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Abstract

Using the Newton algorithm we show how to compute all the polar quotients and

their multiplicities of a plane curve f ¼ 0, where f is a formal power series of two

variables over an algebraically closed field k with characteristic zero. The curve is not

necessarily reduced.

1 Introduction

Let k be an algebraically closed field with characteristic zero. We use
standard notations; k½½X ;Y �� is the ring of formal power series, ord f is the order
of f A k½½X ;Y �� ðord 0 ¼ þyÞ. For elements a1; . . . ; ap of a given set we define
the system A ¼ ha1; . . . ; api as the sequence a1; . . . ; ap treated as unordered. Put
deg A ¼ p. Instead of ha1; . . . ; a1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m1 times

; . . . ap; . . . ; ap|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mp times

i we write ha1 : m1; . . . ap : mpi.

For A ¼ ha1; . . . ; api and B ¼ hb1; . . . ; bqi we have a natural addition AlB ¼
ha1; . . . ap; b1; . . . bqi with the neutral element h i. By convention ha : 0i ¼ h i.
(see [Wh], notion of symetric power).

Let f ðX ;YÞ A k½½X ;Y �� be such a series that p ¼ ord f ð0;YÞ > 1.
Recall the polar curve qf =qY ¼ 0 with its positive-order-roots z1ðXÞ; . . . ; zp�1ðXÞ
in the ring k½½X ��� ¼ 6

nb1
k½½X 1=n�� of the Puiseux series. We consider the

system

Qð f ;XÞ ¼ hord f ðX ; z1ðXÞÞ; . . . ; ord f ðX ; zp�1ðXÞÞi ð1Þ

of polar quotients of f with respect to X . Every polar quotient is either a
positive rational or þy. We omit the bar over Q to denote the system of finite
quotients. We have Qð f ;XÞ ¼ Qð f ;XÞ if and only if f is reduced.
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When X and f are transverse, the polar quotients are topological invariants
called polar invariants (k ¼ C). We have [T]:

ðŁojasiewicz exponent of grad f near zeroÞ ¼ ðmaximal polar invariantÞ � 1:

The study of polar quotients and polar invariants extends over many authors
([T], [M], [D], [E], [Eph], [CA], [LMW1], [LMW2], [Ga], [GP1], [GP2], [LMP]).
Let us mention Merle’s [M] description of polar invariants for irreducible series
(see also [GP1]); Delgado’s developement of the case of two branches [D]; and the
computation of polar invariants for multi-branched singularity using Egger’s
diagrams ([E], [Ga]). The authors of [GP2] give explicit formulae for the polar
quotients in terms of characteristics and intersection multiplicities of branches.
For a nondegenerate series f the polar invariants can be calculated using the
Newton polygon of f [LP], [LMP].

This paper aims to compute the system of polar quotients using a version
of the Newton algorithm ([W], [Can], [KP], [L2]). We generalize the approach
from [LP], [LMP].

2 Main result

It is convenient to consider the ring k½½X �;Y �� ¼ 6
nb1

k½½X 1=n;Y ��. Take
f ¼

P
fabX

aY b A k½½X �;Y ��. As usual we define the support supp f as fða; bÞ :
fab 0 0g, the Newton diagram Dð f Þ as convðsupp f þ R2

þÞ, and the Newton
polygon Nð f Þ as the set of compact faces of Dð f Þ. By dð f Þ we denote the
distance between Dð f Þ and the horizontal axis.

For S A Nð f Þ, by jSj1 and jSj2 we denote the lengths of projections of S
onto the horizontal and vertical axies, respectively. We call the ratio jSj1=jSj2
the inclination of S. For y > 0 (or y ¼ �y) it will be useful to consider the
polygon Nyð f Þ, which consists of all the faces S A Nð f Þ with an inclina-
tion strictly greater than y. Let aðSÞ denote the abscissa of the point where the
line determined by S intersects the horizontal axis. We define the initial form
inð f ;SÞ ¼

P
fabX

aY b, where ða; bÞ runs over S V supp f . By tð f ;SÞ we denote
the number of di¤erent roots of the polynomial inð f ;SÞð1;Y Þ A k½Y �. The
number eðSÞ A f�1; 0g is defined as �1 when S touches the horizontal axis and
as 0 otherwise. Put dð f ;SÞ ¼ jSj2 þ eðSÞ � tð f ;SÞ þ 1. Note that dð f ;SÞ ¼ 0
if and only if every nonzero root of inð f ;SÞ in k½½X ��� is of multiplicity 1. Then
we call the series f nondegenerate on S.

For any j A k½½X ���, ord j > 0 one can apply the substitution fjðX ;Y Þ ¼
f ðX ; jðXÞ þ YÞ A k½½X �;Y �� ([Can], [GP1], [KP]). Clearly, fj ¼ f for j ¼ 0.
Consider the ring k½X �� ¼ 6

nb1
k½X 1=n� of Puiseux polynomials. For j A k½X ��,

deg j < þy. Put deg 0 ¼ �y. The set Tð f ;XÞH k½X �� of the tracks (of the
Newton algorithm) for f is defined to be the minimal set satisfying two prop-
erties: (I) 0 A Tð f ;XÞ, (II) for every jðXÞ A Tð f ;XÞ, if there exists S ANdeg jð fjÞ,
then for every nonzero root aX y of inð fj;SÞ, jþ aX y A Tð f ;XÞ. We will write
Nj instead of Ndeg jð fjÞ when f is fixed.
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We call series c A k½½X ��� a continuation of j A k½X �� if ordðj� cÞ > deg j.
Then we write c ¼ jþ � � � : Let j be a track of the Newton algorithm for f .
Let Qjð f ;XÞ ¼ 0hord f ðX ; zðX ÞÞi, where zðXÞ is a continuation of j. By
analogy we define Qjð f ;XÞHQð f ;X Þ for ord f ðX ; zðX ÞÞ < þy.

Now, put Cj ¼ hy : dð fjÞ � 1i if dð fjÞ > 1 and Cj ¼ h i if dð fjÞ ¼ 1 or 0.
For S A Nj we denote Aj;S ¼ haðSÞ : tð fj;SÞ � 1i. We have the following

Theorem 2.1 (main result).
(a) For j A Tð f ;X Þ we have Qjð f ;XÞ ¼ ½0

S ANj
ðAj;S lBj;SÞ�lCj, where

Bj;S is a system of quotients strictly greater than aðSÞ, deg Bj;S ¼
dð f ;SÞ.

(b) Bj;S ¼ 0
aX y QjþaX yð f ;X Þ, where aX y runs over all multiple nonzero

roots of inð fj;SÞ,
(c) Qð f ;X Þ ¼ 0

j ATð f ;X Þ0S ANj
Aj;S

We prove the above theorem in the next section.

Remark 2.2. Clearly aðSÞ is a polar quotients if and only if tð fj;SÞ > 1.
This condition is always satisfied for S A Nj, which does not touch the horizontal
axis. When aðSÞ is not a polar quotient then S touches the axis and inð fj;SÞ ¼
bX zðY � aX yÞjSj2 .

Remark 2.3. We can consider the system Ajð f ;XÞ ¼ 0
S ANj Aj;S of

finite quotients which are determined by the behaviour of fj on Nj. Clearly
deg Ajð f ;XÞ ¼

P
S ANj ½tð fj;SÞ � 1�.

Remark 2.4. We state that the sum in (c) is in fact finite. We can replace
Tð f ;XÞ by the finite Tminð f ;XÞ, which contains all j A Tð f ;XÞ such that there
exists S A Nj with tð fj;SÞ > 1.

For j ¼ 0 we have the following two corollaries. We write AS;BS instead of
A0;S;B0;S and C instead of C0.

Corollary 2.5. (a) Qð f ;XÞ ¼ ½0
S ANð f ÞðAS lBSÞ�lC,

(b) BS ¼ 0
aX y QaX yð f ;XÞ, where aX y runs over all possible multiple nonzero

roots of inð f ;SÞ.

Corollary 2.6. If dð f Þa 1 and dð f ;SÞ ¼ 0 for every S A Nð f Þ then

Qð f ;X Þ ¼ Qð f ;X Þ ¼ A0ð f ;X Þ ¼ 0
S ANð f Þ

haðSÞ : jSj2 þ eðSÞi:
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When S A Nð f Þ touches the horizontal axis and jSj2 ¼ 1 then aðSÞ is not a polar
quotient. We call such a face exceptional ([LP]).

Example 2.7. Consider the curve f ¼ Y ðY 2 � XÞ3 � 2XY 2ðY 2 � XÞ2 þ
8X 5Y þ X 6. We have Nð f Þ ¼ fS;Tg, where S joins ð0; 7Þ with ð3; 1Þ and T
joins ð3; 1Þ with ð6; 0Þ. From Corollary 2.5 Qð f ;XÞ ¼ AS lBS lAT lBT l
C. Clearly inð f ;SÞ ¼ Y ðY 2 � XÞ3 ¼ YðY � X 1=2Þ3ðY þ X 1=2Þ3, aðSÞ ¼ 7=2;
tð f ;SÞ ¼ 3, dð f ;SÞ ¼ 4; inð f ;TÞ ¼ �X 3Y þ X 6 ¼ �X 3ðY � X 3Þ, aðTÞ ¼ 6,
tð f ;TÞ ¼ 1, dð f ;TÞ ¼ 0 and dð f Þ ¼ 0. Obviously AT ¼ BT ¼ C ¼ h i.

Hence Qð f ;X Þ ¼ AS lBS ¼ h7=2; 7=2ilBS, where BS contains four quo-
tients strictly greater then 7=2. Consider two multiple nonzero roots X 1=2 and
�X 1=2 of inð f ;SÞ. We have BS ¼ QX 1=2ð f ;X ÞlQ�X 1=2ð f ;X Þ. Taking X 1=2

as a track we obtain fX 1=2 ¼ f ðX ;X 1=2 þ YÞ ¼ ðY þ X 1=2ÞY 3ðY þ 2X 1=2Þ3 �
2X ðY þ X 1=2Þ2

Y 2ðY þ 2X 1=2Þ2 þ 8X 5ðY þ X 1=2Þ þ X 6. The polygon NX 1=2 has
two faces: P which joins ð2; 3Þ with ð3; 2Þ and R which joins ð3; 2Þ with
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ð11=2; 0Þ. We have QX 1=2ð f ;XÞ ¼ AX 1=2;P lBX 1=2;P lAX 1=2;R lBX 1=2;R l

CX 1=2 . Note that inð fX 1=2 ;PÞ ¼ 8X 2Y 3 � 8X 3Y 2 ¼ 8X 2Y 2ðY � X Þ, aðPÞ ¼ 5;
tð fX 1=2 ;PÞ ¼ 2, dð fX 1=2 ;PÞ ¼ 0; inð fX 1=2 ;RÞ ¼ �8X 3Y 2 þ 8X 11=2 ¼ �8X 3 �
ðY � X 5=4ÞðY þ X 5=4Þ, aðRÞ ¼ 11=2, tð fX 1=2 ;RÞ ¼ 2, dð fX 1=2 ;RÞ ¼ 0 and
dð fX 1=2Þ ¼ 0. Since BX 1=2;P ¼ BX 1=2;R ¼ CX 1=2 ¼ h i we finish with QX 1=2ð f ;X Þ ¼
AX 1=2;P lAX 1=2;R ¼ h5; 11=2i. Analogously, Q�X 1=2ð f ;XÞ ¼ h5; 11=2i and
finally Qð f ;X Þ ¼ A0ð f ;X ÞlQX 1=2ð f ;X ÞlQ�X 1=2ð f ;X Þ ¼ h7=2; 7=2; 5; 5; 11=2;
11=2i. As a result we see that f is reduced. We can compute the Milnor
number from Teissier’s formula m0ð f Þ ¼

P
Qð f ;X Þ � ord f ð0;YÞ þ 1 ¼ 22.

Note that Tminð f ;XÞ ¼ f0;X 1=2;�X 1=2g.

3 Proof of the main result

The proof of the main result will be performed in several steps. The first
step is the classical Newton-Puiseux theorem, which provides a description of the
Puiseux roots of a series in terms of its Newton polygon (Theorem 3.1). The
second and fundamental step is the description of the Newton polygon of
the derivative. In the final steps of the proof we applicate these methods to
the Newton algorithm.

The Newton-Puiseux theorem
Let f A k½½X �;Y �� be a series such that p ¼ ord f ð0;YÞ > 1. Let Zer f ¼

hy1ðXÞ; . . . ; ypðXÞi be the system of all the positive-order-roots of f ¼ 0 in
k½½X ���. Consider S A Nð f Þ and define the form inð f ;SÞ� by the equation
inð f ;SÞ ¼ X aSY bS inð f ;SÞ� where aS and bS are the maximal possible powers.
Let us note that deg Zer inð f ;SÞ� ¼ jSj2. For any y > 0 (or y ¼ �y) we define
Zery f , which contains those roots of Zer f which satisfy ord yiðXÞ > y. By the
height of Nyð f Þ we mean

P
S ANyð f Þ jSj2 and we denote it by jNyð f Þj. We

need the Newton-Puiseux theorem in the following form (we use convention
in 0 ¼ 0).

Theorem 3.1. Let Zery f ¼ hy1ðX Þ; . . . ; ysðXÞi. Then
(i) hord y1ðX Þ; . . . ; ord ysðX Þi ¼ 0

S ANyð f ÞhjSj1=jSj2 : jSj2il
hþy : dð f Þi,

(ii) hin y1ðXÞ; . . . ; in ysðX Þi ¼ 0
S ANyð f Þ Zer inð f ;SÞ� lh0 : dð f Þi.

(iii) s ¼ jNyð f Þj þ dð f Þ.

The following property geometrically expresses the orders from (1). For y > 0

and any closed nonempty subset ZHR2
þ we define the number

aðy;ZÞ ¼ minfaþ by : ða; bÞ A Zg:

Obviously aðy;Df Þ ¼ aðy; supp f Þ. This number is the abscissa of the point
where the line of inclination y, supporting Dð f Þ, intersects the horizontal axis.
We have the following simple
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Property 3.2. Let zðXÞ A k½½X ���, 0 < ord zðXÞ < þy. Then
(a) ord f ðX ; zðXÞÞb aðord z;Df Þ,
(b) the inequality is sharp if and only if there exists a face S A Nð f Þ such that

jSj1=jSj2 ¼ ord zðXÞ and in zðX Þ is a root of inð f ;SÞ.

Polygon of the derivative
In this next step we describe the polygon Nðqf =qYÞ. By eliminating the

points from supp f that lie on the horizontal axis and by moving all remaining
points one unit down, we obtain the support of qf =qY . In e¤ect, if S A Nð f Þ
does not touch the horizontal axis, then T ¼ S � ð0; 1Þ is a face of the polygon
Nðqf =qY Þ and

in
qf

qY
;T

� �
¼ q

qY
inð f ;SÞ: ð2Þ

If S touches the horizontal axis then there exists the corresponding family of
faces T A Nðqf =qYÞ such that jT j1=jT j2 b jSj1=jSj2 and

P
jT j2 þ dðqf =qY Þ ¼

jSj2 � 1. If there exists an element T , of the family which is parallel to S, then
(2) is also satisfied. As a result we have

Corollary 3.3 (see [L1], Corollary 5.4). Let T A Nðqf =qYÞ.
(a) If T is parallel to face S A Nð f Þ, then (2) is satisfied.
(b) If T is not parallel to any face of Nð f Þ, then

� jT j1=jT j2 > jSj1=jSj2 for every S A Nð f Þ,
�� the polygon Nð f Þ touches the horizontal axis.

We need a more detailed analysis of the relations between roots of inð f ;SÞ and
q=qY inð f ;SÞ. Consider the factorization

inð f ;SÞ ¼ bX aSY bSLr1

1 � � �Lrk
k ; ð3Þ

where Y ;L1; . . . ;Lk are di¤erent monic linear factors of inð f ;SÞ in k½X ��½Y �
(b0 0; k > 0; ri > 0). Every factor has the form Y � aX y, where y ¼ jSj1=jSj2.
We have the following

Lemma 3.4 (see [LMP], Lemma 4.1).
(i) If S does not touch the horizonatal axis ðbS > 0Þ, then

q

qY
inð f ;SÞ ¼ b 0X aSY bS�1Lr1�1

1 � � �Lrk�1
k L 0

1 � � �L 0
k;

where L 0
1; . . . ;L

0
k are monic linear factors di¤erent from Y ;L1; . . . ;Lk.

(ii) If S touches the horizontal axis ðbS ¼ 0Þ and k > 1 then

q

qY
inð f ;SÞ ¼ b 0X aSLr1�1

1 � � �Lrk�1
k L 0

1 � � �L 0
k�1;

where L 0
1; . . . ;L

0
k�1 are monic linear factors di¤erent from L1; . . . ;Lk.
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Proof. If bS > 0 then Y -di¤erentiation of inð f ;SÞ ¼ X aSY bS inð f ;SÞ�
moves the support of inð f ;SÞ by the vector ð0;�1Þ. We obtain

q

qY
inð f ;SÞ ¼ X aSY bS�1hðX ;Y Þ; ð4Þ

where the powers aS and bS � 1 are the maximal possible. Let us consider a
factor of inð f ;SÞ of the form Lr ¼ ðY � aX yÞr. By substitution aX y þ Y in
place of Y , we obtain Y r in place of Lr. We use (4) to show that Lr�1 divides
q=qY inð f ;SÞ and r� 1 is the maximal possible power.

Remark 3.5. If S touches the horizontal axis ðbS ¼ 0Þ and k ¼ 1 in (3), then
inð f ;SÞ ¼ bX aSLr and q=qYðinð f ;SÞÞ ¼ b 0X aSLr�1.

From the above lemma and the previous statements we have

Proposition 3.6. Let S A Nð f Þ.
(a) If t ¼ tð f ;SÞ > 1 then there exists t� 1 solutions c 0

1ðX Þ; . . . ;c 0
t�1ðXÞ of

qf =qY ¼ 0 such that ord f ðX ;c 0
i ðX ÞÞ ¼ aðSÞ.

(b) If d ¼ dð f ;SÞ > 0 then there exists d solutions c1ðX Þ; . . . ;cdðXÞ of
qf =qY ¼ 0 such that ord f ðX ;ciðXÞÞ > aðSÞ.

Proof. (a) If S does not touch the horizontal axis, then by using notations
of Lemma 3.4, k ¼ tð f ;SÞ � 1. Since T ¼ S � ð0; 1Þ is a face of Nðqf =qY Þ,
from Theorem 3.1 there exist solutions c 0

1ðXÞ; . . . ;c 0
kðXÞ of qf =qY ¼ 0 that

correspond to the factor L 0
1 � � �L 0

k of q=qYðinð f ;SÞÞ ¼ inðqf =qY ;TÞ. Clearly
ord c 0

i ðXÞ ¼ jT j1=jT j2 ¼ jSj1=jSj2. Since L 0
1; . . . ;L

0
k are di¤erent from Y ;L1; . . . ;

Lk, then in c 0
i is not a root of inð f ;SÞ. By Property 3.2 we obtain

ord f ðX ;c 0
i ðX ÞÞ ¼ aðjSj1=jSj2;Df Þ ¼ aðSÞ: ð5Þ

If S touches the horizontal axis, then k ¼ tð f ;SÞ. Let s be the number of
appearances of Y in the sequence L 0

1; . . . ;L
0
k�1. We can assume that L 0

1; . . . ;
L 0
k�s�1 are di¤erent from Y . Analogously, as before, we construct solutions

c 0
1ðX Þ; . . . ;c 0

k�s�1ðX Þ that satisfy (5). For s > 0, by the Newton-Puiseux the-
orem, there exist s solutions c 0

k�sðXÞ; . . . ;c 0
k�1ðXÞ of qf =qY ¼ 0 that correspond

to the family of faces T A Nðqf =qYÞ, that lie below the line b ¼ s, and to the
distance dðqf =qY Þ. We have

P
jT j2 þ dðqf =qY Þ ¼ s. If c 0

i ðX Þ comes from a
face T of the family, then by Corollary 3.3 we have ord c1ðX Þ ¼ jT j1=jT j2 >
jSj1=jSj2. Since S touches the horizontal axis, it is the lower possible face of
Nð f Þ. Therefore, the line supporting Df , which is parallel to T , meets Df at the
vertex lying on the horizontal axis. The vertex has the abscissa ord f ðX ; 0Þ.
From Property 3.2 we obtain ord f ðX ;c 0

i ðXÞÞ ¼ aðjT j1=jT j2;Df Þ ¼ ord f ðX ; 0Þ.
If ciðXÞ ¼ 0, then similarly ord f ðX ;c 0

i ðXÞÞ ¼ ord f ðX ; 0Þ. Since ord f ðX ; 0Þ ¼
aðSÞ we finish with (5) in both cases.

(b) Note that d ¼ dð f ;SÞ ¼ ðr1 � 1Þ þ � � � þ ðrk � 1Þ. If d > 0 then there
exists a face T A Nðqf =qYÞ which is parallel to S. By Theorem 3.1 and by
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Lemma 3.4 there exist solutions c1ðXÞ; . . . ;cdðXÞ of qf =qY ¼ 0 corresponding to
the factor Lr1�1

1 � � �Lrk�1
k of q=qY ðinð f ;SÞÞ ¼ inðqf =qY ;TÞ. Clearly ord ciðX Þ ¼

jT j1=jT j2 ¼ jSj1=jSj2 and in ciðX Þ is a root of inð f ;SÞ. From Property 3.2 it
follows that ord f ðX ;ciðX ÞÞ > aðjSj1=jSj2;Df Þ ¼ aðSÞ, which completes the proof.

The Newton polygon relative to a Puiseux polynomial
Let j A k½X �� be an arbitrary Puiseux polynomial of a positive order. We

begin by describing the polygon Nj ¼ Ndeg jð fjÞ. Applying the Weierstrass
preparation theorem we can write

f ðX ;YÞ ¼ UðX ;YÞðY � y1ðXÞÞ � � � ðY � ypðX ÞÞ; ð6Þ

where UðX ;YÞ A k½½X ;Y �� is a unit and, as before, Zer f ¼ hy1; . . . ; ypi. Hence

fjðX ;Y Þ ¼ f ðX ; jðXÞ þ YÞ ¼ U 0ðX ;Y Þ½Y � ðy1 � jÞ� � � � ½Y � ðyp � jÞ�;

where U 0ðX ;YÞ A k½½X �;Y �� is also a unit. Therefore

Zer fj ¼ hy1 � j; . . . ; yp � ji:

Using Theorem 3.1 (a) with y ¼ �y we obtain

hordðy1 � jÞ; . . . ; ordðyp � jÞi ¼ 0
S ANð fjÞ

hjSj1=jSj2 : jSj2ilhþy : dð fjÞi:

Let Zerj f ¼ hy1; . . . ; ysi denote the system of such solutions from Zer f that
ordðyi � jÞ > deg j (i.e. y1ðXÞ; . . . ; ysðX Þ are continuations of j). As a con-
sequence of Theorem 3.1 applied with y ¼ deg j we have

Corollary 3.7.
(a) hordðy1 � jÞ; . . . ; ordðys � jÞi¼0

S ANj
hjSj1=jSj2 : jSj2ilhþy : dð fjÞi

(b) hinðy1 � jÞ; . . . ; inðyp � jÞi ¼ 0
S ANj

Zer inð fj;SÞ� lh0 : dð fjÞi
(c) s ¼ jNjj þ dð fjÞ.

We will need the following simple

Property 3.8. Let g A k½½X �;Y �� be a nonzero series. Fix y > 0.
(i) There exists a unique representation

g ¼ g0 þ g1 þ g2 þ � � �
such that every gi is a quasi-homogeneous form of the weights ðy; 1Þ.

(ii) If r is the maximal power such that Y r divides g0, then

jNyðgÞj þ dðgÞ ¼ r:

(iii) If there exists S A NðgÞ such that jSj1=jSj2 ¼ y, then g0 ¼ inð f ;SÞ.

Now, we can prove the following
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Proposition 3.9. Assume that j A k½X �� is such a polynomial that Nj is
nonempty. Let S A Nj and let aX y be a nonzero root of inð f ;SÞ. Then

jNjþaX y j þ dð fjþaX yÞ ¼ mutiplicity of aX y as a root of inð f ;SÞ:

Proof. For y ¼ jSj1=jSj2 let us consider the representation

fj ¼ g0 þ g1 þ g2 þ � � �
according to Property 3.8. We have g0 ¼ inð fj;SÞ. Let us write inð fj;SÞ ¼
ðY � aX yÞ rhðX ;YÞ, where r is the maximal possible power. We have r > 0.
Let us note that fjþaX yðX ;Y Þ ¼ fjðX ; aX y þ YÞ. Hence

fjþaX y ¼ ~gg0 þ ~gg1 þ ~gg2 þ � � � ; ð7Þ
where ~ggiðX ;Y Þ ¼ giðX ; aX y þ YÞ. Since aX y þ Y is the homogeneous form of
the weights ðy; 1Þ, (7) is the unique representation guaranteed by Property 3.8.
We have ~gg0ðX ;YÞ ¼ inð fj;SÞðX ; aX y þ Y Þ ¼ Y r~hhðX ;YÞ. From Property 3.8(b)
follows that

r ¼ jNjþaX y j þ dð fjþaX yÞ;
which concludes the proof.

Tracks of the Newton algorithm
We give here two di¤erent characterizations of the set Tð f ;X Þ, of the tracks

of the Newton algorithm for f , and prove their equivalency with the definition
from Section 2. Recall

Definition 3.10. Tð f ;XÞH k½X �� is the minimal subset satisfying two
properties: (I) 0 A Tð f ;XÞ, (II) for every jðXÞ A Tð f ;X Þ, if there exists S A Nj,
then for every nonzero root aX y of inð fj;SÞ, jþ aX y A Tð f ;XÞ.

Let us define

T1ð f ;XÞ ¼ fj A k½X �� : byðX Þ A Zer f such that ordðyðXÞ � jÞ > deg jg
and

T2ð f ;XÞ ¼ fj A k½X �� : jNjj þ dð fjÞ > 0g:

Proposition 3.11. If Zer f is nonempty then Tð f ;X Þ ¼ T1ð f ;X Þ ¼
T2ð f ;XÞ.

Proof. The equality T1ð f ;X Þ ¼ T2ð f ;XÞ follows directly from Corollary
3.7 (c). Since Tð f ;XÞ is the minimal set with properties (I) and (II), it su‰ces
to show that T2ð f ;X Þ satisfies both properties in order to verify that Tð f ;XÞH
T2ð f ;XÞ. Because Zer f is nonempty, the first condition 0 A T2ð f ;XÞ is clear.
In order to check the second condition, let us consider j A T2ð f ;XÞ. Let us
assume that there exists S A Nj and let aX y be an arbitrary nonzero root of
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inð fj;SÞ. We must show that jþ aX y A T2ð f ;XÞ, which follows immediately
from Proposition 3.9.

To finish the proof it su‰ces to verify that T1ð f ;XÞHTð f ;XÞ. Let
j ¼ a1X

y1 þ � � � þ anX
yn be a non zero element of T1ð f ;XÞ i.e. there exists

yðXÞ A Zer f such that ordðyðXÞ � jÞ > deg j. Let us put j0 ¼ 0 and jk ¼
a1X

y1 þ � � � þ akX
yk for k ¼ 1; . . . ; n� 1. We will show the implication jk A

Tð f ;XÞ) jkþ1 ATð f ;XÞ. Assume that jk ATð f ;XÞ. We have inðyðX Þ� jkÞ ¼
akþ1X

ykþ1 . By Corollary 3.7 there exists S A Njk such that akþ1X
ykþ1 is a root

of inð fjk ;SÞ. From property (II) we obtain jkþ1 ¼ jk þ akþ1X
ykþ1 A Tð f ;X Þ.

Since 0 A Tð f ;XÞ, by induction we show that j ¼ jn A Tð f ;XÞ, completing the
proof.

End of the proof
We are in a good position to finish the proof of the main result (Theorem

2.1).

Proof of (a). Let j A Tð f ;X Þ. By Proposition 3.11 s ¼ jNjj þ dð fjÞ > 0.
By Theorem 3.1 there exist solutions c1ðX Þ; . . . ;csðX Þ of fj ¼ 0 such that
deg ci > deg j. By using previous notation we can write Zerdeg jð fjÞ ¼
hc1; . . . ;csi. On the other hand, we have the system Zerj f ¼ hy1; . . . ; ysi of
roots of f ¼ 0 which are continuations of j. Corollary 3.7 states the one-to-one
correspondence between Zerdeg jð fjÞ and Zerj f by c 7! y ¼ jþ c (the inverse:
y 7! c ¼ y� j). Since ðqf =qYÞj ¼ qfj=qY , this construction can be directly

applied to Zerjðqf =qY Þ. If s ¼ jNjj þ dð fjÞ > 1, then by Y -di¤erentiation and
by Theorem 3.1, there exist s� 1 solutions c1; . . . ;cs�1 of qfj=qY ¼ 0 such that
ord ci > deg j. Clearly

Zerjðqf =qYÞ ¼ hfþ c1; . . . ; fþ cs�1i: ð8Þ

Consider S A Nj. If t ¼ tð fj;SÞ > 1, then by Proposition 3.6 (a) there exist t� 1
solutions c 0

1; . . . ;c
0
t�1 of qfj=qY ¼ 0 such that ord fjðX ;c 0

i ðX ÞÞ ¼ aðSÞ. Then
for z 0i ðXÞ ¼ jðXÞ þ c 0

i ðX Þ A Zerjðqf =qYÞ we have

ord f ðX ; z 0i ðX ÞÞ ¼ ord f ðX ; jðXÞ þ c 0
i ðX ÞÞ ¼ ord fjðX ;c 0

i ðXÞÞ ¼ aðSÞ:

If d ¼ dð f ;SÞ > 0 then by Proposition 3.6 (b) we analogously construct solutions
z1ðXÞ; . . . ; zdðXÞ A Zerjðqf =qY Þ such that ord f ðX ; ziðXÞÞ > aðSÞ. We finish
with the observation that if dð fjÞ > 1, then jðXÞ is a common root of f ¼ 0 and
qf =qY ¼ 0 with multiplicity dð fjÞ � 1 and ord f ðX ; jðX ÞÞ ¼ ord fjðX ; 0Þ ¼ þy.

Proof of (b). Consider roots z1ðXÞ; . . . ; zdðXÞ A Zerjðqf =qY Þ such that

Bj;S ¼ hord f ðX ; z1ðXÞÞ; . . . ; ord f ðX ; zdðXÞÞi:
Fix i A f1; . . . ; dg. We must show the fact that zi has the form jþ aX y þ � � � ;
where aX y is a multiple root of inð fj;SÞ. Let ci ¼ zi � j. Since in ci ¼ aX y,
this fact follows immediately from the construction described in Proposition 3.6.
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Proof of (c). We begin with an observation that Tminð f ;XÞ is finite
(Remark 2.4). It is enough to consider the tracks generated by solutions of
f ¼ 0 with infinite number of termes. Let us fix such a solution yðX Þ ¼
a1X

y1 þ a2X
y2 þ � � � A Zer f . Let us define the sequence of tracks j0 ¼ 0; . . . ;

jj ¼ a1X
y1 þ � � � þ ajX

yj ; . . . and the sequences of series f ð jÞ :¼ fjj�1
and polygons

Nð jÞ :¼ Njj�1
. For any j ¼ 1; 2; . . . ; according to Corollary 3.7, there exists a

face Sð jÞ A Nð jÞ with the inclination yj, such that ajX
yj is a root of inð f ð jÞ;Sð jÞÞ

with multiplicity rj > 0. We write lj ¼ degY inð f ð jÞ;Sð jÞÞ. Of course, lj b rj .

From Proposition 3.9 we have rj ¼ jNð jþ1Þj þ dð f ð jþ1ÞÞb ljþ1. As the result
we have the infinite sequence l1 b r1 b l2 b r2 b � � � of positive integers.
Therefore, there exists j such that rj ¼ ljþ1 ¼ rjþ1 ¼ � � � : The first equality means
that Sð jþ1Þ is the highest face of Nð jÞ. The second equality means that
inð f ð jþ1Þ;Sð jþ1ÞÞ has a unique nonzero root, hence tð f ð jþ1Þ;Sð jþ1ÞÞ ¼ 1. Since

Sð jþ1Þ touches the horizontal axis (Remark 3.5), Nð jþ1Þ has only one face.
To conclude the proof we need to show that for every solution zðXÞ A

Zerðqf =qY Þ, such that
ord f ðX ; zðXÞÞ < þy ð9Þ

there exists a track j A Tð f ;XÞ and a face S A Nj such that ord f ðX ; zðXÞÞ ¼
aðSÞ. According to (6) and (9) we have ordðzðX Þ � yðXÞÞ < þy for every
yðXÞ A Zer f . Let us choose a solution yðXÞ with the longest common track
jðXÞ of both series zðX Þ and yðXÞ. We have zðXÞ ¼ jðXÞ þ czðXÞ and yðX Þ ¼
jðXÞ þ cyðXÞ, where ord cz > deg j, ord cy > deg j and in cy 0 in cz. Since

0 ¼ ðqf =qY ÞðX ; zðXÞÞ ¼ ðqfj=qYÞðX ;czðX ÞÞ, therefore in cz can be described by
N 0

j :¼ Ndeg jðqfj=qY Þ by virtue of Corollary 3.7.
If ord cz ¼ þy, then zðXÞ ¼ jðXÞ and according to (9) we have

ord f ðX ; zðX ÞÞ ¼ ord f ðX ; jðXÞÞ ¼ ord fjðX ; 0Þ < þy. Hence, there exists
S A Nj which touches the horizontal axis and ord fjðX ; 0Þ ¼ aðSÞ. If ord czðXÞ
is finite, but does not appear as an inclination of any face of Nj, then according
Corollary 3.3 (b) the line supporting Dð fjÞ, of inclination ord cz, intersects the
horizontal axis at the point ðord fjðX ; 0Þ; 0Þ. Hence, by Property 3.2 we have
ord f ðX ; zðX ÞÞ ¼ ord fjðX ;czðX ÞÞ ¼ ord fjðX ; 0Þ. Therefore, in both cases
ord f ðX ; zðX ÞÞ ¼ aðSÞ.

Let us assume that ord cz ¼ jSj1=jSj2 for a certain S A Nj but that in cz

is not a root of inð fj;SÞ. By Property 3.2 we have ord f ðX ; zðXÞÞ ¼ aðSÞ as
before. If in cz is a root of inð fj;SÞ, then by Theorem 3.1 there exists
yðXÞ A Zer f of the form yðX Þ ¼ jðX Þ þ czðX Þ þ � � � ; which contradicts the
definition of yðXÞ. Because of this contradiction, the last possibility cannot
happen and we conclude the proof of the main result.

4 Eggers’ example

The following example shows that curves which are not equisingular can
have the same polar invariants, counting their multiplicities. Let us consider the
following four Puiseux series
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y1 ¼ X þ X 3=2 þ X 15=4; y3 ¼ X þ X 5=2 þ X 11=4;

y2 ¼ 2X þ X 5=2 þ X 13=4; y4 ¼ 2X þ X 3=2 þ X 17=4:

Let f1; f2; f3; f4 A k½½X ;Y �� be the minimal series respectively for y1; y2; y3; y4.
We put f ¼ f1 f2 and f 0 ¼ f3 f4. Let us begin with f . We have the following
cycle for y1

y
ðiÞ
1 ¼ e4iX 4=4 þ e6iX 6=4 þ e15iX 15=4

as well as for y2

y
ðiÞ
2 ¼ 2e4iX 4=4 þ e10iX 10=4 þ e13iX 13=4;

where i ¼ 0; 1; 2; 3 and where e is a primitive root of unity of degree four. On
the basis of the table provided below we can analyze tracks 0;X ;X þ X 3=2 and
X � X 3=2

f ðX ;YÞ f ðX ;X þY Þ f ðX ;X þX 3=2 þYÞ f ðX ;X �X 3=2 þYÞ

y
ð0Þ
1 ¼ X þX 3=2 þX 15=4 X 3=2 X 15=4 2X 3=2

y
ð1Þ
1 ¼ X �X 3=2 � eX 15=4 �X 3=2 �2X 3=2 �eX 15=4

y
ð2Þ
1 ¼ X þX 3=2 �X 15=4 X 3=2 �X 15=4 2X 3=2

y
ð3Þ
1 ¼ X �X 3=2 þ eX 15=4 �X 3=2 �2X 3=2 eX 15=4

y
ð0Þ
2 ¼ 2X þX 5=2 þX 13=4 X X X

y
ð1Þ
2 ¼ 2X �X 5=2 þ eX 13=4 X X X

y
ð2Þ
2 ¼ 2X þX 5=2 �X 13=4 X X X

y
ð3Þ
2 ¼ 2X �X 5=2 � eX 13=4 X X X

The first column presents all the roots of f ¼ 0; the second—the initial forms
of solutions of f ðX ;X þ Y Þ ¼ 0; the third— f ðX ;X þ X 3=2 þ YÞ ¼ 0 and the
fourth— f ðX ;X � X 3=2 þ YÞ ¼ 0. This information allows us to reconstruct the
relative polygons as well as their initial forms.
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Polygon Nð f Þ has one face A, which joins points ð0; 8Þ and ð8; 0Þ, inð f ;AÞ ¼
ðY � X Þ4ðY � 2XÞ4, thus t ¼ tð f ;AÞ ¼ 2; from this we obtain invariant
aðAÞ ¼ 8 with multiplicity t� 1 ¼ 1. Polygon NX has one face B, which
joins points ð4; 4Þ and ð10; 0Þ, inð fX ;BÞ ¼ X 4ðY � X 3=2Þ2ðY þ X 3=2Þ2, thus
t ¼ tð fX ;BÞ ¼ 2; we obtain invariant aðBÞ ¼ 10 with multiplicity t� 1 ¼ 1.
Finally polygon NXþX 3=2 has a single face C, which joins ð7; 2Þ and
ð29=2; 0Þ, inð fXþX 3=2 ;CÞ ¼ 4X 7ðY � X 15=4ÞðY þ X 15=4Þ, thus t ¼ tð fXþX 3=2 ;CÞ
¼ 2; therefore we obtain invariant aðCÞ ¼ 29=2 with multiplicity t� 1 ¼ 1.
Taking into account track X � X 3=2 we again obtain aðCÞ ¼ 29=2 with multi-
plicity 1.

With the help of the second table we analyze tracks 2X ; 2X þ X 5=2 as well as
2X � X 5=2.

f ðX ;YÞ f ðX ; 2X þYÞ f ðX ; 2X þX 5=2 þYÞ f ðX ; 2X �X 5=2 þYÞ

y
ð0Þ
1 ¼X þX 3=2 þX 15=4 �X �X �X

y
ð1Þ
1 ¼X �X 3=2 � eX 15=4 �X �X �X

y
ð2Þ
1 ¼X þX 3=2 �X 15=4 �X �X �X

y
ð3Þ
1 ¼ X �X 3=2 þ eX 15=4 �X �X �X

y
ð0Þ
2 ¼ 2X þX 5=2 þX 13=4 X 5=2 X 13=4 2X 5=2

y
ð1Þ
2 ¼ 2X �X 5=2 þ eX 13=4 �X 5=2 �2X 5=2 eX 13=4

y
ð2Þ
2 ¼ 2X þX 5=2 �X 13=4 X 5=2 �X 13=4 2X 5=2

y
ð3Þ
2 ¼ 2X �X 5=2 � eX 13=4 �X 5=2 �2X 5=2 �eX 13=4

Polygon N2X has one segment D, which joins ð4; 4Þ and ð14; 0Þ, inð f2X ;DÞ ¼
X 4ðY � X 5=2Þ2ðY þ X 5=2Þ2, thus t ¼ tð f2X ;DÞ ¼ 2; we obtain invariant aðDÞ ¼ 14
with multiplicity t� 1 ¼ 1.

Polygon N2XþX 5=2 contains one face E, which joins ð9; 2Þ and ð31=2; 0Þ,
inð f2XþX 5=2 ;EÞ ¼ 4X 9ðY � X 13=4ÞðY þ X 13=4Þ, thus t ¼ tð f2XþX 5=2 ;EÞ ¼ 2; we
obtain invariant aðEÞ ¼ 31=2 with multiplicity t� 1 ¼ 1. Considering track
2X � X 5=2 we again obtain aðEÞ ¼ 31=2 with multiplicity 1.
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The remaining tracks do not lead to new solutions. The complete system of
invariants is as follows

h8; 10; 14; 29=2; 29=2; 31=2; 31=2i:

An analogous analysis of series f 0 results in the same system. The idea behind
Eggers’ example becomes visible when we simultaneously mark faces A;B;C;
D;E. Dotted lines signify new faces, which take the place of C and E for f 0.

5 The case of one branch

Let us consider the case when f A k½½X ;Y �� is an irreducible series Y -regular
of order p ( p > 1). Let us fix Puiseux solution

yðXÞ ¼ a1X
n1=p þ a2X

n2=p þ � � � ð10Þ

of equation f ¼ 0 (aj 0 0, 0 < n1 < n2 < integers, GCDðp; n1; n2; . . .Þ ¼ 1). This
solution generates other solutions in the form of a cycle

yiðX Þ ¼ a1e
n1iX n1=p þ a2e

n2iX n2=p þ � � � ; i ¼ 0; . . . ; p� 1; ð11Þ

where e is a primitive root of unity of degree p. Let yj ¼ nj=p. Let us consider
a sequence of tracks of the Newton algorithm for f constructed from solution
(10): j0ðXÞ ¼ 0; . . . ; jjðX Þ ¼ a1X

y1 þ � � � þ ajX
yj ; . . . : Let us put f ð jÞ :¼ fjj�1

and Nð jÞ :¼ Njj�1
. It is convenient to denote n0 ¼ p, y0 ¼ 0. We have

Property 5.1.
(i) Polygon Nð jÞ consists of one face Sð jÞ, with inclination nj=p, which

touches the horizontal axis.
(ii) degY inð f ð jÞ;Sð jÞÞ ¼ GCDðn0; . . . ; nj�1Þ for j ¼ 1; 2; . . . :
(iii) Every root of inð f ð jÞ;Sð jÞÞ has the multiplicity GCDðn0; . . . ; njÞ.

(iv) tð f ð jÞ;Sð jÞÞ ¼ GCDðn0; . . . ; nj�1Þ
GCDðn0; . . . ; njÞ

,
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(v) aðSð jÞÞ ¼
P j

j 0¼1ðGCDðn0; . . . ; nj 0�1Þ�GCDðn0; . . . ; nj 0 ÞÞ
nj 0

p
þ

GCDðn0; . . . ; njÞ
nj

p
.

Recall the definition of a generalized characteristic ðb0; . . . ; bhÞ:

b0 ¼ n0; . . . ; bk ¼ minfnj > bk�1 jGCDðn0; . . . ; nj�1Þ > GCDðn0; . . . ; njÞg;
. . . ; bh ¼ minfnj jGCDðn0; . . . ; njÞ ¼ 1g:

If p ¼ n0 � n1, then the generalized characteristic coincides with the topological
characteristic (k ¼ C). We call b1=p; . . . ; bh=p characteristic exponents. From
Property 5.1 we obtain

Corollary 5.2. tð f ð jÞ;Sð jÞÞ > 1 if and only if nj=p is a characteristic
exponent.

By j1; . . . ; jh let us denote the values of index j for characteristic exponents
and let ak ¼ aðSð jkÞÞ, k ¼ 1; . . . ; h. Furthermore let

ek ¼ GCDðn0; . . . ; njk Þ ¼ GCDðb0; . . . ; bkÞ:
We have

Corollary 5.3. All polar quotients obtained on the tracks of solution (10)
have the form

ak ¼
Xk

k 0¼1

ðek 0�1 � ek 0 Þ bk
0

p
þ ek

bk

p
; k ¼ 1; . . . ; h;

and appear with multiplicity ðek�1=ekÞ � 1.

Let nk ¼ ek�1=ek. To take into consideration the multiplicity deriving from
the remaining tracks, let us write cycle (11) in the form

yiðX Þ ¼ c0ðXÞ þ c1ðe i11 X
1=n1Þ þ c2ðe

i1þn1j2
2 X 1=ðn1n2ÞÞ

þ � � � þ chðe i1þn1i2þ���þn1n2���nh�1ih
h X 1=ðn1n2���nhÞÞ;

where c0; . . . ;ch�1 A k½X �, ch A k½½X ��, eh ¼ e, ek ¼ enkþ1���nh ðk ¼ 1; . . . ; h� 1Þ and
i ¼ i1 þ n1i2 þ � � � þ n1n2 � � � nh�1ih is the unique decomposition of i A f0; . . . ;
p� 1g such that 0a i1 a n1 � 1; . . . ; 0a ih a nh � 1. Therefore the track

jjk ðX Þ ¼ c0ðXÞ þ c1ðX 1=n1Þ þ � � � þ ck�1ðX 1=ðn1���nk�1ÞÞ
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generates the cycle composed of n1 � � � nk�1 elements. Hence the multiplicity of
polar quotient ak is

n1 � � � nk�1ðnk � 1Þ ¼ e0

e1
� � � ek�2

ek�1

ek�1

ek
� 1

� �
¼ e0

ek
� e0

ek�1
:

Commentary. From Property 5.1 result the common relations between
faces Sð jÞ and Sð jþ1Þ depending whether or not j stands in the characteristic
position. If j B f j1; . . . ; jhg, then GCDðn0; . . . ; nj�1Þ ¼ GCDðn0; . . . ; njÞ and faces
Sð jÞ;Sð jþ1Þ have a common upper end.

This means that polygon Nð jþ1Þ does not contain a segment parallel to Sð jÞ.
If j ¼ jk, then GCDðn0; . . . ; nj�1Þ ¼ ek�1 > ek ¼ GCDðn0; . . . ; njÞ.

Let us divide face Sð jÞ into nk ¼ ek�1=ek equal parts. Face Sð jþ1Þ appears in
place of the lowest part. Polygon Nð jþ1Þ contains a face S 0ð jÞ that is parallel to
Sð jÞ. The length of the projection of S 0ð jÞ onto the vertical axis is

GCDðn0; . . . ; nj�1Þ � GCDðn0; . . . ; njÞ ¼ ek�1 � ek:

The sequence of polygons Nð1Þ;Nð2Þ; . . . approaches the polygon of series
f ðX ; yðX Þ þ Y Þ, which is composed of segments S 0ð j1Þ; . . . ;S 0ð jhÞ.
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The numbers a1; . . . ; ah represent the abscissae of the points where the lines
determined by the faces intersect the horizontal axis (see: [GP1]).
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