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Abstract

We investigate holomorphic maps between hyperelliptic Riemann surfaces and

prove rigidity theorems given by correspondences of Weierstrass points.

1. Introduction

In this paper, all of the Riemann surfaces will be compact and of
genera greater than 1 if not specified. Concerning automorphisms of Riemann
surfaces, the induced permutations of Weierstrass points determine the auto-
morphisms. Namely, if an automorphism T on a Riemann surface X fixes all
of the Weierstrass points, then T ¼ id. or X is hyperelliptic and T is the hy-
perelliptic involution. This fact implies that the number of automorphisms is
finite (Schwarz). It is natural to ask what happens when the target Riemann
surface is di¤erent from the source. Let X and Y be compact Riemann surfaces
and let h : X ! Y be a nonconstant holomorphic map. Martens [Mr] pointed
out the following (for Riemann surfaces of positive genera). If D ¼

P
miQi is

a positive divisor of degree n and ( projective) dimension r on X, then hðDÞ ¼P
mihðQiÞ is a positive divisor of degree n and dimensionb r on Y. If the

complete linear system determined by D is without fixed points, then so is that
determined by hðDÞ. Hence it follows that when X is hyperelliptic, Y is also
hyperelliptic and every Weierstrass point on X maps on a Weierstrass point on
Y . We denote by W the set of Weierstrass points on X . We will show

Theorem 1. Let X be a hyperelliptic Riemann surface and let Y be a
Riemann surface. Let h1; h2 : X ! Y be nonconstant holomorphic maps (then Y
is also hyperelliptic). If h1jW ¼ h2jW , then h1 ¼ h2 or h1 ¼ t � h2, where t is the
hyperelliptic involution.
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This assertion gives an upper bound for the number of nonconstant holo-
morphic maps between hyperelliptic Riemann surfaces depending only on the
number of Weierstrass points (or, we can say, on the genus).

We may put another interpretation on Theorem 1 in terms of homology
groups. A holomorphic map h : X ! Y induces a homomorphism

h�n : H1ðX ;ZnÞ ! H1ðY ;ZnÞ
between the first homology groups with coe‰cients in the integers mod n. For
automorphisms, denote by f : AutðXÞ ! Spðg;ZnÞ the natural homomorphism,
where Spðg;ZnÞ is the symplectic group of genus g over Zn. Then, it is shown
that for n > 2, f is injective, and for n ¼ 2, only automorphisms of order 2 is
in the kernel of f (for the proof see [F-K] Chapter 5). For holomorphic maps,
if two holomorphic maps hi : X ! Y ði ¼ 1; 2Þ induce the same homomorphism

H1ðX ;ZnÞ ! H1ðY ;ZnÞ for some n >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðg� 1Þ

p
where g is the genus of X , then

h1 ¼ h2 (see [T]). For hyperelliptic case, we may take n ¼ 2.

Theorem 2. Let X be a hyperelliptic Riemann surface and let Y be a
Riemann surface. Let h1; h2 : X ! Y be nonconstant holomorphic maps (then Y
is also hyperelliptic). If h1 and h2 induce the same homomorphism H1ðX ;Z2Þ !
H1ðY ;Z2Þ, then h1 ¼ h2 or h1 ¼ t � h2.

Further, we will investigate the case where the target surface is not fixed.
For hyperelliptic Riemann surfaces, the case where the covering is normal

has been studied (see [F], [H], [K] and [Mc]).

2. Preliminaries

Let X be a compact Riemann surface of genus g > 1. Recall that for each
point p A X , there are g integers called gaps

1 ¼ n1 < n2 < � � � < ng < 2g

such that there does not exist a meromorphic function on X holomorphic on
X � fpg with a pole of order m at p if and only if m ¼ ni. Except only a finite
number of points, fn1; . . . ngg ¼ f1; . . . ; gg and the excepted points are called
Weierstrass points. We denote by W the set of Weierstrass points. Then, the
number of Weierstrass points aW satisfies

2gþ 2aaW a g3 � g:

A Riemann surface with a meromorphic function of degree 2 is called to be
hyperelliptic. X is hyperelliptic if and only if aW ¼ 2gþ 2. Each Weierstrass
point on a hyperelliptic Riemann surface of genus g has the gap sequence
f1; 3; . . . ; 2g� 1g.

Let h : X ! Y denotes a nonconstant holomorphic map between Riemann
surfaces. The Martens’ assertion in the introduction (or a little modification of
his proof in [Mr]) gives that if D is the polar divsor of some meromorphic function
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on X, then hðDÞ is the polar divisor of some meromorphic function on Y. Thus,
we see that if n is a non-gap for p A X , then n is also a non-gap for hðpÞ A Y .
Especially,

Lemma 1 (Martens [Mr]). When X is hyperelliptic, Y is also hyperelliptic and
every Weierstrass point of X maps on a Weierstrass point of Y. Furthermore, the
involution of X followed by h is equivalent to h followed by the involution of Y.

The first assertion makes the assumption of Theorem 1 meaningful.
A preimage of a Weierstrass point is not always a Weierstrass point even if

X is hyperelliptic. We see this by the following example.

Example 1. let X be a hyperelliptic Riemann surface of genus 3 which
has an fixed-point-free automorphism of order 2. Then the quotient surface Y
is of genus 2 and there are 6 Weierstrass points on Y . Thus, the number of
preimages of them is 12, while the number of Weierstrass points on X is 8.

To prove Theorem 2, we use theory of Jacobian varieties. By definition,
T :¼ Cg=L is a complex torus, where L is a lattice in Cg. Choose bases
e1; . . . ; eg of Cg and w1; . . . ; w2g of the lattice L. Write wj in terms of the basis

e1; . . . ; eg: wj ¼
Pg

k¼1 wkjek. We denote by Mðn;m;KÞ the set of n�m matrices

with K-coe‰cients. The matrix P ¼ ðwkjÞ A Mðg; 2g;CÞ is called a period matrix
for T . By an underlying real structure for T , we mean the real torus R2g=Z2g

together with a map R2g=Z2g ! T induced by a linear map R2g C x 7! Px A Cg,

where P is a period matrix. Note that P : R2g=Z2g ! T is homeomorphic. We
denote by Tn ðn A NÞ the group of n-division points of T , that is, the kernel of
the homomorphism nT : T ! T defined by z 7! n� z ðz A TÞ. On the real torus,
n-division points are vectors of the form tðm1=n; . . . ;m2g=nÞ;m1; . . . ;m2g A Z, and
we also denote by ðR2g=Z2gÞn the set of n-division points on the underlying real
torus.

Let T and T1 be complex tori of dimension g and g, respectively. Denote
by P and P1 period matrices for T and T1, respectively. It is known that for
any homomorphism (i.e., a holomorphic map compatible with the group action)
f : T ! T1, there are A A Mðg; g;CÞ and M A Mð2g; 2g;ZÞ such that the fol-
lowing diagram is commutative (cf. [L-B], Chapter 1).

R2g ���!P Cg ���! T???yM

???yA

???yf

R2g ���!P1
Cg ���! T1

We will call a map F : R2g=Z2g ! R2g=Z2g a linear map if F is induced by a
linear map ~FF : R2g ! R2g with ~FF jZ2g HZ2g. By the diagram above, we see that

there exists a linear map F : R2g=Z2g ! R2g=Z2g which satisfies P1 � F ¼ f �P.
Let fw1; . . . ; w2gg be a basis for H1ðX ;ZÞ and let fo1; . . . ;ogg be a basis
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for the space of holomorphic di¤erentials on X . By definition, the Jacobian
variety JðXÞ ¼ Cg=L is the complex torus where L is the lattice generated by
the period matrix with respect to the bases. Let p0 A X . Define fX : X ! JðX Þ
by p 7! f

Ð p

p0
ojgg

j¼1. It is known that fX is an embedding. Let h : X ! Y be
a holomorphic map of Riemann surfaces. Then, there exists a homomorphism
f : JðX Þ ! JðYÞ which satisfies f � fX ¼ fY � h where fX (resp. fY ) is the
embedding with the base point p0 (resp. hðp0Þ).

Lemma 2. Let Fi : R
2g=Z2g ! R2g=Z2g be linear maps ði ¼ 1; 2Þ. Then,

F1jðR2g=Z2gÞn ¼ F2jðR2g=Z2gÞn if and only if F1�n ¼ F2�n, where Fi�n are homomorphisms

between homology groups H1ðR2g=Z2g;ZnÞ ! H1ðR2g=Z2g;ZnÞ induced by Fi

ði ¼ 1; 2Þ.

Proof. Suppose F1�n ¼ F2�n holds. Let x A ðR2g=Z2gÞn. Then, it can be
written in the form x ¼ tðm1=n; . . . ;m2g=nÞ;m1; . . . ;m2g A Z. Let F1� � F2� :
H1ðR2g=Z2g;ZÞ ! H1ðR2g=Z2g;ZÞ denote the di¤erence of two induced homo-
morphisms between homology groups with Z-coe‰cients. Then, the assumption
F1�n � F2�n ¼ 0 means that every coe‰cient of F1� � F2� is a multiple of n.
Recalling that H1ðR2g=Z2g;ZÞFZ2g and that we can identify it with the lattice

of the real torus, we see ð ~FF1 � ~FF2ÞðxÞ A Z2g, equivalently F1 � F2jðR2g=Z2gÞn ¼ 0.

Conversely, if F1jðR2g=Z2gÞn ¼ F2jðR2g=Z2gÞn holds, then denoting by ej the vector

whose j-th entry is 1 and others are 0, ~FF1 � ~FF2 maps ej=n to a integral vector for
every j ¼ 1; 2; . . . ; 2g. It implies that every coe‰cient of F1� � F2� is a multiple
of n and we see F1�n ¼ F2�n. r

3. Rigidity theorems

Proof of Theorem 1. Let p be a meromorphic function on Y of degree 2.
Consider 2 meromorphic functions p � h1 and p � h2. Put F ¼ p � h1 � p � h2.
Suppose F D 0. By the Riemann-Hurwitz relation, we see that the degree of
p � h1 and p � h2 is a2ðg� 1Þ=ðg� 1Þ. Thus, the degree of the polar divisor of
F is a4ðg� 1Þ=ðg� 1Þ. On the other hand, the zero divisor of F is b4ðgþ 1Þ
because each of the Weierstrass points is one of zero points of F and the
ramification index of it is at least 2 for a Weierstrass point on X maps on a
Weierstrass point on Y and the Weierstrass points on Y is the ramification
points of p. But 4ðgþ 1Þ > 4ðg� 1Þ=ðg� 1Þ, contradiction. Thus, we must
have F 1 0, equivalently p � h1 ¼ p � h2. Suppose h1 0 h2. Then, for a small
neighborhood Up of an arbitrary point p A X , we have h1jUp

¼ t � h2jUp
and it

implies h1 ¼ t � h2 by the theorem of identity. r

Proof of Theorem 2. Let fw1; . . . ; w2gg be a basis for H1ðX ;ZÞ and let

fo1; . . . ;ogg be a basis for the space of holomorphic di¤erentials on X . Let
JðXÞ ¼ Cg=L be the Jacobian variety of X where L is the lattice generated by
the period matrix with respect to the bases. Let p0 A X . Define f : X ! JðX Þ
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by p 7! f
Ð p

p0
ojgg

j¼1. Then, if p0 is a Weierstrass point, any Weierstrass point

p A W satisfies fðpÞ A JðXÞ2 and ffðpÞgp AW generate JðX Þ2 (cf. [F-K] Chapter
7). We denote by fi : JðXÞ ! JðY Þ the homomorphisms induced by hi and by
Fi the homomorphism of underlying real tori induced by hi ði ¼ 1; 2Þ. Then
each induced homomorphism between homology groups of underlying real tori
(which is the same as the homomorphism between the homology groups of
Jacobians) is the same as that of Riemann surfaces. Thus, by the assumption and
Lemma 2, F1jðR2g=Z2gÞ2 ¼ F2jðR2g=Z2gÞ2 . Recalling the diagram in Preliminaries, we
see f1jJðX Þ2 ¼ f2jJðXÞ2 . It implies h1jW ¼ h2jW , and by Theorem 1, we get the
conclusion. r

Now, we turn to the case where the target is not fixed. Let X be a
hyperelliptic Riemann surface of genus g and let Y1 and Y2 be Riemann surfaces
of the same genus g. Let hi : X ! Yi ði ¼ 1; 2Þ be nonconstant holomorphic
maps. In this situation, the condition h1jW ¼ h2jW is meaningless. Thus, we
consider the following combinatorial condition.

Ordering Weierstrass points pi
j ð j ¼ 1; 2; . . . 2gþ 2Þ on Yi ði ¼ 1; 2Þ properly,

if

W V h�1
1 ðp1j Þ ¼ W V h�1

2 ðp2j Þ

holds set-theoretically for every j ¼ 1; 2; . . . 2gþ 2, then we will say that h1 and h2
satisfy the W-condition.

Proposition. Let hi : X ! Yi ði ¼ 1; 2Þ be holomorphic maps, where Y1 and
Y2 are of the same genus g > 4. If h1 and h2 satisfy the W-condition, then there
exist double-covers pi : Yi ! ĈC ði ¼ 1; 2Þ which satisfies p1 � h1 ¼ p2 � h2.

Proof. Without loss of generality, we may assume that the number
of elements of sets satisfy afW V h�1

1 ðp11ÞgbafW V h�1
1 ðp12Þgb � � �b

afW V h�1
1 ðp12gþ2Þg and double-covers satisfy piðpi

1Þ ¼ 1, piðpi
2Þ ¼ 2 and piðpi

3Þ ¼
3 ði ¼ 1; 2Þ. Put F ¼ p1 � h1 � p2 � h2. Then, W V h�1

1 ðp1j Þ ð j ¼ 1; 2; 3Þ are
zeros of F and so the degree of zero divisor of F is b2� 3� ðgþ 1Þ=ðgþ 1Þ.
On the other hand, if F D 0, the degree of polar divisor of F is a2� 2�
ðg� 1Þ=ðg� 1Þ where ðg� 1Þ=ðg� 1Þ comes from the maximum degree for
hi ði ¼ 1; 2Þ. Assumption g > 4 leads us to the conclusion that F 1 0. r

If there is a conformal map S : Y1 ! Y2 with S � h1 ¼ h2, then we will write
h1 F h2. Even if p1 � h1 ¼ p2 � h2, it does not always mean h1 F h2. But for
unramified cases, we have

Theorem 3. Let X be a hyperelliptic Riemann surface. Let hi : X ! Yi

ði ¼ 1; 2Þ be nonconstant holomorphic maps where Yi ði ¼ 1; 2Þ are of the same
genus g > 4. If hi ði ¼ 1; 2Þ are unramified and satisfy the W-condition, then
h1 F h2.
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Proof. By Proposition, we have p1 � h1 ¼ p2 � h2. All of the branch points
on ĈC are image of Weierstrass points on Yi since hi are unramified (i ¼ 1; 2).
Thus, Y1 and Y2 are conformally equivalent since they are expressed by the same
algebraic function as a double-cover over ĈC. Applying Theorem 1, we see
h1 F h2. r

In this case, we also have a theorem in terms of homology groups. Let
G, G1 and G2 be groups and let H1 : G ! G1 and H2 : G ! G2 be homo-
morphisms. If there exists a isomorphism c : G1 ! G2 such that c �H1 ¼ H2,
we will say H1 and H2 are isomorphic.

Theorem 4. Let X be a hyperelliptic Riemann surface. Let hi : X ! Yi

ði ¼ 1; 2Þ be nonconstant holomorphic maps where Yi ði ¼ 1; 2Þ are of the same
genus g > 4. If hi ði ¼ 1; 2Þ are unramified and induced homomorphisms
hi�2 : H1ðX ;Z2Þ ! H1ðYi;Z2Þ ði ¼ 1; 2Þ are isomorphic, then h1 F h2.

Proof. We use underlying real structures. On underlying real tori,
choosing homology bases properly, linear maps Fi : R

2g=Z2g ! R2g=Z2g induced
by hi ði ¼ 1; 2Þ satisfy F1�2 ¼ F2�2. By Lemma 2, it is equivalent to F1jðR2g=Z2gÞ2
¼ F2jðR2g=Z2gÞ2 . Recall the diagram in Preliminaries and that any Weierstrass

point p A W satisfies fðpÞ A JðXÞ2 if we choose a Weierstrass point as the base
point of the embedding. Then we see that h1 and h2 satisfy the W-condition.
Applying Theorem 3, we get the conclusion. r

When hi ði ¼ 1; 2Þ are ramified, Theorem 3, 4 do not hold. We see this by
the following example.

Example 2. We picture two copies of the sphere ĈC. We label these two
copies sheet 1 and sheet 2. Each sheet, we cut along segments ½�1; 1�; ½2; 3�;
½�2;�3�; ½4; 5�; ½�4;�5�; ½6; 7�; ½�6;�7�; . . . ; ½10; 11�; ½�10;�11�. Each cut is con-
sidered to have two banks; a þbank and a �bank. We construct a Riemann
surface R by joining every þbank on sheet 1 to a �bank of the corresponding cut
on sheet 2, and then joining the corresponding þbank on sheet 2 to the �bank of
the corresponding cut on sheet 1. Then R is a hyperelliptic Riemann surface of
genus 10 and z is a double-cover of ĈC. Rotation of angle p of center 0 on ĈC,
that is, z 7! �z, can be extended to R and we denote the extended map by T .
We put Y1 :¼ R=hTi and Y2 :¼ R=ht � Ti, where t is the involution. Then, Y1

and Y2 are both of genus 5. Let hi : R ! Yi be the projections for i ¼ 1; 2.
Then, h1 and h2 satisfy the W-condition. Y1 is the double-cover of ĈC branched
over 0; 1; 2; . . . ; 11. On the other hand, Y2 is the double-cover of ĈC branched
over 1; 2; . . . ; 11;y. We see that Y1 and Y2 are not conformally equivalent (e.g.,
comparing cross ratios of branch points).

With slight and obvious modification, we can construct such examples for
higher (and also lower) genera.
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