ON G-FIBERINGS OVER THE CIRCLE WITHIN A COBORDISM CLASS

TAMIO HARA

Introduction

Conner and Floyd [1] have characterized those unoriented cobordism classes that admit a representative which fibers over the circle S^1 . They have shown that a closed manifold M is cobordant to a bundle over S^1 if and only if $\chi(M) \equiv 0 \pmod{2}$, where χ is the Euler characteristic. Let G be a finite abelian group of odd order and \mathfrak{N}^G_* the cobordism group of unoriented closed Gmanifolds. The purpose of this paper is to determine when a class β in \mathfrak{N}^G_* has a representative which fibers equivariantly over S^1 such that the action of G takes place within fiber. The author [3] has discussed such a question in case where $G = \mathbb{Z}_{2^r}$, the cyclic group of order 2^r .

In Section 1, we first introduce an SK group SK_*^G resulting from equivariant cuttings and pastings (G-SK processes) of closed G-manifolds. The abbreviation SK stands for Schneiden und Kleben in German. Kosniowski [7] has obtained some generators of SK_*^G as a free SK_* -module, where SK_* is an SK ring of closed manifolds in Karras, Kreck, Neumann and Ossa [5] (Proposition 1.4). As an example, we perform G-SK processes on some complex projective space with G-action and write it by the above generators (Example 1.8).

In Section 2, we consider a notion of G-SK invariant studied in [5] and [7]. Let T be a map for closed G-manifolds which takes values in the ring Z of rational integers and is additive with respect to the disjoint union of G-manifolds. Such a T is said to be a G-SK invariant if it is invariant under G-SK processes. Given a G-manifold M, let M_{σ} be a G-submanifold of M consisting of those points whose slice types containing σ . Then a map χ_{σ} defined by $\chi_{\sigma}(M) =$ $\chi(M_{\sigma})$ is a G-SK invariant. Further, for a subgroup H of G, the map χ^{H} defined by $\chi^{H}(M) = \chi(M^{H})$ is also a G-SK invariant, where $M^{H} = \{x \in M \mid hx = x \text{ for any } h \in H\}$. We see that $\chi^{H} = \sum_{\sigma} \chi_{\sigma}$ summing over all σ with H as an isotropy subgroup. The above T is considered to be an additive homomorphism $T: SK_{*}^{G} \to \mathbb{Z}$. We determine a form of T by using those χ_{σ} and have a base for a \mathbb{Z} -module \mathcal{T}_{*}^{G} consisting of all G-SK invariants (Theorem 2.6). In Section 3, we devote to a study of G-fiberings over S^{1} . Let \overline{SK}_{*}^{G} be SK_{*}^{G}

¹⁹⁹¹ Mathematics Subject Classification: 57S17. Keywords: G-manifold, cutting and pasting, SK group, SK invariant, cobordism, G-fibering.

Received May 14, 2002; revised July 9, 2003.

factored by the equivariant cobordism relation. Let $\overline{\mathcal{T}}_*^G$ be a \mathbb{Z}_2 -vector space consisting of all homomorphisms $\overline{T}: \overline{SK}_*^G \to \mathbb{Z}_2$. Such a map \overline{T} is called a G- \overline{SK} invariant, namely a G-SK invariant (modulo 2) and simultaneously invariant under equivariant cobordism. We first show that a G-SK invariant T which is considered to take values in \mathbb{Z}_2 via the surjection $\mathbb{Z} \to \mathbb{Z}_2$, is always a G- \overline{SK} invariants (Theorem 3.8). The kernel F_*^G of the natural surjection $j_*: \mathfrak{N}_*^G \to$ \overline{SK}_*^G is exactly generated by those classes, each of which admits a representative fibered equivariantly over S^1 . We characterize the elements of F_*^G by using G- \overline{SK} invariants (Theorem 3.10 and Proposition 3.12). Finally, in case $G = \mathbb{Z}_7$, we give a non-zero element of F_*^G by using the complex projective space with Gaction treated in Example 1.8 (Example 3.14).

1. Equivariant cutting and pasting

Let G be a finite abelian group. In this paper, a G-manifold means an unoriented compact smooth manifold together with a smooth action of G. Let N_i (i = 1, 2) be m-dimensional G-manifolds and $\phi, \psi : \partial N_1 \to \partial N_2$ equivariant diffeomorphisms. Pasting along their boundaries, we have closed G-manifolds $M_1 = N_1 \cup_{\phi} N_2$ and $M_2 = N_1 \cup_{\psi} N_2$. Then it is said that M_1 and M_2 are obtained from each other by an equivariant cutting and pasting (G-SK process) [5, 7]. Let \mathcal{M}_m^G be the set of all m-dimensional closed G-manifolds. Then it is an abelian semigroup with respect to the disjoint union + and has a zero given by the empty set \emptyset .

DEFINITION 1.1. G manifolds M_1 and $M_2 \in \mathcal{M}_m^G$ are said to be G-SK equivalent, in symbols $M_1 \sim M_2$, if there is a G manifold $K \in \mathcal{M}_m^G$ such that $M_1 + K$ and $M_2 + K$ can be obtained from each other by a finite sequence of equivariant cuttings and pastings.

The G-SK equivalence \sim is an equivalence relation on the set \mathcal{M}_m^G and the set $\Gamma_m^G = \mathcal{M}_m^G/\sim$ of all equivalence classes is a cancellative abelian semigroup. Let denote by [M] the class containing a G-manifold M. Denote by SK_m^G the Grothendieck group of Γ_m^G . We then have a graded SK_* -module $SK_*^G = \bigoplus_{m\geq 0} SK_m^G$ given by the cartesian product of manifolds. Here SK_* is an SK ring of closed manifolds which is a polynomial ring over \mathbb{Z} with a generator α represented by the real projective plane $\mathbb{R}P^2$ [7; Theorem 2.5.1 (i)].

We assume for the remainder of this paper that G is an abelian group of odd order. A G-module means a finite-dimensional real vector space together with a linear action of G. For a subgroup H of G, let C(H) consist of all subgroups J of H such that the quotient $H/J \cong \mathbb{Z}_d$, a cyclic group of odd order d. Then, for $J \in C(H)$ an irreducible H-module V(J, j) is defined as follows: if d = 1 then $V(H, 1) = \mathbb{R}$ with the trivial action of H, while if $d \ge 3$ then V(J, j) is the set C of complex numbers with a generator h of H/J acting by multiplication by $\exp(2\pi i m_j/d)$, where $\{m_j\}$ is the complete set of integers such that $0 < m_1 < m_2 < \cdots < m_{\varphi(d)} < d$ and each m_j is prime to $d(\varphi)$, the Euler phi function). If M

is a G-manifold and $x \in M$, then there is a G_x -module U_x which is equivariantly diffeomorphic to a G_x -neighbourhood of x. Here $G_x = \{g \in G \mid gx = x\}$ is the isotropy subgroup at x. The module U_x decomposes as $U_x = \mathbf{R}^p \oplus V_x$, where G_x acts trivially on \mathbf{R}^p and $V_x^{G_x} = \{0\}$. We refer to the pair $\sigma_x = [G_x; V_x]$ as a slice type of x. By a G-slice type in general, we mean a pair $\sigma = [H; V]$ of a subgroup H and an H-module V with $V^H = \{0\}$. More precisely, V is a product of non-trivial irreducible H-modules V(J, j) $(J \in C(H)$ with $H/J \cong \mathbb{Z}_d$ and $1 \le j < \frac{1}{2}\varphi(d) + 1$ (cf. [7; Theorem 1.6.1]). We denote by σ_0 the slice type $[\{1\}; \{0\}]$, where $\{1\}$ is the trivial group. Let St(G) be the set of all G-slice types. There is a partial ordering on St(G) such that $[H; V] \preceq [K; W]$ if [H; V]is a slice type of G-manifold $G \times_K W$. Further, we give a total ordering on St(G), which preserves the one \preceq , as follows. For any positive divisor k of |G|, let L(k) be the set consisting of all subgroups H of G such that |H| = k. First order the elements in L(k) appropriately, then this ordering gives the one < on the set of all subgroups of G, preserving inclusion of subgroups, that is, if $H \subseteq K$ then $H \leq K$. Moreover, for any H such an ordering leads to the one on the set of non-trivial irreducible H-modules: $V(J_1, j_1) < V(J_2, j_2)$ if $J_2 < J_1$ or $J_1 = J_2$ and $j_1 < j_2$. Finally we order the elements in St(G) as follows:

- (1) [H; V] < [K; W] if dim $(V) < \dim(W)$.
- (2) Suppose that $\dim(V) = \dim(W)$, then [H; V] < [K; W] if H < K.
- (3) Suppose that $\dim(V) = \dim(W)$ and H = K, then [H; V] < [H; W] if V < W in the ordering of *H*-modules induced lexicographically from the one of irreducible *H*-modules (cf. [7; Section 1.7]).

DEFINITION 1.2. Let W be a K-module and H a subgroup of K. Then denote by W_H an H-module W induced from $H \subseteq K$. Let $\{W_k\}$ be the set of all non-trivial irreducible K-modules. If $\tau = [K; W]$, $W = \prod_k W_k^{a(k)}$ $(a(k) \ge 0)$ is a slice type, then we define a slice type τ_H by $\tau_H = [H; V]$, where V is the nontrivial part of the H-module $\prod_k (W_k)_k^{a(k)}$. Since $(W_k)_{\{1\}} = \mathbb{R}^2$, we have that $\tau_{\{1\}} = \sigma_0$ for any τ . Let $|\tau| = \dim(W)$ be the dimension of τ .

Remark 1.3. (i) More precisely, let $W_k = V(L, j)$ for some $L \subset K$ with $K/L \simeq \mathbb{Z}_a$ and the integer m_j such that $0 < m_j < a$, $(m_j, a) = 1$. Then $(W_k)_H = V(L \cap H, j')$ with $0 < m_{j'} < b$, $(m_{j'}, b) = 1$, where $H/(L \cap H) = LH/L \simeq \mathbb{Z}_b$. The integer j' is determined by the action LH/L on $(W_k)_H$ induced from the one of K/L on W_k . We see that $(W_k)_H$ is the trivial H-module \mathbb{R}^2 only if $H \subseteq L$. It follows that the difference $|\tau| - |\tau_H|$ is the sum of dim $((W_k)_H)$ (= 2) with $H \subseteq L$.

(ii) $W_H = \mathbf{R}^{|\tau| - |\tau_H|} \times V$ as an *H*-module and $W^H = (W_H)^H = \mathbf{R}^{|\tau| - |\tau_H|} \times \{0\}$ has slice types τ_U ($H \subseteq U \subseteq K$) as a *K*-invariant subspace of *W*. Note that $\tau_U \leq \tau$ because $|\tau_U| \leq |\tau|$.

PROPOSITION 1.4 (cf. [7; Theorem 5.2.1]). SK_*^G is a free SK_* -module with basis $\mathscr{B} = \{y[\sigma]; \sigma = [H; V] \in St(G)\}$, where $y[\sigma] = [G \times_H \mathbb{R}P(V \times \mathbb{R})]$ and $\mathbb{R}P(V \times \mathbb{R})$ denotes the real projective space of the product $V \times \mathbb{R}$.

Now, by using the total ordering on St(G), we rename the *G*-slice types: $\sigma_0 = \rho_0, \rho_1, \rho_2, \ldots$ with the condition that if i < j then $\rho_i < \rho_j$. Set $\mathscr{F}_k = \{\rho_j; j \le k\}$, then \mathscr{F}_k is a family of *G*-slice types in the sense of that in [7; Section 1.2].

COROLLARY 1.5. If a G-manifold M has slice types $\sigma_x \in \mathscr{F}_k$ $(x \in M)$, then the class [M] is a linear combination over SK_* by the elements $y[\rho_i]$ with $\rho_i \in \mathscr{F}_k$.

LEMMA 1.6. For G-modules U_i (i = 1, 2), let $S(U_1 \times U_2)$ be a $G \times S^1$ -sphere, that is the G-sphere together with the natural action of the circle group S^1 . Then there is an SK equivalence:

$$2S(U_1 \times U_2) \stackrel{(S^1)}{\sim} S(U_1 \times \boldsymbol{R}) \times S(U_2) + S(U_1) \times S(U_2 \times \boldsymbol{R}),$$

where we use a symbol $\stackrel{(S^1)}{\sim}$ instead of ~ because the above G-SK process is compatible with the action of S^1 .

Proof. Let $N_1 = N_2 = S(U_1) \times D(U_2) + D(U_1) \times S(U_2)$, where $S(U_i)$ and the disk $D(U_i)$ are considered to be $G \times S^1$ -spaces. Then we obtain the above equivalence by pasting ∂N_1 to ∂N_2 by the natural $G \times S^1$ -equivariant identifications ϕ and ψ .

LEMMA 1.7. For G-modules V_i such that $V_i^G = \{0\}$ (i = 1, 2), we have the following SK equivalences.

(i) $S(\mathbf{R}^{2k+1} \times V_1) \sim 2\mathbf{R}P^{2k} \times \mathbf{R}P(V_1 \times \mathbf{R}).$ (ii) $\mathbf{R}P(V_1 \times \mathbf{R}) \times \mathbf{R}P(V_2 \times \mathbf{R}) \sim \mathbf{R}P(V_1 V_2 \times \mathbf{R}).$

Proof. We first consider (i). Let $SK_*^G(pt, pt)$ be an SK group resulting from cuttings and pastings of *G*-manifolds with boundary in [2, 4]. It follows that $[D(V_1)] = [\mathbf{R}P(V_1 \times \mathbf{R})]$ in $SK_*^G(pt, pt)$ since V_1 is a product of twodimensional irreducible *G*-modules (cf. [4; Lemma 3.8 and Example 3.9 (3.3)]). Hence we obtain the equivalence in case k = 0: $[S(V_1 \times \mathbf{R})] = 2[\mathbf{R}P(V_1 \times \mathbf{R})]$ by making use of the map $\mathscr{D}_* : SK_*^G(pt, pt) \to SK_*^G$ given by $\mathscr{D}_*([M]) = [M \cup M]$, the double of a *G*-manifold *M*. Further, when $k \ge 1$, set $(U_1, U_2) = (\mathbf{R}^{2k+1}, V_1)$, forgetting S^1 -action, in the equivalence in Lemma 1.6. Then

(1.7.1)
$$2S(\mathbf{R}^{2k+1} \times V_1) \sim P_1 + P_2,$$

where $P_1 = S^{2k+1} \times S(V_1)$ and $P_2 = S^{2k} \times S(V_1 \times \mathbf{R})$. Since $S^{2k+1} \sim \emptyset$ and $S^{2k} \sim 2\mathbf{R}P^{2k}$, we have that $2S(\mathbf{R}^{2k+1} \times V_1) \sim P_2 \sim 2\mathbf{R}P^{2k} \times 2\mathbf{R}P(V_1 \times \mathbf{R})$ (cf. [7; Theorem 2.5.1 (ii)]). Thus (i) follows since SK_*^G has no torsion (cf. Proposition 1.4). Next we prove (ii). Let $(U_1, U_2) = (V_1, V_2 \times \mathbf{R})$, then $2S(V_1V_2 \times \mathbf{R}) \sim S(V_1 \times \mathbf{R}) \times S(V_2 \times \mathbf{R}) + S(V_1) \times S(V_2 \times \mathbf{R}^2)$ by Lemma 1.6. It is seen that $S(V_1)$ and $S(V_2 \times \mathbf{R}^2) \sim \emptyset$ since they are odd-dimensional *G*-manifolds (cf. Proposition 1.4). Hence $4\mathbf{R}P(V_1V_2 \times \mathbf{R}) \sim 2\mathbf{R}P(V_1 \times \mathbf{R}) \times 2\mathbf{R}P(V_2 \times \mathbf{R})$ by (i), which implies the result.

Example 1.8. Consider the case where $G = \mathbb{Z}_p(p; \text{ odd prime})$. The nontrivial irreducible *G*-modules are $V_j = \mathbb{C}$ with a generator of *G* acting by multiplication by $\exp(2\pi i j/p)$ $(1 \le j \le t = \frac{1}{2}(p-1))$. We denote by $\langle a(1), a(2), \ldots, a(t) \rangle$ a slice type $\sigma = [G; V]$ with $V = \prod_{1 \le j \le t} V_j^{a(j)}$. Let $M = \mathbb{C}P(\mathbb{C}^{a(0)} \times \sigma)$ be the associated complex projective space of the product $\mathbb{C}^{a(0)} \times V$ with $a(0) \ge 0$. Then [M] is represented by the generators of SK_*^G in Proposition 1.4 as

(1.8.1)
$$[M] = \sum_{0 \le k \le t} a(k) \alpha^{a(k)-1} y[\sigma_{(k)}],$$

where $\sigma_{(k)} = \sigma$ if k = 0,

$$\langle a(k-1) + a(k+1), a(k-2) + a(k+2), \dots,$$

 $a(0) + a(2k), a(2k+1), \dots, a(t), 0, \dots, 0 \rangle$

if $1 \le k < \frac{1}{2}t$,

$$\langle a(k-1) + a(k+1), a(k-2) + a(k+2), \dots,$$

 $a(2k-t) + a(t), a(2k-t-1), \dots, a(0), 0, \dots, 0 \rangle$

if $\frac{1}{2}t \le k < t$ or

$$\langle a(t-1), a(t-2), \ldots, a(0) \rangle$$

if k = t. To show (1.8.1), we use the relation in Lemma 1.6. Set $(U_1, U_2) = (V_0^{a(0)}, V)$, where $V_0 = C$ with the natural S^1 -action. Then

(1.8.2)
$$2S(V_0^{a(0)} \times V) \stackrel{(S^1)}{\sim} S(V_0^{a(0)} \times \mathbf{R}) \times S(V) + S(V_0^{a(0)}) \times S(V \times \mathbf{R}).$$

Next divide V as $V = V_1^{a(1)} \times V'$ with $V' = \prod_{2 \le j \le t} V_j^{a(j)}$ and put $(U_1, U_2) = (V_1^{a(1)}, V')$. Then

$$2S(V) \stackrel{(S^1)}{\sim} S(V_1^{a(1)} \times \mathbf{R}) \times S(V') + S(V_1^{a(1)}) \times S(V' \times \mathbf{R}).$$

Taking this to (1.8.2), we have

$$2^{2}S(V_{0}^{a(0)} \times V) \stackrel{(S^{1})}{\sim} S(V_{0}^{a(0)} \times \mathbf{R}) \times S(V_{1}^{a(1)} \times \mathbf{R}) \times S(V')$$
$$+ S(V_{0}^{a(0)} \times \mathbf{R}) \times S(V_{1}^{a(1)}) \times S(V' \times \mathbf{R})$$
$$+ 2S(V_{0}^{a(0)}) \times S(V \times \mathbf{R}).$$

Continuing such an SK process on S(V') inductively, we have

$$2^{t}S(V_{0}^{a(0)} \times V) \stackrel{(S^{1})}{\sim} P + \sum_{0 \le k < t} 2^{t-1-k}P_{k},$$

where

$$P = \left(\prod_{0 \le j < t} S(V_j^{a(j)} \times \mathbf{R})\right) \times S(V_t^{a(t)}),$$
$$P_k = \left(\prod_{0 \le j < k} S(V_j^{a(j)} \times \mathbf{R})\right) \times S(V_k^{a(k)}) \times S\left(\prod_{k < j \le t} V_j^{a(j)} \times \mathbf{R}\right).$$

This induces an SK equivalence on the orbit spaces with respect to S^1 :

(1.8.3)
$$2^{t} CP(V_0^{a(0)} \times V) \sim \overline{P} + \sum_{0 \le k < t} 2^{t-1-k} \overline{P_k}$$

Here, it follows from Lemma 1.7 that \overline{P} fibers equivariantly over $\overline{S(V_t^{a(t)})} = CP^{a(t)-1}$ with fiber

(1.8.4)
$$F = \prod_{0 \le j < t} S((V_j \otimes V_t)^{a(j)} \times \mathbf{R}) \sim 2^t \mathbf{R} P\left(\prod_{0 \le j < t} (V_j \otimes V_t)^{a(j)} \times \mathbf{R}\right)$$
$$= 2^t \mathbf{R} P(\sigma_{(t)} \times \mathbf{R})$$

and $\overline{P_k}$ fibers equivariantly over $\overline{S(V_k^{a(k)})} = CP^{a(k)-1}$ with fiber

$$(1.8.5) \quad F_k = \left(\prod_{0 \le j < k} S((V_j \otimes V_k)^{a(j)} \times \mathbf{R})\right) \times S\left(\prod_{k < j \le t} (V_j \otimes V_k)^{a(j)} \times \mathbf{R}\right)$$
$$\sim 2^k \prod_{0 \le j < k} \mathbf{R} P((V_j \otimes V_k)^{a(j)} \times \mathbf{R}) \times 2\mathbf{R} P\left(\prod_{k < j \le t} (V_j \otimes V_k)^{a(j)} \times \mathbf{R}\right)$$
$$\sim 2^{k+1} \mathbf{R} P\left(\prod_{j \ne k} (V_j \otimes V_k)^{a(j)} \times \mathbf{R}\right) = 2^{k+1} \mathbf{R} P(\sigma_{(k)} \times \mathbf{R}).$$

From these, we have $\overline{P} \sim CP^{a(t)-1} \times F$ and $\overline{P_k} \sim CP^{a(k)-1} \times F_k$ $(0 \le k < t)$ (cf. [7; Theorem 2.4.1 (iv)]). It is seen that $[CP^{a(k)-1}] = a(k)\alpha^{a(k)-1}$ in SK_* since $\chi(CP^{a(k)-1}) = a(k)$ (cf. [7; Theorem 2.5.1 (ii)]). Therefore we obtain the desired equality by taking (1.8.4) and (1.8.5) in (1.8.3).

Remark 1.9. In case of $G = \mathbb{Z}_{2^r}$, we have obtained a similar equality as (1.8.1) by performing an SK process on G-manifolds with boundary (cf. [2; Example 2.12 (ii)]).

2. G-SK invariants

In this section, we determine a form of G-SK invariants.

DEFINITION 2.1. Let $\sigma = [H; V] \in St(G)$ and M a G-manifold. Then define

TAMIO HARA

 M_{σ} to be the set consisting of those points $x \in M$ such that $(\sigma_x)_H = \sigma$ in the sense of Definition 1.2.

Remark 2.2. Let M_H be M with the induced action of H, then M_{σ} is precisely the set $(M_H)_{\sigma} = \{x \in M_H; \sigma_x = \sigma\}$. Since σ is maximal in the family $\mathscr{F}(M_H) = \{\sigma_x; x \in M_H\}$ with respect to the partial ordering \preceq given in Section 1, M_{σ} is a *G*-invariant submanifold of M with dim $(M_{\sigma}) = \dim(M) - |\sigma|$ by the slice theorem (cf. [5; Chapter 3]). In case $\sigma = \sigma_0$, we have that $M_{\sigma_0} = M$. The submanifold M^H of M decomposes as $M^H = \sum_{\sigma} M_{\sigma}$ summing over all σ with H as an isotropy subgroup.

Example 2.3. For $\tau = [K; W] \in St(G)$, let $M = G \times_K RP(W \times R)$ be a representative of the class $y[\tau]$ in \mathscr{B} (cf. Proposition 1.4). The slice types of M are the same as those of $G \times_K (W \times R)$ (or W) because W is a complex K-module. If H is a subgroup of K, then $M_H = G/K \times RP(W_H \times R)$ with the induced action of H given by h(([g], [v, t])) = ([g], [hv, t]) for $h \in H$ and $([g], [v, t]) \in M_H$. On the other hand, if H is not a subgroup of K, then $M^H = \emptyset$. Hence it follows that $[M_{\sigma}] = |G/K|[RP^{|\tau|-|\tau_H|}] = |G/K|\alpha^{(|\tau|-|\tau_H|)/2}$ if $\sigma = \tau_H$ with $H \subseteq K$ or $[M_{\sigma}] = 0$ otherwise (cf. Remark 1.3 (ii) and [7; Theorem 1.7.1, Remark 1.7.2]). We see that $[RP^{2m}] = \alpha^m$ in SK_{2m} by considering the SK process as in Lemma 1.7 (ii) when $(V_1, V_2) = (C, C^{m-1})$ (cf. [7; Theorem 2.5.1]).

DEFINITION 2.4. Let $T: \mathscr{M}_m^G \to \mathbb{Z}$ be an additive map, that is, if $M = M_1 + M_2$ then $T(M) = T(M_1) + T(M_2)$. We call T a G-SK invariant or simply an invariant if $T(N_1 \cup_{\phi} N_2) = T(N_1 \cup_{\psi} N_2)$ for any G-diffeomorphisms ϕ and $\psi: \partial N_1 \to \partial N_2$ in Section 1. If $M_1 \sim M_2$, then $T(M_1) = T(M_2)$. Thus the map T induces an additive homomorphism $T: SK_m^G \to \mathbb{Z}$. The set \mathscr{T}_m^G consisting of all these invariants is a \mathbb{Z} -module under the natural addition.

Example 2.5. Given a slice type $\sigma \in St(G)$, let χ_{σ} be a map defined by $\chi_{\sigma}(M) = \chi(M_{\sigma})$ for any *G*-manifold *M*. Then it is an invariant since $M \sim M'$ implies $M_{\sigma} \sim M'_{\sigma}$ naturally. Note that $\chi_{\sigma_0} = \chi$ since $M_{\sigma_0} = M$. Further, for any subgroup *H* of *G*, the map χ^H defined by $\chi^H(M) = \chi(M^H)$ is also an invariant and the equality $\chi^H = \sum_{\sigma} \chi_{\sigma}$ holds in \mathscr{F}_m^G (cf. Remark 2.2).

Let *H* be a subgroup of *G*. Then, by using the total ordering on St(G), define inductively integers $n_H(K)$ for subgroups *K* with $H \subseteq K \subseteq G$ as follows:

$$n_H(H) = 1, \quad n_H(K) = |K/H| - \sum_{H \subseteq L \subset K} n_H(L),$$

where $L \subset K$ means that $L \subseteq K$ but $L \neq K$. If $H = \{1\}$, then the integers $n_{\{1\}}(K)$ coincide with those n_i in [6; Definition 5.3]. For $\sigma = [H; V] \in St(G)$ and a subgroup K with $H \subset K$, denote by $\mathscr{S}_K(\sigma)$ the set consisting of those slice types $\tau = [K; W]$ such that $\tau_H = \sigma$.

Theorem 2.6. For $\sigma = [H; V] \in St(G)$, define θ_{σ} by

$$\theta_{\sigma} = |G/H|^{-1} \left\{ \chi_{\sigma} + \sum_{H \subset K \subseteq G} n_H(K) \left(\sum_{\tau \in \mathscr{G}_K(\sigma)} \chi_{\tau} \right) \right\}.$$

Then the set $\{\theta_{\sigma}; |\sigma| \leq 2n\}$ provides a basis for \mathcal{T}_{2n}^{G} as a free **Z**-module. On the other hand, $\mathcal{T}_{2n+1}^{G} = \{0\}$.

Proof. First we see that $\mathscr{T}_{2n+1}^G = \{0\}$ because $SK_{2n+1}^G = \{0\}$ by Proposition 1.4. For $\sigma = [H; V]$ with $|\sigma| \leq 2n$, let $g_{\sigma} : SK_{2n}^G \to SK_{2n-|\sigma|}$ be a map given by $g_{\sigma}([M]) = [M_{\sigma}]$ and f_{σ} a map defined by

(2.6.1)
$$f_{\sigma} = |G/H|^{-1} \left\{ g_{\sigma} + \sum_{H \subset K \subseteq G} n_H(K) \left(\sum_{\tau \in \mathscr{G}_K(\sigma)} \alpha^{(|\tau| - |\sigma|)/2} g_{\tau} \right) \right\}.$$

Now look at the basis elements of \mathscr{B} in Proposition 1.4. Then, given $\mu = [K; W] \in St(G)$ the values $f_{\sigma}(y[\mu])$ which do not vanish are $f_{\mu_L}(y[\mu]) = \alpha^{(|\mu| - |\mu_L|)/2}$ $(L \subseteq K)$. In fact, if $\sigma = \mu_L$ for some $L (\subseteq K)$, then

$$(2.6.2) \quad f_{\mu_L}(y[\mu]) = |G/L|^{-1} \left\{ g_{\mu_L}(y[\mu]) + \sum_{L \subset U \subseteq K} n_L(U) \alpha^{(|\mu_U| - |\mu_L|)/2} g_{\mu_U}(y[\mu]) \right\}$$
$$= |K/L|^{-1} \left(\sum_{L \subseteq U \subseteq K} n_L(U) \right) \alpha^{(|\mu| - |\mu_L|)/2}$$
$$= \alpha^{(|\mu| - |\mu_L|)/2}$$

by Example 2.3 and the equality $\sum_{L \subseteq U \subseteq K} n_L(U) = |K/L|$. On the other hand, if $\sigma \notin \{\mu_L; L \subseteq K\}$, then $\mu_U \notin \mathscr{G}_U(\sigma)$ for $U \subseteq K$. This implies that $g_{\sigma}(y[\mu]) = g_{\tau}(y[\mu]) = 0$ in (2.6.1) and $f_{\sigma}(y[\mu]) = 0$ (cf. Example 2.3). Therefore each f_{σ} induces an SK_* -homomorphism $f_{\sigma} : SK_{2*}^G = \sum_n SK_{2n}^G \to SK_{2*-|\sigma|} = \sum_{n \ge (1/2)|\sigma|} SK_{2n-|\sigma|}$ of degree $-|\sigma|$. Now we recall the ordering of *G*-slice types: $\sigma_0 = \rho_0, \rho_1, \rho_2, \ldots$ with the condition that if i < j then $\rho_i < \rho_j$. This ordering ensure that if $\mu = [K; W]$ then $\mu_L < \mu$ for $L \subset K$. Let us define an SK_* -homomorphism f_* by

$$f_* = \bigoplus_k f_{\rho_k} : SK^G_{2*} \to A = \bigoplus_k SK_{2*-|\rho_k|},$$

where $f_{\rho_k}(y[\rho_k]) = [pt]_k$, the generator of $SK_{2*-|\rho_k|} \cong SK_*$ as an SK_* -module. We can totally order the basis elements of $\mathscr{B} = \{y[\rho_k]; k \ge 0\}$ and $\mathscr{B}' = \{[pt]_k; k \ge 0\}$ for A naturally. Then it follows from (2.6.2) that f_* is isomorphic because the matrix relative to the ordered bases \mathscr{B} and \mathscr{B}' is triangular with components 1 on the diagonal. Now let T be an element of \mathscr{T}_{2n}^G , then there is a factorization

(2.6.3)
$$T: SK_{2n}^G \stackrel{f_*}{\cong} \oplus_k SK_{2n-|\rho_k|} \stackrel{\oplus_k \chi}{\cong} \oplus_k \mathbf{Z} \stackrel{T'}{\to} \mathbf{Z}$$

for some T', where the direct sum is taken over all k with $|\rho_k| \leq 2n$ (cf. [7; Theorem 2.5.1 (ii)]). This implies that $T = \sum_k T'(1_k)\theta_{\rho_k}$, where $\theta_{\rho_k} = \chi \circ f_{\rho_k}$ and $1_k = 1$ in the k-th copy of Z in $\bigoplus_k Z$. Note that $\{\rho_k; |\rho_k| \leq 2n\} = \{\sigma; |\sigma| \leq 2n\}$ because the ordering on St(G) preserves the dimension $|\sigma|$. Thus the set $\{\theta_{\sigma}; |\sigma| \leq 2n\}$ provides a basis for \mathscr{T}_{2n}^G .

Example 2.7. Suppose that $G = \mathbb{Z}_m$ (*m*; odd). Then, for $\sigma = [\mathbb{Z}_s; V] \in St(\mathbb{Z}_m)$ with s|m, we have

$$\theta_{\sigma} = (m/s)^{-1} \left\{ \chi_{\sigma} + \sum_{s < t \le m, s|t|m} \varphi(t/s) \left(\sum_{\tau \in \mathscr{S}_{Z_{t}(\sigma)}} \chi_{\tau} \right) \right\}$$

because $n_{Z_s}(Z_t) = \varphi(t/s)$ by definition. The set $\{\theta_{\sigma}; |\sigma| \le 2n\}$ provides a basis for $\mathscr{T}_{2n}^{Z_m}$.

COROLLARY 2.8. Let H be a subgroup of G. Then we have

$$\sum_{H \subseteq K \subseteq G} n_H(K) \chi(M^K) \equiv 0 \pmod{|G/H|}$$

for any G-manifold M. In particular, if $H = \{1\}$, then

$$\sum_{K \subseteq G} n_{\{1\}}(K) \chi(M^K) \equiv 0 \pmod{|G|}$$

(cf. [6; Corollary 5.19]).

Proof. Consider a sum $\sum_{\sigma} \theta_{\sigma}(M)$ summing over all σ with H as an isotropy subgroup. Then it follows from Example 2.5 and Theorem 2.6 that

$$\sum_{\sigma} \theta_{\sigma}(M) = |G/H|^{-1} \left\{ \chi(M^H) + \sum_{H \subset K \subseteq G} n_H(K) \chi(M^K) \right\}$$
$$= |G/H|^{-1} \sum_{H \subseteq K \subseteq G} n_H(K) \chi(M^K),$$

which is an integer. This gives us the congruence.

3. *G*-fiberings over the circle

In this section, a G-SK invariant is considered to take values in $\mathbb{Z}_2 = \{0, 1\}$. If *m*-dimensional *G*-manifolds *M* and *M'* are *G*-cobordant in the usual sense, then we write $M \stackrel{C}{\sim} M'$.

LEMMA 3.1 (cf. [5; Lemma 1.9] and [7; Corollary 2.3.2]). Let M and M' be *m*-dimensional *G*-manifolds.

- (i) If $M \sim M'$ (SK equivalence), then there is a G-manifold P which fibers equivariantly over the circle S^1 with the trivial action of G such that (ii) If $M \stackrel{C}{\sim} M' + P$. (ii) If $M \stackrel{C}{\sim} M'$, then $M \sim M' + Q$, where

$$Q = \sum a(H, U_1, U_2) \cdot G \times_H (S(U_1) \times S(U_2)) + \sum b(H, U) \cdot G \times_H S(U)$$

for some integers $a(H, U_1, U_2)$ and b(H, U). Here, the first sum is taken over all subgroups $H \subseteq G$ and all H-modules U_i satisfying that $(U_1)^H = \{0\}$ such that $\dim(U_1) + \dim(U_2) = m + 2$, while the second sum is taken over all H and all H-modules U such that $\dim(U) = m + 1$.

The relations ~ and $\stackrel{C}{\sim}$ are commutative with each other, i.e. given M and M', the following (i) and (ii) are equivalent: (i) there is a G-manifold A such that $M \sim A \stackrel{C}{\sim} M'$. (ii) there is a G-manifold B such that $M \stackrel{C}{\sim} B \sim M'$ (cf. [3; Lemma 4.2]).

DEFINITION 3.2. If such an A (or B) exists, then M and M' are said to be $G-\overline{SK}$ equivalent.

We note that G-SK equivalence is an equivalence relation by the above commutativity.

DEFINITION 3.3 (cf. [5; Chapter 1]). Let \overline{SK}_m^G be \mathcal{M}_m^G factored by the $G\overline{SK}$ equivalence. In other words, \overline{SK}_m^G is SK_m^G factored by the relation $\stackrel{C}{\sim}$.

Let I_m^G be the kernel of the natural surjection $i_*: SK_m^G \to \overline{SK}_m^G$, that is the subgroup of SK_m^G generated by all elements [M] - [M'] such that $\{M\} = \{M'\}$ in \mathfrak{R}_m^G . Note that $\chi(x)$ is even for any $x \in I_m^G$ because so is $\chi(M) - \chi(M')$ (cf. [1; Section 1]).

LEMMA 3.4. $I_{2n}^G = 2SK_{2n}^G$ and $I_{2n+1}^G = \{0\}$.

Proof. In case m = 2n, it is sufficient to show that $I_{2n}^G \subseteq 2SK_{2n}^G$. Take an element $x = [M] - [M'] \in I_{2n}^G$, then x is expressed as

(3.4.1)
$$x = \sum a(H, U_1, U_2)[G \times_H (S(U_1) \times S(U_2))] + \sum b(H, U)[G \times_H S(U)]$$

by Lemma 3.1 (ii). First, note that dim $S(U_1)$ is odd by the condition $(U_1)^H = \{0\}$. This implies that the first sum of the right-hand side vanishes since $[S(U_1)] = 0$ in SK_*^H (cf. Proposition 1.4). On the other hand, since $U = \mathbf{R}^{2k+1} \times V$ for some slice type $\sigma = [H; V]$ $(2k + |\sigma| = 2n)$, we have that

 $[G \times_H S(U)] = 2\alpha^k y[\sigma]$ by Lemma 1.7 (i) and Example 2.3. Hence $x \in 2SK_{2n}^G$. Finally, $I_{2n+1}^G = \{0\}$ since so is SK_{2n+1}^G .

From the above, there exists an isomorphism $\overline{SK}_m^G \cong SK_m^G/2SK_m^G$. The following theorem is therefore immediate by Proposition 1.4.

THEOREM 3.5. \overline{SK}_{2n}^G is a \mathbb{Z}_2 -module with basis $\{\alpha^{n-|\sigma|/2}y[\sigma]; |\sigma| \leq 2n\}$. On the other hand, $\overline{SK}_{2n+1}^G = \{0\}$.

DEFINITION 3.6. Let $T: \mathscr{M}_m^G \to \mathbb{Z}_2$ be an additive map. We say that T is a $G\overline{SK}$ invariant if T(M) = T(M') for any M and $M' \in \mathscr{M}_m^G$ such that they are $G\overline{SK}$ equivalent. A $G\overline{SK}$ invariant T induces a homomorphism $T: \overline{SK}_m^G \to \mathbb{Z}_2$.

Example 3.7. Assume the M and M' are $G \cdot \overline{SK}$ equivalent, i.e. there is a G-manifold A such that $M \sim A \stackrel{C}{\sim} M'$, then we have $M_{\sigma} \sim A_{\sigma} \stackrel{C}{\sim} M'_{\sigma}$ for any $\sigma \in St(G)$. This means that M_{σ} and M'_{σ} are also $G \cdot \overline{SK}$ equivalent. Thus, $\chi_{\sigma} \pmod{2}$ defined by $\chi_{\sigma}(M) = \chi(M_{\sigma})$ reduced modulo 2 is a $G \cdot \overline{SK}$ invariant.

THEOREM 3.8. Let $\overline{\mathcal{T}}_m^G$ be the set of all $G\overline{SK}$ invariants $T: \overline{SK}_m^G \to \mathbb{Z}_2$. Then $\overline{\mathcal{T}}_{2n}^G$ is a \mathbb{Z}_2 -module with basis $\{\theta_\sigma \pmod{2}; |\sigma| \leq 2n\}$. On the other hand, $\overline{\mathcal{T}}_{2n+1}^G = \{0\}$.

Proof. The isomorphism in (2.6.3) induces a map

$$(3.8.1) \qquad \qquad \oplus_{\sigma} \theta_{\sigma} \pmod{2} : SK_{2n}^{G} \stackrel{\oplus \theta_{\sigma}}{\cong} \oplus_{\sigma} \mathbb{Z} \stackrel{i}{\to} \oplus_{\sigma} \mathbb{Z}_{2},$$

where the sums are taken over all σ with $|\sigma| \leq 2n$ and $i: \mathbb{Z} \to \mathbb{Z}_2$ is the natural surjection. Since the kernel of this map is $2SK_{2n}^G = I_{2n}^G$ by Lemma 3.4, the map $\bigoplus_{\sigma} \theta_{\sigma} \pmod{2}$ induces the isomorphism $\overline{SK}_{2n}^G \cong \bigoplus_{\sigma} \mathbb{Z}_2$. This verifies that the set $\{\theta_{\sigma} \pmod{2}; |\sigma| \leq 2n\}$ provides a basis for $\overline{\mathcal{T}}_{2n}^G$. If m = 2n + 1, then $\overline{\mathcal{T}}_{2n+1}^G$ vanishes because so does \overline{SK}_{2n+1}^G .

Let F_m^G be the kernel of the surjection $j_*: \mathfrak{N}_m^G \to \overline{SK}_m^G$, that is the subgroup of \mathfrak{N}_m^G generated by all classes of the form $\{M\} + \{M'\}$ such that [M] = [M'] in SK_m^G . Let us consider the class β which has a representative M' fibered equivariantly over the circle S^1 with a fiber F such that the action of G takes place within F. Then $M' \sim S^1 \times F \sim \emptyset$ and $\beta \in F_m^G$ (cf. [7; Theorem 2.4.1 (i) and (ii)]). It follows from Lemma 3.1 (i) that F_m^G is precisely generated by all these classes β .

Remark 3.9. Note that $F_0^G = \{0\}$. On the other hand, we have that $F_{2n+1}^G = \Re_{2n+1}^G$ because $\overline{SK}_{2n+1}^G = \{0\}$. We can explain this from another point of view as follows. We see that \Re_*^G is multiplicatively generated over the cobordism ring \Re_* by some even-dimensinal *G*-manifolds (cf. [7; Theorem 4.1.1]).

Hence, if dim(M) = 2n + 1, odd, then $\{M\} = \sum_j a_j L_j$, where $a_j \in \mathfrak{N}_*$ with dim (a_j) , odd and $L_j \in \mathfrak{N}^G_*$ with dim (L_j) , even. Since $\chi(a_j) = 0$, we see that each a_j has a representative which fibers over the circle (cf. [1; Section 1]). This implies that $\{M\} \in F_{2n+1}^G$ and hence $F_{2n+1}^G = \mathfrak{N}_{2n+1}^G$.

Now we consider a condition that a class $\{M\}$ belongs to F_{2n}^G . Given $\{M\} \in F_{2n}^G$, let M' be a *G*-manifold such that $M \sim M'$ and it fibers equivariantly over S^1 with a fiber *F*. Then, for any $\sigma \in St(G)$ we have that $M_{\sigma} \sim M'_{\sigma}$ which also fibers equivariantly over S^1 with the fiber F_{σ} . Hence a necessary condition for $\{M\} \in F_{2n}^G$ is that $\chi(M_{\sigma}) \equiv 0 \pmod{2}$ for any σ . We have the following theorem by Theorem 3.8.

THEOREM 3.10. Let M be a 2n-dimensional G-manifold. Then $\{M\} \in F_{2n}^G$ if and only if $\theta_{\sigma}(M) \equiv 0 \pmod{2}$ for any slice types $\sigma \in St(G)$ with $|\sigma| \leq 2n$.

The following corollary is immediate by Corollary 2.8.

COROLLARY 3.11. A necessary condition for a class $\{M\} \in F_{2n}^G$ is that the following congruence

$$\chi(M^H) + \sum_{H \subset K \subseteq G} n_H(K)\chi(M^K) \equiv 0 \pmod{2 \cdot |G/H|}$$

holds for any subgroup H of G.

PROPOSITION 3.12. Let $G = \mathbb{Z}_{p^r}$ (p; odd prime). Then $\{M\} \in F_{2n}^G$ if and only if

(3.12.1)
$$\chi(M_{\sigma}) \equiv \sum_{\lambda \in \mathscr{S}_{s+1}(\sigma)} \chi(M_{\lambda}) \pmod{2p^{r-s}}$$

for any $\sigma = [\mathbf{Z}_{p^s}; V] \in St(G)$ with $|\sigma| \le 2n$ $(0 \le s \le r)$, where $\mathscr{G}_{s+1}(\sigma) = \mathscr{G}_{\mathbf{Z}_{p^{s+1}}}(\sigma)$ and $\mathscr{G}_{r+1}(\sigma) = \emptyset$.

Proof. By Theorem 3.10, in order that $\{M\} \in F_{2n}^G$, a necessary and sufficient condition is that

$$(3.12.2) \quad p^{r-s}\theta_{\sigma}(M) = \chi_{\sigma} + \sum_{s < t \le r} (p^{t-s} - p^{t-s-1}) \left(\sum_{\tau \in \mathscr{G}_{t}(\sigma)} \chi_{\tau}\right) \equiv 0 \pmod{2p^{r-s}}$$

for any $\sigma = [\mathbf{Z}_{p^s}, V] \in St(G)$ $(0 \le s \le r)$, where $\varphi(p^{t-s}) = p^{t-s} - p^{t-s-1}$ in Example 2.7 and an integer $\chi(M_v)$ is simply written as χ_v . We define an integer $h_v(M)$ for $v = [\mathbf{Z}_{p^t}; V]$ by

$$h_{\mathfrak{v}}(M) = \chi_{\mathfrak{v}} - \sum_{\omega \in \mathscr{S}_{t+1}(\mathfrak{v})} \chi_{\omega}.$$

Since $\mathscr{G}_{s+2}(\sigma)$ is decomposed as $\mathscr{G}_{s+2}(\sigma) = \sum_{\lambda \in \mathscr{G}_{s+1}(\sigma)} \mathscr{G}_{s+2}(\lambda)$ and so on, the righthand side of the congruence (3.12.2) is expressed by the sum of these $h_{\nu}(M)$ as

$$(3.12.3) \qquad \left(\chi_{\sigma} - \sum_{\lambda \in \mathscr{G}_{s+1}(\sigma)} \chi_{\lambda}\right) + p\left(\sum_{\lambda \in \mathscr{G}_{s+1}(\sigma)} \left(\chi_{\lambda} - \sum_{\mu \in \mathscr{G}_{s+2}(\lambda)} \chi_{\mu}\right)\right) + p^{2}\left(\sum_{\mu \in \mathscr{G}_{s+2}(\lambda)} \left(\chi_{\mu} - \sum_{\xi \in \mathscr{G}_{s+3}(\mu)} \chi_{\xi}\right)\right) + \dots + p^{r-s} \sum_{\tau \in \mathscr{G}_{r}(\rho)} \chi_{\tau} \equiv 0 \pmod{2p^{r-s}}.$$

If $\tau = [\mathbf{Z}_{p^r}; V]$, then the above congruence (when $\sigma = \tau$) implies that $h_{\tau}(M) = \chi_{\tau} \equiv 0 \pmod{2}$. We assume that $h_{\nu}(M) \equiv 0 \pmod{2p^{r-t}}$ for any $\nu = [\mathbf{Z}_{p^r}; V]$ ($s < t \le r$). Then, by induction, it follows from (3.12.3) that $h_{\sigma}(M) = \chi_{\sigma} - \sum_{\lambda \in \mathscr{S}_{s+1}(\sigma)} \chi_{\lambda} \equiv 0 \pmod{2p^{r-s}}$ for $\sigma = [\mathbf{Z}_{p^s}; V]$. Therefore the congruences (3.12.1) are obtained. Conversely, let M satisfy (3.12.1), that is $h_{\sigma}(M) \equiv 0 \pmod{2p^{r-s}}$ for any $\sigma = [\mathbf{Z}_{p^s}; V]$. Taking these in the left-hand side of (3.12.3), we have that $\theta_{\sigma}(M) \equiv 0 \pmod{2}$. Thus $\{M\} \in F_{2n}^G$.

COROLLARY 3.13. Let $G = \mathbb{Z}_{p^r}$ (p; odd prime). A necessary condition for a class $\{M\} \in F_{2n}^G$ is that the following congruences

$$\chi(M^{\mathbb{Z}_{p^s}}) \equiv \chi(M^{\mathbb{Z}_{p^{s+1}}}) \pmod{2p^{r-s}} \ (0 \le s \le r)$$

hold, where $\chi(M^{\mathbb{Z}_{p^{r+1}}})$ is regarded as zero.

Example 3.14. Finally we give a non-zero element of F_{2n}^G in case $G = \mathbb{Z}_7$. The non-trivial irreducible G-modules are $V_k = C$ with a generator of G acting by multiplication by $\exp(2\pi i k/7)$ $(1 \le k \le 3)$. Let η_i denote the canonical complex line bundle over CP^{j} and $\eta_{jk} = \eta_j \otimes_C V_k$ the G-vector bundle over CP^{j} given by the tensor product of η_i (with the trivial G-action) and the trivial vector bundle $V_k \times CP^j$. For convenience, we denote $\eta_{0k} = V_k$ and $\eta_{1k} = \underline{V_k}$. Now consider a *G*-manifold $N = CP(C^s \times (V_1)^t (V_2)^t (V_3)^s)$, the associated complex projective space of a product of *G*-vector bundles $v_N = C^s \times (\underline{V_1})^t (\underline{V_2})^t (\underline{V_3})^s$ over $B_N = * \times$ $(CP^{1})^{t}(CP^{1})^{t}(CP^{1})^{s} = (CP^{1})^{2t+s}$ (s, t; odd with s < t and $* = \{pt\}$, the onepoint set). We first show that a class $\{N\}$ is a non-zero element in \mathfrak{R}_{2n}^G , where n = 3s + 4t - 1. For each $\sigma \in St(G)$, a G-vector bundle v is said to be of type σ if the subset $\{x \in v; \sigma_x = \sigma\}$ is precisely its base space B. Let $\mathfrak{N}_*^G[\sigma]$ denote the bundle bordism group of all G-vector bundles of type σ . Given a G-manifold M, the normal bundle v over the fixed point set F^{G} is the direct sum of those v_{σ} (of type σ) over M_{σ} , where the sum is taken over all σ with G as an isotropy subgroup (cf. Remark 2.2). Hence there is a well-defined homomorphism v_* : $\mathfrak{N}_*^G \to \sum_{\sigma} \mathfrak{N}_*^G[\sigma]$ given by $v_*(\{M\}) = \sum_{\sigma} \{v_{\sigma}\}$. For our element $\{N\}$, we have $v_*(\{N\}) = \sum_{1 \le i \le 4} \{v_i\}$, where each v_i is as follows:

$$(3.14.1) v_1 = CP^{s-1} \cdot (\underline{V_1})^t (\underline{V_2})^t (\underline{V_3})^s \to B_1 \\ = CP(C^s \times \{0\}\{0\}\{0\}) = CP^{s-1} \cdot (CP^1)^{2t+s}, \\ v_2 = CP((\underline{V_1})^t) \cdot (V_1)^s (\underline{V_1})^t (\underline{V_2})^s \to B_2 \\ = CP(\{0\} \times (\underline{V_1})^t \{0\}\{0\}) = CP((\underline{V_1})^t) \cdot *(CP^1)^{t+s}, \\ v_3 = CP((\underline{V_2})^t) \cdot (V_2)^s (\underline{V_1})^{t+s} \to B_3 \\ = CP(\{0\} \times \{0\}(\underline{V_2})^t \{0\}) = CP((\underline{V_2})^t) \cdot *(CP^1)^{t+s}, \\ v_4 = CP((\underline{V_3})^s) \cdot (V_3)^s (\underline{V_2})^t (\underline{V_1})^t \to B_4 \\ = CP(\{0\} \times \{0\}\{0\}\{0\}(\underline{V_3})^s) = CP((\underline{V_3})^s) \cdot *(CP^1)^{2t}. \end{aligned}$$

Let $\sigma = [G; V_1^t V_2^t V_3^s]$, then it is known that $\mathfrak{N}_*^G[\sigma]$ is a free \mathfrak{N}_* -module generated by the classes of monomials

$$\eta_{JKL} = \eta_{j(1)1} \cdots \eta_{j(t)1} \eta_{k(1)2} \cdots \eta_{k(t)2} \eta_{l(1)3} \cdots \eta_{l(s)3}$$

with $j(1) \ge \cdots \ge j(t) \ge 0$, $k(1) \ge \cdots \ge k(t) \ge 0$ and $l(1) \ge \cdots \ge l(s) \ge 0$ (cf. [7; Lemma 3.4.4 and Theorem 4.1.1]). Let $\dim(\eta_{JKL}) = s + 2t + \sum j(p) + \sum k(q) + \sum l(r)$ be the complex dimension of the total space. Now go back to the image $v_*(\{N\})$. It follows from (3.14.1) that $N_{\sigma} = B_1 + B_4$ and $v_{\sigma} = v_1 + v_4$. From the condition that s and t are odd with s < t, the monomial $(\underline{V_1})^t (\underline{V_2})^t (\underline{V_3})^s$ in v_1 has the dimension 2s + 4t, which is higher than that of the monomial in v_4 , and its coefficient $\{CP^{s-1}\} = \{(RP^{(s-1)/2})^2\} \ne 0$ in \mathfrak{N}_* (cf. [8; Lemma 7]). This ensure that $\{v_{\sigma}\} \ne 0$ in $\mathfrak{N}_*^G[\sigma]$ and $\{N\} \ne 0$ in \mathfrak{N}_*^G . Next we study an SK class [N]. By definition, N is fibered equivariantly over the first CP^1 of the base space $B_N = (CP^1)^{2t+s}$ with fiber $F = CP(C^s \times V_1(\underline{V_1})^{t-1}(\underline{V_2})^t (\underline{V_3})^s)$. Hence $N \sim CP^1 \times F$ (cf. [7; Theorem 2.4.1 (iv)]). Continuing this SK processes on F inductively, we have

$$(3.14.2) N \sim (CP^1)^{2l+s} \times M,$$

where $M = CP(C^s \times V_1^t V_2^t V_3^s)$. Now we apply the equality (1.8.1) for M. Note that $\sigma_{(3)} = \sigma$ and $\sigma_{(1)} = \sigma_{(2)} = [G; V_1^{s+t} V_2^s]$. Then we have that

$$[N] = [(CP^1)^{2t+s}](2s\alpha^{s-1}y[\sigma] + 2t\alpha^{t-1}y[\sigma_{(1)}])$$

in SK_{2n}^G . Hence [N] vanishes in \overline{SK}_{2n}^G and $\{N\} \in F_{2n}^G$ by Lemma 3.4. The slice types of N are σ_0, σ and $\sigma_{(1)}$, and $N_{\sigma_0} = N$, $N_{\sigma} = B_1 + B_4$ and $N_{\sigma_{(1)}} = B_2 + B_3$ by (3.14.1). Thus $\chi(N) = 2^{s+2t+1}(s+t)$, $\chi(N_{\sigma}) = \chi(B_1) + \chi(B_4) = 2^{s+2t+1}s$ and $\chi(N_{\sigma_{(1)}}) = \chi(B_2) + \chi(B_3) = 2^{s+2t+1}t$. These imply that $\chi(N) = \chi(N_{\sigma}) + \chi(N_{\sigma_{(1)}}) = \chi(N^G)$, $\chi(N_{\sigma}) \equiv 0 \pmod{2}$ and $\chi(N_{\sigma_{(1)}}) \equiv 0 \pmod{2}$, from which the congruences (3.12.1) are obviously satisfied.

TAMIO HARA

REFERENCES

- [1] P. E. CONNER AND E. E. FLOYD, Fibring within a cobordism class, Michigan Math. J., 12 (1965), 33-47.
- [2] T. HARA, Equivariant SK invariants on $Z_{2'}$ manifolds with boundary, Kyushu J. Math., 53 (1999), 17–36.
- [3] T. HARA, SK invariants on closed Z_{2^r} manifolds, Kyushu J. Math., 54 (2000), 307–331.
- [4] T. HARA, Equivariant cutting and pasting of G manifolds, Tokyo J. Math., 23 (2000), 69-85.
- [5] U. KARRAS, M. KRECK, W. D. NEUMANN AND E. OSSA, Cutting and Pasting of Manifolds; SK-Groups, Mathematics Lecture Series 1, Publish or Perish, Boston, 1973.
- [6] K. KAWAKUBO, The Theory of Transformation Groups, The Clarendon Press, Oxford University Press, New York, 1991.
- [7] C. KOSNIOWSKI, Actions of Finite Abelian Groups, Research Notes in Mathematics 18, Pitman, London, 1978.
- [8] C. T. C. WALL, Determination of the cobordism ring, Ann. of Math. (2), 72 (1960), 292–311.

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, 162-8601 JAPAN e-mail: hara@rs.kagu.tus.ac.jp