QUASINORMALITY OF ORDER 1 FOR FAMILIES OF MEROMORPHIC FUNCTIONS

Shahar Nevo ${ }^{1}$ and Xuecheng Pang ${ }^{2}$

Abstract

Let \mathscr{F} be a family of functions meromorphic on the plane domain D, all of whose zeros are multiple. Suppose that $f^{(k)}(z) \neq 1$ for all $f \in \mathscr{F}$ and $z \in D$. Then if \mathscr{F} is quasinormal on D, it is quasinormal of order 1 there.

1. Introduction

This paper continues our study of the order of quasinormality of families of meromorphic functions on plane domains, all of whose zeros are multiple, initiated in [6].

Recall that a family \mathscr{F} of functions meromorphic on a plane domain $D \subset C$ is said to be quasinormal on D [2] if from each sequence $\left\{f_{n}\right\} \subset \mathscr{F}$ one can extract a subsequence $\left\{f_{n_{k}}\right\}$ which converges locally uniformly with respect to the spherical metric on $D \backslash E$, where the set E (which may depend on $\left\{f_{n_{k}}\right\}$) has no accumulation point in D. If E can always be chosen to satisfy $|E| \leq v, \mathscr{F}$ is said to quasinormal of order v on D. Thus a family is quasinormal of order 0 on D if and only if it is normal on D. The family \mathscr{F} is said to (quasi)normal at $z_{0} \in D$ if it is (quasi)normal on some neighborhood of z_{0}; thus \mathscr{F} is quasinormal on D if and only if it is quasinormal at each point $z \in D$. On the other hand, \mathscr{F} fails to be quasinormal of order v on D precisely when there exist points $z_{1}, z_{2}, \ldots, z_{v+1}$ in D and a sequence $\left\{f_{n}\right\} \subset \mathscr{F}$ such that no subsequence of $\left\{f_{n}\right\}$ is normal at z_{j}, $j=1,2, \ldots, v+1$.

In [6], we proved
Theorem A. Let \mathscr{F} be a quasinormal family of meromorphic functions on D, all of whose zeros are multiple. If for any $f \in \mathscr{F}, f^{\prime}(z) \neq 1$ for $z \in D$, then \mathscr{F} is quasinormal of order 1 on D.

Here we extend this result to derivatives of arbitrary order.

[^0]Theorem. Let $k \geq 1$ be an integer. Let \mathscr{F} be a quasinormal family of meromorphic functions on D, all of whose zeros have multiplicity at least $k+1$. If for any $f \in \mathscr{F}, f^{(k)}(z) \neq 1$ for $z \in D$, then \mathscr{F} is quasinormal of order 1 on D.

Corollary. Let k and M be positive numbers. Let \mathscr{F} be a family of meromorphic functions on D, all of whose zeros have multiplicity at least $k+1$. Suppose that each $f \in \mathscr{F}$ has at most M zeros on D and that $f^{(k)}(z) \neq 1$ on D. Then \mathscr{F} is quasinormal of order 1 on D.

Indeed, it follows easily from Lemma 2 below that \mathscr{F} is quasinormal of order no greater than M, so the hypotheses of our Theorem are satisfied. That \mathscr{F} need not be normal on D is shown by the following example.

Example 1. Let $D=\{z:|z|<1\}$ and $\mathscr{F}=\left\{f_{\alpha}\right\}$, where

$$
f_{\alpha}(z)=\frac{(z-\alpha /(k+1))^{k+1}}{k!(z-\alpha)}=\frac{1}{k!} z^{k}+P_{k-2}(z)+\frac{A}{z-\alpha}, \quad \alpha \in \boldsymbol{C} \backslash\{0\}
$$

where P_{k-2} is a polynomial of degree $k-2$ and $A=(1 / k!)(k /(k+1))^{k+1} \alpha^{k+1} \neq 0$. Then all zeros of f_{α} have multiplicity at least $k+1$ and $f_{\alpha}^{(k)}(z) \neq 1$. However, f_{α} takes on the values 0 and ∞ in any fixed neighborhood of 0 if α is sufficiently small, so \mathscr{F} fails to be normal at 0 .

Acknowledgment. This work was done while the second author (X. P.) held a research position at Bar-Ilan University. He thanks the Mathematics Department of that institution for its warm hospitality. Both authors thank Professor Lawrence Zalcman for his interest and helpful comments.

2. Notation and preliminary results

Let us set some notation. Throughout, k is a positive integer. We denote by Δ the open unit disc in \boldsymbol{C}. For $z_{0} \in \boldsymbol{C}$ and $r>0, \Delta\left(z_{0}, r\right)=\left\{z:\left|z-z_{0}\right|<r\right\}$ and $\Delta^{\prime}\left(z_{0}, r\right)=\left\{z: 0<\left|z-z_{0}\right|<r\right\}$. We write $f_{n} \stackrel{\chi}{\Rightarrow} f$ on D to indicate that the sequence $\left\{f_{n}\right\}$ converges to f in the spherical metric uniformly on compact subsets of D and $f_{n} \Rightarrow f$ on D if the convergence is in the Euclidean metric.

We require the following known results.
Lemma 1. Let \mathscr{F} be a family of functions meromorphic on Δ, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. Then if \mathscr{F} is not normal at z_{0}, there exist, for each $0 \leq \alpha \leq k$,
a) points $z_{n} \in \Delta, z_{n} \rightarrow z_{0}$;
b) functions $f_{n} \in \mathscr{F}$; and
c) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \stackrel{\chi}{\Rightarrow} g(\zeta)$ on \boldsymbol{C}, where g is a nonconstant meromorphic function on \boldsymbol{C}, all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$. In particular, g has order at most 2 .

Here, as usual, $g^{\#}(\zeta)=\left|g^{\prime}(\zeta)\right| /\left(1+|g(\zeta)|^{2}\right)$ is the spherical derivative.
This is the local version of [7, Lemma 2] (cf. [4, Lemma 1], [10, pp. 216217]). The proof consists of a simple change of variable in the result cited from [7]; cf. [5, pp. 299-300].

Lemma 2. Let \mathscr{F} be a family of functions meromorphic on D and let $k \geq 1$ be an integer. If for each $f \in \mathscr{F}$ and $z \in D, f(z) \neq 0$ and $f^{(k)}(z) \neq 1$, then \mathscr{F} is normal on D.

This is a well-known result of Gu [3].
Lemma 3. Let \mathscr{F} be a family of functions meromorphic on D, all of whose zeros have multiplicity at least $k+1$ and all of whose poles are multiple. If for each $f \in \mathscr{F}, f^{(k)}(z) \neq 1, z \in D$, then \mathscr{F} is normal on D.

This is Theorem 5 in [9].
Lemma 4. Let f be a nonconstant meromorphic function of finite order on \boldsymbol{C}, all of whose zeros have multiplicity at least $k+1$. If $f^{(k)}(z) \neq 1$ on \boldsymbol{C}, then

$$
f(z)=\frac{1}{k!} \frac{(z-a)^{k+1}}{z-b}
$$

for some a and $b(\neq a)$ in \boldsymbol{C}.
This follows from Lemmas 6 and 8 of [9].

3. Auxiliary lemmas

The proof of the theorem proceeds by a number of intermediate results.
Lemma 5. Let $\left\{a_{j}\right\}$ be a sequence in Δ which has no accumulation points in Δ. Let $\left\{f_{n}\right\}$ be a sequence of functions meromorphic on Δ, all of whose zeros have multiplicity at least $k+1$, such that $f_{n}^{(k)}(z) \neq 1$ for all n and all $z \in \Delta$. Suppose that
(a) no subsequence of $\left\{f_{n}\right\}$ is normal at a_{1};
(b) there exists $\delta>0$ such that each f_{n} has a single (multiple) zero on $\Delta\left(a_{1}, \delta\right)$; and
(c) $f_{n} \stackrel{\chi}{\Rightarrow} f$ on $\Delta \backslash\left\{a_{j}\right\}_{j=1}^{\infty}$.

Then
(d) there exists $\eta_{0}>0$ such that for each $0<\eta<\eta_{0}, f_{n}$ has a single simple pole on $\Delta\left(a_{1}, \eta\right)$ for all sufficiently large n; and
(e) $f(z)=\left(z-a_{1}\right)^{k} / k!$.

Proof. It suffices to prove that each subsequence of $\left\{f_{n}\right\}$ has a subsequence which satisfies (d) and (e). So suppose we have a subsequence of $\left\{f_{n}\right\}$, which (to avoid complication in notation) we again call $\left\{f_{n}\right\}$.

Since $\left\{f_{n}\right\}$ is not normal at a_{1}, it follows from Lemma 1 that we can extract a subsequence (which, renumbering, we continue to call $\left\{f_{n}\right\}$), points $z_{n} \rightarrow a_{1}$, and positive numbers $\rho_{n} \rightarrow 0$ such that

$$
\begin{equation*}
g_{n}(\zeta)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \stackrel{\chi}{\Rightarrow} g(\zeta) \quad \text { on } \boldsymbol{C}, \tag{1}
\end{equation*}
$$

where g is a nonconstant meromorphic function of finite order on \boldsymbol{C}, all of whose zeros have multiplicity at least $k+1$. Since $g_{n}^{(k)}(\zeta)=f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right) \neq 1$ and $g_{n}^{(k)} \Rightarrow g^{(k)}$ on the complement of the poles of g, either $g^{(k)} \neq 1$ or $g^{(k)} \equiv 1$, by Hurwitz' Theorem. In the latter case, g is a polynomial of degree k and therefore does not have zeros of multiplicity at least $k+1$. Thus $g^{(k)}(\zeta) \neq 1$ on \boldsymbol{C}; so by Lemma 4,

$$
\begin{equation*}
g(\zeta)=\frac{1}{k!} \frac{(\zeta-a)^{k+1}}{\zeta-b} \tag{2}
\end{equation*}
$$

for distinct complex numbers a and b. It now follows from the argument principle that there exist sequences $\xi_{n} \rightarrow a$ and $\eta_{n} \rightarrow b$ such that, for sufficiently large $n, g_{n}\left(\xi_{n}\right)=0$ and $g_{n}\left(\eta_{n}\right)=\infty$. Thus, writing $z_{n, 0}=z_{n}+\rho_{n} \xi_{n}, z_{n, 1}=z_{n}+\rho_{n} \eta_{n}$, we have $z_{n, j} \rightarrow a_{1}(j=0,1), f_{n}\left(z_{n, 0}\right)=0$ and $f_{n}\left(z_{n, 1}\right)=\infty$.

Let us now assume that (d) has been shown to hold. It follows from Lemma 3 that the pole of f_{n} at $z_{n, 1}$ is simple. The limit function f from (c) is either meromorphic on $\Delta \backslash\left\{a_{j}\right\}_{j=1}^{\infty}$ or identically infinite there. Suppose first that it is meromorphic on $\Delta \backslash\left\{a_{j}\right\}_{j=1}^{\infty}$. Then there exists $\delta_{0}>0$ such that f has no poles on $\Gamma=\left\{z:\left|z-a_{1}\right|=\delta_{0}\right\}$ and $f_{n}^{(k)}$ converges uniformly to $f^{(k)}$ on Γ. We claim that $f^{(k)} \equiv 1$ on $\Delta^{\prime}\left(a_{1}, \delta_{0}\right)$. Indeed, otherwise by Hurwitz' Theorem, $f^{(k)} \neq 1$. Now $1 /\left(f_{n}^{(k)}-1\right)$ is analytic on $\Delta\left(a_{1}, \delta_{0}\right)$ and converges uniformly on Γ to $1 /\left(f^{(k)}-1\right)$. By the maximum principle, $1 /\left(f_{n}^{(k)}-1\right)$ converges uniformly on $\Delta\left(a_{1}, \delta_{0}\right)$, so $\left\{f_{n}^{(k)}\right\}$ is normal at a_{1}. However, since $f_{n}^{(k)}\left(z_{n, 0}\right)=0$ and $f_{n}^{(k)}\left(z_{n, 1}\right)=\infty$ and $z_{n, j} \rightarrow a_{1}(j=0,1),\left\{f_{n}^{(k)}\right\}$ is not equicontinuous at a_{1}, a contradiction.

Thus f has no poles on $\Delta^{\prime}\left(a_{1}, \delta_{0}\right)$ and $f_{n}^{(k)} \Rightarrow 1$ on $\Delta^{\prime}\left(a_{1}, \delta_{0}\right)$. We claim now that for every $0 \leq i \leq k$

$$
\begin{equation*}
f_{n}^{(k-i)}(z) \Rightarrow \frac{\left(z-a_{1}\right)^{i}}{i!} \quad \text { on } \Delta^{\prime}\left(a_{1}, \delta_{0}\right) \tag{3}
\end{equation*}
$$

We have already proved this for $i=0$.
We continue by induction. Suppose that (3) holds for $i=j$ and let $i=j+1$. For $z, z_{0} \in \Delta^{\prime}\left(a_{1}, \delta_{0}\right)$, we have

$$
f_{n}^{(k-(j+1))}(z)-f_{n}^{(k-(j+1))}\left(z_{0}\right)=\int_{z_{0}}^{z} f_{n}^{(k-j)}(\zeta) d \zeta
$$

By the induction assumption, the last term tends to $\left(z-a_{1}\right)^{j+1} /(j+1)$!-$\left(z_{0}-a_{1}\right)^{j+1} /(j+1)$!; thus

$$
f_{n}^{(k-(j+1))}(z) \Rightarrow \frac{\left(z-a_{1}\right)^{j+1}}{(j+1)!}+\beta\left(z_{0}\right),
$$

where $\beta\left(z_{0}\right)=\lim _{n \rightarrow \infty}\left[f_{n}^{(k-(j+1))}\left(z_{0}\right)-\left(z_{0}-a_{1}\right)^{j+1} /(j+1)!\right]$.
We now show that $\beta\left(z_{0}\right)=0$. If not, take r such that $0<r<$ $\min \left\{\left|(j+1)!\beta\left(z_{0}\right)\right|^{1 /(j+1)}, \delta_{0}\right\}$. For large enough n, we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\left|\zeta-a_{\mid}\right|=r} \frac{f_{n}^{(k-j)}(\zeta)}{f_{n}^{(k-(j+1))}(\zeta)} d \zeta=\frac{1}{2 \pi i} \int_{\left|\zeta-a_{1}\right|=r} \frac{\left(\zeta-a_{1}\right)^{j} / j!}{\left(\zeta-a_{1}\right)^{j+1} /(j+1)!+\beta\left(z_{0}\right)} d \zeta . \tag{4}
\end{equation*}
$$

Now the right hand term is zero, since the zeros of $\left(\zeta-a_{1}\right)^{j+1} /(j+1)!+\beta\left(z_{0}\right)$ are outside $\Delta\left(a_{1}, r\right)$. By condition (d), the number of poles in $\Delta\left(a_{1}, \delta_{0}\right)$ of $f_{n}^{(k-(j+1))}$ in (4) is $k-(j+1)+1=k-j$, counting multiplicities.

As for the number of zeros, without loss of generality, we may assume $b=0$ in (2). Then $a \neq 0$, and we have

$$
\begin{aligned}
g(\zeta) & =\frac{1}{k!} \frac{1}{\zeta}\left[\zeta^{k+1}-(k+1) a \zeta^{k}+\cdots+(-1)^{k}\binom{k+1}{k} z^{k} \zeta+(-1)^{k+1} a^{k+1}\right] \\
& =\frac{1}{k!}\left[\zeta^{k}-(k+1) a \zeta^{k-1}+\cdots+\frac{(-1)^{k+1} a^{k+1}}{\zeta}\right] .
\end{aligned}
$$

Hence, for each $0 \leq i \leq k, g^{(i)}(\zeta)$ has exactly $k+1$ zeros in \boldsymbol{C}, counting multiplicities. Thus by (1), for large enough $n, f_{n}^{(i)}(z)$ has at least $k+1$ zeros in $\Delta\left(a_{1}, \delta_{0}\right)$. We then get by the argument principle that the left hand term in (4) is at least $k+1-(k-j)=j+1$, and we have a contradiction. Thus $\beta\left(z_{0}\right)=0$, and (3) is proved. Take $i=k$ in (3) to get assertion (e).

Suppose now that $f \equiv \infty$ on $\Delta \backslash\left\{a_{j}\right\}_{j=1}^{\infty}$. Let

$$
F_{n}(z)=f_{n}(z) \frac{z-z_{n, 1}}{\left(z-z_{n, 0}\right)^{k+1}} .
$$

By (b), $F_{n}(z) \neq 0$ on $\Delta\left(a_{1}, \delta\right)$. Applying the maximum principle to the sequence $\left\{1 / F_{n}\right\}$ of analytic functions, we see that $F_{n} \Rightarrow \infty$ on $\Delta\left(a_{1}, \delta\right)$. We have

$$
\begin{align*}
\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} & =\frac{F_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \frac{\left(\rho_{n} \zeta+z_{n}-z_{n, 0}\right)^{k+1}}{\left(\rho_{n} \zeta+z_{n}-z_{n, 1}\right)} \tag{5}\\
& =F_{n}\left(z_{n}+\rho_{n} \zeta\right) \frac{\left(\zeta-\xi_{n}\right)^{k+1}}{\zeta-\eta_{n}}
\end{align*}
$$

It follows from (1), (2), and (5) that $F_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow 1$, which contradicts $F_{n} \Rightarrow \infty$ near a_{1}. Thus the posssibility $f \equiv \infty$ may be ruled out.

We have shown that when (d) obtains, (e) does as well. Now let us show that (d) must hold. Suppose not. Then, taking a subsequence and renum-
bering, we may assume that on any neighborhood of a_{1}, f_{n} has at least two poles for sufficiently large n. Keeping the notation established above, let $z_{n, 2} \neq z_{n, 1}$ be such that $f_{n}\left(z_{n, 2}\right)=\infty$ and f_{n} has no poles in $\Delta^{\prime}\left(z_{n, 1},\left|z_{n, 1}-z_{n, 2}\right|\right)$. Write $z_{n, 2}=$ $z_{n}+\rho_{n} \eta_{n}^{*}$. Then $z_{n, 2} \rightarrow a_{1}$ but $\eta_{n}^{*} \rightarrow \infty$ since the right hand side of (2) has but a single simple pole. Set

$$
G_{n}(\zeta)=\frac{f_{n}\left(z_{n, 1}+\left(z_{n, 2}-z_{n, 1}\right) \zeta\right)}{\left(z_{n, 2}-z_{n, 1}\right)^{k}}
$$

Since $z_{n, 2}-z_{n, 1} \rightarrow 0, G_{n}(\zeta)$ is defined for any $\zeta \in \boldsymbol{C}$ if n is sufficiently large; and $G_{n}^{(k)}(\zeta) \neq 1$. Note that $G_{n}(1)=\infty$. Also,

$$
G_{n}(0)=\infty \quad G_{n}\left(\frac{z_{n, 0}-z_{n, 1}}{z_{n, 2}-z_{n, 1}}\right)=0
$$

and

$$
\frac{z_{n, 0}-z_{n, 1}}{z_{n, 2}-z_{n, 1}}=\frac{\xi_{n}-\eta_{n}}{\eta_{n}^{*}-\eta_{n}} \rightarrow 0,
$$

so $\left\{G_{n}\right\}$ is not normal at 0 . On the other hand, for n sufficiently large, G_{n} has only a single zero (which tends to 0 as $n \rightarrow \infty$) on any compact subset of \boldsymbol{C}. Since $G_{n}^{\prime}(\zeta) \neq 1$, it follows from Lemma 2 that $\left\{G_{n}\right\}$ is normal on $C \backslash\{0\}$. Taking a subsequence and renumbering, we may assume that $G_{n} \stackrel{\chi}{\Rightarrow} G$ on $C \backslash\{0\}$. Since G_{n} has only a single pole on Δ, conditions (a), (b), (c), and (d) hold for the sequence $\left\{G_{n}\right\}$ (defined, say, on $\Delta(0,2)$) with $a_{1}=0$ and $\delta=1$. Thus, by the first part of the proof, $G(\zeta)=\zeta^{k} / k!$. But this contradicts $G(1)=\infty$. This completes the proof of Lemma 5 .

Definition. Let $z_{1}, z_{2} \in \boldsymbol{C}$ and put $\tilde{z}=\left(z_{1}+z_{2}\right) / 2$. We say that $\left(z_{1}, z_{2}\right)$ is a k-nontrivial pair of zeros of f if
(i) $f\left(z_{1}\right)=f\left(z_{2}\right)=0$ and
(ii) there exists z_{3} such that $\left|z_{3}-\tilde{z}\right|<\left|z_{1}-z_{2}\right|$ and $\left|f^{\prime}\left(z_{3}\right)\right| /\left|z_{1}-z_{2}\right|^{k-1}>1$.

Note that (ii) is equivalent to
(ii') there exists z^{*} such that $\left|z^{*}\right|<1$ and $\left|h^{\prime}\left(z^{*}\right)\right|>1$, where

$$
h(z)=\frac{f\left(\tilde{z}+\left(z_{1}-z_{2}\right) z\right)}{\left(z_{1}-z_{2}\right)^{k}}
$$

Since $\left|h^{\prime}(z)\right| \geq h^{\#}(z)$, it suffices to have $h^{\#}\left(z^{*}\right)>1$ in (ii').
Our next result deals with the situation in which the functions f_{n} have more than a single zero in each neighborhood of a point of non-normality.

Lemma 6. Let $\left\{f_{n}\right\}$ be a sequence of functions meromorphic on Δ, all of whose zeros have multiplicity at least $k+1$, such that $f_{n}^{(k)}(z) \neq 1$ for all n and all $z \in \Delta$. Suppose that
(a) no subsequence of $\left\{f_{n}\right\}$ is normal at z_{0}, and
(b) for each $\delta>0, f_{n}$ has at least two distinct zeros on $\Delta\left(z_{0}, \delta\right)$ for sufficiently large n.
Then for each $\delta>0, f_{n}$ has a k-nontrivial pair $\left(a_{n}, c_{n}\right)$ of zeros on $\Delta\left(z_{0}, \delta\right)$ for sufficiently large n, and

$$
\left\{\frac{f_{n}\left(d_{n}+\left(a_{n}-c_{n}\right) \zeta\right)}{\left(a_{n}-c_{n}\right)^{k}}\right\}
$$

is not normal on Δ. Here $d_{n}=\left(a_{n}+c_{n}\right) / 2$.
Proof. As in the proof of the previous lemma, it follows from (a) and Lemmas 1 and 4 that for each subsequence of $\left\{f_{n}\right\}$ there exists a (sub)subsequence (which, renumbering, we continue to denote by $\left\{f_{n}\right\}$), points $z_{n} \rightarrow z_{0}$, numbers $\rho_{n} \rightarrow 0^{+}$, and distinct $a, b \in \boldsymbol{C}$ such that

$$
\begin{equation*}
g_{n}(\zeta)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \stackrel{\chi}{\Rightarrow} g(\zeta)=\frac{1}{k!} \frac{(\zeta-a)^{k+1}}{\zeta-b} \quad \text { on } \boldsymbol{C} . \tag{6}
\end{equation*}
$$

Thus there exist $\xi_{n} \rightarrow a, \eta_{n} \rightarrow b$ so that $a_{n}=z_{n}+\rho_{n} \xi_{n} \rightarrow z_{0}, b_{n}=z_{n}+\rho_{n} \eta_{n} \rightarrow z_{0}$ and $g_{n}\left(\xi_{n}\right)=f_{n}\left(a_{n}\right)=0, g_{n}\left(\eta_{n}\right)=f_{n}\left(b_{n}\right)=\infty$ for n sufficiently large.

By assumption, there also exists $c_{n} \neq a_{n}, c_{n} \rightarrow z_{0}$, such that $f_{n}\left(c_{n}\right)=0$. Thus $c_{n}=z_{n}+\rho_{n} \xi_{n}^{*}$ and $\xi_{n}^{*} \rightarrow \infty$ by (6). Setting $d_{n}=\left(a_{n}+c_{n}\right) / 2$, we see that the function

$$
h_{n}(\zeta)=\frac{f_{n}\left(d_{n}+\left(a_{n}-c_{n}\right) \zeta\right)}{\left(a_{n}-c_{n}\right)^{k}}
$$

is defined for any $\zeta \in \boldsymbol{C}$ if n is sufficiently large. We claim that $\left\{h_{n}\right\}$ is not normal at $\zeta=1 / 2$. Indeed, we have

$$
\begin{array}{cl}
\frac{a_{n}-d_{n}}{a_{n}-c_{n}} \rightarrow \frac{1}{2}, & \frac{b_{n}-d_{n}}{a_{n}-c_{n}} \rightarrow \frac{1}{2}, \\
h_{n}\left(\frac{a_{n}-d_{n}}{a_{n}-c_{n}}\right)=f_{n}\left(a_{n}\right)=0, & h_{n}\left(\frac{b_{n}-d_{n}}{a_{n}-c_{n}}\right)=f_{n}\left(b_{n}\right)=\infty,
\end{array}
$$

so $\left\{h_{n}\right\}$ fails to be equicontinuous in a neighborhood of $1 / 2$. It follows from Marty's Theorem that

$$
\lim _{n \rightarrow \infty} \sup _{|\zeta-1 / 2| \leq 1 / 4} h_{n}^{\#}(\zeta)=\infty
$$

Thus $\left(a_{n}, c_{n}\right)$ is a k-nontrivial pair of zeros of f_{n} for n sufficiently large.
Lemma 7. Let $\left\{f_{n}\right\}$ be a sequence of functions meromorphic on Δ, all of whose zeros have multiplicity at least $k+1$, such that $f_{n}^{(k)}(z) \neq 1$ for all n and all $z \in \Delta$. Suppose that
(a) there exist $d \in \Delta, a_{n} \rightarrow d, c_{n} \rightarrow d$, and $z_{0} \in \boldsymbol{C}$ such that for every $\delta>0$,

$$
h_{n}(z)=\frac{f_{n}\left(d_{n}+\left(a_{n}-c_{n}\right) z\right)}{\left(a_{n}-c_{n}\right)^{k}}
$$

has at least two distinct zeros on $\Delta\left(z_{0}, \delta\right)$ for sufficiently large n, where $d_{n}=\left(a_{n}+c_{n}\right) / 2 ;$ and
(b) no subsequence of $\left\{h_{n}\right\}$ is normal at z_{0}.

Then for n sufficiently large, f_{n} has a k-nontrivial pair of zeros $\left(z_{n, 1}^{*}, z_{n, 2}^{*}\right)$ such that $z_{n, j}^{*} \rightarrow d(j=1,2)$ and $\left|z_{n, 1}^{*}-z_{n, 2}^{*}\right|<\left|a_{n}-c_{n}\right|$.

Proof. As before, it follows from Lemmas 1 and 4 that to each subsequence of $\left\{h_{n}\right\}$ there corresponds a subsequence (which we continue to write as $\left\{h_{n}\right\}$), $z_{n} \rightarrow z_{0}$, and $\rho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\zeta)=\frac{h_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \stackrel{\chi}{\Rightarrow} \frac{1}{k!} \frac{(\zeta-a)^{k+1}}{\zeta-b} \quad \text { on } \boldsymbol{C} .
$$

Thus there exist $\xi_{n, 0} \rightarrow b, \xi_{n, 1} \rightarrow a$ so that $z_{n, j}=z_{n}+\rho_{n} \xi_{n, j} \rightarrow z_{0}(j=0,1)$ and $g_{n}\left(\xi_{n, 0}\right)=h_{n}\left(z_{n, 0}\right)=\infty, g_{n}\left(\xi_{n, 1}\right)=h_{n}\left(z_{n, 1}\right)=0$. By (a), there exist $z_{n, 2} \rightarrow z_{0}$, $z_{n, 2} \neq z_{n, 1}$, such that $h_{n}\left(z_{n, 2}\right)=0$. Setting $z_{n, 2}=z_{n}+\rho_{n} \xi_{n, 2}$, we have $\xi_{n, 2} \rightarrow \infty$. Now put

$$
z_{n, j}^{*}=d_{n}+\left(a_{n}-c_{n}\right) z_{n}+\rho_{n}\left(a_{n}-c_{n}\right) \xi_{n, j} \quad j=0,1,2
$$

Clearly $z_{n, j}^{*} \rightarrow d, j=0,1,2$. Define

$$
G_{n}(\zeta)=\frac{f_{n}\left(\left(z_{n, 1}^{*}+z_{n, 2}^{*}\right) / 2+\left(z_{n, 1}^{*}-z_{n, 2}^{*}\right) \zeta\right)}{\left(z_{n, 1}^{*}-z_{n, 2}^{*}\right)^{k}}
$$

Then $\left\{G_{n}\right\}$ is not normal at $\zeta=1 / 2$. Indeed,

$$
G_{n}\left(\frac{2 \xi_{n, 0}-\xi_{n, 1}-\xi_{n, 2}}{2\left(\xi_{n, 1}-\xi_{n, 2}\right)}\right)=\infty, \quad G_{n}(1 / 2)=0
$$

Since $\left(2 \xi_{n, 0}-\xi_{n, 1}-\xi_{n, 2}\right) / 2\left(\xi_{n, 1}-\xi_{n, 2}\right) \rightarrow 1 / 2, \quad\left\{G_{n}\right\}$ is not equicontinuous at $\zeta=1 / 2$. As before, it follows from Marty's Theorem that $\left(z_{n, 1}^{*}, z_{n, 2}^{*}\right)$ is a k nontrivial pair of zeros of f_{n}. Now $\left|z_{n, 1}^{*}-z_{n, 2}^{*}\right|=\left|a_{n}-c_{n}\right|\left|z_{n, 1}-z_{n, 2}\right|$; therefore, since $z_{n, j} \rightarrow z_{0}(j=1,2)$, we have $\left|z_{n, 1}^{*}-z_{n, 2}^{*}\right|<\left|a_{n}-c_{n}\right|$ for large enough n, as required.

Lemma 8. Let $\left\{f_{n}\right\}$ be a sequence of functions meromorphic on Δ, all of whose zeros have multiplicity at least $k+1$, such that $f_{n}^{(k)}(z) \neq 1$ for all n and all $z \in \Delta$. Suppose that
(a) $\left\{f_{n}\right\}$ is normal on $\Delta^{\prime}(0,1)$, but no subsequence of $\left\{f_{n}\right\}$ is normal at 0 ; and
(b) there exists $\delta>0$ such that f_{n} has a single (multiple) zero on $\Delta(0, \delta)$ for all sufficiently large n.
Then there exists a subsequence of $\left\{f_{n}\right\}$ (which we continue to call $\left\{f_{n}\right\}$) such that for any $a \in \boldsymbol{C}, f_{n}-a$ has at most $k+1$ zeros (counting multiplicity) on $\Delta(0,1 / 2)$.
${ }_{\chi}$ Proof. Taking a subsequence and renumbering, we may assume that $f_{n} \stackrel{\chi}{\Rightarrow} f$ on $\Delta^{\prime}(0,1)$. By Lemma $5, f(z)=z^{k} / k!$. Suppose that $|a|<(2 / 3)^{k} / k!$. Taking Γ to be the circle $\{|z|=3 / 4\}$ traversed once in the positive direction, we have

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f_{n}^{\prime}(z)}{f_{n}(z)-a} d z \rightarrow \frac{1}{2 \pi i} \int_{\Gamma} \frac{z^{k-1} /(k-1)!}{z^{k} / k!-a} d z=k
$$

However, the left hand side is the number of a-points of f_{n} minus the number of poles of f_{n} inside Γ, counting multiplicities. By Lemma 5, there exists $0<\delta<$ $3 / 4$ such that f_{n} has a single simple pole on $\Delta(0, \delta)$ for n sufficiently large. Since f_{n} converges uniformly to $z^{k} / k!$ on $\{z: \delta \leq|z| \leq 3 / 4\}$, there exists N_{1} such that if $n \geq N_{1} f_{n}$ has a single simple pole in $\Delta(0,3 / 4)$. Hence for $n \geq N_{1}, f_{n}$ takes on the value a (counting multiplicities) exactly $k+1$ times on $\Delta(0,3 / 4)$.

Suppose now that $|a|>(2 / 3)^{k} / k$!. Let Γ^{\prime} be the circle $\{|z|=5 / 9\}$ traversed in the positive direction. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma^{\prime}} \frac{f_{n}^{\prime}(z)}{f_{n}(z)-a} d z \rightarrow \frac{1}{2 \pi i} \int_{\Gamma^{\prime}} \frac{z^{k-1} /(k-1)!}{z^{k} / k!-a} d z=0
$$

so the number of a-points minus the number of poles of f_{n} (counting multiplicity) inside Γ^{\prime} is 0 for large n. It follows as before that there exists N_{2} such that f_{n} takes on the value a exactly once (counting multiplicities) on $\Delta(0,5 / 9)$ if $n \geq N_{2}$. Dropping the elements f_{n} with $n<\max \left(N_{1}, N_{2}\right)$ and renumbering, we obtain the desired sequence.

Lemma 9. Let f be a meromorphic function on \boldsymbol{C}, all of whose zeros have multiplicity at least $k+1$, such that $f^{(k)}(z) \neq 1, z \in C$. Then either
(i) f is rational; or
(ii) there exist k-nontrivial pairs $\left(a_{n}, c_{n}\right)$ of zeros of f such that $\left|a_{n}-c_{n}\right| \rightarrow 0$ and a sequence of functions

$$
h_{n}(\zeta)=\frac{f\left(d_{n}+\left(a_{n}-c_{n}\right) \zeta\right)}{\left(a_{n}-c_{n}\right)^{k}}
$$

which is not normal on Δ; here $d_{n}=\left(a_{n}+c_{n}\right) / 2$.
Proof. Suppose f is not rational. Then by Lemma 4, f has infinite order, so there exist $z_{n} \rightarrow \infty$ and $\varepsilon_{n} \rightarrow 0$ such that

$$
\begin{equation*}
S\left(\Delta\left(z_{n}, \varepsilon_{n}\right), f\right)=\frac{1}{\pi} \iint_{\left|z-z_{n}\right| \leq \varepsilon_{n}}\left[f^{\#}(z)\right]^{2} d x d y \rightarrow \infty \tag{7}
\end{equation*}
$$

Indeed, otherwise there would exist $\varepsilon>0$ and $M>0$ such that $S(\Delta(\zeta, \varepsilon), f) \leq M$ for all $\zeta \in \boldsymbol{C}$. From this follows

$$
S(r)=\frac{1}{\pi} \iint_{|z|<r}\left[f^{\#}(z)\right]^{2} d x d y=O\left(r^{2}\right)
$$

so that (cf. [10, p. 217]) f would have order at most 2 , a contradiction. In particular, there exist $z_{n}^{*} \in \Delta\left(z_{n}, \varepsilon_{n}\right)$ such that $f^{\#}\left(z_{n}^{*}\right) \rightarrow \infty$. Let $f_{n}(z)=$ $f\left(z+z_{n}^{*}\right)$. Then no subsequence of $\left\{f_{n}\right\}$ is normal at 0 .

Suppose there exists $\delta>0$ such that f_{n} has only a single (multiple) zero ξ_{n} on $\Delta(0, \delta)$. Since no subsequence of $\left\{f_{n}\right\}$ is normal at $0, \xi_{n} \rightarrow 0$ by Lemma 2. Thus, again by Lemma $2,\left\{f_{n}\right\}$ is normal on $\Delta^{\prime}(0, \delta)$. It follows from Lemma 8 that there exist $n_{1}<n_{2}<\cdots$ such that for any $a \in \boldsymbol{C}, f_{n_{j}}-a$ has at most $k+1$ zeros (counting multiplicity) on $\Delta(0, \delta / 2)$. Thus, for large enough j,

$$
S\left(\Delta\left(z_{n_{j}}, \varepsilon_{n_{j}}\right), f\right) \leq S\left(\Delta(0, \delta / 2), f_{n_{j}}\right) \leq k+1
$$

which contradicts (7).
Thus, for each $\delta>0, f_{n}$ has at least two distinct zeros on $\Delta(0, \delta)$ for sufficiently large n. The result now follows immediately from Lemma 6 .

4. Proof of the Theorem

Suppose the Theorem is false. Then there exists a sequence $\left\{a_{j}^{*}\right\} \subset D$ with no accumulation point in D and such that $a_{1}^{*} \neq a_{2}^{*}$ and a sequence $\left\{f_{n}\right\} \subset \mathscr{F}$ such that $f_{n} \stackrel{\chi}{\Rightarrow} f$ on $D \backslash\left\{a_{j}^{*}\right\}$ but no subsequence of $\left\{f_{n}\right\}$ is normal at a_{1}^{*} or a_{2}^{*}. We may assume that $a_{1}^{*}=0$ and $D=\Delta$. The argument given in the proof of Lemma 5 shows that $f_{n}^{(k)} \Rightarrow 1$ on $\Delta \backslash\left\{a_{j}^{*}\right\}$ or $f=\infty$, so $f \not \equiv 0$.

If there exists $\delta>0$ such that f_{n} has only a single (multiple) zero on each $\Delta\left(a_{j}^{*}, \delta\right)_{(}(j=1,2)$ for large enough n, it follows from Lemma 5 that $f(z)=$ $\left(z-a_{j}^{*}\right)^{k} / k!(j=1,2)$ on $\Delta \backslash\left\{a_{j}^{*}\right\}$. Thus $a_{1}^{*}=a_{2}^{*}$, a contradiction.

Therefore, one may suppose that for any $\delta>0, f_{n}$ has at least two distinct zeros on $\Delta(0, \delta)$ for sufficiently large n. By Lemma $6, f_{n}$ has a k-nontrivial pair of zeros in $\Delta(0, \delta)$ for n large enough. Therefore, some subsequence of $\left\{f_{n}\right\}$ (which, as usual, we continue to call $\left\{f_{n}\right\}$) has a k-nontrivial pair of zeros $\left(z_{n}, w_{n}\right)$ such that $\left|z_{n}\right|<1 / n,\left|w_{n}\right|<1 / n$. There exist $\delta_{0}>0$ and $1<s<2$ such that $f_{n} \stackrel{\chi}{\Rightarrow} f$ on $\Delta^{\prime}\left(0,2 \delta_{0}\right)$ and f does not vanish for $\delta_{0} \leq|z| \leq s \delta_{0}$. For $1 / n<\delta_{0}$, let $\left(a_{n}, c_{n}\right)$ be a k-nontrivial pair of zeros of f_{n} in $\Delta\left(0, \delta_{0}\right)$ whose distance is minimal. Clearly, $a_{n}-c_{n} \rightarrow 0$. Set $d_{n}=\left(a_{n}+c_{n}\right) / 2$. Then $d_{n} \in \Delta\left(0, \delta_{0}\right)$; and, passing to a subsequence, we may assume that $d_{n} \rightarrow a$, so $|a| \leq \delta_{0}$. Since f and f_{n} have no zeros on $\left\{z: \delta_{0} \leq|z| \leq s \delta_{0}\right\}$ if n is large enough, $\left(a_{n}, c_{n}\right)$ is a k-nontrivial pair of zeros of f_{n} on $\Delta\left(0, s \delta_{0}\right)$ whose distance is minimal.

Set

$$
h_{n}(\zeta)=\frac{f_{n}\left(d_{n}+\left(a_{n}-c_{n}\right) \zeta\right)}{\left(a_{n}-c_{n}\right)^{k}} .
$$

Then for each $\zeta \in \boldsymbol{C}, h_{n}(\zeta)$ is defined if n is sufficiently large. Clearly, all zeros of h_{n} have multiplicity at least $k+1$ and $h_{n}^{(k)}(\zeta) \neq 1$. We claim that no subsequence of $\left\{h_{n}\right\}$ is normal on \boldsymbol{C}. Otherwise, taking a subsequence and renumbering, we would have $h_{n} \stackrel{\chi}{\Rightarrow} h$ on \boldsymbol{C}. Since $\left(a_{n}, c_{n}\right)$ is a k-nontrivial pair of zeros of $f_{n}, h_{n}(\pm 1 / 2)=h_{n}^{\prime}(\pm 1 / 2)=\cdots=h_{n}^{(k)}(\pm 1 / 2)=0$, and $\sup _{\Delta}\left|h_{n}^{(k)}(z)\right|>1$.

It follows easily that $h^{(k)}(\zeta) \neq 1$ on \boldsymbol{C} and that h is nonconstant. Since all zeros of h have multiplicity at least $k+1$, Lemma 4 shows that h must be transcendental. It then follows from Lemma 9 that there exist infinitely many k nontrivial pairs $\left(\xi_{j}, \eta_{j}\right)$ of zeros of h such that $\xi_{j} \rightarrow \infty$ and $\xi_{j}-\eta_{j} \rightarrow 0$, and z_{j}^{*} with $\left|z_{j}^{*}-\left(\xi_{j}+\eta_{j}\right) / 2\right|<\left|\xi_{j}-\eta_{j}\right|$ and $h^{\#}\left(z_{j}^{*}\right) \rightarrow \infty$.

Fix j such that $h^{\#}\left(z_{j}^{*}\right) \geq 2$ and $\left|\xi_{j}-\eta_{j}\right|<1$. Then there exist $\xi_{n, j} \rightarrow \xi_{j}$ and $\eta_{n, j} \rightarrow \eta_{j}$ such that for n sufficiently large, $h_{n}\left(\xi_{n, j}\right)=h_{n}\left(\eta_{n, j}\right)=0$ and $\left|z_{j}^{*}-\left(\xi_{n, j}+\eta_{n, j}\right) / 2\right|<\left|\xi_{n, j}-\eta_{n, j}\right|$. Put

$$
\xi_{n, j}^{*}=d_{n}+\left(a_{n}-c_{n}\right) \xi_{n, j} \quad \eta_{n, j}^{*}=d_{n}+\left(a_{n}-c_{n}\right) \eta_{n, j} \quad z_{n, j}^{*}=d_{n}+\left(a_{n}-c_{n}\right) z_{j}^{*}
$$

Then

$$
\left|z_{n, j}^{*}-\frac{\xi_{n, j}^{*}+\eta_{n, j}^{*}}{2}\right|=\left|a_{n}-c_{n}\right|\left|z_{j}^{*}-\frac{\xi_{n, j}+\eta_{n, j}}{2}\right|<\left|a_{n}-c_{n}\right|\left|\xi_{n, j}-\eta_{n, j}\right|=\left|\xi_{n, j}^{*}-\eta_{n, j}^{*}\right|
$$

where $\quad \xi_{n, j}^{*} \rightarrow a, \quad \eta_{n, j}^{*} \rightarrow a$ and $|a|<s \delta_{0} ;$ also, for n sufficiently large, $\left|f_{n}^{\prime}\left(z_{n, j}^{*}\right) /\left(a_{n}-c_{n}\right)^{k-1}\right|=\left|h_{n}^{\prime}\left(z_{j}^{*}\right)\right| \geq h_{n}^{\#}\left(z_{j}^{*}\right)>1$. We conclude that $\left(\xi_{n, j}^{*}, \eta_{n, j}^{*}\right)$ is a k-nontrivial pair of zeros of f_{n} on $\Delta\left(0, s \delta_{0}\right)$. However,

$$
\left|\xi_{n, j}^{*}-\eta_{n, j}^{*}\right|=\left|a_{n}-c_{n}\right|\left|\xi_{n, j}-\eta_{n, j}\right|<\left|a_{n}-c_{n}\right|
$$

if n is sufficiently large. This contradicts the fact that $\left(a_{n}, c_{n}\right)$ is a k-nontrivial pair of zeros of f_{n} in $\Delta\left(0, s \delta_{0}\right)$ whose distance is minimal.

Thus no subsequence of $\left\{h_{n}\right\}$ is normal on \boldsymbol{C}. Let E be the set on which $\left\{h_{n}\right\}$ is not normal. Suppose that for each $\zeta \in E$, there is a neighborhood on which h_{n} has only a single (multiple) zero for sufficiently large n. Then by Lemma 2, $\left\{h_{n}\right\}$ is quasinormal at each point of E and hence on all of \boldsymbol{C}. Let $\zeta_{0} \in E$. Taking a subsequence, we may assume that no subsequence of $\left\{h_{n}\right\}$ is normal at ζ_{0} and that $\left\{h_{n}\right\}$ converges locally spherically uniformly on $\boldsymbol{C} \backslash E_{0}$, where $E_{0} \subset E$ is a discrete set containing ζ_{0}. By Lemma $5, h_{n} \stackrel{\chi}{\Rightarrow}\left(\zeta-\zeta_{0}\right)^{k} / k$! on $\boldsymbol{C} \backslash E_{0}$. Taking additional subsequences and diagonalizing, we may assume that no subsequence of $\left\{h_{n}\right\}$ is normal at any point of E_{0}. We claim that $E_{0}=\left\{\zeta_{0}\right\}$. Indeed, otherwise there exists $\zeta_{1} \in E_{0}, \zeta_{1} \neq \zeta_{0}$; then, as before, it follows from Lemma 5 that $h_{n}(\zeta) \stackrel{\chi}{\Rightarrow}\left(\zeta-\zeta_{1}\right)^{k} / k$! on $\boldsymbol{C} \backslash E_{0}$, so that $\zeta_{1}=\zeta_{0}, E_{0}=\left\{\zeta_{0}\right\}$, and $h_{n}(\zeta) \stackrel{\chi}{\Rightarrow}\left(\zeta-\zeta_{0}\right)^{k} / k!$ on $\boldsymbol{C} \backslash\left\{\zeta_{0}\right\}$. But this contradicts $h_{n}(\pm 1 / 2)=0$. Hence there exists $\zeta_{0} \in E$ such that for each $\delta>0$, there is a subsequence of $\left\{h_{n}\right\}$ (which we continue to call $\left\{h_{n}\right\}$) such that each h_{n} has at least two distinct zeros in $\Delta\left(\zeta_{0}, \delta\right)$ for sufficiently large n. Then by Lemma 7 , for n sufficiently large, f_{n} has a nontrivial pair of zeros $\left(w_{n, 1}^{*}, w_{n, 2}^{*}\right)$ such that $w_{n, j}^{*} \rightarrow a(j=1,2)$ and $\left|w_{n, 1}^{*}-w_{n, 2}^{*}\right|<\left|a_{n}-c_{n}\right|$. This contradicts the fact that $\left(a_{n}, c_{n}\right)$ is a nontrivial pair of zeros of f_{n} in $\Delta\left(0, s \delta_{0}\right)$ whose distance is minimal.

Acknowledgment. We would like to thank L. Zalcman for fruitful discussions and useful advice.

References

[1] Walter Bergweiler and J. K. Langley, Multiplicities in Hayman's alternative, preprint.
[2] Chi-Tai Chuang, Normal Families of Meromorphic Functions, World Scientific, 1993.
[3] Ku Yongxing, Un critère de normalité des familles de fonctions méromorphes, Sci. Sinica Special Issue 1 (1979), 267-274 (Chinese).
[4] Shahar Nevo, On theorems of Yang and Schwick, Complex Variables 46 (2001), 315-321.
[5] Shahar Nevo, Applications of Zalcman's lemma to Q_{m}-normal families, Analysis 21 (2001), 289-325.
[6] Xuecheng Pang, Shahar Nevo, and Lawrence Zalcman, Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana, to appear.
[7] Xuecheng Pang and Lawrence Zalcman, Normal families and shared values, Bull. London Math. Soc 32 (2000), 325-331.
[8] Xuecheng Pang and Lawrence Zalcman, Normal families of meromorphic functions with multiple zeros and poles, Israel J. Math. 136 (2003), 1-9.
[9] Yufei Wang and Mingliang Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica N.S. 14 (1998), 17-26.
[10] Lawrence Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. 35 (1998), 215-230.

Department of Mathematics and Statistics

Bar-Ilan University

52900 Ramat-Gan
ISRaEL
e-mail: nevosh@macs.biu.ac.il
Department of Mathematics
East China Normal University
Shanghai 200062
P. R. China
e-mail: xcpang@math.ecnu.edu.cn

[^0]: 2000 Mathematics Subject Classification: 30D45.
 ${ }^{1}$ Research supported by the German-Israeli Foundation for Scientific Research and Development, G.I.F. Grant No. G-643-117.6/1999.
 ${ }^{2}$ Research supported by the NNSF of China Approved No. 10271122.
 Received October 15, 2003; revised March 4, 2004.

