# QUASINORMALITY OF ORDER 1 FOR FAMILIES OF MEROMORPHIC FUNCTIONS

Shahar Nevo<sup>1</sup> and Xuecheng  $Pang^2$ 

## Abstract

Let  $\mathscr{F}$  be a family of functions meromorphic on the plane domain D, all of whose zeros are multiple. Suppose that  $f^{(k)}(z) \neq 1$  for all  $f \in \mathscr{F}$  and  $z \in D$ . Then if  $\mathscr{F}$  is quasinormal on D, it is quasinormal of order 1 there.

## 1. Introduction

This paper continues our study of the order of quasinormality of families of meromorphic functions on plane domains, all of whose zeros are multiple, initiated in [6].

Recall that a family  $\mathscr{F}$  of functions meromorphic on a plane domain  $D \subset C$ is said to be quasinormal on D [2] if from each sequence  $\{f_n\} \subset \mathscr{F}$  one can extract a subsequence  $\{f_{n_k}\}$  which converges locally uniformly with respect to the spherical metric on  $D \setminus E$ , where the set E (which may depend on  $\{f_{n_k}\}$ ) has no accumulation point in D. If E can always be chosen to satisfy  $|E| \leq v$ ,  $\mathscr{F}$  is said to quasinormal of order v on D. Thus a family is quasinormal of order 0 on Dif and only if it is normal on D. The family  $\mathscr{F}$  is said to (quasi)normal at  $z_0 \in D$ if it is (quasi)normal on some neighborhood of  $z_0$ ; thus  $\mathscr{F}$  is quasinormal on D if and only if it is quasinormal at each point  $z \in D$ . On the other hand,  $\mathscr{F}$  fails to be quasinormal of order v on D precisely when there exist points  $z_1, z_2, \ldots, z_{\nu+1}$  in D and a sequence  $\{f_n\} \subset \mathscr{F}$  such that no subsequence of  $\{f_n\}$  is normal at  $z_j$ ,  $j = 1, 2, \ldots, v + 1$ .

In [6], we proved

THEOREM A. Let  $\mathscr{F}$  be a quasinormal family of meromorphic functions on D, all of whose zeros are multiple. If for any  $f \in \mathscr{F}$ ,  $f'(z) \neq 1$  for  $z \in D$ , then  $\mathscr{F}$  is quasinormal of order 1 on D.

Here we extend this result to derivatives of arbitrary order.

<sup>2000</sup> Mathematics Subject Classification: 30D45.

<sup>&</sup>lt;sup>1</sup>Research supported by the German-Israeli Foundation for Scientific Research and Development, G.I.F. Grant No. G-643-117.6/1999.

<sup>&</sup>lt;sup>2</sup>Research supported by the NNSF of China Approved No. 10271122. Received October 15, 2003; revised March 4, 2004.

THEOREM. Let  $k \ge 1$  be an integer. Let  $\mathscr{F}$  be a quasinormal family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 1. If for any  $f \in \mathscr{F}$ ,  $f^{(k)}(z) \ne 1$  for  $z \in D$ , then  $\mathscr{F}$  is quasinormal of order 1 on D.

COROLLARY. Let k and M be positive numbers. Let  $\mathcal{F}$  be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 1. Suppose that each  $f \in \mathcal{F}$  has at most M zeros on D and that  $f^{(k)}(z) \neq 1$  on D. Then  $\mathcal{F}$  is quasinormal of order 1 on D.

Indeed, it follows easily from Lemma 2 below that  $\mathcal{F}$  is quasinormal of order no greater than M, so the hypotheses of our Theorem are satisfied. That  $\mathcal{F}$  need not be normal on D is shown by the following example.

*Example* 1. Let  $D = \{z : |z| < 1\}$  and  $\mathscr{F} = \{f_{\alpha}\}$ , where  $f_{\alpha}(z) = \frac{(z - \alpha/(k+1))^{k+1}}{k!(z-\alpha)} = \frac{1}{k!}z^{k} + P_{k-2}(z) + \frac{A}{z-\alpha}, \quad \alpha \in \mathbb{C} \setminus \{0\},$ 

where  $P_{k-2}$  is a polynomial of degree k-2 and  $A = (1/k!)(k/(k+1))^{k+1}\alpha^{k+1} \neq 0$ . Then all zeros of  $f_{\alpha}$  have multiplicity at least k+1 and  $f_{\alpha}^{(k)}(z) \neq 1$ . However,  $f_{\alpha}$  takes on the values 0 and  $\infty$  in any fixed neighborhood of 0 if  $\alpha$  is sufficiently small, so  $\mathscr{F}$  fails to be normal at 0.

Acknowledgment. This work was done while the second author (X. P.) held a research position at Bar-Ilan University. He thanks the Mathematics Department of that institution for its warm hospitality. Both authors thank Professor Lawrence Zalcman for his interest and helpful comments.

## 2. Notation and preliminary results

Let us set some notation. Throughout, k is a positive integer. We denote by  $\Delta$  the open unit disc in C. For  $z_0 \in C$  and r > 0,  $\Delta(z_0, r) = \{z : |z - z_0| < r\}$ and  $\Delta'(z_0, r) = \{z : 0 < |z - z_0| < r\}$ . We write  $f_n \stackrel{\chi}{\Rightarrow} f$  on D to indicate that the sequence  $\{f_n\}$  converges to f in the spherical metric uniformly on compact subsets of D and  $f_n \Rightarrow f$  on D if the convergence is in the Euclidean metric.

We require the following known results.

LEMMA 1. Let  $\mathscr{F}$  be a family of functions meromorphic on  $\Delta$ , all of whose zeros have multiplicity at least k, and suppose that there exists  $A \ge 1$  such that  $|f^{(k)}(z)| \le A$  whenever f(z) = 0. Then if  $\mathscr{F}$  is not normal at  $z_0$ , there exist, for each  $0 \le \alpha \le k$ ,

- a) points  $z_n \in \Delta$ ,  $z_n \to z_0$ ;
- b) functions  $f_n \in \mathcal{F}$ ; and
- c) positive numbers  $\rho_n \rightarrow 0$

such that  $\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \stackrel{\chi}{\Rightarrow} g(\zeta)$  on C, where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least k, such that  $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$ . In particular, g has order at most 2.

Here, as usual,  $g^{\#}(\zeta) = |g'(\zeta)|/(1+|g(\zeta)|^2)$  is the spherical derivative.

This is the local version of [7, Lemma 2] (cf. [4, Lemma 1], [10, pp. 216–217]). The proof consists of a simple change of variable in the result cited from [7]; cf. [5, pp. 299–300].

**LEMMA 2.** Let  $\mathscr{F}$  be a family of functions meromorphic on D and let  $k \ge 1$  be an integer. If for each  $f \in \mathscr{F}$  and  $z \in D$ ,  $f(z) \ne 0$  and  $f^{(k)}(z) \ne 1$ , then  $\mathscr{F}$  is normal on D.

This is a well-known result of Gu [3].

LEMMA 3. Let  $\mathscr{F}$  be a family of functions meromorphic on D, all of whose zeros have multiplicity at least k + 1 and all of whose poles are multiple. If for each  $f \in \mathscr{F}$ ,  $f^{(k)}(z) \neq 1$ ,  $z \in D$ , then  $\mathscr{F}$  is normal on D.

This is Theorem 5 in [9].

LEMMA 4. Let f be a nonconstant meromorphic function of finite order on C, all of whose zeros have multiplicity at least k + 1. If  $f^{(k)}(z) \neq 1$  on C, then

$$f(z) = \frac{1}{k!} \frac{(z-a)^{k+1}}{z-b}$$

for some a and b  $(\neq a)$  in C.

This follows from Lemmas 6 and 8 of [9].

## 3. Auxiliary lemmas

The proof of the theorem proceeds by a number of intermediate results.

LEMMA 5. Let  $\{a_j\}$  be a sequence in  $\Delta$  which has no accumulation points in  $\Delta$ . Let  $\{f_n\}$  be a sequence of functions meromorphic on  $\Delta$ , all of whose zeros have multiplicity at least k + 1, such that  $f_n^{(k)}(z) \neq 1$  for all n and all  $z \in \Delta$ . Suppose that

- (a) no subsequence of  $\{f_n\}$  is normal at  $a_1$ ;
- (b) there exists  $\delta > 0$  such that each  $f_n$  has a single (multiple) zero on  $\Delta(a_1, \delta)$ ; and

(c) 
$$f_n \stackrel{\wedge}{\Rightarrow} f$$
 on  $\Delta \setminus \{a_j\}_{j=1}^{\infty}$ .

Then

(d) there exists  $\eta_0 > 0$  such that for each  $0 < \eta < \eta_0$ ,  $f_n$  has a single simple pole on  $\Delta(a_1, \eta)$  for all sufficiently large n; and

(e) 
$$f(z) = (z - a_1)^{\kappa} / k!$$
.

*Proof.* It suffices to prove that each subsequence of  $\{f_n\}$  has a subsequence which satisfies (d) and (e). So suppose we have a subsequence of  $\{f_n\}$ , which (to avoid complication in notation) we again call  $\{f_n\}$ .

Since  $\{f_n\}$  is not normal at  $a_1$ , it follows from Lemma 1 that we can extract a subsequence (which, renumbering, we continue to call  $\{f_n\}$ ), points  $z_n \to a_1$ , and positive numbers  $\rho_n \to 0$  such that

(1) 
$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \stackrel{\chi}{\Rightarrow} g(\zeta) \quad \text{on } C,$$

where g is a nonconstant meromorphic function of finite order on C, all of whose zeros have multiplicity at least k + 1. Since  $g_n^{(k)}(\zeta) = f_n^{(k)}(z_n + \rho_n \zeta) \neq 1$ and  $g_n^{(k)} \Rightarrow g^{(k)}$  on the complement of the poles of g, either  $g^{(k)} \neq 1$  or  $g^{(k)} \equiv 1$ , by Hurwitz' Theorem. In the latter case, g is a polynomial of degree k and therefore does not have zeros of multiplicity at least k + 1. Thus  $g^{(k)}(\zeta) \neq 1$  on C; so by Lemma 4,

(2) 
$$g(\zeta) = \frac{1}{k!} \frac{(\zeta - a)^{k+1}}{\zeta - b}$$

for distinct complex numbers *a* and *b*. It now follows from the argument principle that there exist sequences  $\xi_n \to a$  and  $\eta_n \to b$  such that, for sufficiently large n,  $g_n(\xi_n) = 0$  and  $g_n(\eta_n) = \infty$ . Thus, writing  $z_{n,0} = z_n + \rho_n \xi_n$ ,  $z_{n,1} = z_n + \rho_n \eta_n$ , we have  $z_{n,j} \to a_1$  (j = 0, 1),  $f_n(z_{n,0}) = 0$  and  $f_n(z_{n,1}) = \infty$ .

Let us now assume that (d) has been shown to hold. It follows from Lemma 3 that the pole of  $f_n$  at  $z_{n,1}$  is simple. The limit function f from (c) is either meromorphic on  $\Delta \setminus \{a_j\}_{j=1}^{\infty}$  or identically infinite there. Suppose first that it is meromorphic on  $\Delta \setminus \{a_j\}_{j=1}^{\infty}$ . Then there exists  $\delta_0 > 0$  such that f has no poles on  $\Gamma = \{z : |z - a_1| = \delta_0\}$  and  $f_n^{(k)}$  converges uniformly to  $f^{(k)}$  on  $\Gamma$ . We claim that  $f^{(k)} \equiv 1$  on  $\Delta'(a_1, \delta_0)$ . Indeed, otherwise by Hurwitz' Theorem,  $f^{(k)} \neq 1$ . Now  $1/(f_n^{(k)} - 1)$  is analytic on  $\Delta(a_1, \delta_0)$  and converges uniformly on  $\Gamma$  to  $1/(f^{(k)} - 1)$ . By the maximum principle,  $1/(f_n^{(k)} - 1)$  converges uniformly on  $\Delta(a_1, \delta_0)$ , so  $\{f_n^{(k)}\}$  is normal at  $a_1$ . However, since  $f_n^{(k)}(z_{n,0}) = 0$  and  $f_n^{(k)}(z_{n,1}) = \infty$  and  $z_{n,j} \to a_1$  (j = 0, 1),  $\{f_n^{(k)}\}$  is not equicontinuous at  $a_1$ , a contradiction.

Thus f has no poles on  $\Delta'(a_1, \delta_0)$  and  $f_n^{(k)} \Rightarrow 1$  on  $\Delta'(a_1, \delta_0)$ . We claim now that for every  $0 \le i \le k$ 

(3) 
$$f_n^{(k-i)}(z) \Rightarrow \frac{(z-a_1)^i}{i!} \quad \text{on } \Delta'(a_1,\delta_0).$$

We have already proved this for i = 0.

We continue by induction. Suppose that (3) holds for i = j and let i = j + 1. For  $z, z_0 \in \Delta'(a_1, \delta_0)$ , we have

$$f_n^{(k-(j+1))}(z) - f_n^{(k-(j+1))}(z_0) = \int_{z_0}^z f_n^{(k-j)}(\zeta) \, d\zeta$$

By the induction assumption, the last term tends to  $(z-a_1)^{j+1}/(j+1)! - (z_0-a_1)^{j+1}/(j+1)!$ ; thus

$$f_n^{(k-(j+1))}(z) \Rightarrow \frac{(z-a_1)^{j+1}}{(j+1)!} + \beta(z_0),$$

where  $\beta(z_0) = \lim_{n \to \infty} [f_n^{(k-(j+1))}(z_0) - (z_0 - a_1)^{j+1}/(j+1)!].$ We now show that  $\beta(z_0) = 0$ . If not, take *r* such that  $0 < r < \min\{|(j+1)!\beta(z_0)|^{1/(j+1)}, \delta_0\}$ . For large enough *n*, we have

(4) 
$$\frac{1}{2\pi i} \int_{|\zeta-a_1|=r} \frac{f_n^{(k-j)}(\zeta)}{f_n^{(k-(j+1))}(\zeta)} d\zeta = \frac{1}{2\pi i} \int_{|\zeta-a_1|=r} \frac{(\zeta-a_1)^j/j!}{(\zeta-a_1)^{j+1}/(j+1)! + \beta(z_0)} d\zeta.$$

Now the right hand term is zero, since the zeros of  $(\zeta - a_1)^{j+1}/(j+1)! + \beta(z_0)$ are outside  $\Delta(a_1, r)$ . By condition (d), the number of poles in  $\Delta(a_1, \delta_0)$  of  $f_n^{(k-(j+1))}$  in (4) is k-(j+1)+1=k-j, counting multiplicities.

As for the number of zeros, without loss of generality, we may assume b = 0in (2). Then  $a \neq 0$ , and we have

$$g(\zeta) = \frac{1}{k!} \frac{1}{\zeta} \left[ \zeta^{k+1} - (k+1)a\zeta^k + \dots + (-1)^k \binom{k+1}{k} z^k \zeta + (-1)^{k+1} a^{k+1} \right]$$
$$= \frac{1}{k!} \left[ \zeta^k - (k+1)a\zeta^{k-1} + \dots + \frac{(-1)^{k+1}a^{k+1}}{\zeta} \right].$$

Hence, for each  $0 \le i \le k$ ,  $g^{(i)}(\zeta)$  has exactly k+1 zeros in C, counting multiplicities. Thus by (1), for large enough n,  $f_n^{(i)}(z)$  has at least k+1 zeros in  $\Delta(a_1, \delta_0)$ . We then get by the argument principle that the left hand term in (4) is at least k+1-(k-i)=i+1, and we have a contradiction. Thus  $\beta(z_0)=0$ , and (3) is proved. Take i = k in (3) to get assertion (e).

Suppose now that  $f \equiv \infty$  on  $\Delta \setminus \{a_j\}_{j=1}^{\infty}$ . Let

$$F_n(z) = f_n(z) \frac{z - z_{n,1}}{(z - z_{n,0})^{k+1}}.$$

By (b),  $F_n(z) \neq 0$  on  $\Delta(a_1, \delta)$ . Applying the maximum principle to the sequence  $\{1/F_n\}$  of analytic functions, we see that  $F_n \Rightarrow \infty$  on  $\Delta(a_1, \delta)$ . We have

(5) 
$$\frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} = \frac{F_n(z_n + \rho_n \zeta)}{\rho_n^k} \frac{(\rho_n \zeta + z_n - z_{n,0})^{k+1}}{(\rho_n \zeta + z_n - z_{n,1})}$$
$$= F_n(z_n + \rho_n \zeta) \frac{(\zeta - \zeta_n)^{k+1}}{\zeta - \eta_n}.$$

It follows from (1), (2), and (5) that  $F_n(z_n + \rho_n \zeta) \to 1$ , which contradicts  $F_n \Rightarrow \infty$ near  $a_1$ . Thus the possibility  $f \equiv \infty$  may be ruled out.

We have shown that when (d) obtains, (e) does as well. Now let us show that (d) must hold. Suppose not. Then, taking a subsequence and renumbering, we may assume that on any neighborhood of  $a_1$ ,  $f_n$  has at least two poles for sufficiently large n. Keeping the notation established above, let  $z_{n,2} \neq z_{n,1}$  be such that  $f_n(z_{n,2}) = \infty$  and  $f_n$  has no poles in  $\Delta'(z_{n,1}, |z_{n,1} - z_{n,2}|)$ . Write  $z_{n,2} = z_n + \rho_n \eta_n^*$ . Then  $z_{n,2} \to a_1$  but  $\eta_n^* \to \infty$  since the right hand side of (2) has but a single simple pole. Set

$$G_n(\zeta) = \frac{f_n(z_{n,1} + (z_{n,2} - z_{n,1})\zeta)}{(z_{n,2} - z_{n,1})^k}$$

Since  $z_{n,2} - z_{n,1} \to 0$ ,  $G_n(\zeta)$  is defined for any  $\zeta \in C$  if *n* is sufficiently large; and  $G_n^{(k)}(\zeta) \neq 1$ . Note that  $G_n(1) = \infty$ . Also,

$$G_n(0) = \infty$$
  $G_n\left(\frac{z_{n,0} - z_{n,1}}{z_{n,2} - z_{n,1}}\right) = 0$ 

and

$$\frac{z_{n,0}-z_{n,1}}{z_{n,2}-z_{n,1}} = \frac{\xi_n - \eta_n}{\eta_n^* - \eta_n} \to 0$$

so  $\{G_n\}$  is not normal at 0. On the other hand, for *n* sufficiently large,  $G_n$  has only a single zero (which tends to 0 as  $n \to \infty$ ) on any compact subset of *C*. Since  $G'_n(\zeta) \neq 1$ , it follows from Lemma 2 that  $\{G_n\}$  is normal on  $C \setminus \{0\}$ . Taking a subsequence and renumbering, we may assume that  $G_n \Rightarrow G$  on  $C \setminus \{0\}$ . Since  $G_n$  has only a single pole on  $\Delta$ , conditions (a), (b), (c), and (d) hold for the sequence  $\{G_n\}$  (defined, say, on  $\Delta(0,2)$ ) with  $a_1 = 0$  and  $\delta = 1$ . Thus, by the first part of the proof,  $G(\zeta) = \zeta^k / k!$ . But this contradicts  $G(1) = \infty$ . This completes the proof of Lemma 5.

DEFINITION. Let  $z_1, z_2 \in C$  and put  $\tilde{z} = (z_1 + z_2)/2$ . We say that  $(z_1, z_2)$  is a k-nontrivial pair of zeros of f if

(i)  $f(z_1) = f(z_2) = 0$  and

(ii) there exists  $z_3$  such that  $|z_3 - \tilde{z}| < |z_1 - z_2|$  and  $|f'(z_3)|/|z_1 - z_2|^{k-1} > 1$ . Note that (ii) is equivalent to

(ii') there exists  $z^*$  such that  $|z^*| < 1$  and  $|h'(z^*)| > 1$ , where

$$h(z) = \frac{f(\tilde{z} + (z_1 - z_2)z)}{(z_1 - z_2)^k}$$

Since  $|h'(z)| \ge h^{\#}(z)$ , it suffices to have  $h^{\#}(z^*) > 1$  in (ii').

Our next result deals with the situation in which the functions  $f_n$  have more than a single zero in each neighborhood of a point of non-normality.

LEMMA 6. Let  $\{f_n\}$  be a sequence of functions meromorphic on  $\Delta$ , all of whose zeros have multiplicity at least k + 1, such that  $f_n^{(k)}(z) \neq 1$  for all n and all  $z \in \Delta$ . Suppose that

- (a) no subsequence of  $\{f_n\}$  is normal at  $z_0$ , and
- (b) for each  $\delta > 0$ ,  $f_n$  has at least two distinct zeros on  $\Delta(z_0, \delta)$  for sufficiently large *n*.

Then for each  $\delta > 0$ ,  $f_n$  has a k-nontrivial pair  $(a_n, c_n)$  of zeros on  $\Delta(z_0, \delta)$  for sufficiently large n, and

$$\left\{\frac{f_n(d_n+(a_n-c_n)\zeta)}{(a_n-c_n)^k}\right\}$$

is not normal on  $\Delta$ . Here  $d_n = (a_n + c_n)/2$ .

*Proof.* As in the proof of the previous lemma, it follows from (a) and Lemmas 1 and 4 that for each subsequence of  $\{f_n\}$  there exists a (sub)subsequence (which, renumbering, we continue to denote by  $\{f_n\}$ ), points  $z_n \to z_0$ , numbers  $\rho_n \to 0^+$ , and distinct  $a, b \in C$  such that

(6) 
$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \stackrel{\chi}{\Rightarrow} g(\zeta) = \frac{1}{k!} \frac{(\zeta - a)^{k+1}}{\zeta - b} \quad \text{on } C.$$

Thus there exist  $\xi_n \to a$ ,  $\eta_n \to b$  so that  $a_n = z_n + \rho_n \xi_n \to z_0$ ,  $b_n = z_n + \rho_n \eta_n \to z_0$ and  $g_n(\xi_n) = f_n(a_n) = 0$ ,  $g_n(\eta_n) = f_n(b_n) = \infty$  for *n* sufficiently large.

By assumption, there also exists  $c_n \neq a_n$ ,  $c_n \to z_0$ , such that  $f_n(c_n) = 0$ . Thus  $c_n = z_n + \rho_n \xi_n^*$  and  $\xi_n^* \to \infty$  by (6). Setting  $d_n = (a_n + c_n)/2$ , we see that the function

$$h_n(\zeta) = \frac{f_n(d_n + (a_n - c_n)\zeta)}{(a_n - c_n)^k}$$

is defined for any  $\zeta \in C$  if *n* is sufficiently large. We claim that  $\{h_n\}$  is not normal at  $\zeta = 1/2$ . Indeed, we have

$$\frac{a_n - d_n}{a_n - c_n} \to \frac{1}{2}, \qquad \frac{b_n - d_n}{a_n - c_n} \to \frac{1}{2},$$
$$h_n \left(\frac{a_n - d_n}{a_n - c_n}\right) = f_n(a_n) = 0, \qquad h_n \left(\frac{b_n - d_n}{a_n - c_n}\right) = f_n(b_n) = \infty,$$

so  $\{h_n\}$  fails to be equicontinuous in a neighborhood of 1/2. It follows from Marty's Theorem that

$$\lim_{n \to \infty} \sup_{|\zeta - 1/2| \le 1/4} h_n^{\#}(\zeta) = \infty$$

Thus  $(a_n, c_n)$  is a k-nontrivial pair of zeros of  $f_n$  for n sufficiently large.

LEMMA 7. Let  $\{f_n\}$  be a sequence of functions meromorphic on  $\Delta$ , all of whose zeros have multiplicity at least k + 1, such that  $f_n^{(k)}(z) \neq 1$  for all n and all  $z \in \Delta$ . Suppose that

158

(a) there exist  $d \in \Delta$ ,  $a_n \to d$ ,  $c_n \to d$ , and  $z_0 \in C$  such that for every  $\delta > 0$ ,

$$h_n(z) = \frac{f_n(d_n + (a_n - c_n)z)}{(a_n - c_n)^k}$$

has at least two distinct zeros on  $\Delta(z_0, \delta)$  for sufficiently large n, where  $d_n = (a_n + c_n)/2$ ; and

(b) no subsequence of  $\{h_n\}$  is normal at  $z_0$ . Then for n sufficiently large,  $f_n$  has a k-nontrivial pair of zeros  $(z_{n,1}^*, z_{n,2}^*)$  such that  $z_{n,j}^* \rightarrow d$  (j = 1, 2) and  $|z_{n,1}^* - z_{n,2}^*| < |a_n - c_n|$ .

*Proof.* As before, it follows from Lemmas 1 and 4 that to each subsequence of  $\{h_n\}$  there corresponds a subsequence (which we continue to write as  $\{h_n\}$ ),  $z_n \to z_0$ , and  $\rho_n \to 0^+$  such that

$$g_n(\zeta) = \frac{h_n(z_n + \rho_n \zeta)}{\rho_n^k} \stackrel{\chi}{\Rightarrow} \frac{1}{k!} \frac{(\zeta - a)^{k+1}}{\zeta - b} \quad \text{on } \mathbf{C}.$$

Thus there exist  $\xi_{n,0} \to b$ ,  $\xi_{n,1} \to a$  so that  $z_{n,j} = z_n + \rho_n \xi_{n,j} \to z_0$  (j = 0, 1) and  $g_n(\xi_{n,0}) = h_n(z_{n,0}) = \infty$ ,  $g_n(\xi_{n,1}) = h_n(z_{n,1}) = 0$ . By (a), there exist  $z_{n,2} \to z_0$ ,  $z_{n,2} \neq z_{n,1}$ , such that  $h_n(z_{n,2}) = 0$ . Setting  $z_{n,2} = z_n + \rho_n \xi_{n,2}$ , we have  $\xi_{n,2} \to \infty$ . Now put

$$z_{n,j}^* = d_n + (a_n - c_n)z_n + \rho_n(a_n - c_n)\xi_{n,j}$$
  $j = 0, 1, 2.$ 

Clearly  $z_{n,j}^* \rightarrow d$ , j = 0, 1, 2. Define

$$G_n(\zeta) = \frac{f_n((z_{n,1}^* + z_{n,2}^*)/2 + (z_{n,1}^* - z_{n,2}^*)\zeta)}{(z_{n,1}^* - z_{n,2}^*)^k}.$$

Then  $\{G_n\}$  is not normal at  $\zeta = 1/2$ . Indeed,

$$G_n\left(\frac{2\xi_{n,0}-\xi_{n,1}-\xi_{n,2}}{2(\xi_{n,1}-\xi_{n,2})}\right)=\infty, \quad G_n(1/2)=0.$$

Since  $(2\xi_{n,0} - \xi_{n,1} - \xi_{n,2})/2(\xi_{n,1} - \xi_{n,2}) \rightarrow 1/2$ ,  $\{G_n\}$  is not equicontinuous at  $\zeta = 1/2$ . As before, it follows from Marty's Theorem that  $(z_{n,1}^*, z_{n,2}^*)$  is a *k*-nontrivial pair of zeros of  $f_n$ . Now  $|z_{n,1}^* - z_{n,2}^*| = |a_n - c_n| |z_{n,1} - z_{n,2}|$ ; therefore, since  $z_{n,j} \rightarrow z_0$  (j = 1, 2), we have  $|z_{n,1}^* - z_{n,2}^*| < |a_n - c_n|$  for large enough *n*, as required.

LEMMA 8. Let  $\{f_n\}$  be a sequence of functions meromorphic on  $\Delta$ , all of whose zeros have multiplicity at least k + 1, such that  $f_n^{(k)}(z) \neq 1$  for all n and all  $z \in \Delta$ . Suppose that

- (a)  $\{f_n\}$  is normal on  $\Delta'(0,1)$ , but no subsequence of  $\{f_n\}$  is normal at 0; and
- (b) there exists  $\delta > 0$  such that  $f_n$  has a single (multiple) zero on  $\Delta(0, \delta)$  for all sufficiently large n.

Then there exists a subsequence of  $\{f_n\}$  (which we continue to call  $\{f_n\}$ ) such that for any  $a \in C$ ,  $f_n - a$  has at most k + 1 zeros (counting multiplicity) on  $\Delta(0, 1/2)$ .

*Proof.* Taking a subsequence and renumbering, we may assume that  $f_n \stackrel{\chi}{\Rightarrow} f$  on  $\Delta'(0,1)$ . By Lemma 5,  $f(z) = z^k/k!$ . Suppose that  $|a| < (2/3)^k/k!$ . Taking  $\Gamma$  to be the circle  $\{|z| = 3/4\}$  traversed once in the positive direction, we have

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f_n'(z)}{f_n(z) - a} \, dz \to \frac{1}{2\pi i} \int_{\Gamma} \frac{z^{k-1}/(k-1)!}{z^k/k! - a} \, dz = k.$$

However, the left hand side is the number of *a*-points of  $f_n$  minus the number of poles of  $f_n$  inside  $\Gamma$ , counting multiplicities. By Lemma 5, there exists  $0 < \delta < 3/4$  such that  $f_n$  has a single simple pole on  $\Delta(0,\delta)$  for *n* sufficiently large. Since  $f_n$  converges uniformly to  $z^k/k!$  on  $\{z : \delta \le |z| \le 3/4\}$ , there exists  $N_1$  such that if  $n \ge N_1$   $f_n$  has a single simple pole in  $\Delta(0, 3/4)$ . Hence for  $n \ge N_1$ ,  $f_n$  takes on the value *a* (counting multiplicities) exactly k + 1 times on  $\Delta(0, 3/4)$ .

Suppose now that  $|a| > (2/3)^k/k!$ . Let  $\Gamma'$  be the circle  $\{|z| = 5/9\}$  traversed in the positive direction. Then

$$\frac{1}{2\pi i} \int_{\Gamma'} \frac{f_n'(z)}{f_n(z) - a} \, dz \to \frac{1}{2\pi i} \int_{\Gamma'} \frac{z^{k-1}/(k-1)!}{z^k/k! - a} \, dz = 0,$$

so the number of *a*-points minus the number of poles of  $f_n$  (counting multiplicity) inside  $\Gamma'$  is 0 for large *n*. It follows as before that there exists  $N_2$  such that  $f_n$  takes on the value *a* exactly once (counting multiplicities) on  $\Delta(0, 5/9)$  if  $n \ge N_2$ . Dropping the elements  $f_n$  with  $n < \max(N_1, N_2)$  and renumbering, we obtain the desired sequence.

LEMMA 9. Let f be a meromorphic function on C, all of whose zeros have multiplicity at least k + 1, such that  $f^{(k)}(z) \neq 1$ ,  $z \in C$ . Then either

- (i) f is rational; or
- (ii) there exist k-nontrivial pairs  $(a_n, c_n)$  of zeros of f such that  $|a_n c_n| \to 0$ and a sequence of functions

$$h_n(\zeta) = \frac{f(d_n + (a_n - c_n)\zeta)}{(a_n - c_n)^k}$$

which is not normal on  $\Delta$ ; here  $d_n = (a_n + c_n)/2$ .

*Proof.* Suppose f is not rational. Then by Lemma 4, f has infinite order, so there exist  $z_n \to \infty$  and  $\varepsilon_n \to 0$  such that

(7) 
$$S(\Delta(z_n,\varepsilon_n),f) = \frac{1}{\pi} \iint_{|z-z_n| \le \varepsilon_n} [f^{\#}(z)]^2 \, dx dy \to \infty.$$

Indeed, otherwise there would exist  $\varepsilon > 0$  and M > 0 such that  $S(\Delta(\zeta, \varepsilon), f) \le M$  for all  $\zeta \in C$ . From this follows

$$S(r) = \frac{1}{\pi} \iint_{|z| < r} [f^{\#}(z)]^2 \, dx \, dy = O(r^2),$$

160

so that (cf. [10, p. 217]) f would have order at most 2, a contradiction. In particular, there exist  $z_n^* \in \Delta(z_n, \varepsilon_n)$  such that  $f^{\#}(z_n^*) \to \infty$ . Let  $f_n(z) = f(z + z_n^*)$ . Then no subsequence of  $\{f_n\}$  is normal at 0.

Suppose there exists  $\delta > 0$  such that  $f_n$  has only a single (multiple) zero  $\xi_n$  on  $\Delta(0,\delta)$ . Since no subsequence of  $\{f_n\}$  is normal at 0,  $\xi_n \to 0$  by Lemma 2. Thus, again by Lemma 2,  $\{f_n\}$  is normal on  $\Delta'(0,\delta)$ . It follows from Lemma 8 that there exist  $n_1 < n_2 < \cdots$  such that for any  $a \in C$ ,  $f_{n_j} - a$  has at most k + 1 zeros (counting multiplicity) on  $\Delta(0,\delta/2)$ . Thus, for large enough j,

$$S(\Delta(z_{n_i},\varepsilon_{n_i}),f) \le S(\Delta(0,\delta/2),f_{n_i}) \le k+1$$

which contradicts (7).

Thus, for each  $\delta > 0$ ,  $f_n$  has at least two distinct zeros on  $\Delta(0, \delta)$  for sufficiently large *n*. The result now follows immediately from Lemma 6.

## 4. Proof of the Theorem

Suppose the Theorem is false. Then there exists a sequence  $\{a_j^*\} \subset D$  with no accumulation point in D and such that  $a_1^* \neq a_2^*$  and a sequence  $\{f_n\} \subset \mathcal{F}$  such that  $f_n \stackrel{\chi}{\Rightarrow} f$  on  $D \setminus \{a_j^*\}$  but no subsequence of  $\{f_n\}$  is normal at  $a_1^*$  or  $a_2^*$ . We may assume that  $a_1^* = 0$  and  $D = \Delta$ . The argument given in the proof of Lemma 5 shows that  $f_n^{(k)} \Rightarrow 1$  on  $\Delta \setminus \{a_j^*\}$  or  $f = \infty$ , so  $f \neq 0$ .

If there exists  $\delta > 0$  such that  $f_n$  has only a single (multiple) zero on each  $\Delta(a_j^*, \delta)$  (j = 1, 2) for large enough n, it follows from Lemma 5 that  $f(z) = (z - a_j^*)^k / k!$  (j = 1, 2) on  $\Delta \setminus \{a_j^*\}$ . Thus  $a_1^* = a_2^*$ , a contradiction.

Therefore, one may suppose that for any  $\delta > 0$ ,  $f_n$  has at least two distinct zeros on  $\Delta(0,\delta)$  for sufficiently large n. By Lemma 6,  $f_n$  has a k-nontrivial pair of zeros in  $\Delta(0,\delta)$  for n large enough. Therefore, some subsequence of  $\{f_n\}$ (which, as usual, we continue to call  $\{f_n\}$ ) has a k-nontrivial pair of zeros  $(z_n, w_n)$ such that  $|z_n| < 1/n$ ,  $|w_n| < 1/n$ . There exist  $\delta_0 > 0$  and 1 < s < 2 such that  $f_n \stackrel{\chi}{\Rightarrow} f$  on  $\Delta'(0, 2\delta_0)$  and f does not vanish for  $\delta_0 \le |z| \le s\delta_0$ . For  $1/n < \delta_0$ , let  $(a_n, c_n)$  be a k-nontrivial pair of zeros of  $f_n$  in  $\Delta(0, \delta_0)$  whose distance is minimal. Clearly,  $a_n - c_n \to 0$ . Set  $d_n = (a_n + c_n)/2$ . Then  $d_n \in \Delta(0, \delta_0)$ ; and, passing to a subsequence, we may assume that  $d_n \to a$ , so  $|a| \le \delta_0$ . Since f and  $f_n$  have no zeros on  $\{z : \delta_0 \le |z| \le s\delta_0\}$  if n is large enough,  $(a_n, c_n)$  is a k-nontrivial pair of zeros of  $f_n$  on  $\Delta(0, s\delta_0)$  whose distance is minimal.

Set

$$h_n(\zeta) = \frac{f_n(d_n + (a_n - c_n)\zeta)}{(a_n - c_n)^k}$$

Then for each  $\zeta \in C$ ,  $h_n(\zeta)$  is defined if *n* is sufficiently large. Clearly, all zeros of  $h_n$  have multiplicity at least k + 1 and  $h_n^{(k)}(\zeta) \neq 1$ . We claim that no subsequence of  $\{h_n\}$  is normal on *C*. Otherwise, taking a subsequence and renumbering, we would have  $h_n \stackrel{\chi}{\Rightarrow} h$  on *C*. Since  $(a_n, c_n)$  is a *k*-nontrivial pair of zeros of  $f_n$ ,  $h_n(\pm 1/2) = h'_n(\pm 1/2) = \cdots = h_n^{(k)}(\pm 1/2) = 0$ , and  $\sup_{\Delta} |h_n^{(k)}(z)| > 1$ .

It follows easily that  $h^{(k)}(\zeta) \neq 1$  on C and that h is nonconstant. Since all zeros of h have multiplicity at least k+1, Lemma 4 shows that h must be transcendental. It then follows from Lemma 9 that there exist infinitely many k-nontrivial pairs  $(\xi_j, \eta_j)$  of zeros of h such that  $\xi_j \to \infty$  and  $\xi_j - \eta_j \to 0$ , and  $z_j^*$  with  $|z_j^* - (\xi_j + \eta_j)/2| < |\xi_j - \eta_j|$  and  $h^{\#}(z_j^*) \to \infty$ .

with  $|z_j^* - (\xi_j + \eta_j)/2| < |\xi_j - \eta_j|$  and  $h^{\#}(z_j^*) \to \infty$ . Fix j such that  $h^{\#}(z_j^*) \ge 2$  and  $|\xi_j - \eta_j| < 1$ . Then there exist  $\xi_{n,j} \to \xi_j$ and  $\eta_{n,j} \to \eta_j$  such that for n sufficiently large,  $h_n(\xi_{n,j}) = h_n(\eta_{n,j}) = 0$  and  $|z_j^* - (\xi_{n,j} + \eta_{n,j})/2| < |\xi_{n,j} - \eta_{n,j}|$ . Put

$$\xi_{n,j}^* = d_n + (a_n - c_n)\xi_{n,j} \quad \eta_{n,j}^* = d_n + (a_n - c_n)\eta_{n,j} \quad z_{n,j}^* = d_n + (a_n - c_n)z_j^*.$$

Then

$$\left|z_{n,j}^{*} - \frac{\xi_{n,j}^{*} + \eta_{n,j}^{*}}{2}\right| = |a_{n} - c_{n}| \left|z_{j}^{*} - \frac{\xi_{n,j} + \eta_{n,j}}{2}\right| < |a_{n} - c_{n}| \left|\xi_{n,j} - \eta_{n,j}\right| = |\xi_{n,j}^{*} - \eta_{n,j}^{*}|,$$

where  $\xi_{n,j}^* \to a$ ,  $\eta_{n,j}^* \to a$  and  $|a| < s\delta_0$ ; also, for *n* sufficiently large,  $|f_n'(z_{n,j}^*)/(a_n - c_n)^{k-1}| = |h_n'(z_j^*)| \ge h_n^{\#}(z_j^*) > 1$ . We conclude that  $(\xi_{n,j}^*, \eta_{n,j}^*)$  is a *k*-nontrivial pair of zeros of  $f_n$  on  $\Delta(0, s\delta_0)$ . However,

$$|\xi_{n,j}^* - \eta_{n,j}^*| = |a_n - c_n| \, |\xi_{n,j} - \eta_{n,j}| < |a_n - c_n|$$

if *n* is sufficiently large. This contradicts the fact that  $(a_n, c_n)$  is a *k*-nontrivial pair of zeros of  $f_n$  in  $\Delta(0, s\delta_0)$  whose distance is minimal.

Thus no subsequence of  $\{h_n\}$  is normal on C. Let E be the set on which  $\{h_n\}$  is not normal. Suppose that for each  $\zeta \in E$ , there is a neighborhood on which  $h_n$  has only a single (multiple) zero for sufficiently large n. Then by Lemma 2,  $\{h_n\}$  is quasinormal at each point of E and hence on all of C. Let  $\zeta_0 \in E$ . Taking a subsequence, we may assume that no subsequence of  $\{h_n\}$  is normal at  $\zeta_0$  and that  $\{h_n\}$  converges locally spherically uniformly on  $\mathbb{C}\setminus E_0$ , where  $E_0 \subset E$  is a discrete set containing  $\zeta_0$ . By Lemma 5,  $h_n \stackrel{\chi}{\Rightarrow} (\zeta - \zeta_0)^k / k!$  on  $C \setminus E_0$ . Taking additional subsequences and diagonalizing, we may assume that no subsequence of  $\{h_n\}$  is normal at any point of  $E_0$ . We claim that  $E_0 = \{\zeta_0\}$ . Indeed, otherwise there exists  $\zeta_1 \in E_0$ ,  $\zeta_1 \neq \zeta_0$ ; then, as before, it follows from Lemma 5 that  $h_n(\zeta) \stackrel{\chi}{\Rightarrow} (\zeta - \zeta_1)^k / k!$  on  $C \setminus E_0$ , so that  $\zeta_1 = \zeta_0$ ,  $E_0 = \{\zeta_0\}$ , and  $h_n(\zeta) \stackrel{\chi}{\Rightarrow} (\zeta - \zeta_0)^k / k!$  on  $C \setminus \{\zeta_0\}$ . But this contradicts  $h_n(\pm 1/2) = 0$ . Hence there exists  $\zeta_0 \in E$  such that for each  $\delta > 0$ , there is a subsequence of  $\{h_n\}$  (which we continue to call  $\{h_n\}$  such that each  $h_n$  has at least two distinct zeros in  $\Delta(\zeta_0, \delta)$  for sufficiently large n. Then by Lemma 7, for n sufficiently large,  $f_n$ has a nontrivial pair of zeros  $(w_{n,1}^*, w_{n,2}^*)$  such that  $w_{n,j}^* \to a$  (j = 1, 2) and  $|w_{n,1}^* - w_{n,2}^*| < |a_n - c_n|$ . This contradicts the fact that  $(a_n, c_n)$  is a nontrivial pair of zeros of  $f_n$  in  $\Delta(0, s\delta_0)$  whose distance is minimal.

Acknowledgment. We would like to thank L. Zalcman for fruitful discussions and useful advice.

#### References

- [1] WALTER BERGWEILER AND J. K. LANGLEY, Multiplicities in Hayman's alternative, preprint.
- [2] CHI-TAI CHUANG, Normal Families of Meromorphic Functions, World Scientific, 1993.
- [3] KU YONGXING, Un critère de normalité des familles de fonctions méromorphes, Sci. Sinica Special Issue 1 (1979), 267–274 (Chinese).
- [4] SHAHAR NEVO, On theorems of Yang and Schwick, Complex Variables 46 (2001), 315–321.
- [5] SHAHAR NEVO, Applications of Zalcman's lemma to  $Q_m$ -normal families, Analysis 21 (2001), 289–325.
- [6] XUECHENG PANG, SHAHAR NEVO, AND LAWRENCE ZALCMAN, Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana, to appear.
- [7] XUECHENG PANG AND LAWRENCE ZALCMAN, Normal families and shared values, Bull. London Math. Soc 32 (2000), 325–331.
- [8] XUECHENG PANG AND LAWRENCE ZALCMAN, Normal families of meromorphic functions with multiple zeros and poles, Israel J. Math. 136 (2003), 1–9.
- [9] YUFEI WANG AND MINGLIANG FANG, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica N.S. 14 (1998), 17–26.
- [10] LAWRENCE ZALCMAN, Normal families: new perspectives, Bull. Amer. Math. Soc. 35 (1998), 215–230.

DEPARTMENT OF MATHEMATICS AND STATISTICS BAR-ILAN UNIVERSITY 52900 RAMAT-GAN ISRAEL e-mail: nevosh@macs.biu.ac.il

DEPARTMENT OF MATHEMATICS EAST CHINA NORMAL UNIVERSITY SHANGHAI 200062 P. R. CHINA e-mail: xcpang@math.ecnu.edu.cn