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ON THREEFOLDS WITH K 3 ¼ 2pg � 6

Paola Supino

Abstract

It is known that if X is an n-dimensional normal variety, and D a nef and big

Cartier divisor on it such that the associated map jD is generically finite then Dn b

2ðh0ðX ;OX ðDÞÞ � nÞ. We study the case in which the equality holds for n ¼ 3 and

D ¼ KX is the canonical divisor.

We also produce a bound for the admissible degree of the canonical map of a

threefold, when it is supposed to be generically finite.

1. Introduction

It is well known that if X is a surface of general type then K 2
X b 2pgðX Þ � 4.

Moreover, if the equality K 2
X ¼ 2pgðXÞ � 4 holds, then by Castelnuovo-Enriques

theorem the canonical map is generically finite (see [2]). These surfaces have
been classified by Horikawa in [5]: they are canonical double cover of scrolls
in Ppg�1. The purpose of this paper is to study the analogous cases in higher
dimensions.

Using Cli¤ord theorem on curves, it has been proved in [7] the following
theorem.

Theorem 1.1. Let X be a normal n-fold of general type, with at most
canonical singularities. Suppose KX is nef and dim jKX

ðXÞ ¼ n. Then K n
X b

2pgðXÞ � 2n. Moreover, if the equality holds and nb 2, then KX is Cartier, the
canonical system is base-point-free and jKX

is a generically finite morphism of
degree two on normal varieties of minimal degree in PpgðXÞ�1.

In this paper we study the cases Kn
X ¼ 2pg � 2n ¼ 2; 4 for every nb 3, and

the case n ¼ 3, that is K 3
X ¼ 2pg � 6, for every K 3

X . The Castelnuovo-Enriques
theorem is no longer true in higher dimension, as the examples in [7] show.
Hence, we need to require the hypothesis that the canonical map is generi-
cally finite. In particular, we work out the cases in which the image of jKX

is
singular. We also show the nonuniqueness of irreducible components of the
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moduli space to which the families of threefolds with canonical morphism of
degree 2 belong.

1.1. Notations and Conventions. Everything works on the complex number
field. All varieties are normal and complete unless otherwise stated.

We denote by X a smooth minimal algebraic threefold of general type. We
say that X is pluriregular if h1ðOX Þ ¼ h2ðOX Þ ¼ 0. We denote by oX the can-
onical sheaf of X , by KX a canonical divisor on X , and by jKX

or simply by
j the rational map defined by the complete canonical system on X , which by
theorem 1.1 will be everywhere defined. We briefly refer to it as the canonical
morphism.

We recall that the existence of the moduli space of canonically polarized
smooth threefolds with Hilbert polynomial hðtÞ :¼ wðo t

X Þ ¼ tð2t� 1Þðt� 1Þa=12þ
ð1 � 2tÞð1 � bÞ is given in [11]. The subset Ma;b of points representing pluri-
regular smooth minimal threefolds X with K 3

X ¼ a and pgðX Þ ¼ b is an open
inside the moduli space and is a coarse moduli space. M2

a;b will denote the
locus in Ma;b of points representing threefolds whose canonical map is a finite
morphism of degree 2.

A morphism % : X ! Y between varieties is called a double cover if is flat
and finite and the function field of X is an extension of degree 2 of the function
field of Y . In this case %�ðOX Þ is a locally free OY -sheaf of rank 2.

When G is a locally free sheaf of rank r over a variety Y , PðGÞ denotes the
P r�1-bundle over Y given by ProjðSym GÞ, H denotes the tautological bundle
OPðGÞð1Þ over PðGÞ and jH the map defined by H.

In particular if Y ¼ P1, G splits as a direct sum of r linear bundles that
can be ordered by increasing degrees. Thus up to tensorize G by an appro-
priate line bundle, PðGÞ is isomorphic to PðOP1ða1Þl � � �lOP1ðarÞÞ where the
integers a1 a a2 a � � �a ar can be supposed to be nonnegative. The r-tuple
ða1; a2; . . . ; arÞ is called the type of the bundle. In this case PðGÞ is denoted by
~WW ¼ ~WWða1; a2; . . . ; arÞ and the image of ~WW under jH is a rational normal scroll of

type ða1; a2; . . . ; arÞ, denoted by W . This is a variety of minimal degree in the
projective space. If a1 ¼ 0 then W is a cone. The natural projection from ~WW
to P1 is denoted by p and the general fiber by F .

We generally use H to denote the hyperplane section.
For a real number a we denote by ðaÞþ the maximum between a and 0.

1.2. The degree of the canonical map. In analogy with the case of sur-
faces it is interesting to find the bound of the admissible degree for the canonical
map of a threefold, when it is supposed to be generically finite. We prove the
following result.

Theorem 1.2. Let X be a minimal threefold of general type with
h2ðOX Þ � h1ðOX Þb 2 and with generically finite canonical map jKX

.
If jKX

ðX Þ has geometric genus 0 then deg jKX
a 72. If jKX

ðX Þ has geo-
metric genus pgðX Þ then deg jKX

a 24. No other case occurs.
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Proof. Let d ¼ deg jKX
ðXÞ and d ¼ deg jKX

, clearly one has pg b 4 and

0 < ddaK 3
X . By Miyaoka-Yau inequality (see [8]) one also has

0 < K 3
X a�72wðOX Þ:

If the canonical image has geometric genus 0 then db pgðXÞ � 3, thus

dðpgðX Þ � 3Þa dda 72½ pgðX Þ � 1 � ðh2ðOX Þ � h1ðOX ÞÞ�
which implies

da 72½ pgðXÞ � 1 � ðh2ðOX Þ � h1ðOX ÞÞ�=ðpgðXÞ � 3Þ:
Since by hypothesis h2ðOX Þ � h1ðOX Þb 2 one has da 72.

If the canonical image has geometric genus pgðXÞ then by [4], section 2, it
has to be

db dim jKX
ðXÞ codim jKX

ðXÞ þ 2 ¼ 3ðpgðXÞ � 4Þ þ 2 > 3ðpgðXÞ � 4Þ:
The same kind of computation as above shows that in this case da 24.

No other case can occur for the geometric genus of the canonical image, by
theorem 3.4 in [2]. r

Remark. One could replace the hypothesis h2ðOX Þ � h1ðOX Þb 2 with
the inequality h2ðOX Þ � h1ðOX Þ > 1 � pg, which is always verified according to
Miyaoka-Yau inequality. Then �wðOX Þa 2ðpg � 1Þ. Hence one gets da 432
in the first case, and da 192 in the second. Therefore under the hypothesis
h2ðOX Þ � h1ðOX Þb 2 of the theorem a sharper estimate is obtained. Note that
the bound for d decreases rapidly when pg increases.

The same computation shows that if h2ðOX Þ � h1ðOX Þb 0 then da 216
in the first case, and da 96 in the second, achieved respectively for pg ¼ 4
and pg ¼ 5. Again, the bound for d decreases in the two cases to 72 and 24
asymptotically with pg.

1.3. Double covers. Let X and Y be nonsingular n-dimensional varieties,
and f : X ! Y be a finite morphism of degree two. By definition, the ramifi-
cation locus of f in X is a divisor R such that the so-called Hurwitz formula
KX ¼ f �KY þ ½R� holds. The divisor B ¼ f�ðRÞ in Y is called the branch locus.

A divisor B of a variety Y is said to be even if there exists a linear bundle
L such that OðBÞ is linearly equivalent to Ln2. Let OðBÞ ¼ Ln2 be an even
divisor of Y without multiple components. It is possible to define the double
cover of Y branched along B as a divisor X 0 of PðOY lLÞ. When b ¼ 0 is the
equation of B in the open subset U of Y and z is the coordinate of the fiber C
of the natural projection PðOY lLÞ ! Y , X 0 is locally given by the equation
b ¼ z2 in the open subset U � C (cf. [6]). Then, denoting by % the finite
morphism X 0 ! Y , one has %�OX 0 ¼ OY lL�. From the fact that B does not
contain multiple components, it follows that X 0 has at most codimension 2
singularities.

Indeed, if X 0 and Y are nonsingular then B is the branch locus of % ac-
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cording to the above definition. Moreover, one has the following useful pro-
jection formula

%�ðYX 0 Þ ¼ YY nL� lYY ð�log BÞ:ð1:1Þ
We recall that if y1; . . . ; yn are local coordinates for Y and b ¼ 0 is the local
equation of B, YY ð�log BÞ is the sheaf locally generated by ðbðq=qbÞ, q=qy2; . . . ;
q=qynÞ (see [9]). The residue exact sequence

0 ! W1
Y ! W1

Y ðlog BÞ�s ! OB ! 0ð1:2Þ
holds, where the map s has the value gjB on the germ gdb=bþ y.

If one wants to allow X 0 to be singular and preserve the Hurwitz formula,
some details need to be considered.

Following [5], we say that a curve C has no infinitely near triple points if
(i) C has no singular points of multiplicity greater than 3;
(ii) after a quadratic transformation centered at a singular point the strict

transform has no singular points with multiplicity greater than 2.
In general, we say that a variety B has no infinitely near triple points if it has

no singular points of multiplicity greater than 3, and after a blow up centered at
its singular locus, the strict transform has no singular points with multiplicity
greater than 2. We recall theorem 7.2 in Chapter III of [1].

Theorem 1.3. Let % : X 0 ! Y be a double cover with X normal and Y a
nonsingular surface, branched over the even reduced divisor B. Let L be the line
bundle on Y satisfying Ln2 ¼ OY ðBÞ, which determines the covering. Consider
s : ~XX 0 ! X 0 the resolution of X 0 by a sequence of blowing up morphisms. Then
there is a divisor Zb 0 on ~XX 0, with Supp Z contained in the union of the ex-
ceptional locus for s, such that

o ~XX 0 ¼ ðpsÞ�ðoY nLÞnO ~XX 0 ð�ZÞ:ð1:3Þ
Moreover, Z ¼ 0 if and only is B has no infinitely near triple points.

One can easily generalize this result in any dimension.

Theorem 1.4. The above theorem holds for Y nonsingular variety of di-
mension nb 2.

Proof. We prove the statement for any dimension by reduction to the
sectional surface Hn�2, where H is a very ample divisor on Y .

Firstly, note that by applying 1.3 and the adjunction formula to the general
intersection of n� 2 divisors of jOY ðHÞj one can show that the formula (1.3)
holds in any dimension. It remains to be shown the last part of the statement.

Suppose that Z ¼ 0, and let P be a point in B, then the intersection of n� 2
general divisors of jHj passing through P is a smooth surface S. By 1.3, BVS
has no infinitely near triple points. Therefore P is at most a triple point for B.
Suppose that P a triple point for B and that after a blow up centered at P the
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strict transform of B has a triple point Q in correspondence of P. Consider
n� 2 general divisors in jHj passing through P and tangent to the vector which
corresponds to the point Q. Let S be the intersection of these divisors. Then S
is smooth at P but BVS has infinitely near triple points by construction. This
contradicts 1.3. Therefore the strict transform of B cannot have a triple point.

Conversely, suppose that B has no infinitely near triple points and consider
the resolution of the double cover s : ~XX 0 ! X 0 induced by a chain of successive
blow-ups which resolves the singularities of B.

If the locus of the triple points of B is nonempty we can suppose that
the first blow up of the chain, namely m : Y1 ! Y is done along the locus of
triple points of B. Let E be the exceptional locus of m and B1 be the strict
transform of B. Let %1 : X 0

1 ! Y1 be the double cover branched along B1, and
let s1 : ~XX 0

1 ! X 0
1 be a resolution of X 0

1. Let Z1 be such that o ~XX 0
1
¼ ð%1s1Þ�

ðoY1
nL1ÞnOY ð�Z1Þ, which exists in consequence of the first part of the

theorem.
We want to show that for any triple point in B there exists no component of

Z1 whose image by m%1s1 contains such a point. Let then P be a triple point of
B and S be the intersection of n� 2 general divisors in jOY ðHÞj passing through
P. Let S1 be the strict transform of S by m. Then B1 VS1 has at most double
points, because B has no infinitely near triple points by hypothesis. Hence, by
1.3 Z1 V ð%1s1Þ�ðS1Þ ¼ j. Thus inside E one has ð%1s1ÞðZ1ÞVS1 ¼ j. Therefore
ðm%1s1ÞðZ1Þ cannot contain P. This means that no component of Z1, hence of
Z, has as image a triple point of B. That is, triple points of B do not give rise to
any contribute to the scheme Z of formula (1.3). Thus it remains to analyze the
contribution given by the double points of B.

Let us suppose that B has at most double points. We again blow up Y
along the singular locus of B. In the same way as the case of the triple points
above it can be shown that for any point P double for B there exists no
component of Z whose image by ðm%1s1Þ in Y contains P. Then ð%sÞðZÞV
Sing B ¼ j, hence Z is zero. r

Theorem 1.5. Let X be a nonsingular variety. Suppose that the canonical
map jKX

is a generically finite morphism of degree 2 on a nonsingular variety Y.

Let B be the branch locus of jKX
. Suppose that B is even and has no multiple

components. Let % : X 0 ! Y be the double cover of Y branched along B. Then
X 0 is the canonical model of X and there exists a birational morphism f : X ! X 0

such that jKX
¼ % � f . Moreover B has no infinitely near triple points.

Proof. Let R be the ramification locus of jKX
, hence B ¼ jKX

ðRÞ. On the
open subset X nR, a map f such that jKX

¼ % � f is defined up to the involution
defined by the double cover. We fix such an f , we have to show that it is
everywhere defined. We note that f is an isomorphism on X nR, hence it is a
birational map between X and X 0. Thus

pgðXÞ ¼ pgðX 0Þ ¼ h0ðOY ð1ÞÞ:ð1:4Þ

on threefolds with K 3 ¼ 2pg � 6 11



Let H A jOY ð1Þj be a hyperplane section of Y . Since jKX
is the canonical mor-

phism of X , one has KX @ j�
KX

KY þ ½R�@ j�
KX

ðHÞ. Let L ¼ jKX �OX ðRÞ, then
jKX �ðj�

KX
oY nOX ðRÞÞ ¼ jKX �j

�
KX

ðOY ð1ÞÞ, that is

oY nL ¼ OY ð1Þð1:5Þ
Let s : ~XX 0 ! X 0 be a resolution of X 0. By theorem 1.4 and (1.5) one has

pgðX 0Þ ¼ h0ðð%sÞ�ðoY nLÞnO ~XX 0 ð�ZÞÞ ¼ h0ðð%sÞ�OY ð1ÞnO ~XX 0 ð�ZÞÞ:ð1:6Þ
Comparing with (1.4) one deduces that the divisor Z does not impose any
condition to the sheaf ð%sÞ�OY ð1Þ. Therefore the singular locus of X 0; sðZÞ,
does not impose any condition to the canonical sheaf of X 0. Thus the sin-
gularities of X 0 are canonical, hence Z ¼ 0. Moreover, again by theorem 1.4
B has no infinitely near triple points.

Then X 0 is a canonical variety. In fact oX 0 ¼ %�ðoY nLÞ ¼ %�OY ð1Þ is
ample, because % is a finite map and X 0 has canonical singularities (see [10]).
Hence (see [10]) X 0 is the canonical model of X , that is X 0 is isomorphic to
Proj lmb0H

0ðOX ðmKX ÞÞ. Therefore the birational map f : X ! X 0 can be
thought to be a birational morphism. r

In order to study threefolds X with K 3
X ¼ 2pg � 6 having generically finite

canonical map, actually generically finite of degree 2 onto a variety of minimal
degree in Ppg�1 by theorem 1.1, one can start from the general case, in which
the variety of minimal degree is smooth. Hence by theorem 1.5 we can reduce
ourselves to study the double covers whose branch locus has no infinitely triple
points.

Remark. In [3] a more algebraic approach is produced to study varieties
whose canonical map are finite of higher degree.

2. Varieties with Kn
X ¼ 2, pg ¼ nþ 1 and Kn

X ¼ 4, pg ¼ nþ 2

The cases Kn
X ¼ 2, pg ¼ nþ 1 and Kn

X ¼ 4, pg ¼ nþ 2 can be easily worked
out for any dimension n as follows.

Lemma 2.1. Let X be an n-fold of general type with n > 2, Kn
X ¼ 2k and

pg ¼ nþ k for k ¼ 1; 2, whose canonical map jKX
is generically finite. Then the

canonical system is base-point-free, and jKX
gives a double cover of Y, where

Y ¼ Pn if k ¼ 1, or Y is a quadric if k ¼ 2. Suppose that Y is nonsingular if
k ¼ 2. Then the branch locus is a divisor in the linear system jOY ð2nþ 6 � 2kÞj,
without infinitely near triple points.

Proof. Since jKX
is generically finite, the canonical system is base-point-free

and jKX
: X !Y is actually finite of degree 2 (see [7], proposition (2.2)). Clearly,

Y is Pn if k ¼ 1, and it is a quadric of Pnþ1 if k ¼ 2. In the general case the
quadric is smooth, so let us suppose that Y is smooth. Hence one can use the
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Hurwitz formula and obtain KX ¼ j�
KX

ðKY Þ þ R ¼ j�
KX

ðOY ð1ÞÞ. Thus R A
jj�

KX
ðOY ðnþ 3 � kÞÞj and B ¼ jKX

ðRÞ A jOY ð2nþ 6 � 2kÞj. One can suppose that
B ¼ B1 þD where B1 has no multiple component and D A jOY ð2dÞj, with db 0.

Let now %1 : X1 ! Y be the double cover branched on B1 and s1 : ~XX1 ! X1

be the normalization. One has

o ~XX1
¼ ð%1s1Þ�ðoY nOY ðnþ 3 � k � dÞÞnOð�ZÞ ¼ ð%1s1Þ�ðOY ð1 � dÞnOð�ZÞÞ

where Z is a subscheme of ~XX 0 supported on the exceptional locus of s1, by
theorem 1.4. Thus it turns out that d ¼ 0, that is B ¼ B1 has no multiple
component, and the canonical morphism of ~XX1 factors through %1. Hence by
theorem 1.5 B has no infinitely near triple points. r

Let M2
K n

X
;pg
ðnÞ be locus of the coarse moduli space of pluriregular n-folds X

with the declared Kn
X and pg, whose canonical map has degree 2.

Theorem 2.2. The locus M2
K n

X
;pg
ðnÞ is connected, rational and generically

smooth of dimension

3nþ 4

n

� �
� ðnþ 1Þ2

if ðKn
X ; pgÞ ¼ ð2; nþ 1Þ

or

3nþ 1

nþ 1

� �
5nþ 4

2ð2nþ 1Þ � nðnþ 3Þ=2 if ðKn
X ; pgÞ ¼ ð4; nþ 2Þ:

Proof. Since the canonical map of the general n-fold X is in fact a degree
2 morphism, then by lemma 2.1, and with the same notations, X is a divisor of
PðOY lLÞ living in a linear system which can be parametrized by the linear
system of the branch loci.

Therefore, if k ¼ 1 the dimension of the family of those n-folds is

3nþ 4

n

� �
� 1;

while if k ¼ 2 one has to consider also the parameter space of the quadrics.
Hence

h0ðOQð2nþ 2ÞÞ ¼ h0ðOP nþ1ð2nþ 2ÞÞ � h0ðOP nþ1ð2nÞÞ

¼ 3nþ 3

nþ 1

� �
� 3nþ 1

nþ 1

� �

if k ¼ 2. The locus M2
K n

X
;pg
ðnÞ is obtained by quotienting with respect to the

action of the group of the automorphisms. Hence one has

dim M2
2;nþ1ðnÞ ¼ h0ðOP nð2nþ 4ÞÞ � dim PGLðnþ 1Þ � 1 ¼ 3nþ 4

n

� �
� ðnþ 1Þ2

on threefolds with K 3 ¼ 2pg � 6 13



for k ¼ 1 and

dim M2
4;nþ2ðnÞ ¼ ðnþ 3Þðnþ 2Þ=2 þ 3nþ 3

nþ 1

� �
� 3nþ 1

nþ 1

� �� �
� ðnþ 2Þ2 � 1

for k ¼ 2.
Now it is su‰cient to show that the dimension of M2

K n
X
;pg
ðnÞ coincides with

h1ðYX Þ and that

h2ðYX Þ ¼ h2ðj�ðYX ÞÞ ¼ h2ðYY ð�log BÞÞ þ h2ðYY ð�n� 3 þ kÞÞ ¼ 0:

We compute hiðYX Þ for i ¼ 0; . . . ; 3 by the projection formula (1.1). We recall
that since X is of general type h0ðYX Þ ¼ 0. We can use the Euler exact sequence
and in the case k ¼ 2 we also use the restriction sequence

0 ! YP nþ1ð�n� 3Þ ! YP nþ1ð�n� 1Þ ! YP nþ1 nOY ð�n� 1Þ ! 0

where Y ¼ jKX
ðX Þ is a quadric. By Bott theorem we infer that if k ¼ 1 the

cohomology of YY ð�n� 2Þ is zero, k ¼ 2 one has

h1ðYY ð�n� 1ÞÞ ¼ h2ðYY ð�n� 1ÞÞ ¼ 0:ð2:1Þ
Hence

hiðYX Þ ¼ hiðYY ð�log BÞÞ ¼ hn�iðW1
Y ðlog BÞnOY ð�n� 2 þ kÞÞ

for k ¼ 1 and every i or for k ¼ 2 and i ¼ 2. By projection formula (1.1) one
has hnðW1

Y ðlog BÞnOY ð�n� 2 þ kÞÞa h0ðYX Þ ¼ 0. Thus the residue exact se-
quence (1.2) tensored by OY ð�n� 2 þ kÞ

0 ! W1
Y ð�n� 2 þ kÞ ! W1

Y ðlog BÞnOY ð�n� 2 þ kÞ ! OBð�n� 2 þ kÞ ! 0

Together with the restriction sequence on B

0 ! OY ð�2n� 4 þ 2kÞ ! OY ð�n� 2 þ kÞ ! OBð�n� 2 þ kÞ ! 0

imply that for k ¼ 1

h2ðYX Þ ¼ 0;

h1ðYX Þ ¼
3nþ 4

n

� �
� ðnþ 1Þ2;

and for k ¼ 2

h2ðYX Þ ¼ 0;

h1ðYX Þ ¼
ðnþ 3Þðnþ 2Þ

2
þ 3nþ 3

nþ 1

� �
� 3nþ 1

nþ 1

� �
� ðnþ 2Þ2 þ 1: r

Remark. Of course specializations of the n-folds with Kn
X ¼ 4 and

pg ¼ nþ 2 are given by double covers of quadric cones branched along the
intersection with a hypersurface of degree 2nþ 2, singular along the vertex of the
cone.
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3. The case pg ¼ 7, K 3
X ¼ 8 and canonical image is the Veronese cone

If X is a smooth threefold with pg ¼ 7, K 3
X ¼ 8 and jKX

is generically finite

then W ¼ jKX
ðX Þ is a threefold of minimal degree in P6. Therefore W may

be either a scroll either a Veronese cone over the surface V in P5 with vertex a
point P. We now study this latter case.

Let c be the projection of the cone W from the vertex P, and D 0 a generator
of Pic V. Let D ¼ c�ðD 0Þ, then OVð2D 0Þ ¼ OVð1Þ and OW ðVÞ ¼ OW ð1Þ. A
resolution ~WW of W is given by

jH : ~WW ¼ PðOP2 lOP2ð2ÞÞ ! W

where H is the tautological bundle of ~WW . Let E ¼ j�1
H ðPÞ be the exceptional

locus. If we denote by a tilde the proper transforms of the Weil divisors on W
by means of jH and denote by ~HH a divisor of jHj, then Pic ~WW ¼ Z ~DDlZ ~HH.
Moreover,

O ~WW ð ~HH � EÞ ¼ O ~WW ð2 ~DDÞ:ð3:1Þ

By applying the adjunction formula to a general divisor of j ~HHj one can prove that

o ~WW ¼ O ~WW ð�2 ~HH � ~DDÞ:

Lemma 3.1. Let Autð ~WWÞ be the group of the automorphisms of ~WW . Then
dim Autð ~WWÞ ¼ 15.

Proof. Consider the natural projection p : ~WW ¼ PðOP2 lOP2ð2ÞÞ ! P2 and
the exact sequence

1 ! AutP2ð ~WWÞ ! Autð ~WWÞ ! Aut P2 ! 1

where AutP2ð ~WWÞ is the group of the automorphisms of ~WW which fix the fibers
on P2. Then AutP2ð ~WWÞ is given by the invertible polynomial matrices of type

½0� ½2�
0 ½0�

� �

where the numbers inside the square brackets denote the degree of the polynomial
entry. Thus

dim Autð ~WWÞ ¼ dim AutP2ð ~WWÞ þ dim PGLð3Þ
¼ ð2 þ 6 � 1Þ þ 8 ¼ 15: r

Lemma 3.2. Let ~WW ¼ PðOP2 lOP2ð2ÞÞ, then

h3ðW1
~WW
ð�2 ~HH � ~DDÞÞ ¼ h0ðY ~WW Þ ¼ 15;

hiðW1
~WW
ð�2 ~HH � ~DDÞÞ ¼ h3�iðY ~WW Þ ¼ 0 for i ¼ 0; 1; 2:

on threefolds with K 3 ¼ 2pg � 6 15



Proof. Since Y ~WW=P2 ¼ O ~WW ð2Þn p�OP2ð�2Þ ¼ O ~WW ð2H � 2DÞ the exact se-
quence of the relative tangent bundle

0 ! Y ~WW=P2 ! Y ~WW ! p�YP2 ! 0

is equivalent to

0 ! O ~WW ð�2 ~HH � ~DDÞ ! Y ~WW ! p�YP2 ! 0:ð3:2Þ

By projecting on P2 one obtains that

h0ð ~WW ;O ~WW ð�2 ~HH � ~DDÞÞ ¼ 7;

hið ~WW ;O ~WW ð�2 ~HH � ~DDÞÞ ¼ 0 for i ¼ 1; 2; 3:

Moreover, since

h0ð ~WW ; p�ðYP2ÞÞ ¼ h0ðYP2Þ ¼ 8;

hið ~WW ; p�ðYP2ÞÞ ¼ hiðYP2Þ ¼ 0 for i ¼ 1; 2; 3;

then

h0ðY ~WW Þ ¼ h0ðY ~WW=P2Þ þ h0ðp�YP2Þ ¼ 7 þ 8 ¼ 15;ð3:3Þ
hiðY ~WW Þ ¼ 0 for i ¼ 1; 2; 3: r

Theorem 3.3. There exists a unirational component M2
8;7 of the moduli space

of smooth minimal threefolds with K 3 ¼ 8 and pg ¼ 7. For such a general three-
fold X the canonical system is base-point-free and the canonical morphism is of
degree 2 on the cone W over the Veronese surface. The branch locus is a general
divisor of the linear system jjH�O ~WW ð6 ~HH þ 2 ~DDÞj. The double cover of W branched
on the same divisor is the canonical model of X. The component M2

8;7 is generi-
cally smooth of dimension 355.

Proof. By Bertini’s theorem a general divisor of the linear system

jjH�O ~WW ð6 ~HH þ 2 ~DDÞj

is smooth and irreducible. Thus we can consider a double cover % : X 0 ! ~WW as
in the statement. By theorem 1.4, denoting by s : ~XX 0 ! X 0 a resolution of X 0,
one has

o ~XX 0 ¼ s� � %�ðO ~XX 0 ð ~HHÞÞ:

Therefore jH � % : X 0 ! W is the canonical morphism of X 0. Moreover by con-
tracting %�1ðEÞ we obtain the canonical model of X 0, which has an isolated node
in the image of %�1ðEÞ.

Since the intersection form on ~WW gives ~HH 3 ¼ 4, ~HH 2E ¼ ~HHE2 ¼ 0 and E3 ¼ 4,
we have K 3

~XX 0 ¼ 8 and pgðX 0Þ ¼ h0ðO ~WW ð ~HHÞÞ ¼ 7.
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For a fixed cone W one has a family of threefolds parametrized by
jO ~WW ð6 ~HH þ 2 ~DDÞj, on which the group Autð ~WWÞ of the automorphisms of ~WW acts.
One can compute h0ð ~WW ;O ~WW ð6 ~HH þ 2 ~DDÞÞ by projecting on P2, then

h0ð ~WW ;O ~WW ð6 ~HH þ 2 ~DDÞÞ

¼ h0ð ~WW ;O ~WW ð6 ~HHÞn j�
HOP2ð2ÞÞ ¼ h0ðP2; p�O ~WW ð6 ~HHÞnOP2ð2ÞÞ

¼ h0ðP2; Sym6ðOP2 lOP2ð2ÞÞnOP2ð2ÞÞ ¼ 371:

The quotient of an open subset of PH 0ð ~WW ;O ~WW ð6 ~HH þ 2 ~DDÞÞ by the automorphism
group of ~WW immerges itself as a subscheme, which is clearly unirational, in the
moduli space M2

8;7 of threefolds with the predicted invariants. Thus by lemma
3.1 it has dimension ð371 � 1Þ � 15 ¼ 355. The unirationality and the nonsin-
gularity of the component, say M2

8;7ðVÞ, that has been selected in M2
8;7 follow

once that the constructed family is proved to be an open subset of M2
8;7ðVÞ. It

is su‰cient to show that dim M2
8;7ðVÞ ¼ h1ðYX Þ ¼ 355. The projection formula

(1.1) says that

h1ðYX Þ ¼ h1ðY ~WW ð�log BÞÞ þ h1ðY ~WW ð�B 0ÞÞ

where 2B 0 is linearly equivalent to B, that is B 0 @ 3 ~HH þ ~DD. Consider the exact
sequence (3.2) tensored by Oð�B 0Þ

0 ! O ~WW ð� ~HH � 3 ~DDÞ ! Y ~WW ð�3 ~HH � ~DDÞ ! p�YP2ð�3 ~HH � ~DDÞ ! 0

projecting on P2 one can compute that

hið ~WW ;O ~WW ð� ~HH � 3 ~DDÞÞ ¼ 0 for i ¼ 0; . . . ; 3

hence

h1ðY ~WW ð�B 0ÞÞ ¼ h1ðY ~WW ð�3 ~HH � ~DDÞÞ ¼ 0:ð3:4Þ

To compute h1ðY ~WW ð�log BÞÞ ¼ h2ðW1
~WW
ðlog B� 2 ~HH � ~DDÞÞ one can use

0 ! W1
~WW
ð�2 ~HH � ~DDÞ ! W1

~WW
ðlog B� 2 ~HH � ~DDÞ ! OBð�2 ~HH � ~DDÞ ! 0:ð3:5Þ

One has

h2ðOBð�2 ~HH � ~DDÞÞð3:6Þ

¼ h2ðOBðK ~WW ÞÞ ¼ h0ðOBðBÞÞ

¼ h0ðO ~WW ðBÞÞ � 1 ¼ 370:

By projection formula (1.1) one also has

h3ðW1
~WW
ðlog B� 2 ~HH � ~DDÞÞ ¼ h0ðY ~WW ð�log BÞÞa h0ðYX Þ

but since X is of general type h0ðYX Þ ¼ 0, hence

h3ðW1
~WW
ðlog B� 2 ~HH � ~DDÞÞ ¼ 0:
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Thus from lemma 3.2, from (3.6) and from the exact sequence (3.5), one gets

h1ðY ~WW ð�log BÞÞ ¼ h2ðW1
~WW
ð�2 ~HH � ~DDÞÞ

¼ h2ðOBð�2 ~HH � ~DDÞÞ � h3ðW1
~WW
ð�2 ~HH � ~DDÞÞ

¼ 370 � 15 ¼ 355:

Then

h1ðYX Þ ¼ h1ðY ~WW ð�log BÞÞ þ h1ðY ~WW ð�B 0ÞÞ

¼ h1ðY ~WW ð�log BÞÞ ¼ 355: r

Remark. The moduli space of the threefolds with pg ¼ 7 and K 3 ¼ 8 has
another component, whose generic point represents a threefold with base-point-
free canonical system and canonical morphism of degree 2 over a scroll. This
one falls in the general case which is studied in the next section. These two
irreducible components have no intersection, because there exists no deformation
of a scroll to a Veronese cone.

4. The general case

Let us suppose from now on that pg > 5 and W ¼ jðXÞ ¼ jKX
ðXÞ is

a rational normal scroll, let K 3
X ¼ 2m and m ¼ pg � 3 ¼ deg W . Denote by

ða1; a2; a3Þ the type of the scroll W (see [4]), then 0a a1 a a2 a a3 and a1 þ
a2 þ a3 ¼ m ¼ pg � 3. W is the image of the birational morphism

jH : ~WW ¼ PðOP1ða1ÞlOP1ða2ÞlOP1ða3ÞÞ ! W

defined by the tautological bundle H on the abstract scroll ~WW . The morphism
jH is an isomorphism if and only if a1 b 0. We recall that if L is the general
2-dimensional projective space which is the fiber of the projection

p : W ! P1

then
Pic ~WW ¼ ZLlZH

o ~WW ¼ O ~WW ð�3H þ ðm� 2ÞLÞ:ð4:1Þ
We also recall that the intersection form on the scrolls is given by

H 3 ¼ m; H 2L ¼ 1; HL2 ¼ L3 ¼ 0:ð4:2Þ
By theorem 1.5 we can reduce ourselves to recover the threefold X as a double
cover of ~WW with branch locus ~BB with no infinitely near triple points. On the
other hand by theorem 1.4, since the double cover has to be defined by the linear
system joX j, by comparing (1.3) with (4.1) we deduce that ~BB has to be a general
divisor in jO ~WW ð8H � 2ðm� 2ÞLÞj. Therefore in what follows we study the sin-
gularities of the divisors in jO ~WW ð8H � 2ðm� 2ÞLÞj. For this purpose it is useful
to distinguish the cases in which two consecutive ai are equal or not.
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It is known that the linear system jO ~WW ðH � a1LÞj of the abstract projective
bundle ~WW defines a birational morphism to a cone whose vertex has dimension 1
if a1 < a2, dimension 2 if a1 ¼ a2.

Let S be a general surface in jO ~WW ðH � a1LÞj, we study the singularities of the
divisors jO ~WW ð8H � 2ðm� 2ÞLÞj restricted to S.

Lemma 4.1. Let ~WW ¼ PðOP1ða1ÞlOP1ða2ÞlOP1ða3ÞÞ and m ¼ a1 þ a2 þ
a3. The linear system jO ~WW ð8H � 2ðm� 2ÞLÞj has no surface S belonging to
jO ~WW ðH � a1LÞj as fixed component.

Proof. Let S be a given surface in jO ~WW ðH � a1LÞj. Let xi be a fixed

section of O ~WW ðH � aiLÞ in ~WW for i ¼ 1; 2; 3, such that S has equation x1 ¼ 0.
One can write the equation of the general element of jO ~WW ð8H � 2ðm� 2ÞLÞj

as

G ¼
X

i; jb0; iþja8

gijx
8�i�j
1 xi

2x
j
3ð4:3Þ

¼ g00x
8
1 þ x7

1ðg10x2 þ g01x3Þ þ � � � þ ðg80x
8
2 þ � � � þ g08x

8
3Þð4:4Þ

where gij are homogeneous forms of degree ð8 � i � jÞa1 þ ia2 þ ja3 � 2ðm� 2Þ
on P1. Note that if i þ j ¼ 8 then

deg g80 ¼ 8a2 � 2ðm� 2Þ
a deg gij ¼ ia2 þ ja3 � 2ðm� 2Þ
a deg g08 ¼ 8a3 � 2ðm� 2Þ:

The monomial x1 divides G if and only if gij ¼ 0 for i þ j ¼ 8, hence x1 divides
the general G in jO ~WW ð8H � 2ðm� 2ÞLÞj if and only if 8a3 � 2ðm� 2Þ < 0, that is
4a3 < m� 2 hence 3a3 < a1 þ a2 � 2, but this inequality never holds. r

4.1. The case a2 ¼ a3.

Theorem 4.2. Let ~WW ¼ PðOP1ða1ÞlOP1ða2ÞlOP1ða3ÞÞ.
(a) When a1 ¼ a2 ¼ a3 the linear system jO ~WW ð8H � 2ðm� 2ÞLÞj is base-point-

free and the general section is nonsingular.
(b) When a1 < a2 ¼ a3 the general element of the linear system jO ~WW ð8H�

2ðm� 2ÞLÞj has no infinitely near triple points if and only if

5a1 a 2a2 þ 2 and a2 a 3a1 þ 4:ð4:5Þ

In particular, if a1 ¼ 0 the condition (4.5) is true only for the following types
ða1; a2; a3Þ:

ð0; 1; 1Þ ð0; 2; 2Þ
ð0; 3; 3Þ ð0; 4; 4Þ:
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Proof. (a) If a1 ¼ a2 ¼ a3 ¼ 1 then m ¼ 3, ~WW ¼ W is a projective scroll
on the rational normal cubic curve and the branch locus ~BB belongs to the linear
system jO ~WW ð2ð4H � LÞÞj, whose general element is irreducible and nonsingular,
since jO ~WW ð4H � LÞj has dimension greater than 1 and its general element is
irreducible and nonsingular.

If a1 ¼ a2 ¼ a3 ¼ a > 1, m ¼ 3a, then the system jO ~WW ð8H � 2ðm� 2ÞLÞj may
be thought as twice jO ~WW ð4H � ð3a� 2ÞLÞj. This is the sum of divisors of type

4ðH � ða� 1ÞÞL and ða� 2ÞL:

The former is very ample, this can be seen by considering equivalently 4 times
the tautological bundle of the scroll PðOP1ða� 1ÞlOP1ða� 1ÞlOP1ða� 1ÞÞ, the
latter is a pencil, so the conclusion follows from Bertini’s theorem.

(b) Let a1 < a2 ¼ a3, and m ¼ a1 þ 2a2. We recall that the general element
S of jH � a1Lj is a 2-dimensional scroll of type ða2 � a1; a2 � a1Þ.

Denote by l1 and l2 two generators of the pencils of lines of a nonsin-
gular quadric Q in P3, then jHðSÞ is the image of Q via the morphism f defined
by the linear system jl1 þ ða2 � a1Þl2j. Moreover, in ~WW one has ðH � a2LÞ3 ¼
�ða2 � a1Þ, while the linear system jO ~WW ðH � a2LÞj is a pencil having a base curve
g. One has

Sg ¼ ðH � a1LÞðH � a2LÞ2 ¼ 0

and the birational morphism defined by jO ~WW ðH � a1LÞj contracts g to the vertex
of the cone.

Since

f �ðHjSÞ ¼ l1 þ ða2 � a1Þl2 and f �ðLjSÞ ¼ l2

then

f �ð ~BBÞ ¼ f �ðð8H � 2ðm� 2ÞLÞSÞ
¼ 8ðl1 þ ða2 � a1Þl2Þ � 2ðm� 2Þl2Þ
¼ 8l1 þ ð�10a1 þ 4a2 þ 4Þl2:

For h0ðS;OSð ~BBÞÞ0 0 it is necessary that 5a1 a 2a2 þ 2. Consider the equation
(4.3) of the general element of jO ~WW ð8H � 2ðm� 2ÞLÞj

G ¼ g00x
8
1 þ x7

1ðg10x2 þ g01x3Þ þ � � � þ ðg80x
8
2 þ � � � þ g08x

8
3Þ:ð4:6Þ

The homogeneous polynomials gij such that i þ j ¼ k have degree ð8 � kÞa1 þ
ka2 � 2ðm� 2Þ ¼ ð6 � kÞa1 þ ðk � 4Þa2 þ 4 on P1. If 3a1 � a2 þ 4 < 0 then the
gij terms with i þ j ¼ ka 3 are zero and the curve g of equation x2 ¼ x3 ¼ 0,
base locus of the linear system jO ~WW ðH � a2LÞj, would be contained in the base
locus of jO ~WW ð8H � 2ðm� 2ÞLÞj with multiplicity at least 4.

Conversely, suppose that the conditions (4.5) are true. We distinguish 4
cases, by the type of the scroll.
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(b1) When 6a1 � 4a2 þ 4b 0 the linear system jO ~WW ð8H � 2ðm� 2ÞLÞj may
be thought as the sum of jO ~WW ð8ðH � a1LÞÞj and jO ~WW ðð6a1 � 4a2 þ 4ÞLÞj. The
first one is of positive dimension and is not composed with a pencil, the second
one is base-point-free. By Bertini’s theorem the general element of jO ~WW ð8H �
2ðm� 2ÞLÞj is smooth.

Suppose now that 6a1 � 4a2 þ 4 < 0 and let P be a point of a general ~BB
in jO ~WW ð8H � 2ðm� 2ÞLÞj. If it does not lie on g then one can suppose that
x3ðPÞ0 0 and take a‰ne coordinates for (4.6) near the point P. For wj ¼ xj=x3

one has

G ¼
X

i; jb0; iþja8

gijw
8�i�j
1 wi

2

¼ g08 þ ðg07w1 þ g17w2Þ þ � � � þ ðg00w
8
1 þ g10w

7
1w2 þ � � � þ g80w

8
2Þ

and deg g08 ¼ 8a3 � 2ðm� 2Þ ¼ 2ð2a2 � a1 þ 2Þ. By (4.5) deg g08 b 0, therefore
P is a smooth point for ~BB. It remains to study the multiplicity of the points in g.

(b2) When 6a1 � 4a2 þ 4 < 0 and 5a1 � 3a2 þ 4b 0 then g00 ¼ 0 and the
curve g is in the base locus of j8H � 2ðm� 2ÞLj with multiplicity 1.

(b3) When 5a1 � 3a2 þ 4 < 0 and 4a1 � 2a2 þ 4b 0, g00 ¼ g10 ¼ g01 ¼ 0
then the curve g is the base locus for jO ~WW ð8H � 2ðm� 2ÞLÞj with multiplicity 2:
the general element of jO ~WW ð8H � 2ðm� 2ÞLÞj has g as locus of double points.

(b4) Finally, when 4a1 � 2a2 þ 4 < 0, since by hypothesis also 3a1 � a2þ
4b 0, the gij are zero if i þ j ¼ ka 2 and are nonzero if i þ j ¼ 3. Hence g
is a base locus for jO ~WW ð8H � 2ðm� 2ÞLÞj with multiplicity exactly 3, that is, the
general element ~BB of jO ~WW ð8H � 2ðm� 2ÞLÞj has g as locus of triple points and it
is smooth outside g.

We need to know the kind of singularity of ~BB at a point P of g. By the
genericity of ~BB one can suppose that the polynomials gij such that i þ j ¼ 3 do
not have common zeroes, then any point of g has multiplicity exactly 3 for ~BB.

We look at an a‰ne neighbour of ~BB: if zj ¼ xj=x1 the local equation of ~BB is

G ¼ ðg30z
3
2 þ g03z

3
3 þ g12z2z

2
3 þ g21z

2
2z3Þ þ g40z

4
2 þ � � �

The degree 3 part is the tangent cone to ~BB at the point P.
If 3a1 � a2 þ 4 ¼ 0 then the polynomials gij are constant if i þ j ¼ 3. There-

fore for a general ~BB the tangent cone is a nonsingular cubic and P is an ordinary
triple point. If 3a1 � a2 þ 4b 0 then the polynomials gij are nonconstant along
g for i þ j ¼ 3 (g is a nonsingular rational curve). Again, one can suppose that

for the general ~BB the tangent cone to ~BB in P is an irreducible cubic, showing that
P is an ordinary triple point. r

Corollary 4.3. Let a1 a a2 ¼ a3, there exists a double cover % : X 0 !
Wða1; a2; a3Þ branched on a divisor ~BB in j8H � 2ðm� 2ÞLj such that X 0 has at
most canonical singularities. Such a threefold is of general type and its mini-
mal desingularization s : X ! X 0 is such that K 3

X ¼ 2pg � 6 and that % � s is its
canonical morphism.
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Proof. The statement follows from theorems 1.4 and 4.2, from (4.1), and
from the intersection form on the scrolls (4.2) as soon as h0ðO ~WW ð8H�
2ðm� 2ÞLÞÞ > 0, which will be proved in the next section. r

4.2. The case a2 < a3. Suppose now that a2 < a3. A smooth surface S
in jH � a1Lj is a scroll of type ða2 � a1; a3 � a1Þ, having a section of minimal
self-intersection d0 ¼ H � a3LjS, the self-intersection being �ða3 � a2Þ. We recall
that the section of minimal self-intersection d0 is a fixed curve in S. Denote by
d the linear system H � a2LjS, then d is base-point-free, and has self-intersection
a3 � a2 and dimension a2 þ a3 þ 1.

Lemma 4.4. Let a2 < a3 and m ¼ a1 þ a2 þ a3, suppose % : X ! ~WWða1; a2; a3Þ
is a double cover branched on a divisor of jO ~WW ð8H � 2ðm� 2ÞLÞj. Then X has at
most canonical singularities if and only if

a2 � ða3 þ 2a1 � 4Þ=5:

In particular, if a1 ¼ 0 then 5a2 b a3 � 4, if a1 ¼ a2 ¼ 0 then m ¼ 3 or 4.

Proof. Suppose that ~BB is nonreduced. Since jO ~WW ðH � a1LÞj is base-point-
free a general surface S of jO ~WW ðH � a1LÞj intersects ~BB along a nonreduced curve
~BBS ¼ S V ~BB, which is branch locus for a degree 2 morphism. Therefore ~BBS does
not contain d0 with multiplicity greater than 1, thus ð ~BBS � d0Þ � d0 b 0 that is

ðH � a1LÞðH � a3LÞð8H � 2ðm� 2ÞLÞb d2
0 ¼ �ða3 � a2Þ

The conclusion follows from the values of the intersection form. r

Let a2 < a3 and ~WW ¼ ~WWða1; a2; a3Þ. Denote by D0 the unique divisor of the
linear system jO ~WW ðH � a3LÞj. D0 is a 2-dimensional scroll of type ða1; a2Þ. Let
d0;0 be the curve of minimal self-intersection of D0, it is cut out on D0 by the
linear system jO ~WW ðH � a2LÞj. One has

Theorem 4.5. Suppose that a2 < a3, ~WW ¼ ~WWða1; a2; a3Þ, m ¼ a1 þ a2 þ a3.
Denote by Bs the base locus of jO ~WW ð8H � 2ðm� 2ÞLÞj. Then

(a) Bs ¼ j if and only if 8a1 � 2mþ 4b 0.
In this case the general element of jO ~WW ð8H � 2ðm� 2ÞLÞj is irreducible and

nonsingular.
(b) When 8a1 � 2mþ 4 < 0 and 8a2 � 2mþ 4b 0 the support of Bs is the

curve d0;0 and the multiplicity of d0;0 in Bs is less than or equal 3. The general
~BB in jO ~WW ð8H � 2ðm� 2ÞLÞj has no infinitely near triple points if and only if
3a1 � 2a2 þ a3 þ 4b 0.

(c) When 8a2 � 2mþ 4 < 0 and 7a2 � 2mþ 4 þ a3 b 0 the support of Bs is the
surface D0; any element in jO ~WW ð8H � 2ðm� 2ÞLÞj is reduced in Bþ D0.

The base locus of jO ~WW ðBÞj is empty if and only if 7a1 þ a3 � 2mþ 4 ¼ 5a1 �
2a2 � a3 þ 4b 0.
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If 7a1 þ a3 � 2mþ 4 < 0 then the base locus of jO ~WW ðBÞj is the curve d0;0.
In this case, a surface B has at most double point along d0;0 if and only if

3a1 � 2a2 þ a3 þ 4b 0. Then B has no infinitely near triple points if and only if
3a1 � 2a2 þ a3 þ 4b 0.

Proof. (a) The system jO ~WW ðH � a1LÞj on ~WW is base-point-free and not
composed with a pencil. Let us decompose

8H � 2ðm� 2ÞL ¼ 8ðH � a1LÞ þ ð�2mþ 4 þ 8a1ÞL:

Since 8a1 � 2mþ 4b 0 the linear system jO ~WW ð8H � 2ðm� 2ÞLÞj is a sum of two
linear systems which are base-point-free and such that one of them is not com-
posed with a pencil. Hence by Bertini’s theorem its general element is smooth
and irreducible.

Conversely, let ~BB be a divisor in jO ~WW ð8H � 2ðm� 2ÞLÞj. Then

~BBd0;0 ¼ ð8H � 2ðm� 2ÞLÞðH � a2LÞðH � a3LÞð4:7Þ
¼ 8a1 � 2mþ 4:ð4:8Þ

Therefore if 8a1 < 2mþ 4 the curve d0;0 is a fixed locus for the linear system j ~BBj.
(b) Recall the equation (4.3) of the general surface ~BB in jO ~WW ð8H�

2ðm� 2ÞLÞj, and note that the degree of the homogeneous form gij on P1 is
ð8 � i � jÞa1 þ ia2 þ ja3 � 2ðm� 2Þ. In particular when i þ j ¼ k

ð8 � kÞa1 þ ka2 � 2ðm� 2Þ ¼ deg gk0 a deg gij a deg g0k

¼ ð8 � kÞa1 þ ka3 � 2ðm� 2Þ:

Note that d0;0 has equations x2 ¼ x3 ¼ 0.
The proof goes as in that of theorem 4.2. Since by hypothesis 8a1 � 2mþ

4 < 0 and 8a2 � 2mþ 4b 0, the term g00 is zero and d0;0 is in the base locus for
the linear system jO ~WW ð8H � 2ðm� 2ÞLÞj. By passing to the a‰ne open subset

fx3 0 0g, one can see that if P is a point of ~BB not lying on d0;0 then it cannot be
a base point for jO ~WW ð8H � 2ðm� 2ÞLÞj, thus it is a smooth point for ~BB.

If 3a1 � 2a2 þ a3 þ 4 < 0 then gij is zero for i þ ja 3 and d0;0 lies with
multiplicity at least 4 in ~BB.

Conversely, if 3a1 � 2a2 þ a3 þ 4b 0 then g03 is nonzero, thus the multi-
plicity of d0;0 in ~BB is less or equal to 4. In this case by the genericity of the
forms gij one can deduce that there are no infinitely near triple points for ~BB
along d0;0.

(c) When 8a2 � 2mþ 4 < 0 and 7a2 � 2mþ 4 þ a3 b 0, gi0 is zero for any i
hence x3 divides G and (4.3) becomes

G ¼ x3ðg01x
7
1 þ x6

1ðg11x2 þ g02x3Þ þ � � � þ g08x
7
3Þ

D0 is a fixed component of the linear system j8H � 2ðm� 2ÞLj. Let us consider
the linear system
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jO ~WW ðBÞj :¼ jO ~WW ð8H � 2ðm� 2ÞL� D0Þj
¼ jO ~WW ð7H þ ð2mþ 4 þ a3ÞLÞj:

Proceeding as in the previous case one deduces that the base locus of jO ~WW ðBÞj is
empty if and only if 7a1 þ a3 � 2mþ 4 ¼ 5a1 � 2a2 � a3 þ 4b 0.

Moreover, if 7a1 þ a3 � 2mþ 4 ¼ 5a1 � 2a2 � a3 þ 4 < 0 the base locus of
jO ~WW ðBÞj is the curve d0;0. In this case a surface B has at most d0;0 as locus of
ordinary double points if and only if the term g03 is nonzero, hence if and only if
3a1 � 2a2 þ a3 þ 4b 0. Therefore if gij are general the tangent locus to B in a
point of d0;0 is di¤erent from the tangent locus to D0 in the same point. r

As in the previous case we can conclude with the following

Corollary 4.6. Let a1 a a2 < a3. There exists a double cover % : X 0 !
Wða1; a2; a3Þ branched on a surface ~BB in j8H � 2ðm� 2ÞLj, X 0 having at most
canonical singularities. Such a threefold is of general type, and its minimal de-
singularization s : X ! X 0 is such that K 3

X ¼ 2pg � 6 and % � s is its canonical
morphism.

Remark. By theorems 4.2 and 4.5, for fixed values of K 3
X and pg not all the

scrolls of degree K 3
X=2 in Ppg�1 occur. Moreover even if ~BB is reducible (see case

(c) in theorem 4.5) it is always connected, while this is not always the case for the
surfaces (see [5]).

4.3. The dimension of the moduli space.

Lemma 4.7. Let W HPmþ2 be nonsingular. Then

h0ðW ;OW ð8H � 2ðm� 2ÞLÞÞ ¼ 30mþ 225 þ h1ðW ;OW ð8H � 2ðm� 2ÞLÞÞ;

h2ðW ;OW ð8H � 2ðm� 2ÞLÞÞ ¼ h3ðW ;OW ð8H � 2ðm� 2ÞLÞÞ ¼ 0:

Proof. Consider the exact sequence

0 ! OW ð8H � 2ðm� 2ÞLÞ ! OW ð8HÞ�r ! O2ðm�2ÞLð8HÞ ! 0ð4:9Þ

Since W is nonsingular an element of jOW ð2ðm� 2ÞLÞj is formed by 2ðm� 2Þ
disjoint planes. Since the scrolls are projectively of Cohen-Macaulay the di-
mension of the linear system cut by the hypersurfaces of the projective space
depend only on the degree. Therefore we choose a particular scroll to compute
h0ðW ;OW ð8HÞÞ and make use of the projection on P1

p : ~WW ¼ PðOP1ða1ÞlOP1ða2ÞlOP1ða3ÞÞ ! P1:

In fact
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h0ðW ;OW ð8HÞÞ ¼ h0ð ~WW ;O ~WW ð8HÞÞ

¼ h0ðP1; p�ðO ~WW ð8HÞÞ

¼ h0ðP1; ½Sym8ðOP1ða1ÞlOP1ða2ÞlOP1ða3ÞÞ�Þ:

One can do the computation in the 3 cases ða; a; aÞ, ða; a; aþ 1Þ, ða; aþ 1; aþ 1Þ,
depending on the class of m modulo 3, by projecting on P1. In all cases one

has h0ð ~WW ;O ~WW ð8HÞÞ ¼ 120mþ 45. Moreover by the projective normality of W
h1ðOW ð8HÞÞ ¼ 0 thus by the exact sequence of restriction (4.9) one has

h0ðW ;OW ð8H � 2ðm� 2ÞLÞÞ

¼ h0ðW ;OW ð8HÞÞ � h0ðO2ðm�2ÞLð8HÞÞ þ h1ðW ;OW ð8H � 2ðm� 2ÞLÞÞ

¼ 30mþ 225 þ h1ðW ;OW ð8H � 2ðm� 2ÞLÞÞ: r

Remark. One can also compute h1ðW ;OW ð8H � 2ðm� 2ÞLÞÞ ¼ h1ð ~WW ;
O ~WW ð8H � 2ðm� 2ÞLÞÞ by projection. Hence

h1ð ~WW ;O ~WW ð8H � 2ðm� 2ÞLÞÞ ¼ ð�8a1 þ 2mþ 3Þþ þ � � � þ ð�8a3 þ 2mþ 3Þþ:

Thus

h1ð ~WW ;O ~WW ð8H � 2ðm� 2ÞLÞÞ ¼ 0 if and only if 8a1 � 2ðm� 2Þb�2ð4:10Þ

(note that the condition 8a1 � 2ðm� 2Þb�2 is equivalent to 6a1 � 2a2 � 2a3 þ
6b 0). Thus the dimension of jO ~WW ð8H � 2ðm� 2ÞLÞj jumps if 8a1 � 2ðm� 2Þ
< �2.

Let g : W ! B be a family of scrolls in Pmþ2 of degree m such that any
element is of type ða1; a2; a3Þ, where 8a1 � 2ðm� 2Þb�2.

By (4.10), the sheaf Y defined on W such that when restricted to any fiber
W of g is jH�O ~WW ð8H � 2ðm� 2ÞLÞ is flat and gives rise to a unique family of
canonical double covers of the scrolls g : X ! B.

Theorem 4.8. Let m ¼ a1 þ a2 þ a3 and 8a1 � 2ðm� 2Þb�2, let W ¼
Wða1; a2; a3Þ be a rational nonsingular normal scroll of Pmþ2. Then there exists
a family of isomorphism classes of nonsingular threefolds with pg ¼ mþ 3 and
K 3

X ¼ 2pg � 6 and canonical map of degree 2 onto W. Such a family is uni-
rational and has dimension 30mþ 213.

Proof. For a fixed m and for any scroll W compatible with the condi-
tions given in theorems 4.2 and 4.5 there exists a family of double covers of
W with K 3 ¼ 2m and pg ¼ mþ 3 parametrized by an open subset of
PH 0ð ~WW ;O ~WW ð8H � 2ðm� 2ÞLÞÞ. One obtains the required family by moding out
the automorphisms group of W . When W is nonsingular this is a unirational
family whose parameter space is generically smooth, by (4.10). By lemma 4.7
the dimension of the family is fdim ¼ 30mþ 224 � dim AutðWÞ. We note that
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the maximum value for fdim is achieved when W is of type ða; a; aÞ, ða; a; aþ 1Þ,
or ða; aþ 1; aþ 1Þ. In fact we can compute dim AutðWÞ by the exact sequence

1 ! AutP1ð ~WWÞ ! Autð ~WWÞ ! Aut P1 ! 1ð4:11Þ
where AutP1ð ~WWÞ is the group of the automorphisms of ~WW fixing the fibers of p,
as in the Veronese case.

In any of the three cases one has dim AutP1ð ~WWÞ ¼ 8, hence

dim Autð ~WWÞ ¼ dim AutP1ð ~WWÞ þ dim AutðP1Þ ¼ 11:

Therefore one has fdim ¼ 30mþ 224 � dim AutðWÞ ¼ 30mþ 213. r

With an additional hypothesis on the ai’s, it can be shown that the above
family fills an open subset of a reduced component M of the moduli space
M2

2m;mþ3. It is su‰cient to show that

dim M ¼ h1ðYX Þ ¼ 30mþ 213:ð4:12Þ
Again, one can use the projection formula (see (1.1))

hiðYX Þ ¼ hiðY ~WW ð�log ~BBÞÞ þ hiðY ~WW ð� ~BB 0ÞÞð4:13Þ
where 2 ~BB 0 @ ~BB.

Lemma 4.9. Let ~BB 0 A jO ~WW ð4H � 2ðm� 2ÞLÞj then

hiðY ~WW ð� ~BB 0ÞÞ ¼ 0 for i ¼ 1; 2; 3:

Proof. One has

hiðO ~WW ð� ~BB 0ÞÞ ¼ h3�iðO ~WW ðK ~WW þ ~BB 0ÞÞð4:14Þ

¼ h3�iðO ~WW ðHÞÞ ¼ mþ 3 for i ¼ 3

0 for i ¼ 0; 1; 2

�
ð4:15Þ

hiðO ~WW ðH � akL� ~BB 0ÞÞ ¼ h3�iðO ~WW ðH � ðH � akLÞÞÞð4:16Þ

¼ h3�iðO ~WW ðakLÞÞ ¼
ak þ 1 for i ¼ 3

0 for i ¼ 0; 1; 2:

�
ð4:17Þ

It is known that if ~WW is a scroll of type ða1; a2; a3Þ and p is the projection on P1,
then

0 ! Y ~WW jP1 ! Y ~WW ! p�YP1 ! 0;ð4:18Þ

0 ! O ~WW ! O ~WW ðH � a1LÞlO ~WW ðH � a2LÞlO ~WW ðH � a3LÞð4:19Þ
! Y ~WW jP1 ! 0:ð4:20Þ

From (4.14), (4.16) and (4.19) tensored by Oð� ~BB 0 Þ one has

hiðY ~WW=P1ð� ~BB 0ÞÞ ¼ 0 for i ¼ 0; 1:ð4:21Þ
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Since one has

hið ~WW ; ðp�YP1Þð� ~BB 0ÞÞ ¼ hiðP1;YP1 n p�O ~WW ð� ~BB 0ÞÞ ¼ 0 for i ¼ 2; 3ð4:22Þ

and by duality one also has

h1ð ~WW ; ðp�YP1ÞO ~WW ð� ~BB 0ÞÞð4:23Þ

¼ h1ðP1;YP1 n p�ð� ~BB 0ÞÞ ¼ h0ðP1;OP1ð2H � p�ð ~BB 0ÞÞ ¼ 0:

The conclusion follows comparing (4.22), (4.23), (4.21) with (4.18) tensored by
O ~WW ð� ~BB 0 Þ. r

From (4.18) and (4.19) it also follows that (with the same notation as above)

ð4:24Þ

h0ðY ~WW Þ ¼ 2ða3 � a1Þþ þ 8 þ ða1 � a2 þ 1Þþ þ ða1 � a3 þ 1Þþ þ ða2 � a3 þ 1Þþ;

h1ðY ~WW Þ ¼ ða2 � a1 � 1Þþ þ ða3 � a1 � 1Þþ þ ða3 � a2 � 1Þþ;

h2ðY ~WW Þ ¼ 2ða3 � a1Þ ¼ h3ðY ~WW Þ ¼ 2ða3 � a1Þþ ¼ 0:

In particular one has

h1ðY ~WW Þ ¼ 0 if and only if a3 � a1 a 2:ð4:25Þ

Lemma 4.10. If a3 � a1 a 2 then

hiðY ~WW ð�log ~BBÞÞ ¼ 30mþ 213 for i ¼ 1

0 for i ¼ 0; 2; 3:

�
ð4:26Þ

Proof. Computations can be carried out by using the residue exact sequence

0 ! Y ~WW ð�log ~BBÞ ! Y ~WW ! O ~BBð ~BBÞ ! 0ð4:27Þ

and the restriction sequence

0 ! O ~WW ! O ~WW ð ~BBÞ ! O ~BBð ~BBÞ ! 0:

By lemma 4.7 one has

hiðO ~WW ð ~BBÞÞ ¼ 30mþ 225 for i ¼ 0

0 for i ¼ 1; 2; 3

�

hence, since ~WW is rational,

hiðO ~BBð ~BBÞÞ ¼
30mþ 224 for i ¼ 0

0 for i ¼ 1; 2:

�
:ð4:28Þ

Moreover since the double cover is of general type one has h0ðY ~WW ð�log ~BBÞÞ ¼
0. Thus the conclusion follows from (4.27), (4.25) and (4.28). r
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We note that if a3 � a1 a 2 the conditions required by theorems 4.2 and
4.5 are satisfied. By (4.13), lemma 4.9 and lemma 4.10 it can be deduced the
following theorem.

Theorem 4.11. There exists a unirational component of the moduli space
M2

ðK 3;pgÞ ¼ M2
2m;mþ3 of the threefolds with K 3 ¼ 2pg � 6 whose general element has a

smooth minimal model, a base-point-free canonical system and a canonical mor-
phism j of degree 2 on a nonsingular scroll W of Ppg�1. The class of the branch
locus of j is jO ~WW ð8H � 2ðm� 2ÞLÞÞj.

Such a component is reduced of dimension 30mþ 213.

Remark. In the theorem only smooth scrolls with a3 � a1 a 2 are used.
But by theorems 4.2 and 4.5 also cones without the condition a3 � a1 a 2 are
allowed. In this case the generically finite canonical morphism j : X ! W
factors through ~WW .

Whenever one has a flat family W of deformations of W inside Pmþ2 such
that the sheaf OW ð8H � 2ðm� 2ÞLÞ extends to a flat sheaf on W one also has a
flat family of deformation of double covers, which belongs to the same irreducible
component of the moduli space M2

2m;mþ3. This happens for instance if the type

of W is such that h1ðW ;OW ð8H � 2ðm� 2ÞLÞÞ ¼ 0.
On the other hand, in general, there are many di¤erent irreducible com-

ponents of M2
2m;mþ3, even of dimension greater than 30mþ 213. In fact di¤erent

components come out when one considers double covers of cones. An example
is proposed in the following theorem.

Theorem 4.12. Let W ¼ Wð0; a; aÞ (or W1 ¼ Wð0; a; aþ 1Þ) be a cone
with vertex a point P, let m ¼ 2a (or m ¼ 2aþ 1) and suppose a > 4. Then
h0ðW ;OW ð8H � 2ðm� 2ÞLÞÞ ¼ h0ðW1;OW1

ð8H � 2ðm� 2ÞLÞÞ ¼ 40mþ 175.
There exists a family of isomorphism classes of nonsingular threefolds X such

that K 3
X ¼ 2m ¼ 2pg � 6 and canonical morphism of degree 2 on W (or W1). This

family is unirational of dimension 39mþ 167.

Proof. Let us suppose that m ¼ 2a, then

h0ð ~WW ;O ~WW ð8H � 2ðm� 2ÞLÞÞ

¼ h0ðP1; Sym8½OP1 lOP1ðaÞlOP1ðaÞÞ�nOP1ð�2ðm� 2ÞÞÞ

¼ h0ðP1; ½l8
k¼0OP1ðkaÞlðkþ1Þ�nOP1ð�4aþ 4Þ

¼ h0ðP1;l8
k¼4OP1ððk � 4Þaþ 4ÞÞlðkþ1ÞÞ

¼
X8

k¼4

ððk � 4Þaþ 5Þðk þ 1ÞÞ ¼ 40mþ 175:

The hypothesis of theorem 4.2 are satisfied, hence the existence of the family

paola supino28



is assured. With this choice of the type of the cone one obtains the minimal
dimension of Autð ~WWÞ, which can be computed as in the nonsingular case. One
has dim Autð ~WWÞ ¼ 2aþ 7 ¼ mþ 7, thus the dimension of the family of the double
covers up to isomorphisms is 40mþ 175 � 1 � ðmþ 7Þ ¼ 39mþ 167.

In the same way, for m ¼ 2aþ 1 and W1 ¼ Wð0; a; aþ 1Þ one has

h0ð ~WW1;O ~WW1
ð8H � 2ðm� 2ÞLÞÞ

¼ h0ðP1; Sym8½OP1 lOP1ðaÞlOP1ðaþ 1ÞÞ�nOP1ð�4aþ 2ÞÞ
¼ 40mþ 175:

Again dim Autð ~WWÞ ¼ 2aþ 8 ¼ mþ 7, and the dimension of the family of the
double covers up to isomorphisms is as above. r

Remark. Either for m even or m odd the dimension of the family of the
double covers up to isomorphisms is greater than the dimension of the reduced
component of the moduli space M2

2m;mþ3 produced in theorem 4.11. Therefore
this new family belongs to a new component of the moduli space.
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