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Abstract

We present a computational method for obtaining generic forms of sextics with a

given configuration of local singularities. Using this method, we first complete the

classification of topological types of local singularities appearing on reduced sextics.

Next we give the list of possible configurations of singularities containing at least one

non-simple singularity and satisfying rð5Þb 7, and show that such a sextic is of torus

type, which has been conjectured by the third author.

1. Introduction

Our main interest in this paper is to study the topological types of sin-
gularities appearing on reduced sextics and their configurations.

In the first half of this paper (§§3), we study the topological types. By the
works of Urabe, Yoshihara, Yang [U, Yo, Ya], it is known that all simple
singularities with Milnor number less than or equal to 19 can appear on sextics.
On the other hand, Degtyarev proved in [D] that the rigid isotopy type of an
irreducible sextic with at least one non-simple singularity is determined by the
configuration of singularities of the sextic and Wall listed in [W] all the possible
non-simple singularities on reduced sextics using the notation of Arnold [AGV].

It is well-known that the topological type of an isolated singularity is
determined by its Newton boundary if the boundary is Newton non-degenerate.
We focus on this property and give the classification of singularities appearing
on reduced sextics in terms of Newton boundaries. It turns out that the sin-
gularities are Newton non-degenerate except the series of classes of singularities
Sn, n ¼ 1; 2; . . . ; 6. Note that our classification is independent of the work of
Wall, though our list obtained is, of course, identical to his list.

Our strategy is computational. We start from the generic form of a
sextic
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f ðx; yÞ ¼
X

iþja6

aijx
iy j:

Assume that the origin ð0; 0Þ is a singularity and put a00 ¼ a10 ¼ a01 ¼ 0.
We take a series of changes of local coordinates ðxj; yjÞ as long as the
Newton number nðG�ð f ; ðxj; yjÞÞÞ is strictly greater than the previous one
nðG�ð f ; ðxj�1; yj�1ÞÞÞ. As the Newton number is bounded above by the Milnor
number, this process stops after a finite number of operations. When we arrive
at the coordinate system ðxt; ytÞ for which no further change of coordinates is
possible, we check if the polynomial is reduced, if the Newton boundary is non-
degenerate and if it really exists. The classification of local singularities of
reduced sextics is completed by checking all possible trees of the changes of
coordinates. This classification is done in Section 3.

In the second half (§§4,5), we deal with reduced sextics having special
configurations and observe if they are of torus type (see Section 4 for the
definition of torus type).

In Section 4 we prove that a reduced sextic with configuration of singularities
on a tame sextic of torus type and having at least one non-simple singularity is
always of torus type (Theorem 12).

In Section 5 we compute the r-invariants of non-simple singularities ap-
pearing on reduced sextics and prove, using the result in Section 4 and the
discussion in [W], that if a sextic has at least one non-simple singularity and
satisfies rð5Þb 7 then it is of torus type (Theorem 16), which has been con-
jectured by the third author.

2. Preliminaries

2.1. Notations. We use the following standard notations for simple sin-
gularities:

An : x2 þ ynþ1 ¼ 0 ðnb 1Þ;
Dn : x2y þ yn�1 ¼ 0 ðnb 4Þ;
E6 : x3 þ y4 ¼ 0; E7 : x3 þ xy3 ¼ 0; E8 : x3 þ y5 ¼ 0;

8><
>:

where the equations written in the right-hand side are the normal forms of these
singularities (cf. Remark 2 below). Furthermore, we use the following notations
for non-simple singularities as their normal forms:

Bp;q : xp þ yq ¼ 0 ðpa qÞ;
sBp;q : sðxp þ yqÞ ¼ 0; s ¼ x; y; xy ðpa qÞ;
Cp;q : xp þ yq þ x2y2 ¼ 0 ð2=p þ 2=qa 1; pa qÞ;
yCp;q : yðxp þ yq þ x2y2Þ ¼ 0 ð2=p þ 2=qa 1; pa qÞ;
Dp;q : xp þ yq þ x2y3 ¼ 0 ð2=p þ 3=qa 1Þ;
Fp;q : xp þ yq þ x2y3 þ x3y2 ¼ 0 ð6a pa qÞ;
Sn :¼ Tn�1nTn ðn ¼ 1; . . . ; 6Þ; where

v
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T0 :¼ ðx2 � y3Þ2 þ
P

0<iþja6;3iþ2j>12

aijx
iy j ¼ 0;

Ti :¼ fR1 ¼ � � � ¼ Ri ¼ 0g;
R1 :¼ a15 þ a32; R2 :¼ 4a24 þ 4a41 � a2

32; R3 :¼ 2a33 þ 2a50 � a32a41;

R4 :¼ �4a42 þ 2a32a50 þ a2
41; R5 :¼ 2a51 � a41a50 and R6 :¼ �4a60 þ a2

50:w

These notations of the singularities are to be understood in the sense of to-
pological equivalence. The notations S3 and S6 are denoted as Sp1 and Sp2 in
[Ph] respectively. All other singularities appearing in [Ph] have the same no-
tations. Note that the Milnor numbers m of these singularities are given by the
following formulae:

mðBp;qÞ ¼ ðp � 1Þðq � 1Þ; mðxBp;qÞ ¼ pq � p þ q; mðyBp;qÞ ¼ pq þ p � q;

mðxyBp;qÞ ¼ ðp þ 1Þðq þ 1Þ; mðCp;qÞ ¼ p þ q þ 1; mðyCp;qÞ ¼ 3p þ q;

mðDp;qÞ ¼ 2p þ q þ 1; mðFp;qÞ ¼ p þ q þ 6; mðSnÞ ¼ 15 þ n:

Remark 1. The correspondence between our notations and those in [W] (cf.
[AGV]) is described in the following table (where i b 0 and j; k b 1):

D4þi B3;3k B3;3kþ1 B3;3kþ2 B4;4 B4;5 B4;6 B5;5 B5;6 B6;6

E1; i Ek;0 Ek; ð�1Þ Ek; ð1Þ X1;0 W12 W1;0 NA0;0 NF20 none

yB3;4 yB3;5 yB3;6 xB3;4 yB4;5 xB2;5 xB3;5 xB4;5 xB2;7 xyB2;3 xyB3;4

Z11 Z13 Z1;0 W13 NC19 E13 W17 NF21 E2; ð0Þ Z12 NC20

C3;6þk C4þj;4þk yC3;6þk yC5;4þk D3;9þk D4;7 D5;5þk D6;5þi F5þj;5þk Sk

E2;k T2;4þj;4þk Z1;k NBk
ð0Þ E3;k W1;1 NAk;0 NBi

ð�1Þ NAj;k W #
1;k

2.2. Newton boundary and coordinate changes. For a given analytic
function f ðu; vÞ ¼

P
i; j aiju

iv j, we denote by Gð f ; ðu; vÞÞ the Newton boundary
with respect to the coordinates ðu; vÞ. We may abbreviate it to Gð f Þ if the choice
of the coordinates is clear. The cone of Gð f ; ðu; vÞÞ with the origin is denoted
by G�ð f ; ðu; vÞÞ. The Newton principal part of f is defined by NPPð f Þ :¼P

ði; jÞ AGð f Þ aiju
iv j. The Newton number nðGð f ÞÞ is defined by the alternating

sum

nðGð f ÞÞ :¼ 2 volume G�ð f Þ � ða þ bÞ þ 1;

where a (resp. b) is the length of the face of G�ð f Þ on the u-axis (resp. v-axis).
For example, a is given by mini ANfi j ai0 0 0g. If no such monomial exists,
a ¼ 0 by definition.

Let D be a face of the Newton boundary. The polynomial fDðu; vÞ :¼P
ði; jÞ AD aijx

iy j is called the face function. Let p; q be the pair of coprime

positive integers such that tðp; qÞ is a normal vector to D. Since D is included in
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the line fði; jÞ A R2 j pi þ qj ¼ dg, where d is some positive integer, fDðu; vÞ is a
weighted homogeneous polynomial of type ðp; q; dÞ and uniquely factorized as
fDðu; vÞ ¼ cuavb

Ql
i¼1ðvp � xiu

qÞni , where x1; . . . ; xl are mutually distinct non-zero
complex numbers. If fD has no multiple factor (i.e., ni ¼ 1 for each i), we say
that f is non-degenerate on D. Otherwise f is said to be degenerate on D. If f
is non-degenerate on all faces, we say that f is non-degenerate or more precisely
Newton non-degenerate.

For a given weight vector Q ¼ tðp; qÞ, we denote the lowest terms with
respect to the weight Q by fQðx; yÞ. Let dðQÞ denote the minimal degree with
respect to Q and set DðQ; f Þ :¼ fpi þ qj ¼ dðQÞgVGð f Þ. Then fQðx; yÞ is the
sum of aijx

iy j for ði; jÞ A DðQ; f Þ. In particular, if Q is a normal vector to a
face D then DðQ; f Þ ¼ D and fQðx; yÞ ¼ fDðx; yÞ. In this case we may use both
of the notations fQðx; yÞ and fDðx; yÞ for representing the face function.

It is well-known that the topological type of the germ of an isolated sin-
gularity f ðu; vÞ ¼ 0 with non-degenerate Newton boundary depends only on the
Newton boundary Gð f ; ðu; vÞÞ. See [K, O2] for further details.

When we are given a polynomial of f ðx; yÞ, for the determination of the
normal forms we use two types of coordinate changes.

(i) A change of coordinates given by

ðx; yÞ 7! ðax þ by; cx þ dyÞ;
where a; b; c; d A C and ad � bc0 0. This is a linear coordinate change. It does
not change the degree of a given polynomial.

(ii) A change of coordinates given by either

ðx; yÞ 7! ðx; y þ s1x þ s2x2 þ � � � þ spxpÞ
or

ðx; yÞ 7! ðx þ t1 y þ t2 y2 þ � � � þ tqyq; yÞ;
where si; tj A C, sp 0 0 and tq 0 0. This is called a triangular coordinate change.
Note that a triangular coordinate change may change the degree of a given
polynomial.

Remark 2. The normal forms presented in Section 2.1 are Newton non-
degenerate except for S1; . . . ;S6. Thus if a face has other integral point ða; bÞ on
Gð f Þ, the monomial cxayb, with c A C generic, can be added. If ð1; bÞ is on
Gð f Þ, the monomial on y-axis can be chopped o¤ (a negligible truncation in the
sense of [O]). For example, for n ¼ 2m þ 1 odd, An and Dnþ1 can be written as

An : x2 þ c1xymþ1 þ c2 y2mþ2 þ ðhigher termsÞ; c2
1 � 4c2 0 0;

Dnþ1 : x2y þ c1xymþ1 þ c2 y2mþ1 þ ðhigher termsÞ; c2
1 � 4c2 0 0:

In particular, c2 can be zero if c1 0 0. Note also that for q ¼ 2m, Cp;q can be
defined by xp þ x2y2 þ c1xym�1 þ c2 y2m ¼ 0 with c2

1 � 4c2 0 0. The notations
sBp;q; sCp;q, s ¼ x; y; xy, do not imply that f is divisible by s but they are just
topological equivalences. So, for example xB3;4 can be defined by x4 þ xy4 þ
ðhigher termsÞ.
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2.3. Inequalities. Let ðC;PÞ be a germ of a plane curve C at a singular
point P. Denote by mðC;PÞ the Milnor number of the singularity of C at P, by
rðC;PÞ the number of locally irreducible components of C at P, and by dðC;PÞ
the d-invariant, which is the maximal number of nodes in a deformation of the
germ ðC;PÞ. It is well-known that the equality 2dðC;PÞ ¼ mðC;PÞ þ rðC;PÞ � 1
holds, see [M]. We denote the multiplicity of C at P A C by mðC;PÞ. In the
case where two plane curves (or two germs) C1 and C2 intersect at P, we denote
their local intersection number at P by IðC1;C2;PÞ.

Now we introduce several inequalities which we will use later for the classi-
fication of local singularities on reduced sextics.

Let C be an irreducible plane curve in P2. We denote by SðCÞ the set of
singular points of C. The genus formula is

g ¼ ðd � 1Þðd � 2Þ
2

�
X

P ASðCÞ
dðC;PÞ;

where g is the genus of a non-singular model of C and d is the degree of C. Let
P A C be a singular point. The above equality and gb 0 give the inequality:

dðC;PÞa ðd � 1Þðd � 2Þ
2

; or mðC;PÞ þ rðC;PÞ � 1a ðd � 1Þðd � 2Þ;

called Plücker’s inequality. In particular, for an irreducible sextic we have
dðC;PÞa 10.

Let ðu; vÞ be a local analytic coordinate system centered at a singular point
P A C. Another inequality due to Kouchnirenko [K] is

nðG�ð f ; ðu; vÞÞÞa mðC;PÞ:
The last inequality, which can be applied to any reduced sextic, is

mðC;PÞa 25. This follows from the fact that the sum of Milnor numbers of a
sextic function f : C2 ! C is bounded above by 25.

3. Classification of local singularities on reduced sextics

We give the classification of topological types of local singularities of re-
duced sextics for each multiplicity fixed. Suppose that a reduced sextic C has an
isolated singularity at the origin O and let mðC;OÞ denote its multiplicity. Since
C is a sextic, mðC;OÞ can be 2; 3; . . . ; 6.

Theorem 3. The classification of topological types of local singularities on
reduced sextics is given as follows. Here T0C represents the tangent cone of C
at O:

1. mðC;OÞ ¼ 2:
(i) T0C is x2 ¼ 0: ðC;OÞGAn ð2a na 19Þ.
(ii) T0C consists of two generic lines: ðC;OÞGA1.
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2. mðC;OÞ ¼ 3:
(i) T0C is x3 ¼ 0: ðC;OÞGEn ðn ¼ 6; 7; 8Þ, B3;n ð6a na 12Þ, xB2;n

ðn ¼ 5; 7Þ, C3;n ð7a na 15Þ, D3;n ð10a na 13Þ.
(ii) T0C is x2y ¼ 0: ðC;OÞGDn ð5a na 19Þ.
(iii) T0C consists of three generic lines: ðC;OÞGD4.

3. mðC;OÞ ¼ 4:
(i) T0C is x4 ¼ 0: ðC;OÞGB4;n ðn ¼ 5; 6Þ, D4;7, xB3;n ðn ¼ 4; 5Þ,

Sn ð1a na 6Þ.
(ii) T0C is x3y ¼ 0: ðC;OÞG yB3;n ðn ¼ 4; 5; 6Þ, xyB2;3, yC3;n

ð7a na 12Þ.
(iii) T0C is x2yðx þ cyÞ ¼ 0, c0 0: ðC;OÞGC4;n ð5a na 14Þ.
(vi) T0C is x2y2 ¼ 0: ðC;OÞGC5;n ð5a na 14Þ, C6;n ð6a na 12Þ,

C7;n ð7a na 11Þ, C8;n ð8a na 11Þ, C9;9.
(v) T0C consists of four generic lines: ðC;OÞGB4;4.

4. mðC;OÞ ¼ 5:
(i) T0C is x5 ¼ 0: ðC;OÞGB5;6, xB4;5.
(ii) T0C is x4y ¼ 0: ðC;OÞG yB4;5, xyB3;4.
(iii) T0C is x2y3 ¼ 0: ðC;OÞG yC5;n ðn ¼ 5; 6Þ, D6;n ðn ¼ 6; 7Þ.
(iv) T0C is y3ðx þ c1yÞðx þ c2yÞ ¼ 0, c1; c2 0 0, c1 0 c2: ðC;OÞGD6;5,

yC5;4.
(v) T0C is x2yðx þ c1yÞðx þ c2yÞ ¼ 0, c1; c2 0 0, c1 0 c2: ðC;OÞGD5;n

ðn ¼ 6; 7Þ,
(vi) T0C is x2y2ðx þ cyÞ ¼ 0, c0 0: ðC;OÞGFp;q ðp; q A f6; 7gÞ.
(vii) T0C consists of five generic lines: ðC;OÞGB5;5.

5. mðC;OÞ ¼ 6:
(v) T0C consists of six generic lines: ðC;OÞGB6;6.

3.1. Listing possible local singularities. Let C be a reduced sextic with an
isolated singularity at the origin O and let f be the defining polynomial of C
which has the form

f ðx; yÞ :¼
X

iþja6

aijx
iy j;

where a00 ¼ 0. Now we make a list of possible singularities for each fixed
multiplicity.

(I) Case mðC;OÞ ¼ 2: In this case by a linear coordinate change if nec-
essary we may assume that a10 ¼ a01 ¼ 0, a20 0 0, and either 4a02a20 � a2

11 0 0 or
a02 ¼ a11 ¼ 0. We look at the face D which has ð2; 0Þ as a vertex. If f is non-
degenerate on D then fD gives a normal form of an An singularity. Otherwise,

fDðx; yÞ ¼ a20ðx þ aykÞ2 for some k b 2 and a A C� :¼ C � f0g. Then we take a
triangular change of coordinates x1 ¼ x þ ayk, y1 ¼ y. This operation stops at a
finite number of steps and only the singularities An, nb 1, appear in this series.
It is well-known that the maximal rank of the simple singularities on sextics is 19
(see [H, S-I]). Thus na 19.

(II) Case mðC;OÞ ¼ 3: In this case aij ¼ 0 for i þ j a 2, and at least one
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of aij , i þ j ¼ 3, is not zero. Put Q ¼ tð1; 1Þ. We separate this case into three
subcases according to the degeneration of the homogeneous polynomial fQ :¼P

iþj¼3 aijx
iy j.

(II-1) Assume that fQ has three distinct roots. Then the singularity is
D4 ¼ B3;3.

(II-2) Assume that fQ has two distinct roots, one of which is a root of mul-
tiplicity 2: After a suitable linear coordinate change, we can assume that a03 ¼
a12 ¼ 0 and a21 ¼ 1. Thus f ðx; yÞ ¼ a30x3 þ a21x2y þ ðhigher termsÞ. Hence
the possible singularities are Dn, nb 5. We also have na 19 ([H, S-I]).

(II-3) Assume that fQ has a root of multiplicity 3. After a suitable linear
coordinate change, we can assume that a03 ¼ a12 ¼ a21 ¼ 0 and a30 ¼ 1. If
a04 0 0 then the singularity is E6. If a04 ¼ 0 and a13 0 0 then it is E7. If
a04 ¼ a13 ¼ 0 and a05 0 0 then it is E8. Otherwise f is a linear combination of
monomials xiy j with 2i þ j b 6.

Set Q 0 ¼ tð2; 1Þ. We again separate this case into three subcases according
to the degeneration of the weighted homogeneous polynomial fQ 0 .

(II-3-1) Assume that fQ 0 has three distinct roots. Then the singularity is
B3;6.

(II-3-2) Assume that fQ 0 has two distinct roots, one of which is a double
root. Then by a triangular change of coordinates x1 ¼ x þ ay2, y1 ¼ y, we may
assume that f ðx1; y1Þ ¼ x2

1ðx1 þ by2
1Þ þ

P 0 where b0 0 and
P 0 is a linear com-

bination of monomials xi
1y

j
1 with 2i þ j > 6. Now we look at the face D which

has ð2; 2Þ as the right side end and we try to make f to be non-degenerate on D.
After a finite number of triangular changes of coordinates, we arrive at the form

NPPð f Þðxi; yiÞ ¼
x3

i þ bx2
i y2

i þ c2yn
i ; c2 0 0; n : odd

x3
i þ by2

i ðx2
i þ c1xiy

n=2�1
i þ c2 yn�2Þ; c2

1 � 4c2 0 0; n : even:

(

The corresponding singularity is C3;n, nb 7. We will see later that C3;n with
na 15 appears but no further singularities in this series.

(II-3-3) Assume that fQ 0 has a root of multiplicity 3. Then by a triangular
change of coordinates x1 ¼ x þ ay2, y1 ¼ y, we can write f ðx1; y1Þ ¼ x3

1 þ
P 0

where
P 0 is a linear combination of monomials xi

1y
j
1 with 2i þ j > 6. Now

we look at the face D which contains the vertex ð3; 0Þ at the right side end.
We continue triangular changes of coordinates ðxi; yiÞ until the face function
fDðxi; yiÞ (with respect to new D) becomes non-degenerate. Assume that ðxj ; yjÞ
are the last coordinates and let ða; bÞ be the end vertex of D other than ð3; 0Þ.
Note that aa 2 and 2a þ b > 6.

If a ¼ 0 then fDðxj; yjÞ is a normal form of the singularity B3;b, bb 7. If
a ¼ 1 then fDðxj; yjÞ ¼ x3

j þ c1xjy
b
j , which is xB2;b. Note that if b is even then

xB2;b ¼ B3;3b=2. We will see later that B3;b, bb 13 and xB2;b, bb 9 do not
appear.

Assume that a ¼ 2. Then f ðxj; yjÞ ¼ x3
j þ c1x2

j yb
j þ ðhigher termsÞ. By the

assumption, bb 3. If b ¼ 3 then we get D3;n, nb 10. We will see later that
na 13. We will also see that bb 4 does not occur in reduced sextics.
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(III) Case mðC;OÞ ¼ 4: Set Q ¼ tð1; 1Þ. We then separate this case
into five subcases according to the degeneration of the homogeneous poly-
nomial fQ :¼

P
iþj¼4 aijx

iy j.
(III-1) Assume that fQ has four distinct roots. Then the singularity is B4;4.
(III-2) Assume that fQ has three distinct roots, one of which is a double

root. Then f ðx; yÞ ¼ a40x2ðx þ c1yÞðx þ c2 yÞ þ ðhigher termsÞ with c1; c2 0 0
and c1 0 c2. The possible singularities are only C4;n, nb 5. We will see later
that na 14.

(III-3) Assume that fQ has two distinct double roots. After a suitable
change of coordinates, we can assume that fQðx; yÞ ¼ x2y2. Consider the right
face D1 which contains the vertex ð2; 2Þ as the left end vertex. We continue
triangular changes of coordinates of type xi ¼ xi�1, yi ¼ yi�1 þ cix

ki

i�1 successively
until we arrive at the coordinates (xa; yaÞ in which f is non-degenerate on D1.
Then we consider the face D2 which has ð2; 2Þ as the right end vertex. We
continue triangular changes of coordinates of type xj ¼ xj�1 þ cjy

lj

j�1, yj ¼ yj�1

until we arrive at the coordinates ðxb; ybÞ in which f is non-degenerate on D2.
Note that in this process, the part of the Newton boundary Gð f ; ðxj�1; yj�1ÞÞV
fða; bÞ; ba 2g is unchanged. So, at the end of two series of operations, we see
that the possible singularities are only Cp;q, p; qb 5. We will see later that C5;q,
qb 15, C6;q, qb 13, C7;q, qb 12, C8;q, qb 12, and C9;q, qb 10 do not appear
on reduced sextics.

(III-4) Assume that fQ has two distinct roots, one of which is a root of
multiplicity 3. We can assume that a40 ¼ a22 ¼ a13 ¼ a04 ¼ 0 and a31 ¼ 1, and
f ðx; yÞ ¼ x3y þ ðhigher termsÞ. We focus on the face which has ð3; 1Þ as the
right end and do the same inductive process as in the case mðC;OÞ ¼ 3. If any
one of a05; a14; a06 is non-zero, f is non-degenerate in the coordinate ðx; yÞ and
the corresponding singularities are yB3;4; xyB2;3; yB3;5.

Assume that a05 ¼ a14 ¼ a06 ¼ 0. For Q 0 ¼ tð2; 1Þ, the function fQ 0 is given
by fQ 0 ðx; yÞ ¼ x3y þ a23x2y3 þ a15xy5. As ðx; yÞ are a‰ne coordinates, we ob-
serve that xj f and a15 0 0 as otherwise x2j f . If fQ 0 is non-degenerate then the
singularity ðC;OÞ is yB3;6. If it is degenerate, we apply a triangular change
of coordinates x1 ¼ x þ ay2, y1 ¼ y and get fQ 0 ðx1; y1Þ ¼ x3

1y1 � ax2
1y3

1 . Observe
that a ¼ 0 implies that a23 ¼ a15 ¼ 0 and x2j f , which is impossible as ðC;OÞ is
assumed to be an isolated singularity. Now we consider the face which has ð2; 3Þ
as the right end. After suitable triangular changes of coordinates, we can assume
that the Newton boundary is non-degenerate. Let ðxa; yaÞ be the last coor-
dinates. Let D denote the face which contains ð2; 3Þ as the right end vertex in
the coordinates ðxa; yaÞ and ða; bÞ denote the left end vertex of D. It is easy to
observe that either ða; bÞ ¼ ð0; qÞ, qb 8, or ða; bÞ ¼ ð1; qÞ, qb 6. In the former
case the singularity ðC;OÞ is yC3;q�1, and in the latter case it is yC3;2q�4.
Thus in any case, we get the singularities yC3;n, nb 7. We will show later that
na 12.

(III-5) Assume that fQ has one root of multiplicity 4. Then we may assume
that f ðx; yÞ ¼ x4 þ ðhigher termsÞ and the singularities are B4;5 if a05 0 0, and
xB3;4 if a05 ¼ 0, a14 0 0. Otherwise (i.e., a05 ¼ a14 ¼ 0) the polynomial is a
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linear combination of monomials xiy j with 3i þ 2j b 12. Put Q ¼ tð3; 2Þ and
consider the face function: fQðx; yÞ ¼ x4 þ a23x2y3 þ a06 y6. Put J ¼ a2

23 � 4a06.
An easy discussion shows that the singularity ðC;OÞ is one of the following:

(a) If J 0 0, a06 0 0, then ðC;OÞ is B4;6.
(b) If a06 ¼ 0, a23 0 0, then fQðx; yÞ ¼ x4 þ a2;3x2y3. The possible singu-

larity in this case with a15 0 0 is D4;7, as NPPð f Þ ¼ x4 þ a23x2y3 þ a15xy5. If
a15 ¼ 0, we can easily see that x2j f .

(c) If a23 ¼ a06 ¼ 0, then a15 can not be zero and NPPð f Þ ¼ x4 þ a15xy5.
Thus ðC;OÞ is xB3;5.

(d) Assume that a06; a23 0 0 and J ¼ 0. Then NPPð f Þ ¼ ðx2 þ ay3Þ2. In
this case, we have no further possible triangular change of coordinates. To see
the structure of the singularity, we apply toric modifications with respect to a
regular subdivision admissible for the dual Newton diagram (see [O2]) and then
we can easily see that the strict transforms have only An-type singularities on
upstairs. They correspond to the sequence of singularities Sn, n ¼ 1; 2; . . . ; 6.

(IV) Case mðC;OÞ ¼ 5: Set Q ¼ tð1; 1Þ. We separate this case into seven
subcases according to the degenerations of the homogeneous polynomial fQðx; yÞ
of degree 5.

(IV-1) Assume that fQ has five distinct roots. Then the singularity is B5;5.
(IV-2) Assume that fQ has four distinct roots, one of which is a root of

multiplicity 2. We may assume that x2j fQ. Then the singularities are D5;6 if
a06 0 0 and D5;7 if a06 ¼ 0 and a15 0 0. Otherwise we can see that x2j f .

(IV-3) Assume that fQ has three distinct roots, two of which are of mul-
tiplicity 2. We may assume that x2j fQ and y2j fQ, and thus f ðx; yÞ ¼ a23x2y3 þ
a32x3y2 þ ðhigher termsÞ. Then the possible singularities are F6;6;F6;7 and F7;7.

(IV-4) Assume that fQ has three distinct roots, one of which has the
multiplicity 3. We may assume that fQ ¼ y3ðy þ a1xÞðy þ a2xÞ where a1; a2 are
non-zero and a1 0 a2. Then the face D which has ð2; 3Þ as the left side end can
not be degenerate as f has degree 6. The possible singularities are D6;5 or
yC5;4.

(IV-5) Assume that fQ has two distinct roots of multiplicity 2 and 3 re-
spectively. Then we may assume that fQðx; yÞ ¼ x2y3. Then the singularities
obtained are D6;6;D6;7; yC5;5 and yD5;6.

(IV-6) Assume that fQ has two distinct roots, one of which has multiplicity
4. We assume that fQðx; yÞ ¼ x4y. Then the singularities are yB4;5 or xyB3;4.

(IV-7) Assume that fQ has a single root of multiplicity 5. Then the sin-
gularities are B5;6 or xB4;5.

(V) Case mðC;OÞ ¼ 6: The singularity which can be obtained is only B6;6.

3.2. Non-existence. We prove the non-existences of local singularities
which are mentioned in the previous arguments.

Lemma 4. An, nb 20 and Dn, nb 20 do not appear on reduced sextics.

This is a well-known result by Horikawa and Shioda-Inose [H, S-I]. The
assertion, except for the case A20, can also be proved as follows: For A2m,
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mb 11, note that this singularity is locally irreducible. Thus it must be on an
irreducible component. But Plücker inequality says that it can be possible only
on a curve of degree greater than 7. For A2m�1, mb 11, it can not be on an
irreducible curve of degree at most 6. If it is on the intersection of two com-
ponents with degrees d1; d2, d1 þ d2 a 6, then the intersection multiplicity must be
m. However this is also impossible by Bézout theorem as d1d2 a 9. For Dn,
nb 20, a similar argument can be applied.

Lemma 5. The singularities C3;n, nb 16 do not exist on reduced sextics.

Proof. The singularity C3;n has two (resp. three) locally irreducible com-
ponents for n odd (resp. n even) and its Milnor number is n þ 4. Thus C3;n does
not exist for nb 16 on irreducible sextics by Plücker inequality. For an n odd,
one component has the singularity An�3, nb 16, which is locally irreducible and
can not be on a curve of degree less than 6. We prove the non-existence of C3;2k

for k b 8. It has three local smooth components L1;L2;L3 so that their local
intersection numbers are given by

IðL1;Lj;OÞ ¼ 2; j ¼ 2; 3 and IðL2;L3;OÞ ¼ k � 1:

Under the normal form of C3;2k as before, the defining equation fiðx; yÞ of Li

is given as f1ðx; yÞ ¼ x þ y2 þ (higher terms), f2ðx; yÞ ¼ x þ
ffiffiffiffiffiffiffi
�1

p
yk�1 þ (higher

terms) and f3ðx; yÞ ¼ x �
ffiffiffiffiffiffiffi
�1

p
yk�1 þ (higher terms), and the intersection number

IðLi;Lj;OÞ is easily given by these expressions (see [O2] for example). The
singularity ðL2 UL3;OÞ is A2k�3. Thus this can not be on an irreducible com-
ponent of degree less than 6. If they are on di¤erent irreducible components, say
C2 and C3, the pair of degrees ðdeg C2; deg C3Þ is ð2; 4Þ, ð4; 2Þ or ð3; 3Þ by Bézout
theorem. In particular, the local component L1 must be on the same component
with L2 or L3. We assume that L1 and L2 are on the component C2. The pair
ð2; 4Þ is impossible since an irreducible conic can not have any singularity, and
the case ð4; 2Þ is also since IðL1 UL2;L3;OÞ ¼ k þ 1b 9. If the pair is ð3; 3Þ
then L1 UL2 must be on a cubic. Since ðL1 UL2;OÞ is an A3 singularity on the
cubic, it must consist of one line and one conic. But this contradicts to the
assumption that L1 and L2 stay in the same component C2. r

Lemma 6. The singularities B3;n, nb 13 and xB2;n, nb 9 do not exist on
reduced sextics.

Proof. The Milnor number of B3;n is 2ðn � 1Þ. Thus nb 14 is impossible
by the inequality mðC;OÞa 25. For n ¼ 13, B3;13 is a locally irreducible sin-
gularity. Thus it must be on an irreducible component of degree less than or
equal to 6, but this is impossible. For xB2;n, the Milnor number is mðxB2;nÞ ¼
3n � 2. Hence nb 10 does not occur by the same reason. Suppose n ¼ 9.
Then xB2;9 has two locally irreducible components, one is smooth at O, say L,
and the other component has the singularity B2;9 ¼ A8. But, since A8 can not be
on a cubic, we can not have the equality IðL;B2;9;OÞ ¼ 9 by Bézout theorem.

r
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Lemma 7. The singularities D3;n, nb 14 do not exist on reduced sextics.

Proof. The singularity D3;n has two (resp. three) locally irreducible com-
ponents for n even (resp. n odd) and its Milnor number is n þ 7. Thus D3;n does
not exist for nb 13 on irreducible sextics by Plücker inequality. For n even,
the sextic consists of two irreducible curves and their intersection number at the
origin is 6. Hence the pair of degrees is either ð4; 2Þ or ð3; 3Þ. But since one
component has the singularity An�4, nb 14, which is locally irreducible, and this
can not be on a curve of degree less than 5.

We finally prove the non-existence of D3;2kþ1, k b 7. It has three local
smooth components L1;L2;L3 so that their local intersection numbers are given
by

IðL1;Lj;OÞ ¼ 3; j ¼ 2; 3 and IðL2;L3;OÞ ¼ k � 1:

The singularity ðL2 UL3;OÞ is A2k�3. Thus this can not be on an irreducible
component of degree less than 5. It is also impossible for ðL2 UL3;OÞ to stay on
an irreducible component of degree 5 since IðL1;L2 UL3;OÞ ¼ 6 > 5 � 1 con-
tradicts to Bézout theorem. Let Ci be the supporting irreducible component for
Li, i ¼ 2; 3. Thus by Bézout theorem, the only possibility is the case ðdeg;L2;
deg;L3Þ ¼ ð2; 4Þ or ð3; 3Þ and Ci must be smooth at O. The former case is
impossible since IðL1 UL2;L3;OÞ ¼ IðL1 UL3;L2;OÞ ¼ k þ 2b 9, and the latter
case is also since ðL1 UL2;OÞ is an A5 singularity and it can not be on a cubic.

r

Lemma 8. Let f ðxj; yjÞ be the defining analytic function with respect to some
analytic coordinates ðxj; yjÞ of a singularity on a sextic. Suppose that it satisfies

fQðxj; yjÞ ¼ x3
j þ c1x2

j yb
j for Q ¼ tðb; 1Þ. Then ba 3.

Proof. The singularity has two or three locally irreducible components.
Since Gð f ; ðxj; yjÞÞ contains Gðx3

j þ y3b
j Þ, we have mð f ; ðxj; yjÞÞb nðG�ð f ;

ðxj; yjÞÞÞ > 2ð3b � 1Þ. Thus bb 5 is impossible by the inequality mðC;OÞa 25.
Now we assume b ¼ 4. Since mð f ; ðxj; yjÞÞ > 22, the singularity can not be on
an irreducible sextic. The rest of the proof is similar to the proof of the non-
existence of D3;n for nb 14. r

Lemma 9. The singularities C4;n, nb 15 do not exist on reduced sextics.

Proof. The singularity C4;n has three (resp. four) locally irreducible com-
ponents for n odd (resp. n even) and its Milnor number is n þ 5. Thus C4;n does
not exist for nb 14 on irreducible sextics by Plücker inequality. For n odd,
one component has the singularity An�3, nb 15, which is locally irreducible
and can not be on a curve of degree less than 6 except the case where
n ¼ 15. Suppose n ¼ 15. Then there are three locally irreducible components
L1;L2;L3 where L1 and L2 are smooth while L3 is the singularity A12 in a
quintic. Since ðL1 UL3;OÞ (and also ðL2 UL3;OÞ) can not be on an irreducible
quintic, ðL1 UL2;OÞ must be on a line, which is impossible.
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We finally prove the non-existence of C4;2k, k b 8. It has four local smooth
components L1;L2;L3;L4 so that their local intersection numbers are given by

IðLi;Lj;OÞ ¼ 1; i ¼ 1; 2; j ¼ 3; 4; IðL1;L2;OÞ ¼ 1 and IðL3;L4;OÞ ¼ k � 1:

The singularity ðL3 UL4;OÞ is A2k�3. Thus this can not be on an irreducible
component of degree less than 6. If they are on di¤erent irreducible compo-
nents, the pair of their degrees is either ð4; 2Þ or ð3; 3Þ by Bézout theorem. Let
us consider the case ð4; 2Þ and suppose that L4 stays on the conic. Since
IðL1 UL2 UL3;L4;OÞ ¼ k þ 1b 9 contradicts to Bézout theorem, the conic must
contain either L1 or L2. However this is impossible as IðL1 UL3;L2 UL4;OÞ ¼
k þ 2b 10. The case ð3; 3Þ is not possible by a similar argument. r

The proofs of the following two lemmas are similar to those of the previous
ones. So, we omit their proofs.

Lemma 10. The singularities C5;n, nb 15, C6;n, nb 13, C7;n, nb 12, C8;n,
nb 12, C9;n, nb 10, do not exist on reduced sextics.

Lemma 11. The singularities yC3;n, nb 13 do not exist on reduced sextics.

3.3. Existence. To complete the classification of local singularities on
sextics, we have to show the existence of possible singularities listed in Section 3.1
and we did it by showing explicit examples of such sextics. In the calculation for
listing local singularities on sextics in Section 3.1, we have implicitly shown that
any of the singularities can be degenerate into one of the followings:

A19;D19;B3;12;B6;6;C3;15;C4;14;C5;14;C6;12;C7;11;C8;11;C9;9; yC3;12;D3;13;S6:

If ðC;OÞ is one of the singularities B3;12;B6;6;C3;15;C6;12;C9;9 and S6 then an
explicit equation is given in [Ph] since it must be of torus type (see Section 4
below). Thus, for proving the existence, it is enough to give explicit equations of
examples for the singularities A19;D19;C4;14;C5;14;C7;11;C8;11; yC3;12 and D3;13.
The equations are the following:

1. ðC;OÞGA19 (then C is irreducible):

f ðx; yÞ ¼ ð446 � 54
ffiffiffi
5

p
Þy6 � ð10 þ 26

ffiffiffi
5

p
Þs2xy5 � ð192 þ 40

ffiffiffi
5

p
Þsy5

� ð100 þ 14
ffiffiffi
5

p
Þsx2y4 þ ð978 � 114

ffiffiffi
5

p
Þxy4 þ ð52 þ 4

ffiffiffi
5

p
Þs2y4

þ ð�344 þ 24
ffiffiffi
5

p
Þx3y3 þ ð32 � 48

ffiffiffi
5

p
Þs2x2y3 � ð384 þ 80

ffiffiffi
5

p
Þsxy3

þ ð18 þ 14
ffiffiffi
5

p
Þs2x4y2 þ ð�8 þ 12

ffiffiffi
5

p
Þsx3y2 þ ð618 � 66

ffiffiffi
5

p
Þx2y2

þ ð104 þ 8
ffiffiffi
5

p
Þs2xy2 þ ð48 þ 10

ffiffiffi
5

p
Þsx5y þ ð�344 þ 24

ffiffiffi
5

p
Þx4y

þ ð42 � 22
ffiffiffi
5

p
Þs2x3y � ð192 þ 40

ffiffiffi
5

p
Þsx2y þ 82x6 þ ð5 þ 13

ffiffiffi
5

p
Þs2x5

þ ð92 þ 26
ffiffiffi
5

p
Þsx4 þ ð86 � 6

ffiffiffi
5

p
Þx3 þ ð52 þ 4

ffiffiffi
5

p
Þs2x2

where s :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2

ffiffiffi
5

p
3
p

.
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2. ðC;OÞGD19 (then C is irreducible):

f ðx; yÞ ¼ �7=2y6 � 3=4xy5 þ y5 þ 19=8x2y4 � 7xy4 þ 12x3y3

� 3=2x2y3 þ 2xy3 þ x4y2 þ 3=4x3y2 � 7=2x2y2 � 4x5y

þ 12x4y � 3=4x3y þ x2y � 10x6 þ x5 � 13=8x4

3. ðC;OÞGC4;14 (then C is a reducible curve of either a conic and a quartic
or two cubics):

f ðx; yÞ ¼ ðx þ y2Þðy4 þ xy3 þ xy2 þ x2y þ x4Þ

f ðx; yÞ ¼ ðy3 þ 2xy2 þ xy � x3 þ 2x2Þðy3 þ xy2 þ xy � x3 þ x2Þ

4. ðC;OÞGC5;14 (then C is a reducible curve of a conic and a quartic):

f ðx; yÞ ¼ ðx þ y2Þðy4 þ xy2 þ x4Þ

5. ðC;OÞGC7;11 (then C is irreducible):

f ðx; yÞ ¼ y6 þ 2y4x þ x3y3 þ x2y2 þ yx5 þ yx4 þ 1=4x6

6. ðC;OÞGC8;11 (then C is a reducible curve of a line and a quintic):

f ðx; yÞ ¼ yðy5 þ 2xy3 þ x2y þ x5Þ
7. ðC;OÞG yC3;12 (then C is a reducible curve of a line, a conic and a

cubic):

f ðx; yÞ ¼ xðxy þ 2x þ 2y2Þðx3 � 2xy2 � 4xy � 4y3Þ
8. ðC;OÞGD3;13 (then C is a reducible curve of a conic and a quartic):

f ðx; yÞ ¼ ðy2 � xy � x2 � xÞðy4 � 3xy3 þ 3x2y2 � 2xy2 þ 3x2y þ x4 � x3 þ x2Þ
This completes the proof of Theorem 3. r

4. Configuration spaces of sextics of torus type

Recall that a sextic is called of torus type if the defining polynomial f ðx; yÞ
can be written as f ðx; yÞ ¼ f2ðx; yÞ3 þ f3ðx; yÞ2, where fi is a polynomial of
degree i for i ¼ 2; 3. Note that the classification of the possible configurations of
singularities of reduced sextics of torus type has been done by Pho and Oka in
[Ph, O-Ph, O3].

A sextic f 2
3 þ f 3

2 ¼ 0 of torus type is called tame if its singularities are sitting
only at the intersection of the conic defined by f2 ¼ 0 and the cubic f3 ¼ 0. An
important property of tame sextics of torus type is that the sum of intersection
numbers of the conic and cubic for all singularities is always 6. Hence there are
only 11 configurations of intersection numbers of local singularities, which are
described in the first column in the following table. Each vector in the first
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column is called an i-vector. The possible configurations of local singularities are
described in the other two columns. This classification is done by Pho [Ph].

i-vector simple singularities non-simple singularities

ð1; 1; 1; 1; 1; 1Þ f6A2g j

ð1; 1; 1; 1; 2Þ f4A2 þ A5g, f4A2 þ E6g j

ð1; 1; 2; 2Þ f2A2 þ X þ Yg,
X ;Y ¼ A5;E6

j

ð1; 1; 1; 3Þ f3A2 þ A8g f3A2 þ sg,
s ¼ B3;6;C3;7;C3;8;C3;9

ð2; 2; 2Þ fX þ Y þ Zg,
X ;Y ;Z ¼ A5;E6

j

ð1; 2; 3Þ fA2 þ X þ A8g,
X ¼ A5;E6

fA2;X ; tg, X ¼ A5;E6,
t ¼ B3;6;C3;7;C3;8

ð1; 1; 4Þ f2A2 þ A11g f2A2 þ hg,
h ¼ C3;9;B3;8;C6;6;B4;6;D4;7

ð3; 3Þ f2A8g fA8 þ xg,
x ¼ B3;6;C3;7;C3;8, f2B3;6g

ð2; 4Þ fX þ A11g, X ¼ A5;E6 fX þ ag, X ¼ A5;E6, a ¼ C3;9;B3;8

fA5; bg, b ¼ C6;6;B4;6;D4;7

ð1; 5Þ fA2 þ A14g fA2 þ gg, g ¼ C3;12;B3;10;C6;9;S3

ð6Þ fA17g fC3;15g; fC9;9g; fB3;12g;
fC6;12g; fS6g; fB6;6g

Let M denote the vector space of dimension 28, which is the space of
sextics, and denote the space of sextics with a given configuration S of singu-
larities by MðSÞ, i.e. MðSÞ :¼ f f A M jSJSðCð f ÞÞg, where SðCð f ÞÞ is the con-
figuration of singularities of the sextic Cð f Þ :¼ fðx; yÞ A C 2 j f ðx; yÞ ¼ 0g. On
the other hand the space of sextics of torus type is of 16 dimensional, denoted by
T, and we set MtorusðSÞ :¼ f f A T jSJSðCð f ÞÞg for a given configuration S.

The main result in this section is the following.

Theorem 12. Let S be the configuration of singularities on a tame sextic of
torus type with at least one non-simple singularity (thus S is one of the right side
configurations in the above table). Then MðSÞ ¼ MtorusðSÞ.

To prove this theorem, we study slices of the configuration spaces MðSÞ and
MtorusðSÞ.
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Proof. For each configuration S in the assertion, we consider a slice con-
dition S and compute the dimension of the slices of the configuration spaces
MðS;SÞ and MtorusðS;SÞ. Since obviously we have MðS;SÞIMtorusðS;SÞ, it
is enough to show that MðS;SÞ is irreducible and has the same dimension as
that of MtorusðS;SÞ. Note that, since the set f f A T jS ¼ SðCð f ÞÞg is dense in
MtorusðSÞ in the sense of Zariski topology, the dimension of MtorusðS;SÞ can be
determined by using formulae in [O-Ph].

The proof is computational. We first start from the generic form of sextics
and put the singular points at explicit loci so that we get a normal form of
MðS;SÞ. Then we check the dimension, which is the number of parameters in
the normal form, and also check the irreducibility of the parameter space.

As an example, we give a proof of the assertion for the configuration S ¼
f3A2 þ B3;6g. The dimension of a minimal slice of MtorusðSÞ is 4. Let C denote
a sextic with this configuration. By the action of PGLð3;CÞ, we can assume that
the singularity at the origin O is B3;6, and either

(1) S1: three A2’s are at ð1; 0Þ, ð0; 1Þ and ð1; 1Þ,
(2) S2: three A2’s are at ð1; 1Þ, ð0; 1Þ and ð�1; 1Þ, or
(3) B3;6 and two A2’s stay on a line (i.e., colinear).

We first show that case (3) does not happen. Let L be the colinear line. By
Bézout theorem, L must be a component of C. However this is impossible since
A2 is locally irreducible.

Now we consider the slices MðS;SiÞ, i ¼ 1; 2:

MðS;SiÞ ¼ fC A MðSÞ jSðCÞ satisfies Sig:
In either case, the line defined by the tangent cone of C at O can not pass
through any A2. This can be proved as follows: Assume that L :¼ fx ¼ 0g is
the tangent cone of ðC;OÞ for example. If C is irreducible then this con-
tradicts Bézout theorem. We suppose that C ¼ LUC5, with C5 is a quintic.
Again this gives a contradiction that 5 ¼ IðL;C5Þb 4 þ 2. Thus we assume that
the tangent cone of C at O is given by the equation y � tx ¼ 0 for some t A C.
Note t0 0; 1 in (1) and t0G1 in (2).

We first study case (1). We start from the generic form f ðx; yÞ of sextics.
Let z1 :¼ ð1; 0Þ, z2 :¼ ð0; 1Þ and z3 :¼ ð1; 1Þ denote the singular point with A2-
singularities and get the equations

f ðziÞ ¼
qf

qx
ðziÞ ¼

qf

qy
ðziÞ ¼ 0;

q2f

qx2

q2f

qy2
� q2f

qxqy
ðziÞ2 ¼ 0; i ¼ 1; 2; 3:

We can assume that a30 ¼ 1 by the action of PSLð2;CÞ. Next, the condition
that ðC;OÞ is B3;6 can be applied by following the same process as what we did
in Section 3.1. The obtained normal form has four variables ða14; a31; a40; tÞ in
our calculation (cf. the torus decomposition in Remark 13), and this implies that
the slice is rational and thus irreducible. Thus, we can conclude that these slices
coincide.

In case (2), we can also get a normal form of a minimal slice of the
configuration space MðSÞ by computer calculation. Since it has four variables
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ða42; a51; a60; tÞ in our calculation (cf. Remark 13) and it is irreducible, we can
conclude that this slice coincides with that of MtorusðSÞ. This completes the
proof for the configuration S ¼ f3A2 þ B3;6g.

The proofs for other configurations are analogous, so we omit them. r

Remark 13. A torus decomposition of the normal form of the slice in case
(1) is given by

f2ðx; yÞ ¼ ty2 � ty � x2 þ x
and

f3ðx; yÞ ¼ ðð2a40 þ 6Þx3 þ ð3t � a41 � a31Þx2y � ð2a40 þ 6Þx2

þ ð�9t þ 2a31 þ a41Þxy2 þ ð6t � a31Þxy � ð2a40t þ a31Þty3

þ ð2a40t þ a31Þty2Þ=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ a40

p
Þ:

The torus decomposition in case (2) is

f2ðx; yÞ ¼ ty2 � ty � xy þ x

and

f3ðx; yÞ ¼ ð�8a2
60x3 � 4a60a51x2y þ 4a60a51x2 þ ða2

51 � 4a60a42Þxy2

þ ð8a2
60 þ 4a60a42 � a2

51Þxy þ ð4a60a51t þ 4a60a42 þ 8a2
60 � a2

51Þty3

þ ð�4a60a51t þ a2
51 � 8a2

60 � 4a60a42Þty2Þ=ð8a
3=2
60 Þ:

Remark 14. For any given configuration S of the singularities of a tame
sextic of torus type with only simple singularities (thus S is one of the left side
configurations in the table), there exists a sextic of non-torus type with the same
configuration S of singularities ([O5]). Thus they make a Zariski pair for which
the Alexander polynomials are given by t2 � t þ 1 and 1. Eyral and Oka have
proved that, for 7 tame configurations S’s, there exists a sextic CS of non-torus
type with configuration S so that the fundamental group p1ðP2nCSÞ is abelian.
See [E-O] for details.

Remark 15. For A17, we can also check the assertion of Artal: The
parameter space of sextics having A17 as a singularity consists of four connected
components, two of which correspond to irreducible sextics of torus and non-
torus type and the others correspond to reducible ones of torus and non-torus
type.

5. Relation between sextics of torus type and their r-invariants

Let C be a plane curve of degree d defined by f ðx; yÞ ¼ 0 and let SðCÞ
denote the singular locus of C. Let P A SðCÞ be a singular point on C.
Consider an embedded resolution of C, p : ~UU ! U where U is an open neigh-
borhood of P, and let E1; . . . ;Es denote the exceptional divisors. Choose a local
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coordinate system centered at P and let ki and mi be the order of zero of the
canonical two form p�ðdu5dvÞ and p� f respectively along the divisor Ei. Then
we define an ideal JP;k;d and integers rðP; kÞ and rðkÞ by

JP;k;d :¼ f A OP; ðp�fÞb
X

i

ð�ki þ ½kmi=d �ÞEi

( )

and

rðP; kÞ :¼ dim OP=JP;k;d ; rðkÞ ¼
X

P ASðCÞ
rðP; kÞ

respectively. These notations are used in [A] and [O4].
By easy calculation we can obtain the generators of the ideals JP;k;6 and

the rðP; kÞ for all non-simple singularities in sextics d ¼ 6. Note that the r-
invariants of simple singularities in sextics are aligned in [O4, Proposition 3].
The following is the list of r-invariants of non-simple singularities appearing on
reduced sextics. Here the notation r3;5ðPÞ represents the triple ðrðP; 5Þ; rðP; 4Þ;
rðP; 3ÞÞ:

1. B4;4;C4;5;C5;5: JP;k;6¼hx2; xy; y2i;hx; yi;hx; yi and r3;5ðPÞ¼ð3; 1; 1Þ.
2. B4;5; yB3;4: JP;k;6 ¼ hx2; xy; y2i; hx; y2i; hx; yi and r3;5ðPÞ ¼ ð3; 2; 1Þ.
3. B3;6;B3;7; yB3;5; yB3;6; yB4;3; yB5;2; xyB2;3;C3;7;C3;8;C4; 6;C4; 7;C4; 8;C5; 6;

C5;7;C5;8: JP;k;6¼hx2; xy; y3i; hx; y2i; hx; yi and r3;5ðPÞ¼ð4; 2; 1Þ.
4. B3;8; C3;9; C3;10; C3;11; C4;9; C4;10; C4;11; C5;9; C5;10; C5;11; yC3;7:

JP;k;6 ¼ hx2; xy; y4i; hx; y2i; hx; yi and r3;5ðPÞ ¼ ð5; 2; 1Þ.
5. B3;9; yC3;8; yC3;9;D3;10: JP;k;6 ¼ hx2; xy; y4i; hx; y3i; hx; yi and

r3;5ðPÞ ¼ ð5; 3; 1Þ.
6. B4;6; yB5;3;D4;7: JP;k;6 ¼ hx2; xy2; y3i; hx2; xy; y2i; hx; yi and

r3;5ðPÞ ¼ ð5; 3; 1Þ.
7. C6;6;C6;7;C6;8;C7;7;C7;8;C8;8:

JP;k;6 ¼ hx3; xy; y3i; hx2; xy; y2i; hx; yi and r3;5ðPÞ ¼ ð5; 3; 1Þ.
8. S1;S2: JP;k;6 ¼ hx2; xy2; y3i; hx2; xy; y2i; hx; yi and r3;5ðPÞ ¼ ð5; 3; 1Þ.
9. B3;10; B3;11; yB7;2; C3;12; C3;13; C3;14; C4;12; C4;13; C4;14; C5;12; C5;13; C5;14;

yC3;10; yC3;11; yC3;12; D3;11; D3;12; D3;13:
JP;k;6 ¼ hx2; xy; y5i; hx; y3i; hx; yi and r3;5ðPÞ ¼ ð6; 3; 1Þ.

10. B5;5; B5;6; yB4;5; yB5;4; xyB3;4; yC5;4; yC5;5; yC5;6; D5;6; D5;7; D6;5; D6;6;
D6;7; F6;6; F6;7; F7;7:
JP;k;6 ¼ hx3; x2y; xy2; y3i; hx2; xy; y2i; hx; yi and r3;5ðPÞ ¼ ð6; 3; 1Þ.

11. C6;9; C6;10; C6;11; C7;9; C7;10; C7;11; C8;9; C8;10; C8;11:
JP;k;6 ¼ hx3; xy; y4i; hx2; xy; y2i; hx; yi and r3;5ðPÞ ¼ ð6; 3; 1Þ.

12. S3;S4;S5: JP;k;6 ¼ hx3; xy2; x2 � y3; y4i; hx2; xy; y2i; hx; yi and

r3;5ðPÞ ¼ ð6; 3; 1Þ.
13. C3;15: JP;k;6 ¼ hx2; xy; y6i; hx; y3i; hx; yi and r3;5ðPÞ ¼ ð7; 3; 1Þ.
14. C9;9: JP;k;6 ¼ hx4; xy; y4i; hx2; xy; y2i; hx; yi and r3;5ðPÞ ¼ ð7; 3; 1Þ.
15. C6;12: JP;k;6 ¼ hx3; xy; y5i; hx2; xy; y3i; hx; yi and r3;5ðPÞ ¼ ð7; 4; 1Þ.
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16. S6: JP;k;6 ¼ hx3; x2y; x2 � y3; y4i; hx2; xy; y3i; hx; yi and
r3;5ðPÞ ¼ ð7; 4; 1Þ.

17. B3;12: JP;k;6 ¼ hx2; xy2; y6i; hx; y4i; hx; y2i and r3;5ðPÞ ¼ ð8; 4; 2Þ.
18. B6;6: JP;k;6 ¼ hx4; x3y; x2y2; xy3; y4i;hx3; x2y; xy2; y3i;hx2; xy; y2i and

r3;5ðPÞ ¼ ð10; 6; 3Þ.

Theorem 16. Let C be a sextic with at least one non-simple singularity. If
C satisfies rð5Þb 7 then it is of torus type.

The proof for the case where the non-simple singularity is a higher triple
point is given in Proposition 17. Here a higher triple point means a non-simple
singularity with multiplicity 3. The proof for the case where the non-simple
singularity is a quadruple point is given in Proposition 18. The rest, i.e., the case
where it has multiplicity 5 or 6, will be dealt with after these propositions.

Proposition 17. Let C be a sextic with a higher triple point. If C satisfies
rð5Þb 7 then it is of torus type.

Proof. We briefly describe a method as used in [W] to read o¤ all possible
configurations of singularities on sextics with at least a higher triple point. Let
C be given by

F ðx; y; zÞ ¼ x3z3 þ x2z2aðy; zÞ þ xzbðy; zÞ þ cðy; zÞ ¼ 0;

where a; b and c respectively are homogeneous polynomials of degree 2, 4 and 6.
The point P ¼ ð1 : 0 : 0Þ is a higher triple point. Let X be the double covering

of P2 determined by C. Then X is an elliptic surface defined by w2 ¼ F in the
weighted projective space Pð3; 1; 1; 1Þ.

By [W, Theorem 5.1], the surface X is not rational if and only if SðCÞ ¼
f2B3;6g or SðCÞ ¼ fB3;12g. Both are of torus type.

Suppose that X is a rational elliptic surface. Then the configuration of ex-
ceptional fibres of X determines the singularities on C as describe in the follow-
ing table, see [W, Section 5] for details. Here rð�; 5Þ represents the r-invariants
of the singularities described in the second column. Note that C3;6 ¼ B3;6 and
D3;9 ¼ B3;9.

Type Singularity rð�; 5Þ Singularity at P rðP; 5Þ

Ir Ar�1 a3 C3;6þr 4; . . . ; 7
II – – B3;7 4
III A1 0 yB5;2 4
IV A2 1 B3;8 5
I �

r D4þr a2 D3;9þr 5 or 6
IV � E6 2 B3;10 6
III � E7 2 yB7;2 6
II � E8 2 B3;11 6
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Let d be an exceptional fibre. If the fibre d is di¤erent from the fibre z ¼ 0
then C has another singularity on d VC of the same type as X has on the fibre
and this singularity is given in the second column. If the fibre d is z ¼ 0 then C
has P as the unique singularity on d VC. The type of singularity at P is given in
the fourth column except for the following cases:

. If z divides c but z does not divide b then the fibre z ¼ 0 has the singularity
of type Ir for rb 0 and C has another A1 singularity on z ¼ 0.

. If z divides both b and c but does not divide a, then the fibre z ¼ 0 has
type I1 and the singularity at P is of type C3;8.

. If z divides all a; b and c then the fibre z ¼ 0 has type II and the singularity
at P is of type yB5;2.

From the list of r-invariants of non-simple singularities and the fact that B3;12

corresponds only to a non-rational surface, we can see that the possible values
of rðP; 5Þ for a higher triple point P are 4a rðP; 5Þa 7. We now check the
assertion case by case.

(1) Case rðP; 5Þ ¼ 7: The singularity at P is C3;15 and hence the corre-
sponding fibre is I9. From the list of all possible configurations of singularities
on rational elliptic surfaces [Pe], we have only one case, that is I93I1. The cor-
responding sextic has SðCÞ ¼ fC3;15g or SðCÞ ¼ fC3;15;A1g. By Theorem 12,
such a sextic is of torus type.

(2) Case rðP; 5Þ ¼ 6: The singularity at P is C3;6þr for 6a ra 8, D3;9þj for
2a j a 4, B3;10;B3;11 or yB7;2. This means that the fibre z ¼ 0 is one of

fIr; I �
j ; IV �; III �; II � j 6a ra 8; 2a j a 4g:

For obtaining rð5Þb 7, the sextic should have at least one singularity other than
P whose r-invariant is strictly positive. From the list in [Pe], we see that this
condition is satisfied only in the following cases: I6IV2I1, I6I3I2I1, I6I33I1,
VI �VI , VI �I3I1. Then the possible configurations of singularities are SðCÞ ¼
fC3;12;A2; iA1g for 0a i a 2 and SðCÞ ¼ fB3;10;A2; jA1g for j ¼ 0; 1. From
Theorem 12, all of them are of torus type.

(3) Case rðP; 5Þ ¼ 5: The singularity at P is C3;6þr for 3a ra 5, D3;9þj for
j ¼ 0; 1 or B3;8. Note that D3;9 ¼ B3;9. The fibre z ¼ 0 is Ir for 3a ra 5, I �

j

for j ¼ 0; 1 or IV . From the list in [Pe], we see that only the following cases
correspond to sextics with rð5Þb 7:

. (the fibre z ¼ 0 is I3): 4I3, I6I3I2I1, I6I33I1, 3I3I2I1, 3I33I1, IV2I32I1,
IV2I3I2, IV �I3I1. The first case gives SðCÞ ¼ fC3;9; 3A2; iA1g for i ¼ 0; 1.
The last one gives SðCÞ ¼ fC3;9;E6; iA1g for i ¼ 0; 1. The other cases give
either SðCÞ ¼ fC3;9; 2A2; iA1g for 0a i a 2 or SðCÞ ¼ fC3;9;A5; iA1g for
0a i a 2. All of them are of torus type.

. (the fibre z ¼ 0 is IV ): 3IV , IV2I3I2, IV2I32I1, I6IV2I1, IV �IV . The last
two cases respectively give SðCÞ ¼ fB3;8;A5g and SðCÞ ¼ fB3;8;E6g. The
other cases give SðCÞ ¼ fB3;8; 2A2; iA1g for i ¼ 0; 1. All of them are of
torus type.

(4) Case rðP; 5Þ ¼ 4: The singularity at P is C3;6þr for 0a ra 2, B3;7 or
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yB5;2. Then the fibre z ¼ 0 is Ir for 1a ra 2, II , III or not exceptional. From
the list in [Pe], we see that only the following cases correspond to sextics with
rð5Þb 7:

. (the fibre z ¼ 0 is I2): 3I3I2I1, IV2I3I2, I6I3I2I1. The first two cases give
SðCÞ ¼ fC3;8; 3A2; iA1g for i ¼ 0; 1 and the last case gives SðCÞ ¼ fC3;8;
A5;A2; iA1g for i ¼ 0; 1. All of them are of torus type.

. (the fibre z ¼ 0 is I1): I93I1, I6IV2I1, I6I33I1, I6I3I2I1, IV2I32I1, 3I3I2I1,
3I33I1, IV �I3I1. The first case gives SðCÞ ¼ fC3;6þi;A8; jA1g for i ¼ 1; 2
and j ¼ 0; 1. The last case gives SðCÞ ¼ fC3;6þi;E6;A2; jA1g for i ¼ 1; 2
and j ¼ 0; 1. The other cases give either SðCÞ ¼ fC3;6þi;A5;A2; jA1g for
i ¼ 1; 2 and 0a j a 2 or SðCÞ ¼ fC3;6þi; 3A2; jA1g for i ¼ 1; 2 and
0a j a 2. All of them are of torus type.

. (the fibre z ¼ 0 is not exceptional): I93I1, IV �IV , IV �I3I1, I6IV2I1,
I6I3I2I1, I6I33I1, 3IV , IV2I3I2, IV2I32I1, 4I3, 3I3I2I1, 3I33I1. The first case
gives SðCÞ ¼ fB3;6;A8; iA1g for i ¼ 0; 1. The second and the third cases
give SðCÞ ¼ fB3;6;E6;A2; iA1g for i ¼ 0; 1. The last six cases give SðCÞ ¼
fB3;6; 3A2; iA1g for 0a i a 2. The other cases give SðCÞ ¼ fB3;6;A5;A2;
iA1g for 0a ia 2. All of them are of torus type. r

Proposition 18. Let C be a sextic with a quadruple point. If C satisfies
rð5Þb 7 then it is of torus type.

Proof. First of all, we briefly describe an argument as used in [W] to obtain
all possible configurations of sextics with a quadruple point. Suppose that C is
given by

F ðx; y; zÞ ¼ x2aðy; zÞ þ 2xbðy; zÞ þ cðy; zÞ ¼ 0;

where a; b and c are homogeneous polynomials of degree 4, 5 and 6
respectively. We denote f ðy; zÞ ¼ Fð1; y; zÞ. Let P ¼ ð1 : 0 : 0Þ be the singular
point.

Denote d ¼ b2 � ac. Let d be a non-zero linear form in C ½ y; z�. For
g A C ½y; z�, denote ndðgÞ ¼ k if g ¼ d kg1 and d F g1. The singularities of C can
be realized as follows, see [W, Section 1, 2 and 6] for details:

(i) ndðdÞ ¼ rb 2 and ndðaÞa 1. The sextic C has another singularity on
d VC of type Ar�1 if ndð f Þ ¼ 0 and of type Dr if ndð f Þ ¼ 1 (here we
mean D2 ¼ 2A1 and D3 ¼ A3).

(ii) ndðdÞ ¼ 2, ndðaÞb 2 and ndð f Þ ¼ 1. The sextic has only one A1 sin-
gularity on d VC.

(iii) Other possible cases of ndðdÞ and ndðaÞ correspond to sextics with P as
the unique singular point on C V d. Moreover, the relation between
the values of ndðdÞ and ndðaÞ and the singularity at P is given in the
following table. Here, for convenience, we choose d in such a way that
ndðaÞ � nlðaÞ for any non-zero linear form l.
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ndðaÞ ndð f Þ ndðdÞ Singularity at P rðP; 5Þ

a1 a1 a10 C4;4 ¼ B4;4 3

2 0 0 C4;5 or C5;5 3

2 0 sb 2 C4þr;4þs; r þ sa 10 or ðr; sÞ ¼ ð1; 10Þ 4; . . . ; 7

2 1 2 C4þr;6; 0a ra 8 4; . . . ; 7

2 1 3 C4þr;8; 0a ra 7 4; . . . ; 6

3 0 0; 2 or 3 yB3;4; xyB2;3 or yB3;5 3; 4

3 1 2 xyB2;3 4

3 1 sb 4 yC3;2þs; 4a sa 10 4; 5; 6

4 0 0; 2 B4;5; yB4;3 3; 4

4 1 2 yB4;3 4

4 0 k b 4 Sk�4; 4a k a 10 ðS0 ¼ B4;6Þ 5; 6; 7

4 1 4 D4;7 5

4 1 5 yB5;3 5

We now check the assertion by considering case by case.
(1) Case where P is of type Cp;q:
. If rðP; 5Þ ¼ 3 then P is one of C4;4;C4;5 or C5;5. By the above argument,

we see that configurations of other singularities with positive values of
rð�; 5Þ which may occur in SðCÞ are either fAig or fDiþ1g for ia 9,
fmAjg or fmDjþ1g for ma 3 and j a 3, or fQi;Q 0

jg where Qi ¼ Ai or

Diþ1 for i a 6 and Q 0
j ¼ Aj or Djþ1 for j a 3. All of these cases give

rð5Þa 6.
. If rðP; 5Þ ¼ 4 then P is of type C4;q or C5;q for 6a qa 8. We see that

configurations of other singularities with positive values of rð�; 5Þ may
occur in SðCÞ are either fAig or fDiþ1g for i a 7, fmAjg or fmDjþ1g for
ma 2, j a 3, or fQ2;Q 0

jg where Q2 ¼ A2 or D3 and Q 0
j ¼ Aj or Djþ1 for

j a 4. All of these cases give rð5Þa 6.
. Suppose that rðP; 5Þ ¼ 5. If P is of type C4;q;C5;q for 9a qa 11 or

C6þi;q for i ¼ 1; 2 and r ¼ 7; 8, or C8;8 then one more singularity with
positive value of rð�; 5Þ which can occur in SðCÞ is Ai or Diþ1 for ia 4.
All of them give rð5Þa 6. If P is of type C6;6 then the configurations
SðCÞ ¼ fC6;6;A5g and SðCÞ ¼ fC6;6; 2A2g satisfy rð5Þ ¼ 7 and both are of
torus type.

. If rðP; 5Þ ¼ 6 then P is one of type C4;q;C5;q for 12a qa 14 or C6þi;q for
i ¼ 0; 1; 2 and 9a qa 11. There is only one case with rð5Þb 7, that is
SðCÞ ¼ fC6;9;A2g. This is of torus type.
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. If rðP; 5Þb 7 then there are two possible cases SðCÞ ¼ fC6;12g and SðCÞ ¼
fC9;9g. Both are of torus type.

(2) Case where P is B4;5 or has one of types yBp;q; xyBp;q and yC3;q: Using
the same argument as above, we can conclude that there is no sextic with
rð5Þb 7.

(3) Case where P is of type B4;6 or Sn for 1a na 6: If P ¼ B4;6 or Sn for
n ¼ 1; 2 then rðP; 5Þ ¼ 5. Then the cases with rð5Þb 7 are SðCÞ ¼ fB4;6;A5g or
SðCÞ ¼ fB4;6; 2A2g. Both are of torus type. If P is one of Sn for n ¼ 3; 4; 5
then rðP; 5Þ ¼ 6. Then there is only one case SðCÞ ¼ fS3;A2g with rð5Þ ¼ 7.
This is also of torus type. If P is S6 then we also know that the sextic should be
of torus type with rð5Þ ¼ 7.

(4) Case where P is D4;7: We have rðP; 5Þ ¼ 5 and the cases with rð5Þb 7
are SðCÞ ¼ fD4;7;A5g and SðCÞ ¼ fD4;7; 2A2g. Both are of torus type. r

Proof of Theorem 16. If C contains one non-simple singularity of multi-
plicity 3 or 4 then the result follows from the previous propositions. We
consider the singularity with multiplicity 5 or 6. The case of multiplicity 6 is
trivial since the sextic factors into 6 distinct lines and it has only one singularity
at the common point. This singularity is of type B6;6 and has rð�; 5Þ ¼ 10.
The sextic is of torus type.

We consider C with a quintuple point P. There are 16 possible types of
singularities for P and rðP; 5Þ ¼ 6. Suppose that C has another singular point Q,
then Bézout inequality implies that the line PQ ¼ l HC. We write C ¼ l UC5.
Since Iðl;C5;QÞb 1 we have Iðl;C5;PÞa 4. Because ðC;PÞ is a quintuple
point, Iðl;C5;PÞ ¼ 4 and Iðl;C5;QÞ ¼ 1. Thus ðC;QÞ is an A1 singularity and
hence rð5Þ ¼ 6. This completes the proof. r

We conclude this paper with conjectures posed by the third author.

Conjecture A. The generic Alexander polynomial of a reduced sextic C is
trivial if and only if it is of non-torus type.

See [A, O4] for the definition of generic Alexander polynomials.

Conjecture A0. If a reduced sextic satisfies rð5Þb 7 then it is of torus type.

Note that Theorem 16 verifies Conjecture A 0 for the case where a sextic has at
least one non-simple singularity.

Conjecture B. Let C be an irreducible sextic of non-torus type. Then the
fundamental group p1ðP2 � CÞ is isomorphic to Z=6Z.

We remark that there is a reducible sextic C of non-torus type whose funda-
mental group p1ðP2 � CÞ is not abelian.
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[K] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976),

1–32.

[M] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. Math. Studies 61, Princeton

Univ. Press, 1968.

[O] M. Oka, On the weak simultaneous resolution of a negligible truncation of the Newton

boundary, Singularities (Iowa City, IA, 1986), 199–210, Contemp. Math. 90, Amer. Math.

Soc., Providence, RI, 1989. Hermann, Paris, 1997.

[O2] M. Oka, Non-Degenerate Complete Intersection Singularity, Hermann, Paris, 1997.

[O3] M. Oka, Geometry of reduced sextics of torus type, Tokyo J. Math. 26 (2003).

[O4] M. Oka, Alexander polynomial of sextics, J. Knot Theory Ramifications 12 (2003), no. 5,

619–636.

[O5] M. Oka, Zariski pairs in Sextics, in preparation.

[O-Ph] M. Oka, D. T. Pho, Classification of sextics of torus type, Tokyo J. Math. 25 (2002), no.

2, 399–433.

[Pe] U. Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Zeits. 205

(1990), 1–47.

[Ph] D. T. Pho, Classification of singularities on torus curves of type ð2; 3Þ, Kodai Math. J. 24

(2001), no. 2, 259–284.

[S-I] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry,

Iwanami Shoten, Tokyo, 1977, pp. 119–136.

[U] T. Urabe, Combinations of rational singularities on plane sextic curves with the sum of Milnor

numbers less than sixteen, Banach Center Publ. 20 (1988), 429–456.

[W] C. T. C. Wall, Sextic curves and quaric surfaces with higher singularities, preprint.

[Ya] Jin-Gen. Yang, Sextic curves with simple singularities, Tôhoku Math. J. 48 (1996), no. 2,
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