUNDARESAN, Representation of vector valued nonlinear functions, Trans. Amer. Math. Soc., 159 (1971), 111-127.
- [16] J.A. PALAGALLO, A representation of additive functionals on L^p -spaces, 0 ,Pacific J. Math., 66 (1976), 221-234.
- [17] M.-F. SAINTE-BEUVE, On the extension of von Neumann-Aumann's theorem, J. Functional Anal., 17 (1974), 112-129.
- [18] C. STEGALL, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc., 206 (1975), 213-223.
- [19] K.SUNDARESAN, Additive functionals on Orlicz spaces, Studia Math., 32 (1969), 269-276.
- [20] D.H. WAGNER, Survey of measurable selection theorems, SIAM J. Control and Optimization, 15 (1977), 859-903.
- [21] W.A. WOYCZYŃSKI, Additive functionals on Orlicz spaces, Colloq. Math., 19 (1968), 319-326.
- [22] A.C. ZAANEN, Integration, revised ed., North-Holland, Amsterdam, 1967.

Department of Information Sciences Science University of Tokyo Noda City, Chiba 278, Japan