A CLASSIFICATION OF POLARIZED SURFACES (X, L)
 WITH $\kappa(X) \geq 0, \operatorname{dim} \operatorname{Bs}|L| \leq 0, g(L)=q(X)+m$, AND $h^{0}(L)=m+1$

Yoshiaki Fukuma

Abstract

Let (X, L) be a polarized surface and $\operatorname{dim} \operatorname{Bs}|L| \leq 0$. In our previous paper we have studied polarized surfaces with $g(L)=q(X)+m$ and $h^{0}(L) \geq m+2$. In this paper, we classify (X, L) with $\kappa(X) \geq 0, g(L)=q(X)+m$ and $h^{0}(L)=m+1$.

0. Introduction

Let X be a smooth projective variety over the complex number field C with $\operatorname{dim} X=n$, and let L be an ample (resp. a nef and big) line bundle on X. Then we call the pair (X, L) a polarized (resp. quasi-polarized) manifold. The sectional genus $g(L)$ of (X, L) is defined as follows:

$$
g(L)=1+\frac{1}{2}\left(K_{X}+(n-1) L\right) L^{n-1}
$$

where K_{X} is the canonical line bundle of X. A classification of (X, L) with small value of sectional genus was obtained by several authors. On the other hand, Fujita proved the following Theorem (see Theorem (II.13.1) in [Fj3]).

Theorem. Let (X, L) be a polarized manifold. Then for any fixed $g(L)$ and $n=\operatorname{dim} X$, there are only finitely many deformation type of (X, L) unless (X, L) is a scroll over a smooth curve.
(For a definition of the deformation type of (X, L), see $\S 13$ of Chapter II in [Fj3].) By this theorem, Fujita proposed the following Conjecture;

Conjecture (Fujita). Let (X, L) be a polarized manifold. Then $g(L) \geq$ $q(X)$, where $q(X)=h^{1}\left(\mathcal{O}_{X}\right)$: the irregularity of X.

This Conjecture is very difficult and it is unknown even for the case in which X is a surface.

[^0]If $\operatorname{dim} \mathrm{Bs}|L| \leq 0$, then we can prove that $g(L) \geq q(X)$ (see Theorem 3.2 in [Fk3]). Furthermore the author proved that if (X, L) is a quasi-polarized manifold with $\operatorname{dim} X=3$ and $h^{0}(L):=\operatorname{dim} H^{0}(L) \geq 2$, then $g(L) \geq q(X)$ (see [Fk5]). Moreover the author obtained the classification of polarized 3-folds (X, L) with the following types;
(1) $g(L)=q(X)$ and $h^{0}(L) \geq 3$ ([Fk5]),
(2) $g(L)=q(X)+1$ and $h^{0}(L) \geq 4$ ([Fk2]),
(3) $g(L)=q(X)+2$ and $h^{0}(L) \geq 5$ ([Fk6]).

By considering the result of 3-dimensional case, it is natural to consider the following problem;

Problem. Let (X, L) be a polarized manifold with $\operatorname{dim} X=n$ and $g(L)=$ $q(X)+m$, where m is a nonnegative integer. Assume that $h^{0}(L) \geq n+m$. Then classify (X, L) with these properties.

In [Fk7], we get a classification of polarized manifolds (X, L) with $n:=$ $\operatorname{dim} X \geq 3, g(L)=q(X)+m, \operatorname{dim} \mathrm{Bs}|L| \leq 0$, and $h^{0}(L) \geq m+n$.

In [Fk9], we studied polarized surfaces (X, L) with $n=2, g(L)=q(X)+m$ and $h^{0}(L) \geq m+2$.

Here we remark that if $n \geq 3$, then we can use the adjunction theory for $K_{X}+(n-2) L$. But if $n=2$, then we cannot use the theory, so we need to study (X, L) by the value of Kodaira dimension.

In this paper, we consider the case in which $n=2, g(L)=q(X)+m$, $\operatorname{dim} \mathrm{Bs}|L| \leq 0$, and $h^{0}(L)=m+1$. In particular we study the case where $\kappa(X) \geq 0$. By using this result we get a classification of polarized manifolds (X, L) with $n=\operatorname{dim} X \geq 3, g(L)=q(X)+m, \mathrm{Bs}|L|=\emptyset$, and $h^{0}(L)=m+n-1$. We will study this in a forthcoming paper [Fk10].

We use the customary notation in algebraic geometry.
The author would like to thank the referee for giving some useful comments and suggestions.

1. Preliminaries

ThEOREM 1.1. Let (X, L) be a polarized manifold with $n=\operatorname{dim} X \geq 2$. Assume that $|L|$ has a ladder and $g(L) \geq \Delta(L)$, where $\Delta(L)$ is the delta genus of (X, L).
(1) If $L^{n} \geq 2 \Delta(L)+1$, then $g(L)=\Delta(L)$ and $q(X)=0$.
(2) If $L^{n} \geq 2 \Delta(L)$, then $\mathrm{Bs}|L|=\emptyset$.
(3) If $L^{n} \geq 2 \Delta(L)-1$, then $|L|$ has a regular ladder.

Proof. See (I.3.5) in [Fj3].
Theorem 1.2. Let (X, L) be a polarized manifold with $n=\operatorname{dim} X \geq 2$. If $\operatorname{dim} \mathrm{Bs}|L| \leq 0$ and $L^{n} \geq 2 \Delta(L)-1$, then $|L|$ has a ladder.

Proof. See (I.4.15) in [Fj3].

Definition 1.3 (See Definition 1.1 in $[\mathrm{Fj} 1])$. Let (X, L) be a polarized surface. Then (X, L) is called a hyperelliptic polarized surface if $\mathrm{Bs}|L|=\emptyset$, the morphism defined by $|L|$ is of degree two onto its image W, and if $\Delta(W, H)=0$ for the hyperplane section H on W.

Theorem 1.4. Let (X, L) be a polarized manifold with $\operatorname{dim} X=n$ such that $\mathrm{Bs}|L|=\emptyset, L^{n}=2 \Delta(L)$, and $g(L)>\Delta(L)$. Then (X, L) is hyperelliptic unless L is simplely generated and (X, L) is a Fano-K3 variety.

Proof. See Theorem 1.4 in $[\mathrm{Fj} 1]$.
Theorem 1.5. Let (X, L) be a hyperelliptic polarized surface. Then (X, L) is one of the following types;

Type	L^{2}	$g(L)$	$q(X)$
$\left(I_{a}\right)$	2	a	0
$\left(I V_{a}\right)$	8	$2 a+1$	0
$\left({ }^{*} I I_{a}\right)$	4	$2 a$	0
$\left(\sum_{1}\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$	$2\|\delta\|$	$a\|\delta\|+b-1$	0
$\left(\sum\left(\delta_{1}, \delta_{2}\right)_{b}^{0}\right)$	$2\|\delta\|$	$b-1$	$b-1$
$\left(\sum(\mu, \mu)_{a}^{=}\right)$	4μ	$a \mu-1$	$a-1$
$\left(\sum(\mu+2 \gamma, \mu)_{a}^{-}\right)$	$4(\mu+\gamma)$	$a \mu+2 a \gamma-\gamma-1$	0

Furthermore the Kodaira dimension of X is the following

Value of $\kappa(X)$	2	1
$\left(I_{a}\right)$	$a>2$	-
$\left(I V_{a}\right)$	$a>2$	-
$\left({ }^{*} I I_{a}\right)$	-	
$\left(\sum_{a}\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$	case (5)	case (4)
$\left(\sum_{1}\left(\delta_{1}, \delta_{2}\right)_{b}^{0}\right)$	-	-
$\left(\sum_{b}(\mu, \mu)_{a}^{=}\right)$	-	-
$\left(\sum(\mu+2 \gamma, \mu)_{a}^{-}\right)$	$a>2$	$-\infty=2$ and $\gamma>2$
Value of $\kappa(X)$	0	$a<2$
$\left(I_{a}\right)$	$a=2$	-
$\left(I V_{a}\right)$	$a=2$	$a=1$
$\left({ }^{*} I I_{a}\right)$	-	case (1) and (2)
$\left(\sum\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$	case (3) and $(6 a)$	any b
$\left(\sum\left(\delta_{1}, \delta_{2}\right)_{b}^{0}\right)$	-	any a
$\left(\sum(\mu, \mu)_{a}^{=}\right)$	-	$a=2$ and $\gamma=1$
$\left(\sum(\mu+2 \gamma, \mu)_{a}^{-}\right)$	$a=\gamma=2$	

For the definition of the above types, see $[\mathrm{Fj} 1]$. In particular for the cases of the type $\left(\sum\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$, see (5.20) in $[\mathrm{Fj} 1]$.

Proof. See [Fj1]. (Here we remark that the case (6b) of type $\left(\sum\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$ is impossible because $\operatorname{dim} X=2$.)

Definition 1.6 (See Definition 1.9 in [Fk1]). (1) Let (X, L) be a quasipolarized surface. Then (X, L) is called L-minimal if $L E>0$ for any (-1)-curve E on X.
(2) Let (X, L) and (Y, A) be quasi-polarized surfaces. Then (Y, A) is called an L-minimalization of (X, L) if there exists a birational morphism $\mu: X \rightarrow Y$ such that $L=\mu^{*}(A)$ and (Y, A) is A-minimal. (We remark that an L-minimalization of (X, L) always exists.)
(3) Let (X, L) and $\left(X^{\prime}, L^{\prime}\right)$ be polarized surfaces. Then (X, L) is called a simple blowing up of $\left(X^{\prime}, L^{\prime}\right)$ if X is a blowing up of X^{\prime} at $x \in X^{\prime}$ and $\left(E, L_{E}\right) \cong$ $\left(\boldsymbol{P}^{1}, \mathcal{O}_{\boldsymbol{P}^{1}}(1)\right)$ for the exceptional divisor E.

Remark 1.6.1. Let X be a smooth projective surface and let L be an ample line bundle on X. Then (X, L) is L-minimal.

Theorem 1.7. Let (X, L) be a quasi-polarized surface with $h^{0}(L) \geq 2$ and $\kappa(X)=2$. Assume that $g(L)=q(X)+m$ for $m \geq 0$. Then $L^{2} \leq 2 m$. Moreover if $L^{2}=2 m$ and (X, L) is L-minimal, then $X \cong C_{1} \times C_{2}$ and $L \equiv C_{1}+2 C_{2}$, where C_{1} and C_{2} are smooth curves with $g\left(C_{1}\right) \geq 2$ and $g\left(C_{2}\right)=2$. (Here \equiv denotes the numerical equivalence of divisors.)

Proof. See Theorem 3.1 in [Fk4].
Remark 1.7.1. Let (X, L) be as in Theorem 1.7. Then $L^{2} \leq 2 m$ is equivalent to $K_{X} L \geq 2 q(X)-2$.

Theorem 1.8. Let (X, L) be a quasi-polarized surface with $\kappa(X)=0$ or 1 . Assume that $g(L)=q(X)+m$.
(1) $L^{2} \leq 2 m+2$ holds.
(2) If $L^{2}=2 m+2$ and (X, L) is L-minimal, then (X, L) is one of the following;
$(2-1) \kappa(X)=0$ case.
X is an Abelian surface and L is any nef and big divisor.
$(2-2) ~ \kappa(X)=1$ case.
$X \cong F \times C$ and $L \equiv C+(m+1) F$, where F and C are smooth curves with $g(C) \geq 2$ and $g(F)=1$. If $h^{0}(L)>0$, then $L=C+\sum_{x \in I} m_{x} F_{x}$, where F_{x} is a fiber of the second projection over $x \in C, I$ is a set of a finite point of C, and m_{x} is a positive integer with $\sum_{x \in I} m_{x}=m+1$. $\left(\right.$ Here $D_{1}=D_{2}$ denotes $\mathcal{O}\left(D_{1}\right) \cong \mathcal{O}\left(D_{2}\right)$ for two divisors D_{1} and D_{2}.)
(3) If (X, L) is a polarized surface with $\kappa(X)=1$ and $L^{2} \leq 2 m+1$, then $L^{2} \leq 2 m$.

Proof. For the proof of (1), (2-1), and (2-2), see Theorem 2.1 in [Fk4]. Next we consider the case (3). Let $\pi: X \rightarrow C$ be an elliptic fibration over a smooth curve C. Assume that $L^{2}=2 m+1$.

If $g(C)=0$, then $q(X) \leq 1$ and $g(L) \leq m+1$. But since L is ample and $\kappa(X)=1$, we get that $K_{X} L \geq 1$ and $g(L) \geq m+2$. This is impossible. So we may assume that $g(C) \geq 1$.

Let $\mu: X \rightarrow S$ be a relative minimalization of $f: X \rightarrow C$ and let $A:=\mu_{*}(L)$. Then A is ample. Let $h: S \rightarrow C$ be an elliptic fibration such that $f=h \circ \mu$.
(A) The case in which $g(C)=1$.

If $q(X)=g(C)=1$, then this is impossible by the same argument as above.
If $q(X)=g(C)+1=2$, then, by the canonical bundle formula, h has at least two multiple fibers since $\kappa(X)=1$. So we get that $K_{X} L \geq K_{S} A \geq 2$. Hence $g(L)>m+2$ and this is also impossible.
(B) The case in which $g(C) \geq 2$.

If $q(X)=g(C)$, then $K_{X} L \geq K_{S} A \geq 4 g(C)-4=4 q(X)-4$. Hence

$$
\begin{aligned}
g(L) & \geq 1+\frac{1}{2}\left(4 q(X)-4+L^{2}\right) \\
& =1+\frac{1}{2}(4 q(X)-4+2 m+1) \\
& =1+2 q(X)+m-\frac{3}{2} \\
& =q(X)+m-\frac{1}{2}+q(X) \\
& \geq q(X)+m+\frac{3}{2}
\end{aligned}
$$

and this is also impossible.
So we assume that $q(X)=g(C)+1$.
If $L F \geq 2$, then we get that

$$
\begin{aligned}
K_{X} L \geq K_{S} A & \geq(2 g(C)-2) L F \\
& \geq 4 g(C)-4 \\
& =2 g(C)+2+2 g(C)-6 \\
& =2 q(X)+2 g(C)-6
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(L) & \geq 1+\frac{1}{2}(2 q(X)+2 g(C)-6+2 m+1) \\
& =1+q(X)+g(C)-3+m+\frac{1}{2} \\
& =q(X)+g(C)-2+m+\frac{1}{2} \\
& >q(X)+m
\end{aligned}
$$

and this is impossible. Hence we may assume that $L F=1$. In particular $\mu=\mathrm{id}$, and f has no multiple fiber because L is ample. Hence $K_{X} L=$
$2 g(C)-2$. But this is impossible because L^{2} is odd. This completes the proof of Theorem 1.8.

Remark 1.8.1. Let (X, L) be as in Theorem 1.8. Then $L^{2} \leq 2 m+2$ is equivalent to $K_{X} L \geq 2 q(X)-4$.

Proposition 1.9. Let X be a smooth projective surface of general type. Then $p_{g}(X) \geq 2 q(X)-4$. If this equality holds and X is minimal, then $X \cong$ $C_{1} \times C_{2}$ for smooth projective curves C_{1} and C_{2}, where $p_{g}(X)=h^{0}\left(K_{X}\right)$ and $q(X)=h^{1}\left(\mathcal{O}_{X}\right)$.

Proof. See Théorème in [Bea].
Proposition 1.10. Let X be a smooth projective surface of general type such that X is minimal. Assume that $q(X) \geq 1$. Then $K_{X}^{2} \geq 2 p_{g}(X)$.

Proof. See Théorème 6.1 and Addendum in [De].
Theorem 1.11. Let (X, L) be a quasi-polarized surface with $\kappa(X) \geq 0$. Assume that $\operatorname{dim} \mathrm{Bs}|L| \leq 0$. Then $g(L) \geq 2 q(X)-1$.

Proof. See Corollary 3.2 in [Fk0].

2. Main Theorem

Theorem 2.1. Let (X, L) be a polarized surface such that $\operatorname{dim} \operatorname{Bs}|L| \leq 0$, $h^{0}(L)=m+1$, and $\kappa(X) \geq 0$, where $m=g(L)-q(X)$. Assume that $m \geq 1$. Then (X, L) is one of the following types;
(M-1) $\quad(X, L)$ is a minimal surface of general type with $L^{2}=1, g(L)=3$, and $q(X)=2$.
(M-2) $\quad \pi: X \rightarrow C$ is a minimal elliptic fibration over a smooth curve C and (X, L) is one of the following;
(M-2-1) $3=q(X)=g(C)+1, \chi\left(\mathcal{O}_{X}\right)=0, L F=2$, and π has no multiple fiber. In this case X is a double covering of \boldsymbol{P}^{1}-bundle on C.
(M-2-2) π has just 2 multiple fibers $2 F_{1}$ and $2 F_{2}, \chi\left(\mathcal{O}_{X}\right)=0,2=q(X)=$ $g(C)+1, K_{X} \equiv F_{1}+F_{2}, L F=2$ for a general fiber F.
(M-2-3) $\chi\left(\Theta_{X}\right)=0, q(X)=g(C)$, and π has just one multiple fiber with $m_{i}=2$ and $L F_{i}=1$.
(M-2-4) $\chi\left(\theta_{X}\right)=0, q(X)=g(C)+1=1, K_{X} L=1$ and π has four multiple fibers $m_{1} F_{1}, m_{2} F_{2}, m_{3} F_{3}$, and $m_{4} F_{4}$ with one of the following (here we assume that $L F_{4} \geq L F_{3} \geq L F_{2} \geq L F_{1}$);

m_{1}	m_{2}	m_{3}	m_{4}	$L F_{1}$	$L F_{2}$	$L F_{3}$	$L F_{4}$
3	2	2	2	2	3	3	3
4	2	2	2	1	2	2	2

(M-2-5) $\chi\left(\mathcal{O}_{X}\right)=0, q(X)=g(C)+1=1, K_{X} L=1$ and π has three multiple fibers and one of the following lists (here we assume that $L F_{3} \geq$ $\left.L F_{2} \geq L F_{1}\right) ;$

m_{1}	m_{2}	m_{3}	$L F_{1}$	$L F_{2}$	$L F_{3}$
4	4	4	1	1	1
4	3	3	3	4	4
6	3	3	1	2	2
7	3	2	6	14	21
8	3	2	3	8	12
9	3	2	2	6	9
12	3	2	1	4	6
5	4	2	4	5	10
6	4	2	2	3	6
8	4	2	1	2	4
6	6	2	1	1	3
5	5	2	2	2	5

(M-2-6) $\chi\left(\mathcal{O}_{X}\right)=0, q(X)=g(C)+1, g(C)=1$ (resp. 0), LF $=2$ and the number of its multiple fiber is three (resp. five).
(M-3-1) (X, L) is the type $\left(\mathrm{I}_{a}\right)$ in Theorem 1.5 with $a=m=2$ and $\kappa(X)=0$.
(M-3-2) (X, L) is the type $\left(\mathrm{IV}_{a}\right)$ in Theorem 1.5 with $a=2, m=5$, and $\kappa(X)=0$.
(M-3-3) (X, L) is the type $\left(\sum\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$in Theorem 1.5, and case (3) or case (6a) in (5.20) of $[\mathrm{Fj1}]$. In this case $\kappa(X)=0$.
(M-3-4) (X, L) is the type $\left(\sum(\mu+2 \gamma, \mu)_{a}^{-}\right)$in Theorem 1.5 with $a=\gamma=2$, $m=2 \mu+5$, and $\kappa(X)=0$.
(M-3-5) X is a K3-surface with $q(X)=0$ and $L^{2}=2 m-2$.
(M-3-6) (X, L) is a polarized abelian surface such that (X, L) is not isomorphic to the following type: $\quad X \cong E_{1} \times E_{2}$ and $L=p_{1}^{*} L_{1}+p_{2}^{*} L_{2}$, where E_{i} is an elliptic curve and L_{i} is a line bundle on E_{i} with $\operatorname{deg} L_{1}$ $=1$ and $\operatorname{deg} L_{2} \geq 1$.
(N) Let $X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{l}=X^{\prime}$ be the minimal model of X. We put $L_{0}:=L, \mu_{i}: X_{i-1} \rightarrow X_{i}$, and $L_{i}:=\left(\mu_{i}\right)_{*}\left(L_{i-1}\right)$. Then $L_{i-1}=$ $\mu_{i}^{*} L_{i}-\alpha_{i} E_{i}$ and $\alpha_{i}>0$ for any i, where E_{i} is a (-1)-curve of μ_{i}. We put $L^{\prime}:=L_{l}$.
$(\mathrm{N}-1) \quad(X, L)$ is a simple blowing up of $\left(X^{\prime}, L^{\prime}\right)$ and X^{\prime} has a minimal elliptic fibration $\pi^{\prime}: X^{\prime} \rightarrow C$ over a smooth curve C such that $\left(X^{\prime}, L^{\prime}\right)$ is one of the following;
(N-1-1) $g(C)=2, q\left(X^{\prime}\right)=3, \chi\left(\mathcal{O}_{X^{\prime}}\right)=0, L^{\prime} F^{\prime}=2$ and π^{\prime} has no multiple fibers, where F^{\prime} is a general fiber of π^{\prime},
(N-1-2) π^{\prime} has just two multiple fibers, $2 F_{1}$ and $2 F_{2}, \chi\left(\mathcal{O}_{X^{\prime}}\right)=0, g(C)=1$, $q\left(X^{\prime}\right)=2$, and $L^{\prime} F^{\prime}=2$.
(N-2) $\quad\left(X^{\prime}, L^{\prime}\right)$ is a polarized abelian surface and $\sum_{i} \alpha_{i} \leq 3$.
Proof. Assume that $L^{2} \leq 2 m-2$. Here we put $t=2 m-2-L^{2}$. In this case, we calculate the delta genus $\Delta(L)$;

$$
\begin{aligned}
\Delta(L) & =2+L^{2}-h^{0}(L) \\
& =1+L^{2}-m \\
& =\frac{1}{2} L^{2}-\frac{1}{2} t \\
& \leq \frac{1}{2} L^{2} .
\end{aligned}
$$

Hence $L^{2} \geq 2 \Delta(L)$. So we can use the result of Fujita. Since $\operatorname{dim} \mathrm{Bs}|L| \leq 0$ and

$$
\begin{aligned}
g(L) & =1+\frac{1}{2}\left(K_{X}+L\right) L \\
& >\frac{1}{2} L^{2} \\
& =\Delta(L)
\end{aligned}
$$

we get that $|L|$ has a ladder and $\mathrm{Bs}|L|=\emptyset$ by Theorem 1.1 and 1.2.
If $L^{2} \geq 2 \Delta(L)+1$, then $q(X)=0$ and $g(L)=\Delta(L)=m$ by Theorem 1.1. Therefore $L^{2} \geq 2 \Delta(L)+1=2 g(L)+1=3+\left(K_{X}+L\right) L \geq 3+L^{2}$ and this is impossible. So we get that $L^{2}=2 \Delta(L)$, and if X is not K3-surface, then (X, L) is a hyperelliptic polarized surface by Theorem 1.4. Since $h^{0}(L)=m+1$, we obtain that

$$
\begin{aligned}
L^{2} & =2 \Delta(L) \\
& =4+2 L^{2}-2(m+1) .
\end{aligned}
$$

That is, $L^{2}=2 m-2$. Here we use Fujita's classification of hyperelliptic polarized surfaces. Since $\kappa(X) \geq 0$, by Theorem 1.5 we find that $q(X)=0$ and since $L^{2}=2 m-2$ and $g(L)=m$, we get that $K_{X} L=0$. Since L is ample, we have $\kappa(X)=0$. Hence (X, L) is one of the following:

If (X, L) is the type $\left(\mathrm{I}_{a}\right)$, then $a=m=2$ and $\kappa(X)=0$. (This is the type (M-3-1) in Theorem 2.1.)

If (X, L) is the type $\left(\mathrm{IV}_{a}\right)$, then $a=2, m=5$, and $\kappa(X)=0$. (This is the type (M-3-2) in Theorem 2.1.)

If (X, L) is the type $\left(\sum^{n}\left(\delta_{1}, \delta_{2}\right)_{a, b}^{+}\right)$, then the case (3) or the case (6a) in (5.20) in [Fj 1$]$ occur. (This is the type (M-3-3) in Theorem 2.1.)

If (X, L) is the type $\left(\sum(\mu+2 \gamma, \mu)_{a}^{-}\right)$, then $a=\gamma=2$ and $m=2 \mu+5$. (This is the type (M-3-4) in Theorem 2.1.)

If X is a K3-surface, then $q(X)=0$ and $L^{2}=2 m-2$. By Riemann-Roch Theorem and Vanishing Theorem, we get that $h^{0}(L)=m+1$. (This is the type (M-3-5) in Theorem 2.1.)

From now on we assume that $L^{2} \geq 2 m-1$.
(A) The case in which X is minimal.

Here we divide the case (A) into the following:
(A.1) The case in which $\kappa(X)=2$.
(A.2) The case in which $\kappa(X)=1$.
(A.3) The case in which $\kappa(X)=0$.
(A.1) The case in which $\kappa(X)=2$.

Then $L^{2} \leq 2 m$ by Theorem 1.7. If $L^{2}=2 m$, then $X \cong C_{1} \times C_{2}$ and $L \equiv$ $C_{1}+2 C_{2}$, where C_{1} (resp. C_{2}) is a smooth projective curve with $g\left(C_{1}\right) \geq 2$ (resp. $g\left(C_{2}\right)=2$). But this is impossible. Actually since $\operatorname{dim} \operatorname{Bs}|L| \leq 0$, we get that for a general fiber C_{2} of the projection $C_{1} \times C_{2} \rightarrow C_{1} \mathrm{Bs}\left|L_{C_{2}}\right|=\emptyset$. But since $L C_{2}=1$ we get that $g\left(C_{2}\right)=0$ and this is impossible. Hence we may assume that $L^{2} \leq 2 m-1$. By the above hypothesis we may assume that $L^{2}=2 m-1$. Here we use a Beauville's result. Since X is minimal with $\kappa(X)=2$, we get that $p_{g}(X) \geq 2 q(X)-3$ unless $X \cong C_{1} \times C_{2}$. But if $X \cong C_{1} \times C_{2}$, then $K_{X} L$ is even and here since we assume that $L^{2}=2 m-1$, we obtain that $K_{X} L=2 q(X)-1$ is odd. So this is impossible.

If $q(X)=0$, then $K_{X} L=2 q(X)-1=-1$ and this is impossible. Hence $q(X) \geq 1$. If $q(X)=1$, then $K_{X} L=1$ and $L^{2}=2 m-1$. Here we remark that $p_{g}(X) \geq q(X)$ because X is of general type. By Proposition 1.10, we get that $\left(K_{X}^{2}\right) \geq 2 p_{g}(X) \geq 2 q(X)$ and

$$
1=\left(K_{X} L\right)^{2} \geq\left(K_{X}^{2}\right)\left(L^{2}\right) \geq 2 L^{2}
$$

and this is impossible.
So we may assume that $q(X) \geq 2$. By Proposition 1.10, we get that

$$
K_{X}^{2} \geq 2 p_{g}(X) \geq 2(2 q(X)-3)=4 q(X)-6 .
$$

By Hodge index Theorem, we obtain that

$$
\begin{align*}
\left(K_{X} L\right)^{2} & \geq\left(K_{X}^{2}\right)\left(L^{2}\right) \tag{*}\\
& \geq(4 q(X)-6)(2 m-1) \\
& \geq 2(2 q(X)-3)(2 q(X)-3)
\end{align*}
$$

because by Theorem 1.11

$$
q(X)+m=g(L) \geq 2 q(X)-1
$$

Hence $K_{X} L \geq \sqrt{2}(2 q(X)-3)$. On the other hand $K_{X} L=2 q(X)-1$. Therefore $2 q(X)-1=K_{X} L \geq \sqrt{2}(2 q(X)-3)$ and we infer that $(2 \sqrt{2}-2) q(X) \leq 3 \sqrt{2}-1$. So we obtain that

$$
q(X) \leq \frac{3 \sqrt{2}-1}{2 \sqrt{2}-2}=3.914 \ldots
$$

Thus we have $q(X) \leq 3$.
If $q(X)=3$ (resp. $q(X)=2$), then $K_{X} L=5$ (resp. 3) and by using (*), we get the following list:
(A.1. $\alpha) q(X)=3, K_{X} L=5, m \leq 2$, and $g(L) \leq 5$,
(A.1. $\beta) ~ q(X)=2, K_{X} L=3, m \leq 2$, and $g(L) \leq 4$.

Here we remark that if $m=2$, then $L^{2}=2 m-1=3, \quad h^{0}(L)=m+1=3$. Hence $\Delta(L)=2$, that is, $L^{2}=2 \Delta(L)-1$.
(A.1. $\alpha .1)$ Assume that (X, L) is the case (A.1. α) with $q(X)=3, K_{X} L=5$ and $m=1$. Then $4=g(L) \geq 2 q(X)-1=5$ and this is impossible.
(A.1. $\alpha .2)$ Assume that (X, L) is the case (A.1. α) with $q(X)=3, K_{X} L=5$ and $m=2$. Then $L^{2}=3$ and $g(L)=5$. Since $h^{0}(L)=3$, we have $L^{2}=$ $2 \Delta(L)-1$. If $\operatorname{dim} \operatorname{Bs}|L|=0$, then $q(X)=0$ by Fujita's classification of (X, L) with $\Delta(L)=2$. (See $[\mathrm{Fj} 2]$.) So we may assume that $\mathrm{Bs}|L|=\emptyset$. Then there exists a triple covering $\pi: S \rightarrow \boldsymbol{P}^{2}$. Then by Lemma 3.2 in [Bes], we get that

$$
\chi\left(\mathcal{O}_{X}\right)=\frac{g(g+1)}{2}+2-c_{2}
$$

and

$$
K_{X}^{2}=2 g^{2}-4 g+11-3 c_{2}
$$

where c_{2} is the second Chern class of the Tschirnhausen bundle of π (see [Bes]). Since $g(L)=5$, we get that

$$
1-3+p_{g}(X)=\frac{5(5+1)}{2}+2-c_{2}=17-c_{2}
$$

and

$$
K_{X}^{2}=50-20+11-3 c_{2}=41-3 c_{2}
$$

Therefore $c_{2}=19-p_{g}(X)$ and

$$
\begin{aligned}
K_{X}^{2} & =41-3\left(19-p_{g}(X)\right) \\
& =3 p_{g}(X)-16
\end{aligned}
$$

On the other hand since $K_{X}^{2} \geq 2 p_{g}(X) \geq 2 q(X)=6$, we get that $6 \leq K_{X}^{2}=$ $3 p_{g}(X)-16$. Hence $p_{g}(X) \geq 8$. In particular $K_{X}^{2} \geq 2 p_{g}(X) \geq 16$. Since $L^{2}=$ 3 , we get that

$$
\begin{aligned}
\left(K_{X} L\right)^{2} & \geq\left(K_{X}^{2}\right)\left(L^{2}\right) \\
& \geq 48
\end{aligned}
$$

But this is a contradiction because $K_{X} L=5$. So this case cannot occur.
(A.1. $\beta .1$) Assume that (X, L) is the case (A.1. β) with $q(X)=2, K_{X} L=3$ and $m=1$. Then $g(L)=3, h^{0}(L)=m+1=2$ and $L^{2}=2 m-1=1$. (This is the type ($\mathrm{M}-1$) in Theorem 2.1.)
(A.1. $\beta .2$) Assume that (X, L) is the case (A.1. β) with $q(X)=2, K_{X} L=3$ and $m=2$. Then $q(X)=2$ and $K_{X}^{2} \geq 2 p_{g}(X) \geq 2 q(X)=4$. Since $L^{2}=3$, we get that $\left(K_{X} L\right)^{2} \geq\left(K_{X}^{2}\right)\left(L^{2}\right) \geq 12$. But since $K_{X} L=3$, this is a contradiction.
(A.2) The case in which $\kappa(X)=1$.

Then there exists an elliptic fibration over a smooth curve $C ; \pi: X \rightarrow C$. The canonical bundle formula of π is the following:

$$
K_{X} \equiv\left(2 g(C)-2+\chi\left(\mathcal{O}_{X}\right)\right) F+\sum_{i}\left(m_{i}-1\right) F_{i},
$$

where F is a general fiber of π and $m_{i} F_{i}$ is a multiple fiber of π.
If $L^{2} \geq 2 m+1$, then we can prove that $\operatorname{dim} \operatorname{Bs}|L|=1$ by Theorem 1.8 (2) and (3). So we may assume that $L^{2} \leq 2 m$. We have only to check the case where $L^{2}=2 m$ or $L^{2}=2 m-1$.
(A.2.1) The case in which $L^{2}=2 m$.

Then $K_{X} L=2 q(X)-2$ and $q(X) \geq 2$ because $K_{X} L>0$.
If $\quad q(X)=g(C)$, then $\quad K_{X} L \geq\left(2 g(C)-2+\chi\left(\mathcal{O}_{X}\right)\right) L F=(2 q(X)-2+$ $\left.\chi\left(\mathcal{O}_{X}\right)\right) L F$. Hence $L F=1$ and $\chi\left(\mathcal{O}_{X}\right)=0$. But since $h^{0}\left(L_{F}\right) \geq 2$ for a general fiber F, we get that $\Delta\left(L_{F}\right)=0$ and $g(F)=0$. But this is impossible.

If $q(X)=g(C)+1$, then $\chi\left(\mathcal{O}_{X}\right)=0$ and

$$
K_{X} L=(2 g(C)-2) L F+\sum_{i}\left(m_{i}-1\right) L F_{i} .
$$

Here we remark that $q(X) \geq 2$ since $2 q(X)-2=K_{X} L>0$. In particular $g(C) \geq 1$.

If $L F \geq 2$, then

$$
\begin{aligned}
K_{X} L & \geq 4(g(C)-1)+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
& =2(g(C)+1)+2 g(C)-6+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
& =2 q(X)+2 g(C)-6+\sum_{i}\left(m_{i}-1\right) L F_{i} .
\end{aligned}
$$

If $g(C) \geq 2$, then $g(C)=2$ and $K_{X} L=2 q(X)-2=4$ and π has no multiple fiber.
If $g(C)=1$, then $q(X)=g(C)+1=2$ and $K_{X} L=2$. By the canonical bundle formula, we get that π has just 2 multiple fibers and $\sum_{i}\left(m_{i}-1\right) L F_{i}=2$, that is, $m_{i}=2$ and $L F_{i}=1$ for $i=1,2$ and $K_{X} \equiv F_{1}+F_{2}$. In particular $L F=2$ for a general fiber F of π. Therefore the type of (X, L) is one of the following;
(A.2.1.1) $3=q(X)=g(C)+1, \chi\left(\mathcal{O}_{X}\right)=0, L F=2$, and π has no multiple fiber. (This is the type (M-2-1) in Theorem 2.1.)
(A.2.1.2) π has just 2 multiple fibers $2 F_{1}$ and $2 F_{2}, \chi\left(\mathcal{O}_{X}\right)=0,2=q(X)=$ $g(C)+1, K_{X} \equiv F_{1}+F_{2}, L F=2$ for a general fiber F. (This is the type (M-2-2) in Theorem 2.1.)

We study the case (A.2.1.1). By the condition of (A.2.1.1), we get that π is a smooth fibration. We put $\pi_{*}(L)=\mathscr{E}$. Then \mathscr{E} is a locally free sheaf of rank 2. Furthermore

$$
\pi^{*} \circ \pi_{*}(L) \rightarrow L
$$

is surjective because F is an elliptic curve with $h^{0}\left(L_{F}\right)=2$ and $\mathrm{Bs}\left|L_{F}\right|=\emptyset$. So we get that there exists a finite double covering $\rho: X \rightarrow \boldsymbol{P}_{C}(\mathscr{E})$ with $L=\rho^{*} \mathcal{O}_{\boldsymbol{P}(\mathcal{E})}$
(1). Let $B \subset \boldsymbol{P}_{C}(\mathscr{E})$ be the branch locus of ρ. Then $B \in|2 D|$ for some line bundle D on $\boldsymbol{P}_{C}(\mathscr{E})$ and B is smooth. By the canonical line bundle formula for ρ, we get that $K_{X}=\rho^{*}\left(K_{P_{C}(\mathscr{E})}+D\right)$. Since

$$
\begin{aligned}
K_{P_{C}(\mathscr{E})} & =-2 C_{0}+(2 g(C)-2-e) F \\
& =-2 C_{0}+(2-e) F,
\end{aligned}
$$

where C_{0} is the minimal section of $\boldsymbol{P}_{C}(\mathscr{E}) \rightarrow C$ and $e=-C_{0}^{2}$, we have $D \equiv$ $2 C_{0}+e F$ because $K_{X} \equiv 2 F_{\pi}$.
(A.2.2) The case in which $L^{2}=2 m-1$.

Then $K_{X} L=2 q(X)-1$ and $q(X) \geq 1$ because $K_{X} L>0$. By the canonical bundle formula we get that

$$
K_{X} L=\left(2 g(C)-2+\chi\left(\mathcal{O}_{X}\right)\right) L F+\sum_{i}\left(m_{i}-1\right) L F_{i}
$$

Since $h^{0}(L)=m+1$ and $\operatorname{dim} \operatorname{Bs}|L| \leq 0$, we find that $L F \geq 2$ for a general fiber F of $\pi: X \rightarrow C$.

Here we divide the case (A.2.2) into the following cases:
(a.1) The case in which $q(X)=g(C)$.
(a.2) The case in which $q(X)=g(C)+1$.
(a.1) The case in which $q(X)=g(C)$.

Then

$$
\begin{aligned}
K_{X} L & \geq 2(2 q(X)-2) \\
& =2 q(X)-1+2 q(X)-3
\end{aligned}
$$

If $q(X) \geq 2$, then this is impossible. Hence $q(X)=1$ and then $K_{X} L=2 q(X)-1$ $=1$. If $\chi\left(\mathcal{O}_{X}\right)>0$, then $K_{X} L \geq 2$. So we get that $\chi\left(\mathcal{O}_{X}\right)=0$ and $\sum_{i}\left(m_{i}-1\right) L F_{i}$ $=1$. Therefore π has just one multiple fiber with $m_{i}=2$ and $L F_{i}=1$. (This is the type ($\mathrm{M}-2-3$) in Theorem 2.1.)
(a.2) The case in which $q(X)=g(C)+1$.

Here we remark that $L F \geq 2$ and $\chi\left(\mathcal{O}_{X}\right)=0$. We divide two cases by the value of $L F$.
(a.2.1) The case where $L F \geq 3$.
(a.2.2) The case where $L F=2$.
(a.2.1) The case where $L F \geq 3$.

Then

$$
\begin{aligned}
K_{X} L & \geq 3(2 g(C)-2)+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
& =2(g(C)+1)+4 g(C)-8+\sum\left(m_{i}-1\right) L F_{i} \\
& =2 q(X)+4 g(C)-8+\sum_{i}\left(m_{i}-1\right) L F_{i}
\end{aligned}
$$

If $g(C) \geq 2$, then this is impossible because $K_{X} L=2 q(X)-1$. So we get that $g(C) \leq 1$ and $q(X) \leq 2$. Furthermore we divide the case (a.2.1) into two cases:
(a.2.1.1) The case where $g(C)=1$.
(a.2.1.2) The case where $g(C)=0$.
(a.2.1.1) The case where $g(C)=1$.

Then $q(X)=2$ and $K_{X} L=2 q(X)-1=3$. By the canonical bundle formula we get $K_{X} L=\sum_{i}\left(m_{i}-1\right) L F_{i}$. Since $g(C)=1$ and $\chi\left(\mathcal{O}_{X}\right)=0, \pi$ has a multiple fiber because $\kappa(X)=1$. Since π has at least two multiple fibers (see $[\mathrm{Se} 2]$), π has two or three multiple fibers.

If π has just three multiple fibers $m_{1} F_{1}, m_{2} F_{2}$, and $m_{3} F_{3}$, then we get that $m_{1}=m_{2}=m_{3}=2$ and $L F_{1}=L F_{2}=L F_{3}=1$. But since $L F \geq 3$, this is impossible.

If π has just two multiple fibers $m_{1} F_{1}$ and $m_{2} F_{2}$, we get that $\left(m_{1}, m_{2}\right)=(2,3)$ or $(2,2)$, where we assume $m_{1} \leq m_{2}$.

If $\left(m_{1}, m_{2}\right)=(2,3)$, then $L F_{1}=1$ and $2 L F_{2}=2$, that is, $L F_{i}=1$ for any i. But then $L F=L\left(m_{1} F_{1}\right)=2$ and $L F=L\left(m_{2} F_{2}\right)=3$ and this is impossible.

If $\left(m_{1}, m_{2}\right)=(2,2)$, then $L F_{1}=2$ and $L F_{2}=1$ or $L F_{1}=1$ and $L F_{2}=2$. But then $L\left(m_{1} F_{1}\right) \neq L\left(m_{2} F_{2}\right)$. This is also impossible.
(a.2.1.2) The case where $g(C)=0$.

Then $q(X)=1$ and $K_{X} L=1$.
Claim. The number s of multiple fibers of π is at most four.
Proof. Assume that $s \geq 6$. Let $\left\{m_{i} F_{i}\right\}_{i}$ be a multiple fiber of π. Here we assume that $L F_{i} \leq L F_{i+1}$ for any i. Then

$$
\begin{aligned}
1=K_{X} L= & -2 L F+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
\geq & \left(m_{1} L F_{1}+m_{2} L F_{2}\right)-2 L F+\left(m_{3}-1\right) L F_{3}-L F_{2} \\
& +\left(m_{4}-1\right) L F_{4}-L F_{1}+\left(m_{5}-1\right) L F_{5}+\left(m_{6}-1\right) L F_{6} \\
\geq & 2
\end{aligned}
$$

Therefore $s \leq 5$.
If $s=5$, then by the same argument as above we get that $m_{5}=2$ and $L F_{5}=1 . \quad$ By assumption, we get that $L F_{1}=\cdots=L F_{5}=1$ and $L F=L\left(m_{5} F_{5}\right)=2$ for a general fiber F of π. But since $L F \geq 3$ in this case, this is impossible. Therefore $s \leq 4$.

Here we remark that $s \geq 3$ in this case because $\kappa(X)=1$. We assume that $L F_{i} \leq L F_{i+1}$ for any i. We divide the case (a.2.1.2) into the following two cases:
(b.1) The case in which $s=4$.
(b.2) The case in which $s=3$.
(b.1) The case in which $s=4$.

Then by hypothesis we get that $\left(m_{3}-1\right) L F_{3}-L F_{2}=0$ and $\left(m_{4}-1\right) L F_{4}-$ $L F_{1}=1$. The first equality implies that $m_{3}=2$ and $L F_{2}=L F_{3} . \quad$ By the second equality there are two possible cases.
($\alpha) m_{4}=2$ and $L F_{4}=L F_{1}+1$,
(β) $m_{4}=3$ and $L F_{1}=L F_{4}=1$.
If the case (β) occurs, then by hypothesis $L F_{1}=L F_{2}=L F_{3}=L F_{4}$ and $m_{1}=$ $m_{2}=m_{3}=m_{4}$. But since $m_{3}=2$ and $m_{4}=3$, this is impossible.

If the case (α) occurs, then $L F_{3}=L F_{2}=L F_{1}$ or $L F_{4}=L F_{3}=L F_{2}$. Since $m_{4}=2$ and $m_{3}=2$, we get that $L F_{4}=L F_{3}=L F_{2}$ and $L F_{4}=L F_{1}+1$. Since $m_{1} L F_{1}=2 L F_{4}=2\left(L F_{1}+1\right)$, we get that

$$
L F_{1}=\frac{2}{m_{1}-2} .
$$

Hence $m_{1}=3$ or 4 because $L F_{1}$ is integer. If $m_{1}=3$, then $L F_{1}=2$ and if $m_{1}=4$, then $L F_{1}=1$. Hence we get the following list;

m_{1}	m_{2}	m_{3}	m_{4}	$L F_{1}$	$L F_{2}$	$L F_{3}$	$L F_{4}$
3	2	2	2	2	3	3	3
4	2	2	2	1	2	2	2

(This is the type (M-2-4) in Theorem 2.1.)
(b.2) The case in which $s=3$. (This is the type (M-2-5) in Theorem 2.5.)

Then we get that $\left(m_{3}-1\right) L F_{3}-L F_{1}-L F_{2}=1$.
Claim. $\quad m_{3} \leq 4$.
Proof. If $m_{3} \geq 5$, then

$$
\begin{aligned}
1 & =\left(m_{3}-1\right) L F_{3}-L F_{1}-L F_{2} \\
& =\left(L F_{3}-L F_{1}\right)+\left(L F_{3}-L F_{2}\right)+\left(m_{3}-3\right) L F_{3} \\
& \geq 2 L F_{3} \geq 2
\end{aligned}
$$

and this is a contradiction.
By the value of m_{3}, we divide the case (b.2) into the following:
(b.2.1) The case in which $m_{3}=4$.
(b.2.2) The case in which $m_{3}=3$.
(b.2.3) The case in which $m_{3}=2$.
(b.2.1) The case in which $m_{3}=4$.

Then $\left(L F_{3}-L F_{1}\right)+\left(L F_{3}-L F_{2}\right)+L F_{3}=1$. Therefore $L F_{3}=1$ and $L F_{3}=$ $L F_{2}=L F_{1}$, so we get that $m_{1}=m_{2}=4$.
(b.2.2) The case in which $m_{3}=3$.

Then $\left(L F_{3}-L F_{1}\right)+\left(L F_{3}-L F_{2}\right)=1$. So $L F_{3}=L F_{2}$ and $L F_{3}=L F_{1}+1$. Therefore $m_{2}=3$. Since $m_{1} L F_{1}=3 L F_{3}=3\left(L F_{1}+1\right)$, we get that $\left(m_{1}-3\right) L F_{1}$ $=3$. Since $L F_{1}$ is an integer, we obtain that $3 /\left(m_{1}-3\right)$ is integer. Therefore we have $m_{1}=4,6$.

If $m_{1}=4\left(\right.$ resp. $\left.m_{1}=6\right)$, then $L F_{1}=3\left(\right.$ resp. $\left.L F_{1}=1\right)$. Hence we get that
(1) $\left(m_{1}, m_{2}, m_{3}\right)=(4,3,3), L F_{1}=3, L F_{2}=L F_{3}=4$
(2) $\left(m_{1}, m_{2}, m_{3}\right)=(6,3,3), L F_{1}=1, L F_{2}=L F_{3}=2$.
(b.2.3) The case in which $m_{3}=2$.

Then $L F_{3}=L F_{2}+L F_{1}+1$. Hence we find that
(1) $m_{1} L F_{1}=2 L F_{3}=2 L F_{2}+2 L F_{1}+2$,
(2) $m_{2} L F_{2}=2 L F_{3}=2 L F_{2}+2 L F_{1}+2$.

On the other hand, since $L F_{1}=\left(2 / m_{1}\right) L F_{3}$ and $L F_{2}=\left(2 / m_{2}\right) L F_{3}$, we get that $L F_{3}=\left(2 / m_{1}\right) L F_{3}+\left(2 / m_{2}\right) L F_{3}+1$. Therefore

$$
\left(1-\frac{2}{m_{1}}-\frac{2}{m_{2}}\right) L F_{3}=1
$$

that is,

$$
L F_{3}=\frac{m_{1} m_{2}}{\left(m_{1}-2\right)\left(m_{2}-2\right)-4}
$$

Here we remark that $m_{2} \geq 3$ because $L F_{3}>L F_{2}$.
Furthermore we divide the case (b.2.3) into the following three cases:
(b.2.3.1) The case in which $m_{2}=3$.
(b.2.3.2) The case in which $m_{2}=4$.
(b.2.3.3) The case in which $m_{2} \geq 5$.
(b.2.3.1) The case in which $m_{2}=3$.

Then

$$
L F_{3}=\frac{3 m_{1}}{m_{1}-6}=3+\frac{18}{m_{1}-6}
$$

Since $L F_{3}>0$, we get that $m_{1} \geq 7$. Since $18 /\left(m_{1}-6\right)$ is integer and $L F_{1}=$ $6 /\left(m_{1}-6\right)$, the candidate of m_{1} is the following;

m_{1}	$L F_{1}$	$L F_{2}$	$L F_{3}$
7	6	14	21
8	3	8	12
9	2	6	9
12	1	4	6

(b.2.3.2) The case in which $m_{2}=4$.

Here we remark that $m_{1} \geq 4$. In this case we get that

$$
\begin{aligned}
L F_{3} & =\frac{4 m_{1}}{2\left(m_{1}-2\right)-4} \\
& =\frac{2 m_{1}}{m_{1}-4} \\
& =2+\frac{8}{m_{1}-4} .
\end{aligned}
$$

Since $L F_{2}>0$ and $L F_{1}=4 /\left(m_{1}-4\right)$, we find that $m_{1} \geq 5$ and

m_{1}	m_{2}	m_{3}	$L F_{1}$	$L F_{2}$	$L F_{3}$
5	4	2	4	5	10
6	4	2	2	3	6
8	4	2	1	2	4

(b.2.3.3) The case in which $m_{2} \geq 5$.

Then $m_{1} \geq 5$ and since $K_{X} L=1$ and $m_{3}=2$ we get that

$$
L F_{1}+L F_{2} \leq\left(m_{1}-4\right) L F_{1}+\left(m_{2}-4\right) L F_{2}=4 .
$$

Therefore $\left(L F_{1}, L F_{2}\right)=(1,1),(1,2),(1,3),(2,2)$. Since $L F_{3}=L F_{1}+L F_{2}+1$, $\left(m_{1}-4\right) L F_{1}+\left(m_{2}-4\right) L F_{2}=4$, and $m_{3}=2$, we get the following;

m_{1}	m_{2}	m_{3}	$L F_{1}$	$L F_{2}$	$L F_{3}$
6	6	2	1	1	3
5	5	2	2	2	5

(a.2.2) The case where $L F=2$.

Then

$$
\begin{aligned}
K_{X} L & =2(2 g(C)-2)+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
& =4 g(C)-4+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
& =2(g(C)+1)-6+2 g(C)+\sum_{i}\left(m_{i}-1\right) L F_{i} \\
& =2 q(X)+2 g(C)-6+\sum_{i}\left(m_{i}-1\right) L F_{i} .
\end{aligned}
$$

Hence $g(C) \leq 2$. Here we remark that

$$
\sum_{i}\left(m_{i}-1\right) L F_{i}=\text { number of multiple fibers }
$$

because $L F=2$. In particular $m_{i}=2$ and $L F_{i}=1$ for any i. If $g(C)=2$ (resp. $1,0)$, then $\sum_{i}\left(m_{i}-1\right) L F_{i}=1$ (resp. 3,5). On the other hand, π has at least two multiple fibers. Therefore $g(C) \leq 1$ and $\sum_{i}\left(m_{i}-1\right) L F_{i}=3$ or 5 . (This is the type (M-2-6) in Theorem 2.1.)
(A.3) The case in which $\kappa(X)=0$.

Then $g(L)=1+(1 / 2) L^{2}=q(X)+m$. Then by Riemann-Roch Theorem and the classification of projective surfaces, we get that X is an abelian surface or K3 surface because $h^{0}(L)=m+1$. But here we assume $L^{2} \geq 2 m-1$. So we get that X is an abelian surface. In particular $L^{2}=2 m+2$.

Here we remark the following: Let (Y, A) be a polarized abelian surface. If $\operatorname{dim} \operatorname{Bs}|A|=1$, then $Y \cong E_{1} \times E_{2}$ and $A=p_{1}^{*} L_{1}+p_{2}^{*} L_{2}$, where E_{i} is an elliptic curve and L_{i} is a line bundle on E_{i} with $\operatorname{deg} L_{1}=1$ and $\operatorname{deg} L_{2} \geq 1$. (See [LB].) Therefore if (X, L) is not the above type, then $\operatorname{dim} \mathrm{Bs}|L| \leq 0$. (This is the type (M-3-6) in Theorem 2.1.)
(B) The case in which X is not minimal.

Let $X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{l}=X^{\prime}$ be the minimal model of X. We put $L_{0}:=L, \quad \mu_{i}: X_{i-1} \rightarrow X_{i}$, and $L_{i}:=\left(\mu_{i}\right)_{*}\left(L_{i-1}\right)$. Then $L_{i-1}=\mu_{i}^{*} L_{i}-\alpha_{i} E_{i}$ and
$\alpha_{i}>0$ for any i, where E_{i} is a (-1)-curve of μ_{i}. We put $L^{\prime}:=L_{l}$. Here we remark that $\operatorname{dim} \mathrm{Bs}\left|L_{l}\right| \leq 0$. Then

$$
g\left(L^{\prime}\right)=g(L)+\sum_{i=1}^{l} \frac{\alpha_{i}^{2}-\alpha_{i}}{2}
$$

and

$$
\left(L^{\prime}\right)^{2}=L^{2}+\sum_{i=1}^{l} \alpha_{i}^{2}
$$

So we get that

$$
g\left(L^{\prime}\right)=q(X)+m+\sum_{i=1}^{l} \frac{\alpha_{i}^{2}-\alpha_{i}}{2}
$$

and

$$
\left(L^{\prime}\right)^{2} \geq 2 m-1+\sum_{i=1}^{l} \alpha_{i}^{2}
$$

because $L^{2} \geq 2 m-1$ by assumption. Here we put $m^{\prime}=m+\sum_{i=1}^{l}\left(\alpha_{i}^{2}-\alpha_{i}\right) / 2$. Then we get that

$$
\begin{aligned}
\left(L^{\prime}\right)^{2} & \geq 2 m-1+\sum_{i=1}^{l} \alpha_{i}^{2} \\
& =2 m-1+\sum_{i=1}^{l}\left(\alpha_{i}^{2}-\alpha_{i}\right)+\sum_{i=1}^{l} \alpha_{i} \\
& =2 m^{\prime}-1+\sum_{i=1}^{l} \alpha_{i} \\
& \geq 2 m^{\prime}
\end{aligned}
$$

(B.1) The case in which X is of general type.

Then since $\operatorname{dim} \mathrm{Bs}\left|L^{\prime}\right| \leq 0$, we get that $\left(L^{\prime}\right)^{2} \leq 2 m^{\prime}$ by Theorem 1.7. Hence we have $\left(L^{\prime}\right)^{2}=2 m^{\prime}$. But then $X^{\prime} \cong C \times F$ and $L \equiv C+2 F$, where C and F are smooth projective curves with $g(C) \geq 2$ and $g(F)=2$. This is impossible by the same argument as in the case (A-1) above.
(B.2) The case in which the Kodaira dimension of X is 1 .

Then X^{\prime} has an elliptic fibration over a smooth projective curve $C ; \pi: X^{\prime} \rightarrow$ C. Then by Theorem 1.8 (2) and (3) we get that $\left(L^{\prime}\right)^{2} \leq 2 m^{\prime}$ since $\operatorname{dim} \mathrm{Bs}\left|L^{\prime}\right|$ ≤ 0. So we get that $\left(L^{\prime}\right)^{2}=2 m^{\prime}$. In particular $\sum_{i} \alpha_{i}=1$ and (X, L) is a simple blowing up of $\left(X^{\prime}, L^{\prime}\right)$. Furthermore $m=m^{\prime}$. So we get that $h^{0}\left(L^{\prime}\right) \geq h^{0}(L)=$ $m+1=m^{\prime}+1$.

If $h^{0}\left(L^{\prime}\right) \geq m^{\prime}+2$, then $\left(L^{\prime}\right)^{2} \geq 2 \Delta\left(L^{\prime}\right)$ and we can check this case by using Fujita Theory. First we remark that $g\left(L^{\prime}\right)>m^{\prime} \geq \Delta\left(L^{\prime}\right)$ since $\left(L^{\prime}\right)^{2}=2 m^{\prime}$. By Theorem 1.4 and Theorem 1.5, in this case $q(X)=q\left(X^{\prime}\right)=0$ because $\kappa(X)=1$. But $K_{X^{\prime}} L^{\prime}=2 q(X)-2=-2$ and this is impossible. So we assume that $h^{0}(L)=$
$m^{\prime}+1$. Then by the same argument as in the case (A.2.1) above we get the type of (X^{\prime}, L^{\prime}), that is,
(B.2.1) $g(C)=2, q(X)=3, \chi\left(\mathcal{O}_{X}\right)=0, L^{\prime} F^{\prime}=2$ and π has no multiple fibers, where F^{\prime} is a general fiber of π (this is the type ($\mathrm{N}-1-1$) in Theorem 2.1),
(B.2.2) π has just two multiple fibers, $2 F_{1}$ and $2 F_{2}, \chi\left(\mathcal{O}_{X}\right)=0, g(C)=1$, $q(X)=2$, and $L^{\prime} F^{\prime}=2$ (this is the type ($\mathrm{N}-1-2$) in Theorem 2.1).
(B.3) The case in which $\kappa(X)=0$.

In this case X^{\prime} is an abelian surface or bielliptic surface because $K_{X} L^{\prime}$ $\leq 2 q\left(X^{\prime}\right)-2$. But if $\left(L^{\prime}\right)^{2}=2 m^{\prime}$, then $\sum_{i} \alpha_{i}=1$ and $g(L)=g\left(L^{\prime}\right)$, that is, $m=m^{\prime}$. Since $h^{0}\left(L^{\prime}\right) \geq h^{0}(L) \geq m+1=m^{\prime}+1$, we get that $h^{0}\left(L^{\prime}\right) \geq m^{\prime}+1$. But this is impossible because $h^{0}\left(L^{\prime}\right)=\left(L^{\prime}\right)^{2} / 2$. Hence $\left(L^{\prime}\right)^{2}=2 m^{\prime}+2$. Then $g\left(L^{\prime}\right)=2+m^{\prime}$ and X^{\prime} is an abelian surface because $q\left(X^{\prime}\right)=2$ in this case. Furthermore we have $\sum_{i} \alpha_{i} \leq 3$. (This is the type ($\mathrm{N}-2$) in Theorem 2.1.) These complete the proof of Theorem 2.1.

Remark 2.2. Here we consider the type (M-2-1) in Theorem 2.1. Let $\rho: X \rightarrow \boldsymbol{P}_{C}(\mathscr{E})$ be the double covering. Let $B \subset \boldsymbol{P}_{C}(\mathscr{E})$ be the branch locus of ρ. Then $B \in|2 D|$ for some divisor on $\boldsymbol{P}_{C}(\mathscr{E})$. Since X and $\boldsymbol{P}_{C}(\mathscr{E})$ is smooth, we need that B is smooth. So we check the condition that $|2 D|$ has a smooth member. Here we assume that \mathscr{E} is normalized. Let C_{0} be the minimal section of $\boldsymbol{P}_{C}(\mathscr{E}) \rightarrow C$ and let F be a fiber of $\boldsymbol{P}_{C}(\mathscr{E}) \rightarrow C$. We put $e=-C_{0}^{2}$. Then $D \equiv 2 C_{0}+e F$ by the proof of Theorem 2.1.

Assume that $e \geq 0$. Then an irreducible curve on $\boldsymbol{P}_{C}(\mathscr{E})$ is one of the following types (see [Ha]);
(1) C_{0},
(2) F,
(3) $a C_{0}+b F, a>0$, and $b \geq a e$.

Assume that $B \in|2 D|$ is not irreducible. Then we remark that F is not an irreducible component of B because $F(B-F)>0$. If C_{0} is an irreducible component of B, then $0=C_{0}\left(3 C_{0}+2 e F\right)=-3 e+2 e=-e$. Hence $e=0$. If C_{0} is not an irreducible component of B, then any irreducible component of B is the type $x C_{0}+y F$ with $x>0$ and $y \geq e x$. If $y>x e$, then $x C_{0}+y F$ is ample and this is a contradiction because B is smooth. So we have $y=x e$ and

$$
\begin{aligned}
0 & =\left(x C_{0}+y F\right)\left((4-x) C_{0}+(2 e-y) F\right) \\
& =-x(4-x) e+x(2 e-y)+y(4-x) \\
& =(e x-2 y)(x-2) \\
& =-y(x-2) .
\end{aligned}
$$

Hence $y=0$ or $x=2$.
If $y=0$, then $e=0$ because $x>0$.
If $x=2$, then $y=2 e$ and $B-\left(2 C_{0}+2 e F\right)=2 C_{0}$. Since C_{0} is not an irreducible component of B, we get that $2 C_{0}$ is numerically equivalent to an irreducible curve. Hence $e=0$.

In any case we have $e=0$ and $B=4 C_{0}$ if B is not irreducible. Since C_{0} is not an irreducible component of B, we get that $B=C_{1}+C_{2}$ where C_{i} is an irreducible curve with $C_{i} \equiv 2 C_{0}$ for $i=1,2$.

Assume that B is irreducible and $e>0$. Then by the above condition, we have $2 e \geq 4 e>0$ and this is impossible. Hence $e=0$. Therefore $B \equiv 4 C_{0}$ and $e=0$ in this case.

Assume that $e<0$. Then an irreducible curve on $\boldsymbol{P}_{C}(\mathscr{E})$ is one of the following types;
(1') C_{0},
(2') F,
(3') $a C_{0}+b F$, where $a=1$ and $b \geq 0$ or $a \geq 2$ and $b \geq(1 / 2) a e$.
Since $B \in|2 D|=\left|4 C_{0}+2 e F\right|, F$ is not an irreducible component of B because B is smooth.

If C_{0} is an irreducible component of B, then $C_{0}\left(3 C_{0}+2 e F\right)=-3 e+2 e=$ $-e>0$ and this is impossible because B is smooth. Therefore C_{0} is not an irreducible component of B.

Since

$$
2 D \equiv 4 C_{0}+2 e F=\sum_{i}\left(a_{i} C_{0}+b_{i} F\right)
$$

and $2 e=(1 / 2) \times 4 \times e$, we get that $a_{i} \geq 2$ and $b_{i}=(1 / 2) a_{i} e$ for any i. So if B is not irreducible, then since $\sum_{i} a_{i}=4$, we get that $a_{i}=2$ and $b_{i}=e$. In this case $\left(2 C_{0}+e F\right)^{2}=-4 e+4 e=0$. Therefore we have the following two types:
$\left(1^{\prime \prime}\right)$ If B is not irreducible, then $B=C_{1}+C_{2}$, where $C_{i} \equiv 2 C_{0}+e F$ for each i.
$\left(2^{\prime \prime}\right)$ If B is irreducible, then $B \equiv 4 C_{0}+2 e F$.
Therefore we get the following types:
(M-2-1-1) If $e \geq 0$ and B is not irreducible, then $e=0$ and $B=C_{1}+C_{2}$, where $C_{i}=2 C_{0}$ for $i=1$ or 2 .
(M-2-1-2) If $e \geq 0$ and B is irreducible, then $e=0$ and $B=4 C_{0}$.
(M-2-1-3) If $e<0$ and B is not irreducible, then $B=C_{1}+C_{2}$, where $C_{i} \equiv 2 C_{0}+e F$ for each i.
(M-2-1-4) If $e<0$ and B is irreducible, then $B \equiv 4 C_{0}+2 e F$.

References

[Bea] A. Beauville, L'inégalité $p_{g} \geq 2 q-4$ pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 343-346.
[BeSo] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, 1995.
[Bes] G. Besana, On polarized surfaces of degree three whose adjoint bundles are not spanned, Arch. Math., 65 (1995), 161-167.
[De] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 319-346; Addendum, Bull. Soc. Math. France, 111 (1983), 301-302.
[Fj1] T. Fuilta, On hyperelliptic polarized varieties, Tôhoku Math. J., 35 (1983), 1-44.
[Fj2] T. Fuita, Polarized manifolds of degree three and Δ-genus two, J. Math. Soc. Japan, 41 (1989), 311-331.
[Fj3] T. Fuitia, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Series 155, Cambridge, 1990.
[Fk0] Y. Fukuma, On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension, Math. Nachr., 180 (1996), 75-84.
[Fk1] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), 229-251.
[Fk2] Y. Fukuma, On polarized 3-folds (X, L) with $g(L)=q(X)+1$ and $h^{0}(L) \geq 4$, Ark. Mat., 35 (1997), 299-311.
[Fk3] Y. Fukuma, On the nonemptiness of the adjoint linear system of polarized manifolds, Canad. Math. Bull., 41 (1998), 267-278.
[Fk4] Y. Fukuma, A lower bound for $K_{X} L$ of quasi-polarized surfaces (X, L) with non-negative Kodaira dimension, Canad. J. Math., 50 (1998), 1209-1235.
[Fk5] Y. Fukuma, On sectional genus of quasi-polarized 3-folds, Trans. Amer. Math. Soc., 351 (1999), 363-377.
[Fk6] Y. Fukuma, On complex manifolds polarized by an ample line bundle of sectional genus $q(X)+2$, Math. Z., 234 (2000), 573-604.
[Fk7] Y. Fukuma, On complex n-folds polarized by an ample line bundle L with $\operatorname{dim} \mathrm{Bs}|L| \leq 0$, $g(L)=q(X)+m$, and $h^{0}(L) \geq n+m$, Comm. Algebra, 28 (2000), 5769-5782.
[Fk8] Y. Fukuma, A lower bound for $\left(K_{X}+t L\right) L^{n-1}$ of quasi-polarized manifolds (X, L) with $\kappa\left(K_{X}+t L\right) \geq 0$, J. Algebra, 239 (2001), 624-646.
[Fk9] Y. Fukuma, Polarized surfaces (X, L) with $g(L)=q(X)+m$, and $h^{0}(L) \geq m+2$, preprint (2000).
[Fk10] Y. Fukuma, On complex n-folds polarized by an ample line bundle L with $\mathrm{Bs}|L|=\emptyset$, $g(L)=q(X)+m$, and $h^{0}(L)=n+m-1, \quad$ preprint (2000).
[Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.
[LB] H. Lange and Ch. Birkenhake, Complex Abelian Varieties, Springer, Berlin, 1992.
[Se1] F. Serrano, The Picard group of a quasi-bundle, Manuscripta Math., 73 (1991), 63-82.
[Se2] F. Serrano, Elliptic surfaces with an ample divisor of genus 2, Pacific J. Math., 152 (1992), 187-199.

Department of Mathematics
College of Education
Naruto University of Education, Takashima
Naruto-cho, Naruto-shi 772-8502
Japan
(Current address)
Department of Mathematics
Faculty of Science
Kochi University
Aкebono-cho, Kochi 780-8520
Japan
E-mail: fukuma@math.kochi-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: 14C20.
 Key words and phrases: Polarized surfaces, sectional genus, irregularity, delta genus.
 Received July 28, 2000; revised February 22, 2001.

