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ON THE MAXIMAL POLAR QUOTIENT

OF AN ANALYTIC PLANE CURVE

Arkadiusz Pèoski*

Abstract

We give an explicit formula for the maximal polar quotient of a plane curve

singularity with some applications to the èojasiewicz exponent and the C 0-degree of

su½ciency.

Introduction

Let CfX ;Yg be the ring of convergent power series in two variables X ;Y .
If f ; f A CfX ;Yg, we denote by � f ; f�0 the intersection multiplicity of f and f,
equal to the C-codimension of the ideal � f ; f� generated by f and f in CfX ;Yg.
We use ord f to denote the order of the series f. If f ; f are without constant
term, then � f ; f�0 V �ord f ��ord f�, the equality holding if and only if f ; f are
transverse. Let t � t�X ;Y � A CfX ;Yg be a regular parameter i.e. a series of
order 1. Assume that f A CfX ;Yg is a reduced (i.e. without multiple factors)
power series and t does not divide f. The rational numbers � f ; f�0=�t; f�0, where
f runs over irreducible factors of the Jacobian J � q�t; f �=q�X ;Y�, are called
polar quotients of f with respect to t. If t � bX ÿ aY then we speak about polar
quotients with respect to the direction �a : b� A P1�C�. Clearly the set of polar
quotients is ®nite. It is empty if and only if �q�t; f �=q�X ;Y���0; 0�0 0. If t
and f are transverse, then the polar quotients are of the form � f ; f�0=ord f and
are also called polar invariants. They are topological invariants of the singu-
larity f � 0 (see [T], [LMW]). If t and f are not transverse the notion of polar
quotient is also interesting, especially in the case of the singularities at in®nity of
plane algebraic curves (see [Eph] and [LeÃ]). Casas-Alvero ([C-A], Chapter 6,
Theorem 6.11.5) calculated polar quotients in the general case of reduced power
series using the in®nitely near points. However, the formulas he got are not so
explicit as that given by Merle ([M], TheÂoreÁme 3.1) in the case of one branch.
In this note we study the maximal polar quotient q0� f ; t� of f with respect to t:
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q0� f ; t� � supfq A R : q is a polar quotient of f with respect to tg:
If �q�t; f �=q�X ;Y���0; 0�0 0 then q0� f ; t� � ÿy by convention.

Our aim is to give an explicit formula for q0� f ; t� (Theorem 1.3 of this
paper) by means of the maximal polar quotients of the branches and some
intersection multiplicities. Our result is inspired by Kuo and Lu's paper [KL], to
prove it we use the Kuo-Lu lemma that enables us to locate the Puiseux roots of
qf =qY � 0 relatively to the roots of f � 0 ([KL], Lemma 3.3). As an appli-
cation of our formula we show that for a given f the supfq0� f ; t� : t does not
divide f g is attained if f and t are transverse (Corollary 1.4). The maximal polar
quotient are of particular interest. Teissier in his fundamental paper [T] proved
(in the case of isolated hypersurface singularities) that the èojasiewicz exponent
L0� f � and the C0-degree of su½ciency are determined by the maximal polar
quotient with respect to the generic direction. Using Teissier's result we give
formulas for L0� f � and Suff0� f � (Corollary 1.5) and a correct version (Corollary
1.8) of a formula for Suff0� f � proposed by Lichtin in [Li]. In the appendix we
reprove the main result of [KL]. We give also an example showing that the
geometric interpretation of this result given in [KL] is not exact.

1. Main result

Let f A CfX ;Yg be an irreducible power series. Recall that the semi-
group G0� f � of f is the set of all intersection numbers � f ; f�0 where f runs
over all power series f A CfX ;Yg such that f B � f �CfX ;Yg. Let b0; . . . ; bg be

the minimal system of generators of G0� f � : b0 � min�G0� f �nf0g� � ord f , bi �
min�G0� f �n�Nb0 � � � � �Nbiÿ1�� for i � 1; . . . ; g, Nb0 � � � � �Nbg � G0� f �. Let
GCD�b0; . . . ; bi� stand for the greatest common divisor of b0; . . . ; bi.

Proposition 1.1. Suppose that f is an irreducible power series with ord f >
1. Then for every regular parameter t we have

q0� f ; t� �
GCD�b0; . . . ; bgÿ1�bg

�t; f �0
:

The proposition above can be easily deduced from the generalization of Merle's
result ([M], TheÂoreÁme 3.1) given by Ephraim ([Eph], Lemma 1.6). We give a
direct proof of (1.1) in Section 4 of this paper.

Remark 1.2. If ord f � ord t � 1 and �q�t; f �=q�X ;Y ���0; 0�0 0 then
q0� f ; t� � ÿy, because the set of polar quotients is empty (by convention
sup j � ÿy). If ord f � ord t � 1 and �q�t; f �=q�X ;Y���0; 0� � 0 then there is
only one polar quotient and it is equal to 1. Hence q0� f ; t� � 1.

In the sequel we put maxfÿy; ag � a for every a A R. The main result of this
note is
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Theorem 1.3. Let f � f1 � � � fr �rV 2�, with fi A CfX ;Yg irreducible, be a
reduced power series. Let t be a regular parameter that does not divide f. Then

q0� f ; t� � max
r

i�1
max q0� fi; t�;max

j0i

� fi; fj�0
�t; fj�0

( )
� 1

�t; fi�0
X
j0i

� fi; fj�0
( )

:

We give the proof of (1.3) in Section 4. If f and t are transverse then our
theorem is an intersection theoretical counterpart of the main theorem of Kuo
and Lu (see [KL], Theorem A). Eggers in [E] developed Kuo and Lu's ideas
to calculate the polar quotients with respect to the generic direction in terms of
characteristics of branches and their intersection multiplicities coded by means of
tree-models (see [Ga] for further developments). In this case our result could
be also proved by using Eggers' theorem ([E], Satz 2.1). Let us de®ne for any
reduced power series f the invariant q0� f � by putting

(i) if ord f � 1, then q0� f � � ÿy,
(ii) if f is irreducible, ord f > 1 and b0; b1; . . . ; bg is the minimal system of

generators of the semigroup G0� f � then

q0� f � �
GCD�b0; . . . ; bgÿ1�bg

b0

;

(iii) if f � f1 � � � fr, rV 2 with irreducible fi �i � 1; . . . ; r� then

q0� f � � max
r

i�1
max q0� fi�;max

j0i

� fi; fj�0
ord fj

( )
� 1

ord fi

X
j0i

� fi; fj�0
( )

:

Using (1.1), (1.2) and (1.3) we get

Corollary 1.4. Suppose ord f > 1. Then for every regular parameter t
that does not divide f we have q0� f ; t�U q0� f �. If t and f are transverse then
q0� f ; t� � q0� f �.

Let S be an analytic set near 0 A C 2. We put L0� f ;S� � inffy > 0 :
jgrad f �z�jVCjzjy for z A S near 0g and call L0� f � �L0� f ;C 2� the èojasie-
wicz exponent of f. We say that L0� f � is attained along S if L0� f ;S� �L0� f �.
Let Suff0� f � be the C0-degree of su½ciency i.e. the smallest integer r such that
f is topologically equivalent to f � g for all g with ord gV r� 1. A historical
note about these two notions is given in [LW].

Corollary 1.5. If f is reduced and ord f > 1 then L0� f � � q0� f � ÿ 1 and
Suff0� f � � �q0� f ��.

Proof. According to [T] (Sec. 1, Corollaire 2 and Sec. 3, TheÂoreÁme 8)
there is a Zariski-open subset U HP1�C� such that L0� f � � q0� f ; bX ÿ aY � ÿ 1,
Suff0� f � � �q0� f ; bX ÿ aY�� for �a : b� A U . On the other hand if the line bX ÿ
aY � 0 is not tangent to the curve f �X ;Y � � 0 then q0� f ; bX ÿ aY � � q0� f � by
Corollary 1.4.
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The following result was proved independently by Bogusøawska ([B], The-
orem 2) and Kuo and ParusinÂski ([KP], Theorem 3.1).

Corollary 1.6 ([B], [KP]). If the line bX ÿ aY � 0 is not tangent to the
curve f �X ;Y� � 0 then the èojasiewicz exponent L0� f � is attained on the polar
curve a�qf =qX� � b�qf =qY� � 0.

Proof. Assume that the line bX ÿ aY � 0 is not tangent to the curve
f �X ;Y� � 0. Using parametrizations of the branches of the polar curve
a�qf =qX� � b�qf =qY� � 0 we check that L0� f ; fa�qf =qX � � b�qf =qY � � 0g� �
q0� f ; bX ÿ aY� ÿ 1. Then we use (1.4) and (1.5).

Remark 1.7. Let f � f1 � � � fr �rV 2� be a reduced power series such that
the irreducible factors fi are pairwise transverse that is � fi; fj�0 � �ord fi��ord fj�
for i 0 j. Let I � fi A f1; . . . ; rg : ord fi > 1g. Then

q0� f � � max
i A I

q0� fi� �
X
j0i

ord fj

( )
� max

i A I
fq0� fi� ÿ ord fig � ord f

if I 0j and q0� f � � ord f if I � j.

Corollary 1.8 ([Li]). Suppose that f � f1 � � � fr �rV 2� where fi are irre-
ducible, pairwise transverse and ord fi > 1 for some i A f1; . . . ; rg. Then

Suff0� f � � max
i A I

�q0� fi�� �
X
j0i

ord fj

( )
:

Proof. We apply the second part of Corollary 1.5 and Remark 1.7. In [Li]
(p. 160) the above formula is given without assumptions imposed on fi.

2. Polar quotients and Puiseux series

Let CfXg� �6
nV1 CfX 1=ng be the ring of Puiseux series. If f �X ;Y � A

CfX ;Yg is a power series Y-regular of order p > 0 i.e. such that ord f �0;Y � �
p, then f �X ;Y� � Qp

i�1�Y ÿ yi�X��U�X ;Y� where yi�X� A CfXg� are without
constant term and U�X ;Y� A CfX ;Yg is a unit i.e. U�0; 0�0 0. We denote
by Zer f � hy1�X�; . . . ; yp�X �i the sequence y1�X �; . . . ; yp�X� regarded as un-
ordered. To simplify the notation we write yi for yi�X�. Let f �X ;Y� A
CfX ;Yg be a power series Y-regular of order p > 1, then �qf =qY��X ;Y � A
CfX ;Yg is Y-regular of order pÿ 1 > 0 and we can consider the roots of both
sereis: Zer f � hy1; . . . ; ypi and Zer�qf =qY � � hz1; . . . ; zpÿ1i. The following is
basic for us

Lemma 2.1 (The Kuo-Lu lemma, [KL] Lemma 3.3). Suppose that f A
CfX ;Yg has no multiple factors. Then for every i; j A f1; . . . ; pg, i 0 j, there
exists a k A f1; . . . ; pÿ 1g such that

on the maximal polar quotient of an analytic plane curve 123



��� ord�yi ÿ yj� � ord�yi ÿ zk�:
Moreover, for every i A f1; . . . ; pg and k A f1; . . . ; pÿ 1g there exists a j A
f1; . . . ; pg such that (*) holds.

A simple proof of the Kuo-Lu lemma without using perturbations of power
series is given in [GP1], Lemma 3.2.

Proposition 2.2. With the notations and assumptions introduced above

q0� f ;X� � max
p

i�1

X
j0i

ord�yj ÿ yi� �max
j0i
ford�yj ÿ yi�g

( )
:

Proof. By de®nition

q0� f ;X � � sup
� f ; g�0
�X ; g�0

: g is an irreducible factor of
qf

qY

� �
:

Using Zeuthen's rule for intersection multiplicity we get

q0� f ;X� � max
pÿ1

k�1

Xp

i�1

ord�zk ÿ yi�
( )

:�1�

Put li �
P

j0i ord�yj ÿ yi� �maxj0iford�yj ÿ yi�g and choose i0 A f1; . . . ; pg such

that maxp
i�1flig � li0 . Let j0 A f1; . . . ; pg be such that

max
j0i0
ford�yj ÿ yi0�g � ord�yj0

ÿ yi0�:�2�

By the ®rst part of the Kuo-Lu lemma there is a root z � zk of qf =qY � 0 such
that

ord�zÿ yi0� � ord�yj0
ÿ yi0�:�3�

We will check that

ord�zÿ yi�V ord�yi0
ÿ yi� for all i0 i0:�4�

Indeed, we have

ord�zÿ yi�Vminford�zÿ yi0�; ord�yi0
ÿ yi�g � ord�yi0

ÿ yi�
for

ord�zÿ yi0� � ord�yj0
ÿ yi0� � max

j0i
ford�yj ÿ yi0�gV ord�yi ÿ yi0�

for a given i 0 i0. We get
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max
p

i�1
flig � li0 �

X
j0i0

ord�yj ÿ yi0� � ord�yj0
ÿ yi0�

U
X
j0i0

ord�zÿ yj� � ord�zÿ yi0�

�
Xp

j�1

ord�zÿ yj�

by (4) and (3). Consequently maxp
i�1fligU q0� f ;X � by (1). To check the

inequality q0� f ;X�Umaxp
i�1flig let z � zk be a root of qf =qY � 0 such that

q0� f ;X� �
Xp

i�1

ord�zÿ yi�:�5�

Let i1 A f1; . . . ; pg be such that

max
p

i�1
ford�zÿ yi�g � ord�zÿ yi1�:�6�

We will check that

ord�yi ÿ yi1�V ord�yi ÿ z� for i0 i1:�7�
We have

ord�yi ÿ yi1�Vminford�yi ÿ z�; ord�yi1
ÿ z�g

� min ord�yi ÿ z�;max
p

j�1
ford�zÿ yj�g

� �
� ord�yi ÿ z�:

By the second part of the Kuo-Lu lemma there is a j1 A f1; . . . ; pg such that

ord�zÿ yi1� � ord�yj1
ÿ yi1�:�8�

Therefore we get

q� f ;X� �
Xp

i�1

ord�zÿ yi� �
X
i0i1

ord�zÿ yi� � ord�zÿ yi1�

U
X
i0i1

ord�yi ÿ yi1� � ord�yj1
ÿ yi1�

U
X
i0i1

ord�yi ÿ yi1� �max
i0i1
ford�yi ÿ yi1�g

� li1 U max
p

i�1
flig:

This ends the proof of (2.2).
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3. Characteristic, order of contact and intersection multiplicity

In this section we recall some notions of the theory of branches. Our main
reference is [Z] (see also [D], [GP1], [GP2] for nontransverse case). Let f �
f �X ;Y � A CfX ;Yg be an irreducible power series Y-regular of order p > 1.
Clearly � f ;X �0 � p. The Propositions 3.1, 3.2 and 3.3 are well-known.

Proposition 3.1. Let Zer f � hy1; . . . ; ypi. Put b0 � p. Then there
exists a sequence of strictly positive integers b1 < � � � < bh such that for every
i A f1; . . . ; pg:

(i) fb A R : b � ord�yi ÿ yj� for some j 0 ig � fb1=b0; . . . ; bh=b0g
(ii) ]f j A f1; . . . ; pg : ord�yi ÿ yj� � bk=b0g � Bkÿ1 ÿ Bk where Bk � GCD �

�b0; . . . ; bk�.

Proof. Let i A f1; . . . ; pg. Then yi�X� � h�X 1=p� where h�T� A CfTg.
The roots of f �X ;Y� � 0 form a cycle h�wX 1=p� where w runs over the set U�p�
of p-th roots of unity. There exists strictly increasing sequence b1; . . . ; bh such
that ord�h�wX 1=p� ÿ h�X 1=p�� � bk=p if w A U�Bkÿ1�nU�Bk� and k � 1; . . . ; p.
Clearly ]�U�Bkÿ1�nU�Bk�� � Bkÿ1 ÿ Bk and the proposition follows. For more
details see [Z] (Chapter II) and [GP2] (Section 3).

We call �b0; b1; . . . ; bh� the characteristic sequence of f (with respect to

coordinates X ;Y ). We put bk � bk � �1=Bkÿ1�
Pkÿ1

i�1 �Biÿ1 ÿ Bi�bi for k � 1; . . . ;
h. The sum of an empty family is equal to zero. Thus we have b1 � b1. We
put b0 � b0.

Proposition 3.2. The sequence b0; b1; . . . ; bh is a system of generetors of the
semigroup G0� f � with respect to b0 � � f ;X�0 i.e. bk � minfG0� f �n�Nb0 � � � � �
Nbkÿ1�g for k � 1; . . . ; h and Nb0 � � � � �Nbh � G0� f �.

Proof. See [Z] (TheÂoreÁme 3.9) and [GP2] (Proposition 3.2).
Let us consider two Y-regular power series f ; g A CfX ;Yg. Let Zer f �

hy1�X�; . . . ; yp�X�i and Zer g � hz1�X�; . . . ; zq�X �i. We de®ne the order of
contact of f and g (in coordinates X ;Y ) by putting

cont� f ; g� � maxford�yi�X � ÿ zj�X�� : 1U iU p; 1U j U qg:
Clearly cont� f ; g� � cont�g; f �. Moreover it is easy to check that cont� f ; g� �
maxp

i�1ford�yi�X � ÿ zj�X��g for every j A f1; . . . ; qg.

Proposition 3.3. Suppose that ord f �0;Y � > 1 and let �b0; . . . ; bh� be the
characteristic sequence of f. Let k > 0 be the smallest integer such that cont� f ; g�
U bk=b0 (we put bh�1=b0 � �y). Then

� f ; g�0
�X ; g�0

�
Xkÿ1

i�1

�Biÿ1 ÿ Bi� bi

b0
� Bkÿ1 cont� f ; g�:
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Proof (see also [M], Proposition 2.4 where the case of generic coordinates is
considered). We may assume that cont� f ; g� � ord�y1 ÿ z1�. By Zeuthen's rule
we get

� f ; g�0
�X ; g�0

�
Xp

i�1

ord�yi ÿ z1�:

Using Proposition 3.1 we check that
(a) the set ford�y1 ÿ z1�; . . . ; ord�yp ÿ z1�g is equal to the set fb1=b0; . . . ;

bkÿ1=b0; cont� f ; g�g,
(b) ]f j A f1; . . . ; pg : ord�yj ÿ z1� � bi=b0g � Biÿ1 ÿ Bi,
(c) ]f j A f1; . . . ; pg : ord�yj ÿ z1� � cont� f ; g�g � Bkÿ1

and Proposition 3.3 follows.
Using (3.1) and (3.3) we prove

Proposition 3.4. Let f � f �X ;Y � A CfX ;Yg be irreducible, Y-regular,
ord f �0;Y� > 1 of characteristic �b0; b1; . . . ; bh�. Then

(i) q0� f ;X � �
Ph

i�1�Biÿ1 ÿ Bi�bi=b0 � bh=b0 � Bhÿ1bh=b0,
(ii) for every irreducible, Y-regular power series g A CfX ;Yg

� f ; g�0
�X ; g�0

U q0� f ;X� if and only if cont� f ; g�U bh

b0
:

Proof. To prove (i) let us observe that by Proposition 3.1:

X
j0i

ord�yi ÿ yj� �max
j0i
ford�yj ÿ yi�g �

Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
� bh

b0
� Bhÿ1

bh

b0

for every i A f1; . . . ; pg. Then we use Proposition 2.2. To check (ii) let us
suppose ®rst that cont� f ; g�U bh=b0. Then the smallest k > 0 such that
cont� f ; g�U bk=b0 is less than or equal to h. By Proposition 3.3 we get

� f ; g�0
�X ; g�0

U
Xkÿ1

i�1

�Biÿ1 ÿ Bi� bi

b0
� Bkÿ1

bk

b0
� Bkÿ1

bk

b0

U
Bhÿ1bh

b0

� q0� f ;X�

for the sequence Bkÿ1bk is increasing for k > 0 �bk�1 ÿ �Bkÿ1=Bk�bk �
bk�1 ÿ bk > 0 for k � 1; . . . ; hÿ 1).

Now, suppose that cont� f ; g� > bh=b0. Again by Proposition 3.3 we get
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� f ; g�0
�X ; g�0

�
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
� cont� f ; g� >

Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
� bh

b0

� Bhÿ1bh

b0

� q0� f ;X�:

This ends the proof.

4. Proof

It is easy to check

Lemma 4.1. If F is a local isomorphism i.e. a pair of power series without
constant term such that Jac F�0; 0�0 0 then

q0� f ; t� � q0� f �F; t �F�:
Therefore to prove (1.1) and (1.3) it su½ces to consider the case t � X .

Proof of Proposition 1.1. Let �b0; . . . ; bg� be the minimal system of gen-
erators of G0� f �. It is known ([D], pp. 332±333) that three cases are possible

(a) b0 � b0 then h � g and �b0; . . . ; bg� � �b0; . . . ; bg�,
(b) b0 > b0 is a multiple of b0, then h � g� 1 and �b0; . . . ; bg�1� �

�b0; b0; . . . ; bg�
(c) b0 > b0 and b0 is not a multiple of b0, then h � g and �b0; b1; . . . ; bg� �

�b1; b0; b2; . . . ; bg�.
Therefore Bhÿ1bh � GCD�b0; . . . ; bhÿ1�bh � GCD�b0; . . . ; bgÿ1�bg and Proposition
1.1 follows from (3.4)(i).

Proof of Theorem 1.3. It su½ces to prove the following: if f � f1 � � � fr

�rV 2� with fi irreducible, is Y-regular, then

q0� f ;X� � max
r

i�1
max q0� fi;X�;max

j0i

� fi; fj�0
�X ; fj�0

( )
� 1

�X ; fi�0
X
j0i

� fi; fj�0
( )

:

According to Proposition 2.2 we have to calculate the quantities

li �
X
j0i

ord�yj ÿ yi� �max
j0i
ford�yj ÿ yi�g:

Without restriction of the generality we may assume that i � 1 and y1 � y1�X � is
a root of the equation f1�X ;Y � � 0. Let us suppose that ord f1�0;Y� > 1 and
let �b0; . . . ; bh� be the characteristic of f1. Set

I1 � fi0 1 : yi � yi�X� is a root of f1�X ;Y� � 0g
and
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I2 � fi : yi � yi�X� is a root of f2�X ;Y� � � � fr�X ;Y� � 0g:
Therefore we can write

l1 �
X
i A I1

ord�yi�X� ÿ y1�X �� �
X
i A I2

ord�yi�X� ÿ y1�X ��

�max max
i A I1

ford�y1�X� ÿ yi�X ��g;max
i A I2

ford�yi�X � ÿ y1�X��g
� �

:

We get X
i A I1

ord�yi�X � ÿ y1�X�� �
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
by Proposition 3:1;

X
i A I2

ord�yi�X� ÿ y1�X �� � 1

�X ; f1�0
X
i01

� f1; fi�0 by Zeuthen's rule;

max
i A I1

ford�yi�X� ÿ y1�X ��g � bh

b0
by Proposition 3:1;

max
i A I2

ford�yi�X� ÿ y1�X��g � max
i01
fcont� f1; fi�g by definition:

Consequently we get

��� l1 � 1

�X ; f1�0
X
i01

� f1; fi�0 �
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0

�max
bh

b0
;max

i01
cont� f1; fi�

� �
:

Let us consider two cases.

Case 1. maxi01fcont� f1; fi�gU bh=b0. By Proposition 3.4 we have
q0� f1;X � �

Ph
i�1�Biÿ1 ÿ Bi�bi=b0 � bh=b0 and � f1; fi�0=�X ; fi�0 U q0� f1;X � for all

i 0 1. Therefore we get by (*):

l1 � 1

�X ; f1�0
X
i01

� f1; fi�0 �
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
� bh

b0

� 1

�X ; f1�0
X
i01

� f1; fi� � q0� f1;X�

� 1

�X ; f1�0
X
i01

� f1; fi�0 �max q0� f1;X �;max
i01

� f1; fi�0
�X ; fi�0

� �
:

Case 2. maxi01fcont� f1; fi�g > bh=b0. Let us ®x i 0 1. If cont� f1; fi� >
bh=b0 then
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� f1; fi�0
�X ; fi�0

�
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
� cont� f1; fi�

by (3.3), if cont� f1; fi�U bh=b0 then

� f1; fi�0
�X ; fi�0

U
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0

again by (3.3). Therefore

max
i01

� f1; fi�0
�X ; fi�0

�
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
�max

i01
fcont� f1; fi�g:

Using (*) we get

l1 � 1

�X ; f1�0
X
i01

� f1; fi�0 �
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
�max

i01
fcont� f1; fi�g

� 1

�X ; f1�0
X
i01

� f1; fi�0 �max
i01

� f1; fi�0
�X ; fi�0

� 1

�X ; f1�0
X
i01

� f1; fi�0 �max q0� f1;X �;max
i01

� f1; fi�0
�X ; fi�0

� �

for q0� f1;X� �
Xh

i�1

�Biÿ1 ÿ Bi� bi

b0
� bh

b0
< max

i01

� f1; fi�0
�X ; fi�0

:

It remains to consider the case ord f1�0;Y� � 1. Then �X ; f1�0 � 1, q0� f1;X � �
ÿy and we get easily

l1 �
X
j01

� f1; fj�0 �max
j01

� f1; fj�0
�X ; fj�0

:

This ends the proof.

Appendix

We reprove here the main result of [KL].
Let f � f �X ;Y � A CfX ;Yg be a power series Y-regular of order p � ord f .

Let yi � yi�X � A CfXg� �i � 1; . . . ; p� be the sequence of all solutions (without
constant term) of the equation f �X ;Y� � 0. We put

li �
X
j0i

ord�yi ÿ yj� �max
j0i
ford�yi ÿ yj�g for i � 1; . . . ; p:

Then we have

arkadiusz pèoski130



Kuo and Lu's formula for the èojasiewicz exponent ([KL], Theorem A).
With the above notation assume that f is a reduced power series with ord f > 1.
Then, we have

L0� f � � max
p

i�1
fli ÿ 1g:

Proof. By Proposition 2.2 we have q0� f ;X � � maxp
i�1flig. On the other

hand q0� f ;X� � q0� f � by the second part of Corollary 1.4. Then we use the
®rst part of Corollary 1.5.

Note here that the original result was proved for distinguished polynomials.
The quantities li was de®ned in Kuo and Lu's work by means of some per-
turbations of the roots yi � yi�X �. The simple expressions for li we use are due
to Bogusøawska ([B], Lemma 3).

Let ci � maxj0iford�yi ÿ yj�g for i � 1; . . . ; p. According to [KL] a root yi

is minimal if for any root yj with ord�yi ÿ yj� � ci we get cj U ci. If is easy to
check that if ci < ck then li < lk. Hence we get

Corollary to Kuo and Lu's formula ([KL], Theorem A0). We have

L0� f � � max
i A I
fli ÿ 1g:

where I is the set of all i A f1; . . . ; pg such that the root yi is minimal.

For every branch f we denote by K0� f � the knot corresponding to f. Let
f be a branch of characteristic �b0; . . . ; bg�. We de®ne the self-link s0� f � of f to

be s0� f � � link�K0� f �;K0� ~f �� where ~f is a branch of characteristic �b0; . . . ; bg�
such that cont� f ; ~f � � bg=b0 (see [KL], pp. 300±301). Then s0� f � � � f ; ~f �0 �
GCD�b0; . . . ; bgÿ1�bg � q0� f ��ord f � by Proposition 3.3.

In [KL] the authors assert ([KL], Corollary to Theorem B) the following:
``suppose that y1 � y1�X� is a minimal root of f � f1 � � � fr and let fi � fi�X ;Y� be
such that fi�X ; y1�X�� � 0. Assume that knots K0� fi� and K0� fj� are not iso-
topic for i0 j. Then

�ord fi�l1 �
X
j0i

� fi; fj�0 � s0� fi�:''

The example given below shows that the above statement (and consequently
Theorem B of [KL]) are not true.

Example. Let 1 < b0 < � � � < bg, g > 1 be a sequence of coprime integers

such that the divisors GCD�b0; . . . ; bi� form a strictly decreasing sequence. Let
f1�X ;Y � � 0 (resp. f2�X ;Y � � 0) be the minimal equation of the Puiseux series

y1 � X b1=b0 � � � � � X bgÿ1=b0 (resp. y2 � X b1=b0 � � � � � X bg=b0 ). Let f � f1 f 2.
The series f1 and f2 have di¨erent characteristics and hence the knots K0� f1� and
K0� f2� are not isotopic. For every root yi of f we get ci � cont� f1; f2� � bg=b0,
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therefore all roots of f are minimal. The calculation from the proof of Theorem
1.3 (Section 4 of this paper, Case 2) gives

l1 � � f1; f2�0
ord f1

� � f1; f2�0
ord f2

and

q0� f1� <
� f1; f2�0
ord f2

:

Therefore

�ord f1�l1 � � f1; f2�0 � ord f1

� f1; f2�0
ord f2

> � f1; f2�0 � �ord f1�q0� f1� � � f1; f2�0 � s0� f1�:
This contradicts the statement quoted above.
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