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MEROMORPHIC FUNCTIONS WHOSE DERIVATIVES SHARE

SMALL FUNCTIONS

Ping Li and Yi Zhang

Abstract

In this paper, we prove that if the derivatives of two nonconstant meromorphic

functions f and g share three small functions CM�, or share two small functions CM�

and another two small functions IM�, then f 0 ¼ g 0 or f 0 is a quasi-Möbius trans-

formation of g 0 mostly.

1. Introduction

Let f ðzÞ be a nonconstant meromorphic function in the complex plane C .
We shall use the standard notations in Nevanlinna’s value distribution theory of
meromorphic functions such as Tðr; f Þ;Nðr; f Þ and mðr; f Þ (see, e.g., [1]). In
this paper, we use NkÞðr; 1=ð f � aÞÞ to denote the counting function of a-points of
f with multiplicities less than or equal to k, and Nðkðr; 1=ð f � aÞÞ to denote the
counting function of a-points of f with multiplicities great than or equal to k.
We also use NkÞðr; 1=ð f � aÞÞ and Nðkðr; 1=ð f � aÞÞ to denote the correspondent
reduced counting function, respectively. The notation Sðr; f Þ is defined to be
any quantity satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ as r ! y possibly outside a set of r
of finite linear measure. A meromorphic function cðzÞ is called a small function
with respect to f ðzÞ provided that Tðr; cÞ ¼ Sðr; f Þ.

Let f ðzÞ and gðzÞ be two nonconstant meromorphic functions, and cðzÞ a
small function with respect to both f ðzÞ and gðzÞ. If f ðzÞ � cðzÞ and gðzÞ � cðzÞ
have the same zeros ignoring (counting) multiplicities, then we say that f ðzÞ and
gðzÞ share cðzÞ IM (CM). We say f ðzÞ and gðzÞ share y IM (CM) if 1=f and
1=g share 0 IM (CM).

Let Sð f ¼ c ¼ gÞ be the set of all common zeros of f ðzÞ � cðzÞ and
gðzÞ � cðzÞ ignoring multiplicities, SEð f ¼ c ¼ gÞ the set of all common zeros of
f ðzÞ � cðzÞ and gðzÞ � cðzÞ with the same multiplicities. Denote Nðr; f ¼ c ¼ gÞ,
NEðr; f ¼ c ¼ gÞ the reduced counting functions of f and g correspondent to the
sets Sð f ¼ c ¼ gÞ, and SEð f ¼ c ¼ gÞ respectively. If

N r;
1

f � c

� �
þN r;

1

g� c

� �
� 2Nðr; f ¼ c ¼ gÞ ¼ Sðr; f Þ
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then we say that f and g share c IM�. If

N r;
1

f � c

� �
þN r;

1

g� c

� �
� 2NEðr; f ¼ c ¼ gÞ ¼ Sðr; f Þ

then we say that f and g share c CM�. Obviously, any IM (CM) shared small
function must be an IM� (CM�) shared small function.

In 1926, R. Nevanlinna [3] proved that if two meromorphic functions f
and g share four values a1; a2; a3; a4 CM, then f is a Möbius transformation of
g. Since then there have many papers been published on uniqueness theory and
sharing values. It is easy to prove (see, e.g., [4] p. 184) that if the derivatives f 0

and g 0 of two meromorphic functions share four distinct finite values IM, then
f 0 ¼ g 0. It is natural to ask what happens when f 0 and g 0 share three or four
small functions. In this paper, we prove the following theorems:

Theorem 1. Let f and g be two nonconstant meromorphic functions sharing
three small functions a1; a2; a3 CM�. Let c ðD a1; a2; a3Þ be a small function with
respect to f and g such that ðc; a3; a2; a1ÞD ð1G

ffiffiffi
2

p
Þ=2;�2G 2

ffiffiffi
2

p
; 3G 2

ffiffiffi
2

p
. If

N1Þ r;
1

f � c

� �
þN1Þ r;

1

g� c

� �
¼ Sðr; f Þ;

then f ¼ g or

f ¼ ðai þ ajÞg� 2aiaj
2g� ai � aj

:

The latter occurs only if the cross ratio ðc; ak; aj; aiÞ is equal to �1 for some
permutation fi; j; kg of f1; 2; 3g.

Theorem 2. Let f and g be two nonconstant meromorphic functions, a1; a2;
a3 ðDyÞ be small functions with respect to f 0 and g 0, and ða3 � a1Þ=ða3 � a2ÞD
ð1G

ffiffiffi
2

p
Þ=2;�2G 2

ffiffiffi
2

p
; 3G 2

ffiffiffi
2

p
. If f 0 and g 0 share a1; a2; a3 CM� then f 0 ¼ g 0

or

f 0 ¼ ðai þ ajÞg 0 � 2aiaj
2g 0 � ai � aj

:

The latter occurs only if 2ak � ai � aj ¼ 0 for some permutation fi; j; kg of
f1; 2; 3g.

Remark. There exist two meromorphic functions f and g such that f 0 and
g 0 share three small functions but f 0 0 g 0. For example, the derivatives of the
functions f ¼ ez and g ¼ �e�z share 0; 1;�1 CM, but f 0 0 g 0.

Theorem 3. Let f and g be two nonconstant meromorphic functions. If f 0

and g 0 share two small functions a1; a2 ðDyÞ CM�, and share another two small
functions a3; a4 ðDyÞ IM�, then f 0 ¼ g 0.
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2. Lemmas

Lemma 1 ([2]). Let f be a nonconstant meromorphic function and bi, i ¼
0; 1; . . . ; n be small functions of f . If

bn f
n þ bn�1 f

n�1 þ � � � þ b0 1 0;

then bi 1 0, i ¼ 0; 1; . . . n.

Lemma 2 ([5]). Let f and g be two nonconstant meromorphic functions, and
let a1; a2; a3; a4 be four distinct small functions with respect to f and g. If f and g
share a1; a2 CM� and share a3; a4 IM�, then f is a quasi-Möbius transformation of
g, i.e., there exist four small functions ai ði ¼ 1; 2; 3; 4Þ such that

f ¼ a1gþ a2

a3gþ a4
:

Lemma 3 ([6]). Let f and g be nonconstant meromorphic functions and
a0; ai; bi, i ¼ 1; 2 be small functions of f and g such that ai D aj, bi D bj ði0 jÞ,
f � ai share 0 CM� with g� bi ði ¼ 1; 2Þ and f � ai share y CM� with g� bi,
(i ¼ 1; 2). If

Tðr; f Þ0Nðr; 1=ð f � a0ÞÞ þ Sðr; f Þ;

then f is a quasi-Möbius transformation of g.

Lemma 4 ([7]). Let f1; f2; . . . ; fn be nonconstant meromorphic functions such
that f1 þ f2 þ � � � þ fn ¼ 1. If f1; f2; . . . ; fn are linearly independent, then the
following inequality holds

Tðr; f1Þ <
Xn

i¼1

Nn�1 r;
1

fi

� �
þ ðn� 1Þ

Xn

i¼1

Nn�1ðr; fiÞ þ oðTðrÞÞ; r B E:

Here and in the sequel, Nn�1ðr; f Þ is the counting function of f which counts a pole
of f according to its multiplicity if that multiplicity is less than or equal to n� 1
and counts a pole n� 1 times if the multiplicity is greater than n� 1. Here
TðrÞ ¼

Pn
i¼1 Tðr; fiÞ.

Lemma 5 ([8]). Let f1 and f2 be two nonconstant meromorphic functions
satisfying

Nðr; fiÞ þN r;
1

fi

� �
¼ SðrÞ; i ¼ 1; 2:

If f s
1 f t

2 � 1 is not identically zero for all integers s and t ðjsj þ jtj > 0Þ, then for
any positive number e, we have

N0ðr; 1; f1; f2Þa eTðrÞ þ SðrÞ
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where N0ðr; 1; f1; f2Þ denotes the reduced counting function of f1 and f2 related
to the common 1-points and TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ, SðrÞ ¼ oðTðrÞÞ as r ! y
possibly outside a set of r of finite linear measure.

Lemma 6. Let f and g be nonconstant meromorphic functions, and a1; a2;
a3; a4 be small functions with respect to f and g. If f and g share a1; a2 CM�,
and share a3; a4 IM�, and if there exists a small function c ðD a1; a2; a3; a4Þ with
respect to f and g such that

N1Þ r;
1

f � c

� �
¼ Sðr; f Þ;

then f ¼ g.

Proof. If two of a1; a2; a3; a4, say ai; aj, i0 j, satisfy

N r;
1

f � ai

� �
þN r;

1

f � aj

� �
¼ SðrÞ;

here and in the sequel, SðrÞ :¼ Sðr; f Þ ¼ Sðr; gÞ, where the equality follows from
the assumption that f and g share three small functions IM�. Then we have

Tðr; f ÞaN r;
1

f � ai

� �
þN r;

1

f � aj

� �
þN r;

1

f � c

� �
þ SðrÞ

aNð2 r;
1

f � c

� �
þ SðrÞ

a
1

2
N r;

1

f � c

� �
þ SðrÞ

a
1

2
Tðr; f Þ þ SðrÞ:

It is a contradiction. So, without loss of generality, we can assume

N r;
1

f � aj

� �
0SðrÞ; j ¼ 1; 2; 3:

By Lemma 1, f is a quasi-Möbius transformation of g, i.e., f ¼ ða1gþ a2Þ=
ða3gþ a4Þ where ai ði ¼ 1; 2; 3; 4Þ are small functions with respect to f and g.
Since f and g share a1; a2; a3 IM�, the quasi-Möbius transformation MðxÞ ¼
ða1xþ a2Þ=ða3xþ a4Þ will have three fixed small functions, i.e., MðaiÞ ¼ ai, i ¼
1; 2; 3, which implies that a1 ¼ a4 and a2 ¼ a3 1 0. Hence f ¼ g. r

Lemma 7. Let f be a nonconstant meromorphic functions, g a quasi-Möbius
transformation of f . Let a1; a2; a3, and c ðD a1; a2; a3Þ be small functions with
respective to f . If f and g share a1; a2; a3 CM�, and if

N1Þ r;
1

f � c

� �
þN1Þ r;

1

g� c

� �
¼ SðrÞ;
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then f ¼ g or

f ¼ ðai þ ajÞg� 2aiaj
2g� ai � aj

:

The latter occurs only when the cross ratio ðc; ak; aj; aiÞ is equal to �1 for some
permutation fi; j; kg of f1; 2; 3g.

Proof. By the argument similar to that in the proof of Lemma 5, without
loss of generality, we can assume that

N r;
1

f � a1

� �
0SðrÞ; N r;

1

f � a2

� �
0SðrÞ: ð1Þ

Let

F ¼ f � a2

f � a1

a3 � a1

a3 � a2
; G ¼ g� a2

g� a1

a3 � a1

a3 � a2
:

Then F and G share y; 0; 1 CM�, and

N1Þ r;
1

F � c0

� �
þN1Þ r;

1

G � c0

� �
¼ SðrÞ; ð2Þ

where c0 ¼ ððc� a2Þ=ðc� a1ÞÞða3 � a1Þ=ða3 � a2Þ, and

Nðr;FÞ0SðrÞ; N r;
1

F

� �
0SðrÞ ð3Þ

by (1). Since g is a quasi-Möbius transformations of f , G is also a quasi-
Möbius transformations of F , accordingly. From these, we get F ¼ aG, where a
is a small function. If a1 1, then F ¼ G which implies that f ¼ g. Assume
that aD 1. Then

N r;
1

F � 1

� �
aN r;

1

F=G � 1

� �
þ SðrÞ ¼ N r;

1

a� 1

� �
þ SðrÞ ¼ SðrÞ:

Hence we have

N r;
1

F � 1

� �
þN r;

1

G � 1

� �
¼ SðrÞ: ð4Þ

If aD c0, then we have, by (4)

Tðr;FÞaN r;
1

F � 1

� �
þN r;

1

F � a

� �
þN r;

1

F � c0

� �
þ SðrÞ

¼ N r;
1

G � 1

� �
þN r;

1

F � c0

� �
þ SðrÞ

¼ N r;
1

F � c0

� �
þ SðrÞ

a
1

2
Tðr;FÞ þ SðrÞ:
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It is a contradiction. If a1 c0, then we get F ¼ c0G. By (4), we get

N r;
1

F � c0

� �
þN r;

1

G � 1=c0

� �
¼ SðrÞ: ð5Þ

If c0 D�1, then 1; c0; 1=c0 are di¤erent from each other. By the second fun-
damental theorem, we have by (2), (4) and (5)

Tðr;GÞaN r;
1

G � 1

� �
þN r;

1

G � c0

� �
þN r;

1

G � 1=c0

� �
þ SðrÞ

¼ N r;
1

G � c0

� �
þ SðrÞ

a
1

2
Tðr;GÞ þ SðrÞ;

which is a contradiction. If c0 1�1, i.e., ðc; a3; a2; a1Þ ¼ �1, then F ¼ �G,
which implies that

f ¼ ða1 þ a2Þg� 2a1a2

2g� a1 � a2
: r

Lemma 8. Let f and g be two nonconstant meromorphic functions, and
a1; a2; a3 be three distinct small functions with respect to f and g. If f and g
share a1; a2; a3 CM�, and if f is not a quasi-Möbius transformation of g, then for
any small function c ðD a1; a2; a3Þ with respect to f and g, we have

Nð3 r;
1

f � c

� �
¼ SðrÞ:

Proof. Let

H1 ¼ g� a1

f � a1

f � a3

g� a3
; H2 ¼ g� a2

f � a2

f � a3

g� a3
: ð6Þ

Since f and g share a1; a2; a3 CM� and f is not a quasi-Möbius transformation
of g, we have

Nðr;HjÞ þN r;
1

Hj

� �
¼ SðrÞ; j ¼ 1; 2;

and

Tðr;H1Þ0SðrÞ; Tðr;H2Þ0SðrÞ; T r;
H1

H2

� �
0SðrÞ

by eliminating g from the two equations in (6), we get

f � c ¼ ða1 � cÞða2 � a3ÞðH1 � 1Þ � ða2 � cÞða1 � a3ÞðH2 � 1Þ
ða2 � a3ÞðH1 � 1Þ � ða1 � a3ÞðH2 � 1Þ :
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Set H ¼ ða1 � cÞða2 � a3ÞðH1 � 1Þ � ða2 � cÞða1 � a3ÞðH2 � 1Þ, then

f1 þ f2 þ f3 ¼ 1; ð7Þ
where

f1 ¼ H

ða1 � a2Þða3 � cÞ ; f2 ¼ �ða2 � a3Þða1 � cÞ
ða1 � a2Þða3 � cÞH1; f3 ¼ ða1 � a3Þða2 � cÞ

ða1 � a2Þða3 � cÞH2:

If f1; f2; f3 are linearly dependent over C , then there exist three constants c1; c2

and c3 such that one of them is not zero, and

c1 f1 þ c2 f2 þ c3 f3 ¼ 0: ð8Þ
Obviously, c1 0 0, otherwise Tðr;H1=H2Þ ¼ SðrÞ. It follows from (7) and (8)
that

1 � c2

c1

� �
f2 þ 1 � c3

c1

� �
f3 ¼ 1;

and hence c1 0 c2. Thus by the second fundamental theorem, we have

Tðr; f2ÞaN r;
1

f2

� �
þN r;

1

f2 � c1=ðc1 � c2Þ

� �
þNðr; f2Þ þ SðrÞ

aN r;
1

f2

� �
þN r;

1

f3

� �
þNðr; f2Þ þ SðrÞ:

Note that

Tðr; f2Þ ¼ Tðr;H1Þ þ SðrÞ; N r;
1

fj

� �
þNðr; fjÞ ¼ SðrÞ; j ¼ 2; 3:

We get Tðr;H1Þ ¼ SðrÞ. This is impossible. We are led to the case: f1; f2; f3
are linearly independent over C . From Lemma 4, we have

Tðr; f1ÞaN2 r;
1

f1

� �
þ SðrÞ:

Therefore,

N r;
1

H

� �
aTðr; f1Þ þ SðrÞaN2 r;

1

H

� �
þ SðrÞ:

It follows that

Xy
n¼3

ðn� 2ÞNðnÞ r;
1

H

� �
¼ SðrÞ;

where NðnÞ r; 1=HÞð denote the counting function of zeros of H with multiplicity
of n. Hence

Nð3 r;
1

f � c

� �
aNð3 r;

1

H

� �
a 3

Xy
n¼3

ðn� 2ÞNðnÞ r;
1

H

� �
¼ SðrÞ;

which completes the proof of Lemma 8. r
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3. Proof of the Theorems

Proof of Theorem 1. By Lemma 7, we only need to prove that f is a quasi-
Möbius transformation of g. Moreover, we only need to consider the case that
a1 ¼ y, a2 ¼ 0 and a3 ¼ 1, otherwise, a quasi-Möbius transformation will do.

Suppose that f is not any quasi-Möbius transformation of g. By Lemma 3
and the assumption, we have

Tðr; f Þ ¼ N r;
1

f � c

� �
þ Sðr; f Þ ¼ Nð2 r;

1

f � c

� �
þ Sðr; f Þ: ð9Þ

Let

h1 :¼ f � 1

g� 1
and h2 :¼ gð f � 1Þ

f ðg� 1Þ : ð10Þ

Then we have

Nðr; hjÞ þN r;
1

hj

� �
¼ SðrÞ; j ¼ 1; 2; ð11Þ

and

Tðr; h1Þ0SðrÞ; Tðr; h2Þ0SðrÞ; T r;
h1

h2

� �
0SðrÞ:

It follows from (10) that

f ¼ h1 � 1

h2 � 1
; g ¼ 1=h1 � 1

1=h2 � 1
; ð12Þ

which leads to

f � c ¼ h1 � ch2 þ c� 1

h2 � 1
: ð13Þ

Let H ¼ h1 � ch2 þ c� 1. Then we get

Nð2 r;
1

H

� �
bNð2 r;

1

f � c

� �
¼ Tðr; f Þ þ SðrÞ:

Suppose that z0 is a multiple zero of f � c. We have

Hðz0Þ ¼ h1ðz0Þ � cðz0Þh2ðz0Þ þ cðz0Þ � 1 ¼ 0;

H 0ðz0Þ ¼
h 0

1ðz0Þ
h1ðz0Þ

h1ðz0Þ � c 0ðz0Þ þ cðz0Þ
h 0

2ðz0Þ
h2ðz0Þ

� �
h2ðz0Þ þ c 0ðz0Þ ¼ 0;

which lead to

h1ðz0Þ ¼
cðz0Þðcðz0Þ � 1Þh 0

2ðz0Þ=h2ðz0Þ � c 0ðz0Þ
cðz0Þðh 0

1ðz0Þ=h1ðz0Þ � h 0
2ðz0Þ=h2ðz0ÞÞ � c 0ðz0Þ

;

h2ðz0Þ ¼
ðcðz0Þ � 1Þh 0

1ðz0Þ=h1ðz0Þ � c 0ðz0Þ
cðz0Þðh 0

1ðz0Þ=h1ðz0Þ � h 0
2ðz0Þ=h2ðz0ÞÞ � c 0ðz0Þ

:
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Let

F1 ¼ a1h1; F2 ¼ a2h2; ð14Þ
where

a1 ¼ cðh 0
1=h1 � h 0

2=h2Þ � c 0

cðc� 1Þh 0
2=h2 � c 0

; a2 ¼ cðh 0
1=h1 � h 0

2=h2Þ � c 0

ðc� 1Þh 0
1=h1 � c 0

: ð15Þ

Then we have Tðr; ajÞ ¼ SðrÞ ð j ¼ 1; 2Þ by (11), (15) and the Lemma of the
Logarithmic Derivative, and hence

Tðr;F1Þ ¼ Tðr; h1Þ þ SðrÞ; Tðr;F2Þ ¼ Tðr; h2Þ þ SðrÞ; ð16Þ
and thus Sðr;F1Þ ¼ Sðr;F2Þ ¼ SðrÞ. Since F1ðz0Þ ¼ 1, F2ðz0Þ ¼ 1, we get

Nð2 r;
1

f � c

� �
aN0ðr; 1;F1;F2Þ þ SðrÞ: ð17Þ

Since f and g share 0; 1;y CM�, we have Tðr; gÞa 3Tðr; f Þ þ SðrÞ. From (9),
(10), the assumption and Lemma 8, we get

Tðr;F1Þ þ Tðr;F2Þ ¼ Tðr; h1Þ þ Tðr; h2Þ þ SðrÞ
a 8Tðr; f Þ þ SðrÞ

¼ 16Nð2 r;
1

f � c

� �
þ SðrÞ

a 16N0ðr; 1;F1;F2Þ þ SðrÞ:

It is obvious that

Nðr;FiÞ þN r;
1

Fi

� �
¼ SðrÞ; i ¼ 1; 2:

Hence by Lemma 5, we see that there exist two non-zero and mutually prime
integers s; t ðt > 0Þ such that F s

1F
�t
2 ¼ 1, i.e.,

ða1h1Þs ¼ ða2h2Þ t and usþ vt ¼ 1 ð18Þ
for some integers u; v. Set h ¼ ða1h1Þvða2h2Þu. Then

h1 ¼ ht

a1
; h2 ¼ hs

a2
;

thus

H ¼ ht

a1
� c

hs

a2
þ c� 1: ð19Þ

It follows from (15) that

1

a1
� c

a2
þ c� 1 ¼ 0:
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Therefore,

H ¼ hmðh� 1ÞPðhÞ ¼ hmðh� 1Þðp0h
nþ1 þ p1h

n þ � � � þ pnþ1Þ; ð20Þ
where pi, i ¼ 0; . . . ; nþ 1 are small functions and m; n ðnb 0Þ are integers such
that pnþ1 0 0. We will show Pð1Þ ¼ 0 that is to say h� 1 is a factor of PðhÞ.
By (11), (12) and the definition of h, we can see that h is not a constant and

Nðr; hÞ þNðr; 1=hÞ ¼ SðrÞ, which implies Tðr; h 0=hÞ ¼ SðrÞ by the Lemma of the
Logarithmic derivative, and thus

Nð2 r;
1

h� 1

� �
a 2N r;

1

h 0=h

� �
¼ SðrÞ: ð21Þ

At the multiple zero z0 of f � c, we have hðz0Þ ¼ 1, hence by (13) such points are
also multiple zeros of H, and by (9) and Lemma 8, we have

Tðr; f Þa 2Tðr; hÞ þ SðrÞ: ð22Þ
From (20) and (21), we see that ‘‘almost all’’ such points are zeros of p0 þ
p1 þ � � � þ pnþ1. Therefore, considering (9) we get

p0 þ p1 þ � � � þ pnþ1 1 0; ð23Þ

which implies that PðhÞ ¼ ðh� 1ÞP1ðhÞ, where P1ðhÞ ¼ b0h
n þ b1h

n�1 þ � � � þ bn
is a polynomial in h whose coe‰cients are small functions of f . From (19)
and (20), we get hmðh� 1Þ2

P1ðhÞ ¼ ht=a1 � chs=a2 þ c� 1. From this and by
Lemma 1, we can see that P1ðhÞ must be a monomial in h. Therefore, H can be
expressed as Ahqðh� 1Þ2, i.e.,

ht

a1
� c

hs

a2
þ c� 1 ¼ Ahqðh� 1Þ2; ð24Þ

where A is a small function of f and q an integer. Thus ft� q; s� q;�qg is a
permutation of f0; 1; 2g. There have three cases only: (i) q ¼ 0, t ¼ 1, s ¼ 2.
(ii) q ¼ 0, t ¼ 2, s ¼ 1. (iii) q ¼ �1, t ¼ 1, s ¼ �1. Hence by considering (22)
a1 ¼ 1=2ð1 � cÞ, a2 ¼ c=ð1 � cÞ, or a1 ¼ 1=ðc� 1Þ, a2 ¼ c=2ðc� 1Þ, or a1 ¼
2=ð1 � cÞ, a2 ¼ 2c=ðc� 1Þ. By (12) and (18), we get

f ð f � 1Þ ¼ 4cð1 � cÞgðg� 1Þ; or

f 2

f � 1
¼ c2

4ðc� 1Þ
g2

g� 1
; or

f

ð f � 1Þ2
¼ �4c

ðc� 1Þ2

g

ðg� 1Þ2
:

Note that g assume the same condition with f . The above three equations
remain valid if we interchange f and g. Therefore, 4cð1 � cÞ ¼G1 or c2=

4ðc� 1Þ ¼G1 or �4c=ðc� 1Þ2 ¼G1. From the condition about c, we get
4cð1 � cÞ ¼ 1 or c2=4ðc� 1Þ ¼ 1 or �4c=ðc� 1Þ2 ¼ 1. Hence f is a quasi-
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Möbius transformation of g in any case. This is a contradiction, and completes
the proof of Theorem 1.

Proof of Theorem 2. Let c ¼ y in Theorem 1, Theorem 2 is an obvious
corollary since all poles of f 0 and g 0 are multiple.

Proof of Theorem 3. By Lemma 2 and Lemma 6, we can easily get this
result.

We propose the following conjecture for further study.

Conjecture. Let f and g be two nonconstant meromorphic functions. If f 0

and g 0 share four small functions a1; a2; a3; a4 ðDyÞ IM�, then f 0 ¼ g 0.
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