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MEROMORPHIC FUNCTIONS WHOSE DERIVATIVES SHARE
SMALL FUNCTIONS

PING L1 AND YI ZHANG

Abstract

In this paper, we prove that if the derivatives of two nonconstant meromorphic
functions f and ¢ share three small functions CM*, or share two small functions CM*
and another two small functions IM*, then f' =g’ or f’ is a quasi-Mobius trans-
formation of g’ mostly.

1. Introduction

Let f(z) be a nonconstant meromorphic function in the complex plane C.
We shall use the standard notations in Nevanlinna’s value distribution theory of
meromorphic functions such as T(r, ), N(r, f) and m(r, f) (see, e.g., [1]). In
this paper, we use Ny (r,1/(f — a)) to denote the counting function of a-points of
/ with multiplicities less than or equal to k, and N (r,1/(f —a)) to denote the
counting function of a-points of f with multiplicities great than or equal to k.
We also use Ny (r,1/(f —a)) and N (r,1/(f —a)) to denote the correspondent
reduced counting function, respectively. The notation S(r,f) is defined to be
any quantity satistying S(r, f) = o(T'(r, f)) as r — oo possibly outside a set of r
of finite linear measure. A meromorphic function ¢(z) is called a small function
with respect to f(z) provided that T'(r,c) = S(r, f).

Let f(z) and g(z) be two nonconstant meromorphic functions, and c(z) a
small function with respect to both f(z) and g(z). If f(z) — ¢(z) and g(z) — ¢(2)
have the same zeros ignoring (counting) multiplicities, then we say that f(z) and
g(z) share ¢(z) IM (CM). We say f(z) and g(z) share co IM (CM) if 1/f and
1/g share 0 IM (CM).

Let S(f=c=g¢g) be the set of all common zeros of f(z)— c(z) and
g(z) — ¢(z) ignoring multiplicities, Sg(f = ¢ =g¢g) the set of all common zeros of
f(z) — ¢(z) and g(z) — ¢(z) with the same multiplicities. Denote N(r, f = ¢ = g),
Ng(r, f = ¢ = g) the reduced counting functions of f and g correspondent to the
sets S(f =c¢=yg), and Sg(f =c¢ =g¢) respectively. If
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then we say that f and g share ¢ IM*. If

— 1 — 1
N<r’f—c)+N<r’g—

then we say that f and g share ¢ CM*. Obviously, any IM (CM) shared small
function must be an IM* (CM*) shared small function.

In 1926, R. Nevanlinna [3] proved that if two meromorphic functions f
and ¢ share four values aj,a;,a3,a4s CM, then f is a Mobius transformation of
g. Since then there have many papers been published on uniqueness theory and
sharing values. Tt is easy to prove (see, e.g., [4] p. 184) that if the derivatives f”
and ¢’ of two meromorphic functions share four distinct finite values IM, then
f'=y¢g'. It is natural to ask what happens when f’ and g’ share three or four
small functions. In this paper, we prove the following theorems:

)~ 2Melrf = e =) = 5(0.7)

THEOREM 1. Let f and g be two nonconstant meromorphic functions sharing
three small functions ay,ay,as CM*. Let ¢ (# a1,ay,a3) be a small function with
respect to f and g such that (c,as,ar,a1) # (1 £ v2)/2, -2+ 2v2,3+2V2. If

1 1
Nl)(ﬁﬁ)‘i‘Nl)(}’,g_C) = S(V,f),

(@i + aj)g — 244,
2g —a; —daj ’

then f =g or

f=

The latter occurs only if the cross ratio (c,ax,aj,a;) is equal to —1 for some
permutation {i, j k} of {1,2,3}.

THEOREM 2. Let f and g be two nonconstant meromorphic functions, ay,ay,
as (# o) be small functions with respect to f' and ¢', and (a3 — ay)/(a3 — az) #
(1+v2)/2,-2+2V2,3+2V2. If f' and g' share a,a>,ay CM* then f' =g’
or

(ai +aj)g" — 2a,q
29’ —ai—a;

f'=

The latter occurs only if 2ar —a; —a; =0 for some permutation {i,j k} of
{1,2,3}.

Remark. There exist two meromorphic functions f and g such that ' and
g’ share three small functions but f’ # ¢g’. For example, the derivatives of the
functions f =e” and g = —e™* share 0,1,—1 CM, but [’ # g’

THEOREM 3. Let f and g be two nonconstant meromorphic functions. If f’
and g' share two small functions ay,a, (# o0) CM*, and share another two small
Sunctions az,aq (#F ) IM*, then ' =g’
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2. Lemmas
Lemma 1 ([2]). Let f be a nonconstant meromorphic function and b;, i =
0,1,...,n be small functions of f. If
buf "+ byt [ A 4 by =0,

then b; =0, i=0,1,...n.
Lemma 2 ([5]). Let f and g be two nonconstant meromorphic functions, and
let ay,ay,as,aq4 be four distinct small functions with respect to [ and g. If f and g
share ay,a, CM* and share as,as IM*, then f is a quasi-Mobius transformation of
g, i.e., there exist four small functions o; (i =1,2,3,4) such that
g+
g+ oy

Let [ and g be nonconstant meromorphic functions and

Lemma 3 ([6)).
ag,a;, b, i =1,2 be small functions of f and g such that a; # a;, b; # b; (i # j),
f —a; share 0 CM* with g —b; (i=1,2) and f — a; share .o CM* with g — b;,

i=12). If
T(}",f) #N(r,l/(f—ao))+S(r,f),

then f is a quasi-Mdbius transformation of g.
Let f1, f>,..., fn be nonconstant meromorphic functions such

Lemma 4 ([7]).
If fi,f2,...,fn are linearly independent, then the

that i+ fo+---+fi=1
following inequality holds

T(r, fi) < iN,,,l <r,j17> +(n—-1) i]vn,l(r,f}) +0o(T(r)), r¢E.
i=1 ! i=1

Here and in the sequel, N,_(r, f) is the counting function of f which counts a pole

of f according to its multiplicity if that multiplicity is less than or equal to n — 1
Here

and counts a pole n—1 times if the multiplicity is greater than n— 1.

T(r) =% T(r i)
Lemma 5 ([8]). Let fi and f, be two nonconstant meromorphic functions
satisfying

N, f) + N(%) =S(r), i=1,2.

If fff —1 is not identically zero for all integers s and t (|s|+ |t| > 0), then for

any positive number &, we have
No(r, 1; /1, /2) < eT(r) + S(r)
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where No(r,1; fi, f2) denotes the reduced counting function of fi and f, related
to the common 1-points and T (r) = T(r, fi) + T(r, f2), S(r) = o(T(r)) as r —
possibly outside a set of r of finite linear measure.

LEMMA 6. Let f and g be nonconstant meromorphic functions, and ay,a,,
as,as be small functions with respect to f and g. If f and g share ay,ay CM*,
and share az,as IM*, and if there exists a small function ¢ (% ay,ay,as,as) with
respect to [ and g such that

Ny ( j%) — S(.1),

Proof. 1f two of ai,ar,as,as, say a;,a;, i # j, satisfy

— 1 — 1
() Tla) =50

here and in the sequel, S(r) := S(r, f) = S(r,g), where the equality follows from
the assumption that f and g share three small functions IM*. Then we have

T(r, f) < N(rf%a) +N<r,f%aj> + NQ’%) S0
(o)
! T(r,f)+S(r).

2
It is a contradiction. So, without loss of generality, we can assume

— 1
N{r, #8(r), j=1,2,3.
( f%’) )

By Lemma 1, f is a quasi-Mobius transformation of g, ie., f = (019 + o)/
(039 + o4) where o; (i =1,2,3,4) are small functions with respect to f and g.
Since f and ¢ share a;,ay,a; IM*, the quasi-Mobius transformation M(x) =
(x4 o) /(o3x + o4) will have three fixed small functions, i.e., M(a;) =a;, i =
1,2,3, which implies that o; = a4 and o, =03 =0. Hence f =g. O

then f =g.

=2

<

IA

Lemma 7. Let f be a nonconstant meromorphic functions, g a quasi-Mobius
transformation of f. Let ay,ay,as, and ¢ (¥ a1,a2,a3) be small functions with
respective to f. If f and g share aj,ay,az CM*, and if

ey ofrgt) s
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then f =g or
(@i + aj)g — 2aiq;
29—a;i—a;

f=

The latter occurs only when the cross ratio (c,ar,a;,a;) is equal to —1 for some
permutation {i, j k} of {1,2,3}.

Proof. By the argument similar to that in the proof of Lemma 5, without
loss of generality, we can assume that

_ 1 — 1
N\r, #S(r), N{r, # S(r). 1
(f—m) " <f_a2) G 1)
Let
_Swma—a PO X k)
f—aia3—a’ g—aya3—ay
Then F and G share c0,0,1 CM*, and
1 1
Nl)(r7F'—c())+Nl)(r’G—c0)_S(r)’ (2)

where ¢o = ((¢ — a2)/(c — a1))(az — a1) /(a3 — az), and

N(r,F) # S(r), N(r,%) # S(r) (3)

by (1). Since g is a quasi-Mdbius transformations of f, G is also a quasi-
Moébius transformations of F, accordingly. From these, we get F = oG, where o
is a small function. If ¢ =1, then F = G which implies that f=g¢g. Assume
that o # 1. Then

N(r,%) < N(r, ﬁ) +S(r) = N(r, a—il> + S(r) = S(r).

Hence we have

— 1 — 1
If o # ¢y, then we have, by (4)

T(r,F) < N(r, ﬁ) + N(r,FL_a) + N(r,F i CO) +S(r)
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It is a contradiction. If o = ¢y, then we get F = ¢yG. By (4), we get

If ¢y # —1, then 1,¢9,1/¢co are different from each other. By the second fun-
damental theorem, we have by (2), (4) and (5)

_ 1 — 1 — 1
T < — —_— N(r,———
(r, G) _N<r,G_ 1)+N<V,G_CO>+ <r,G_ 1/CO>+S(r)
— 1
= N(r,m> + S(V)
1
< ET(}’, G) + S(r),
which is a contradiction. If ¢y = —1, ie., (¢,a3,a2,a1) = —1, then F = —G,
which implies that

(a1 + a2)g — 2a1az
29 —ai —ar

f= a

LemMa 8. Let f and g be two nonconstant meromorphic functions, and
ay,ar,as be three distinct small functions with respect to f and g. If f and g
share ay,ar,as CM*, and if f is not a quasi-Mobius transformation of g, then for
any small function ¢ (# ay,a2,a3) with respect to f and g, we have

fet) s

g —a — a3 g—a —as

le—f , sz—f—. (6)
S—a g—a; S —a g—a;

Since f and g share aj,ap,a3 CM* and f is not a quasi-Mobius transformation

of g, we have

Proof. Let

N(r, Hj) —|—N<r,1;> =S, j=12,
and
H,
T(r,Hy) # S(r), T(r,Hy) # S(r), T(r,F) # S(r)

by eliminating ¢g from the two equations in (6), we get

(@1 = ¢)(ar —as)(Hi = 1) = (a2 = ¢)(a1 —a3)(H2 — 1)

Soe= (@ —a3)(Hy — 1) — (a1 —a3)(Ha — 1)
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Set H = (Cll - C)(az - Cl3)(H1 - 1) - (az - c)(a1 - a3)(H2 - 1), then
fi+h+fi=1, (7)

where
_ H _ (a2 —a3)(a1 —¢)
fi= S P | >

(a1 —ax)(a3 —¢)

If f1, f>, f> are linearly dependent over C, then there exist three constants cy,c;
and ¢3 such that one of them is not zero, and

cafiteafrt+afs=0. (8)
Obviously, ¢; # 0, otherwise T(r, H/H,) = S(r). It follows from (7) and (8)

that
(&) C3
1-= 1-=2)fi=1
( Cl>f2+( c1>f3 ;

and hence ¢| # ¢;. Thus by the second fundamental theorem, we have

nn@sﬁ@JJ+N0

(a1 — a3)(az — ¢)

B =t —a)a —o)

1 _
ﬁer@rﬂw>+NUJD+S®

sNQﬂ)+NQJ)+NMﬁHsm.
5 /3
Note that

/1 _
T(r, f2) = T(r, H1) + S(r), N<r’7) TN, f) =S(r), j=2,3.
Ji
We get T(r,H;) = S(r). This is impossible. We are led to the case: fi, /2, f3
are linearly independent over C. From Lemma 4, we have

1
T(}",ﬁ) < N2<r77> +S(r)
1
Therefore,

1 1
N(r,H> <T(r,fi)+S(r) <N, (r,H> + S(r).
It follows that

o0

(1= D0 (1 37) = 50

n=3

where N, (r,1/H) denote the counting function of zeros of H with multiplicity
of n. Hence

1 1 X — 1
N(3 <}",E) < N(3 (V,ﬁ) < 3;(1’1 — 2)N(n) <}",ﬁ) = S(r),

which completes the proof of Lemma 8. dJ
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3. Proof of the Theorems

Proof of Theorem 1. By Lemma 7, we only need to prove that f is a quasi-
Moébius transformation of g. Moreover, we only need to consider the case that
a; = o0, ap =0 and a3 = 1, otherwise, a quasi-Md&bius transformation will do.

Suppose that f is not any quasi-Mobius transformation of g. By Lemma 3
and the assumption, we have

10 = N(rs ) +50.0) = Ne () + 560 0
Let
_f= g(f = 1)
hl —F and /’12 f(gfl) (10)

Then we have

and
T(r,m) #S(r), T(r,h) #S(r), T<r,2) # S(r).

It follows from (10) that

h —1 1/h -1
f o1 Y m=1 (12)
which leads to
hl—ch2+c—1
— - . 1
f e (13)

Let H="hy —chy+c—1. Then we get

Ne (r, 12) > Ny (r, fl_c) — T(r, f) + S(r).

Suppose that zy is a multiple zero of f—c. We have
H(zo) = hi(z0) — ¢(z0)h2(20) + ¢(20) — 1 =0,

hy(z0)
ha(z0)

H'(z0) = 1 ) - (e’(zw + e(z0)

T o) )hz(ZO) + ¢'(z9) =0,

which lead to

I (z0) = ¢(z0)(¢(z0) — 1)h}(20)/ha(z0) — ¢'(20)
c(20)(h1(20) /1 (20) = h3(20) /ha(20)) — ¢ (20)
hy(z0) = (¢(z0) — 1)h{(20)/h1(z0) — ¢'(20) |
c(20) (] (20) /1 (20) = h(0) /Ia(20)) = €' (z0)
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Let
Fi=oh, F=wh, (14)

where

g/ —=hy/h) = clhifh = Iy/h) = ¢
YTl e— D= T (= Db/l — ¢

Then we have T'(r,a;) =S(r) (j=1,2) by (11), (15) and the Lemma of the
Logarithmic Derivative, and hence

T(V7F1): T(V,/’ll)-i-S(}’), T(V,Fz): T(V,hz)-‘rS(V), (16)
and thus S(r,F)) = S(r,F>) = S(r). Since Fi(zo) =1, F>(z0) =1, we get

(15)

N@ingngmmJ@+mm (17)

Since f and g share 0,1, 00 CM*, we have T(r,g) <3T(r, f) + S(r). From (9),
(10), the assumption and Lemma 8, we get

T, F)+ T, F) =T )+ T, h) + S(>)
<8T(r,f)+ S(r)

)+t

< 16Ny(r, I; F1, F>) 4+ S(r).

— 1
= 16N
@GV—c

It is obvious that
_ — 1
N(r, F;) +N(r,F> =8(r), i=1,2.
i

Hence by Lemma 5, we see that there exist two non-zero and mutually prime
integers s,¢ (¢ > 0) such that F{F," =1, ie.,

(ohy)” = (hy)" and  us+ vt =1 (18)
for some integers u,v. Set h= (o1hy)"(02h2)". Then
t s
hl = h_7 h2 = h_a
o o2
thus
hf hS
H="¢"tc-1. (19)
4] [0%)

It follows from (15) that

~_Chce1=0.
o o2
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Therefore,

H =h"(h—1)P(h) = h"(h— 1)(poh" " + pih" + -+ + pus1), (20)
where p;, i=0,...,n+ 1 are small functions and m,n (n > 0) are integers such
that p,+1 #0. We will show P(1) =0 that is to say 2 — 1 is a factor of P(h).
By (11), (12) and the definition of A, we can see that s is not a constant and
N(r,h) + N(r,1/h) = S(r), which implies T(r,/4’/h) = S(r) by the Lemma of the
Logarithmic derivative, and thus

o) =2l - s o

At the multiple zero zy of f — ¢, we have A(zy) = 1, hence by (13) such points are
also multiple zeros of H, and by (9) and Lemma 8, we have

T(r,f)<2T(r,h)+ S(r). (22)

From (20) and (21), we see that “almost all” such points are zeros of pg+
p1+ -+ ppr1. Therefore, considering (9) we get

Po+pi+-+ pu1 =0, (23)

which implies that P(h) = (h — 1)Py(h), where Py(h) = boh" 4+ bih"' + ... + b,
is a polynomial in 4 Whose coefficients are small functions of f. From (19)
and (20), we get h"(h—1)2Py(h) = h'/oy — ch*/ay + ¢ — 1. From this and by
Lemma 1, we can see that P;(4) must be a monomial in . Therefore, H can be
expressed as Ah4(h—1)%, ie
t s
UL = Ah'(h —1)*, (24)
o 02
where A4 is a small function of f and ¢ an integer. Thus {t—¢,s—¢,—q} is a
permutation of {0,1,2}. There have three cases only: (i) ¢ =0, r=1, s=2.
(i) g=0,r=2,s=1. (iii)) ¢g=—1, =1, s=—1. Hence by considering (22)
=1/2(1-¢), mp=c/(1—¢), or o = l/( 1), ma=c¢/2(c—1), or o =
2/(1 —c¢), op =2¢/(c—1). By (12) and (18), we get
(

SUf =1)=4c(1-c)g(g —1), or

f2 B 62 g2
F-1 4c—ng-1
/ —4c g

=D (-1’ (g-1)7
Note that g assume the same condition with f. The above three equations
remain valid if we 1nterchange f and g. Therefore, 4c(l —c)=+1 or ¢?/
4(c—1)=+1 or —4c/(c—1)*=+1. From the condition about ¢, we get
4c(1—c)=1 or 2/4(c—1)=1 or —4¢/(c—1)>=1. Hence [ is a quasi-
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Moébius transformation of g in any case. This is a contradiction, and completes
the proof of Theorem 1.

Proof of Theorem 2. Let ¢ = oo in Theorem 1, Theorem 2 is an obvious
corollary since all poles of f/ and g’ are multiple.

Proof of Theorem 3. By Lemma 2 and Lemma 6, we can easily get this
result.

We propose the following conjecture for further study.

CONJECTURE. Let [ and g be two nonconstant meromorphic functions. If f'
and g’ share four small functions aj,ay,a3,as (#o0) IM*, then f'=g'.
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