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FACTORIZATION OF THE POLAR CURVE AND THE

NEWTON POLYGON

Andrzej Lenarcik*, Mateusz Masternak and Arkadiusz PŁoski**

Abstract

Using the Newton polygon we prove a factorization theorem for the local polar

curves. Then we give some applications to the polar invariants and pencils of plane

curve singularities.

Introduction

Let CfX ;Yg be the ring of complex power series in two variables X ;Y .
We denote by ord f and in f respectively the order and the initial form of
a nonzero power series f A CfX ;Yg. By definition ord 0 ¼ þy and in 0 ¼ 0.
Let f be a nonzero power series without constant term. If f ¼ f m1

1 � � � f mr
r is a

decomposition of f into irreducible pairwise di¤erent factors fi A CfX ;Yg then
we put fred ¼ f1 � � � fr. Let tð f Þ ¼ ordðin f Þred. Then tð f Þ is the number of
tangents to the local curve f ¼ 0. In the sequel we use the convention that a
sum (resp. a product) over the empty set equals zero (resp. one).

Write

in f ¼ ða monomialÞ
Ys
i¼1

ðX � ciY Þmi

with pairwise di¤erent ci. We put

dð f Þ ¼
Xs

i¼1

ðmi � 1Þ

and call dð f Þ degeneracy of f . If s ¼ 0 then in f reduces to a monomial and
dð f Þ ¼ 0. Note that dð f Þ ¼ 0 if and only if all tangents to f ¼ 0 di¤erent from
the axes are of multiplicity 1.
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Assume that f has an isolated singularity at ð0; 0Þ A C2 (this is equivalent to
the conditions ord f > 1 and f ¼ fred) and suppose that the line bX � aY ¼ 0 is
not tangent to f ¼ 0. The generic polar of f is by definition the series qf ¼
aðqf =qXÞ þ bðqf =qYÞ.

Let us consider the factorization qf ¼
Qu

i¼1 hi with irreducible hi A CfX ;Yg
and put ð f ; hÞ0 ¼ dimC CfX ;Yg=ð f ; hÞ. According to Teissier [Te1] the quo-
tients ð f ; hiÞ0=ord hi are called polar invariants of the singularity f . The multi-
plicity mq of the polar quotient q is defined to be mq ¼

P
i A Iq

ord hi where Iq ¼
fi : ð f ; hiÞ0=ord hi ¼ qg.

Teissier’s collection fðq;mqÞg of polar invariants and their multiplicities is a
topological invariant of the singularity (see [Te1] and [Te2]). There are several
theorems on the factorization of the polar curve that enable calculation of
Teissier’s collection (see [M], [D], [G], [LP]). The aim of this note is to study the
factorization of the polar curve qf associated with the Newton polygon Nf of
f . The main result (Theorem 1.1) is a refinement of the factorization theorem
given in [LP]. Using our theorem we calculate the minimal polar invariant
(Theorem 2.1) and prove a bound on the number of special values of the pencil
ð f � tl N : t A CÞ (Theorem 3.2). This bound is analogous to the estimation due
to Le Van Thanh and Mutsuo Oka (see [LO], Main result) given in the global
a‰ne context.

1. Main result

Let f A CfX ;Yg be a nonzero power series without constant term. Write
f ¼

P
cabX

aY b A CfX ;Yg and supp f ¼ fða; bÞ A N2 : cab 0 0g. The Newton
polygon Nf ¼ Nð f Þ is the set of the compact faces of the boundary of the
convex hull Dð f Þ of the set supp f þN2. We call Dð f Þ the Newton diagram of
f . For every S A Nf we denote by jSj1 and jSj2 the lenghts of the projection
of S on the horizontal and vertical axes. We call jSj1=jSj2 inclination of the
segment S. The power series f is elementary if Nf contains only one segment
with vertices on the axes. Let kSk ¼ minfjSj1; jSj2g and denote aS; bS the dis-
tances from S to the axes. Thus the vertices of S are ðaS; jSj2 þ bSÞ and
ðjSj1 þ aS; bSÞ. Let a=aðSÞ þ b=bðSÞ ¼ 1 be the equation of the line containing
S. Clearly aðSÞ; bðSÞ are rational numbers and aðSÞ=bðSÞ ¼ jSj1=jSj2. A seg-
ment S A Nf is exceptional if 1 ¼ jSj1 < jSj2 and aS ¼ 0 or 1 ¼ jSj2 < jSj1 and
bS ¼ 0. A segment S A Nf (necessarily unique) is principal if jSj1 ¼ jSj2. We
set N�

f ¼ Nf nfexceptional segmentsg and N��
f ¼ N�

f nfprincipal segmentg. For

every segment S A N�
f we define eðSÞ A f�1; 0; 1g by putting eðSÞ ¼ �1 if

jSj1 < jSj2 and aS ¼ 0 or jSj2 < jSj1 and bS ¼ 0. If jSj1 ¼ jSj2 then eðSÞ ¼
1� ðnumber of vertices of S lying on the axesÞ. We put eðSÞ ¼ 0 for all re-
maining cases. A segment S A N��

f is of the first kind if eðSÞ ¼ 0, it is of the
second kind if eðSÞ ¼ �1.

Let inð f ;SÞ ¼
P

ða;bÞ AS X
aY b. Clearly X aSY bS is the monomial of the

highest degree dividing inð f ;SÞ. Thus we can write inð f ;SÞ ¼ X aSY bS inð f ;SÞ�
in CfX ;Yg. Note that Nðinð f ;SÞ�Þ ¼ fS 0g where S 0 is the segment with
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vertices ðjSj1; 0Þ and ð0; jSj2Þ. We define the degeneracy dð f ;SÞ of f on S by
putting dð f ;SÞ ¼ ord inð f ;SÞ� � ord inð f ;SÞ�red. Note that dð f ;SÞ ¼ 0 if and
only if f is nondegenerate on S that is if the polynomial inð f ;SÞ has no critical
points in the set ðCnf0gÞ � ðCnf0gÞ. Recall that a series is nondegenerate if it
is nondegenerate on every segment of its Newton polygon. If S A N��

f is of the
second kind then we let vS ¼ X if jSj1 < jSj2 and vS ¼ Y if jSj2 < jSj1. Let S be
a segment of a Newton polygon. We call a power series S-elementary if it is
elementary and its unique segment is parallel to S. A line lHR2 is a barrier of
Dð f Þ if it has an equation v1aþ v2b ¼ w where v1; v2;w > 0 are integers such that
v1aþ v2bbw for ða; bÞ A Dð f Þ with equality for at least one point ða; bÞ A Dð f Þ.
Let us state the main result

Theorem 1.1. Let f ¼ f ðX ;YÞ A CfX ;Yg be a power series with an isolated

singularity at ð0; 0Þ A C2. Then for every line bX � aY ¼ 0 not tangent to the
curve f ¼ 0 there is a factorization of the polar qf ¼ aðqf =qXÞ þ bðqf =qYÞ:

qf ¼ AB
Y

S AN��
f

ASBS in CfX ;Yg

such that
(i) ord A ¼ tð f Þ � 1, ord B ¼ dð f Þ. If h is an irreducible factor of AB then

ð f ; hÞ0=ord hb ord f with equality if and only if h divides A.
(ii) ord AS ¼ kSk þ eðSÞ � dð f ;SÞ, ord BS ¼ dð f ;SÞ. If h is an irreducible

factor of ASBS then ð f ; hÞ0=ord hbmaxðaðSÞ; bðSÞÞ with equality if and
only if h divides AS.

(iii) If ord BS > 0 then BS is S-elementary. If ord AS > 0 and S is of the
first kind then AS is S-elementary.

(iv) If ord AS > 0 and S is of the second kind then there is a factorization
AS ¼ A 0

SA
00
S such that

� if ord A 0
S > 0 then A 0

S is S-elementary.
�� If ord A 00

S > 0 then every barier of the Newton diagram of f parallel
to a segment of NðA 00

SÞ passes through the vertex of S lying on
the vertical (resp. horizontal) axis if VS ¼ X (resp. VS ¼ Y).
If jSj1 < jSj2 (resp. jSj2 < jSj1) then for every T A NðA 00

SÞ :
jT j1=jT j2 < jSj1=jSj2 (resp. jSj1=jSj2 < jT j1=jT j2).

The proof of Theorem 1.1 is given in Section 6 of this note.

Corollary 1.2. Let f ¼ f ðX ;YÞ A CfX ;Yg be a power series with an iso-

lated singularity at ð0; 0Þ A C2 such that N��
f 0j. Then

(i) Let S A N��
f be of the first kind. Then maxðaðSÞ; bðSÞÞ is a polar in-

variant of the curve f ¼ 0. Its multiplicity is at least kSk � dð f ;SÞ.
(ii) If S A N��

f is of the second kind then maxðaðSÞ; bðSÞÞ is a polar invariant
of f if and only if ord inð f ;SÞ�red > 1. Its multiplicity is at least kSk�
dð f ;SÞ � 1. If ord inð f ;SÞ�red ¼ 1 then there is a polar invariant strictly
greater than maxðaðSÞ; bðSÞÞ.
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Proof. Fix a segment S A N��
f . It is easy to check that ord AS ¼ kSkþ

eðSÞ � dð f ;SÞ ¼ ord inð f ;SÞ�red þ eðSÞ. If S is of the first kind then eðSÞ ¼ 0 and
(i) follows. If S is of the second kind then maxðaðSÞ; bðSÞÞ is a polar invariant if
and only if ord AS ¼ ord inð f ;SÞ�red � 1 > 0.

Example 1.3. Let f ðX ;Y Þ ¼ ðY � X 2Þ2 þ X 5. Then Nf ¼ fSg where S

is the segment with vertices ð0; 2Þ and ð4; 0Þ. Clearly inð f ;SÞ�red ¼ Y � X 2 is of
order 1. According to Corollary 1.2 we can only say that the curve f ¼ 0 has
a polar invariant greater than maxðaðSÞ; bðSÞÞ ¼ maxð2; 4Þ ¼ 4. Taking the

new system of coordinates X1 ¼ X , Y1 ¼ Y � X 2 we get f1ðX1;Y1Þ ¼ Y 2
1 þ X 5

1
and using 1.2 to f1 in coordinates ðX1;Y1Þ we get that there is a unique polar
invariant equal to 5.

Example 1.4. Let f ðX ;Y Þ ¼ Y 11 þ XY 8 � 2X 2Y 6 þ X 3Y 4 � 2X 4Y 3 þ
X 5Y 2 � 2X 7Y þ X 9. Then Nf ¼ fE;S;U ;Tg where jEj1=jEj2 < jSj1=jSj2 <
jU j1=jU j2 < jT j1=jT j2. Here E is exceptional, U is principal and N��

f ¼ fS;Tg
where S is of the first kind (eðSÞ ¼ 0) and T is of the second kind (eðTÞ ¼
�1). According to Theorem 1.1 there is a factorization qf ¼ ABASBSATBT in
CfX ;Yg where ord A ¼ tð f Þ � 1 ¼ 2, ord B ¼ dð f Þ ¼ 1, ord AS ¼ kSk � dð f ;SÞ
¼ 1, ord BS ¼ dð f ;SÞ ¼ 1, ord AT ¼ kTk � 1� dð f ;TÞ ¼ 0, ord BT ¼ dð f ;TÞ
¼ 1. We may assume that AT ¼ 1 in CfX ;Yg for AT is a unit. The polar
qf ¼ 0 consists of the curve A ¼ 0 of order 2 transverse to the curve f ¼ 0 and of
four nonsingular branches AS ¼ 0, B ¼ 0, BS ¼ 0 and BT ¼ 0. The polar in-
variants are ord f ¼ 7 (of multiplicity 2), ð f ;ASÞ0 ¼ maxðaðSÞ; bðSÞÞ ¼ 10 and
the numbers ð f ;BÞ0 >7, ð f ;BSÞ0>10 and ð f ;BT Þ0>maxðaðTÞ; bðTÞÞ ¼ 9. The
theorem does not give information as to whether the invariants ð f ;BÞ0, ð f ;BSÞ0
and ð f ;BT Þ0 are equal or not.

Here is an improved version of the main result of [LP].

Corollary 1.5 (see [LP], Theorem 1.1). Let f ¼ f ðX ;Y Þ A CfX ;Yg be a
power series with an isolated singularity at ð0; 0Þ A C2. Then for every line bX �
aY ¼ 0 not tangent to the curve f ¼ 0 there is a factorization of the polar qf ¼
aðqf =qXÞ þ bðqf =qYÞ:

qf ¼ g
Y

S AN��
f

gS in CfX ;Yg

such that
(i) ord gS ¼ kSk þ eðSÞ. If h is an irreducible factor of gS then

ð f ; hÞ0=ord hbmaxðaðSÞ; bðSÞÞ.
(ii) The following conditions are equivalent:

ðaÞ ð f ; hÞ0=ord h ¼ maxðaðSÞ; bðSÞÞ for every irreducible factor h of gS,
ðbÞ the power series f is nondegenerate on S.
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(iii) One has ord g ¼ tð f Þ � 1þ dð f Þ. Moreover ð f ; hÞ0=ord h ¼ ord f for
every irreducible factor h of g if and only if dð f Þ ¼ 0.

Proof. We put g ¼ AB and gS ¼ ASBS. Then we use Theorem 1.1 (i)
and (ii).

Note that dð f Þ ¼ 0 if and only if the Newton polygon Nf has no principal
segment or the Newton polygon Nf has a principal segment and f is non-
degenerate on it. Therefore Corrolary 1.5 enables the calculation of Teissier’s
collection of a nondegenerate singularity by means of its Newton polygon.

Example 1.6. Let f ðX ;Y Þ ¼ Y 8 þ X 3Y 3 þ Y 4Y 2 þ X 6Y . Then Nf ¼
fS;U ;Tg where jSj1=jSj2 < jU j1=jU j2 < jT j1=jT j2 and f is nondegenerate. We
have eðSÞ ¼ �1, eðTÞ ¼ 0 and maxðaðSÞ; bðSÞÞ ¼ maxðaðTÞ; bðTÞÞ ¼ 8. The
segment U is principal. Therefore qf ¼ ggSgT where ord g ¼ tð f Þ � 1 ¼ 2,
ord gS ¼ kSk � 1 ¼ 2, ord gT ¼ kTk ¼ 1. Moreover if h is a prime divisor of
gS or gT then ð f ; hÞ0=ord h ¼ 8. The polar invariants are 6 (of multiplicity
tð f Þ � 1 ¼ 2) and 8 (of multiplicity ord gSgT ¼ 2þ 1 ¼ 3).

2. Contact exponent and minimal polar invariant

Let f ¼ f1 � � � fr be an isolated singularity with branches fi ¼ 0 and let l ¼ 0
be a smooth curve (that is l is a series of order 1). Then we consider the contact
exponent of l ¼ 0 with f ¼ 0

dð f ; lÞ ¼ min
r

i¼1

ð fi; lÞ0
ord fi

� �

and the contact exponent of f ¼ 0:

dð f Þ ¼ sup dð f ; lÞ: l ¼ 0 runs over the set of nonsingular
curves di¤erent from the branches fi ¼ 0

� �

(see [BK] pp. 640–661 for Hironaka’s theory of maximal contact).
Note that dð f Þb 1 and dð f Þ ¼ 1 if and only if tð f Þ > 1.

Theorem 2.1. Let f ¼ f ðX ;YÞ A CfX ;Yg be a power series with an isolated

singularity at ð0; 0Þ A C2. Then
(i) if tð f Þ > 1 then the minimal polar invariant of f ¼ 0 is equal to ord f

and its multiplicity is tð f Þ � 1.
(ii) Suppose that tð f Þ ¼ 1 and dð f ;YÞ ¼ dð f Þ. Let F be the first segment of

the Newton polygon Nf . Then the minimal polar invariant of f ¼ 0 is
equal to aðFÞ and its multiplicity is kFk þ eðF Þ � dðF ; f Þ.

(iii) The minimal polar invariant of the singularity f ¼ 0 is equal to
ðord f Þdð f Þ.
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Proof. Part (i) of the theorem follows from Theorem 1.1 (i). To check (ii)
observe that from the assumptions it follows that the axis X ¼ 0 is transverse to
the curve f ¼ 0. The Newton diagram of f has the vertex ð0; ord f Þ and lies
strictly above the line aþ b ¼ ord f . Hence all segments of Nf have the incli-
nation strictly greater than 1. In particular jF j1 > jF j2. Recall that jF j1=jF j2 ¼
dð f ;Y Þ ¼ dð f Þ and consider two cases.

Case 1. The power series f is not elementary. Then the segment F is of
the first kind and aðFÞ is a polar invariant of f ¼ 0. Using Theorem 1.1 we
check that all polar invariants of f di¤erent from aðFÞ are strictly greater than
aðF Þ. Thus aðF Þ is the minimal polar invariant of f and its multiplicity equals
kFk þ eðFÞ � dð f ;F Þ.

Case 2. The power series f is elementary. Then F is the unique segment
of Nf . Using the criterion of maximal contact (see [BK], Lemma 5, p. 649) we

get that inð f ;FÞ is not of the form ðbY � aX kÞm, ab0 0. Therefore by our
main result aðFÞ ¼ maxðaðFÞ; bðF ÞÞ is the minimal polar invariant of f and its
multiplicity is kFk þ eðFÞ � dð f ;F Þ.

To check (iii) we note that aðFÞ=ord f ¼ aðF Þ=bðFÞ ¼ jF j1=jF j2 ¼ dð f Þ and
use (ii).

Example 2.2. Suppose that f is an irreducible power series with charac-
teristic b0; b1; . . . ; bg (see for example [M]). If the axis Y ¼ 0 has the maximal
contact with f ¼ 0 then Nf ¼ fFg where F is the segment with vertices ð0; b0Þ
and ðb1; 0Þ. Let e1 ¼ GCDðb0; b1Þ. Then inð f ;FÞ ¼ ðbX b1=e1 � cY b0=e1Þe1 with
bc0 0 and an easy calculation shows that the minimal polar invariant equals
maxðb0; b1Þ ¼ b1 and is of multiplicity b0=e1 � 1 (here eðFÞ ¼ �1). Thus we
have got the first of Merle’s formulas [M].

The reasoning like that in the proof of Theorem 2.1 shows

Theorem 2.3. Suppose that f ¼ 0 has exactly one polar invariant. If
dð f ;Y Þ ¼ dð f Þ and ð f ;XÞ0 ¼ ord f then Nf ¼ fFg and f is nondegenerate on
F. The segment F has vertices ð0; nÞ and ðm; 0Þ or ð0; nÞ and ðm; 1Þ with mb n.

If two isolated singularities f ¼ 0 and g ¼ 0 have the same Newton diagram
and are nondegenerate then they are topologically equivalent. On the other
hand for every isolated singularity there is a system of coordinates such that
in Theorem 2.3. Therefore we get the following classification result due to
Eggers.

Corollary 2.4 ([E], p. 16). If f ¼ 0 has exactly one polar invariant then
f ¼ 0 is topologically equivalent to a plane curve singularity of type Y n � Xm ¼ 0
or of type Y n � YX m ¼ 0.
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3. Special values of plane curve pencils

When studying the singularities at infinity of a polynomial in two complex
variables of degree N > 0 one considers the pencils of plane curves of the form
ft ¼ f � tl N , t A C where f and l ¼ bX � aY are coprime (such pencils are called
in [C] Iomdin Lê deformations). Let m0ð f Þ ¼ ðqf =qX ; qf =qYÞ0 be the Milnor
number of the local curve f ¼ 0. Recall that m0ð f Þ ¼ þy if and only if f has
a multiple factor. The number t0 A C is a special value of the pencil ð ft; t A CÞ
if m0ð ft0Þ > inffm0ð ftÞ : t A Cg. The set of special values is finite. Using our
main result we will give a bound on the number of special values in terms of the
Newton diagram of the series. Let rð f ;SÞ be the number of irreducible factors
of inð f ;SÞ� and put rðSÞ ¼ GCDðjSj1; jSj2Þ.

Lemma 3.1. One has rðSÞ � rð f ;SÞ ¼ ðrðSÞ=kSkÞdð f ;SÞ. In particular
rð f ;SÞa rðSÞ with equality if and only if f is nondegenerate on S.

Proof. Write

inð f ;SÞ� ¼
Yr
i¼1

ðbiX jSj1=rðSÞ � aiY
jSj2=rðSÞÞmi

with pairwise linearly independent ðai; biÞ A C2. Then rð f ;SÞ ¼ r and rðSÞ ¼Pr
i¼1 mi. Now

dð f ;SÞ ¼ ord inð f ;SÞ� � ord inð f ;SÞ�red

¼
Xr

i¼1

mi

kSk
rðSÞ �

Xr

i¼1

kSk
rðSÞ ¼

kSk
rðSÞ ðrðSÞ � rð f ;SÞÞ

and the lemma follows.

The following result is a local counterpart of the Le Van Thanh and Oka
theorem giving an estimation for the number of critical values at infinity (see
[LO], Main Theorem).

Let qðSÞ ¼ maxðaðSÞ; bðSÞÞ for any S A N�
f . We put l ¼ bX � aY and sup-

pose that the line l ¼ 0 is not tangent to f ¼ 0.

Theorem 3.2. Let N0 ord f be a strictly positive integer. The number of
nonzero special values of the pencil ð f � tl N : t A CÞ is less than or equal to

X
S:qðSÞ<N

ðrðSÞ � rð f ;SÞÞ þ
X

S:qðSÞ¼N

rð f ;SÞ:

Recall that a sum over the empty set equals zero. If f is a nondegenerate power
series then the sum above reduces to
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X
S:qðSÞ¼N

rðSÞ:

Note also the bound for all series with the given Newton polygon.

Corollary 3.3. The number of the nonzero special values of ð f � tl N :
t A CÞ ðN0 ord f Þ is less than or equal to

X
S:qðSÞaN

rðSÞ:

In connection with the above corollary recall the following well-known fact: the
number of branches of the curve f ¼ 0 di¤erent from the axes is less or equal toP

S rðSÞ (with equality for nondegenerate curves).
To get Theorem 3.2 from the main result we need a few lemmas. The

lemma below is a local version of the description of critical values at infinity
given in [LO] (pp. 410–411). Let f =h be a meromorphic fraction with coprime
f ; h A CfX ;Yg and let p ¼ pðX ;Y Þ A CfX ;Yg be irreducible power series such
that p does not divide h. Let ðxðuÞ; yðuÞÞ A Cfug2, ðxð0Þ; yð0ÞÞ ¼ ð0; 0Þ be a
parametrization of the branch p ¼ 0. Then we put

f

h

� �
ðpÞ ¼ f ðxðuÞ; yðuÞÞ

lðxðuÞ; yðuÞÞ

����
u¼0

A CU fyg:

Lemma 3.4. The set of nonzero special values of the pencil ð f � tl N : t A CÞ is
equal to the set

fð f =l NÞðpÞ: p is irreducible factor of jð f ; lÞ such that ð f ; pÞ0=ðl; pÞ0 ¼ Ng:

Proof. See [MM] Théorème 1 or [GB-P] Proposition 2.2.

Let r0ðfÞ be the number of irreducible factors of the series f.

Lemma 3.5. Suppose that f is S-elementary. Then

r0ðfÞa ðord fÞ rðSÞkSk :

Proof. Let r ¼ r0ðfÞ. Then f ¼
Q r

i¼1 fi with irreducible fi. The power
series fi are S-elementary. Therefore the unique segment of NðfiÞ joins the
points ðkijSj1=rðSÞ; 0Þ and ð0; kijSj2=rðSÞÞ for an integer ki b 1. Consequently

ord fi ¼ min
jSj1
rðSÞ ki;

jSj2
rðSÞ ki

� �
b

kSk
rðSÞ

for all i ¼ 1; . . . ; r. We get
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ord f ¼
Xr

i¼1

ord fi b
kSk
rðSÞ r0ðfÞ

and the lemma follows.

Lemma 3.6. Let us keep the notation from Theorem 1.1. Then
(i) If ord B > 0 then Nf has a principal segment U and ord B ¼ rðUÞ�

rð f ;UÞ.
(ii) If ord BS > 0 then r0ðBSÞa rðSÞ � rð f ;SÞ.
(iii) If ord AS > 0 and S is of the first kind then r0ðASÞa rð f ;SÞ.

Proof.
(i) It is easy to see that if dð f Þ > 0 then Nf has a principal segment U and

dð f Þ ¼ rðUÞ � rð f ;UÞ. Use Theorem 1.1 (i).
(ii) Suppose that ord BS > 0. Then by Theorem 1.1 (ii) we get ord BS ¼

dð f ;SÞ. Now Lemmas 3.5 and 3.1 give

r0ðBSÞa ðord BSÞ
rðSÞ
kSk ¼ dð f ;SÞ rðSÞkSk ¼ rðSÞ � rð f ;SÞ:

(iii) Suppose that ord AS > 0 and S is of the first kind. Then ord AS ¼
kSk � dð f ;SÞ by Theorem 1.1 (ii) and using Lemmas 3.5 and 3.1 we
get

r0ðASÞa ðord ASÞ
rðSÞ
kSk ¼ ðkSk � dð f ;SÞÞ rðSÞkSk ¼ rð f ;SÞ:

Lemma 3.7. Suppose that ord AS > 0 for a segment S A N��
f of the second

kind. Let N ¼ maxðaðSÞ; bðSÞÞ. Let AS ¼ A 0
SA

00
S be the factorization of AS such

that in Theorem 1.1 (iv). Then
(i) r0ðA 0

SÞa rð f ;SÞ � 1,
(ii) for every prime factor p of A 00

S : ð f =l NÞðpÞ ¼ ð f =l NÞðvSÞ.

Proof. By Theorem 1.1 (ii) we get ord AS ¼ kSk � 1� dð f ;SÞ (eðSÞ ¼ �1
for the segments of second kind) and consequently, like in the proof of Lemma
3.7 we obtain

r0ðA 0
SÞa ðord A 0

SÞ
rðSÞ
kSk a ðord ASÞ

rðSÞ
kSk ¼ rð f ;SÞ � rðSÞ

kSk < rð f ;SÞ:

Since r0ðA 0
SÞ and rð f ;SÞ are integers we get r0ðA 0

SÞa rð f ;SÞ � 1. To prove the
second part of Lemma 3.7 assume that S ¼ F is the first segment of Nf (if S ¼ L
is the last segment then the proof is similar). Then vS ¼ vF ¼ X . Let p be a
prime factor of A 00

F . We may assume that the branch p ¼ 0 is di¤erent from the
axis X ¼ 0. Note that jF1j=jF2j < 1 and N ¼ bðFÞ. Let ðxðuÞ; yðuÞÞ be the in-
jective parametrization of the branch p ¼ 0. Put m ¼ ord xðuÞ and n ¼ ord yðuÞ.
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The series p is elementary, the unique segment of Np joins the points ðn; 0Þ and
ð0;mÞ and is of inclination n=ma jF j1=jF j2 < 1 by Theorem 1.1 (iv). The line
supporting the Newton diagram of f of slope �m=n passes through the point
ð0; bðF ÞÞ ¼ ð0;NÞ and, consequently, has the equation maþ nb ¼ nN. It inter-
sects the Newton diagram of f exactly at point ð0;NÞ. Therefore

f ðX ;YÞ ¼ c0NY
N þ

X
maþnb>nN

cabX
aY b with c0N 0 0:

The line lðX ;YÞ ¼ bX � aY is not tangent to f ¼ 0. Then a0 0 and

f ðxðuÞ; yðuÞÞ ¼ c0NyðuÞN þ terms of order > nN

lðxðuÞ; yðuÞÞ ¼ ð�aÞNyðuÞN þ terms of order > nN

Consequently

f

l N

� �
ðpÞ ¼ c0N

ð�aÞN
¼ f

l N

� �
ðXÞ:

Now we give the proof of Theorem 3.2.
Let

qf ¼ AB
Y

S AN��
f

ASBS

be a factorization of qf such that in Theorem 1.1.
According to Lemmas 3.4 and 3.7 the number of nonzero special values of

ð f � tl N : t A CÞ is equal to

#fð f =l NÞðpÞ: p is a prime factor of qf and ð f ; pÞ0=ord p ¼ Ng

a ord Bþ
X

S:qðSÞ<N

r0ðBSÞ þ
X

S:qðSÞ¼N

I
r0ðASÞ þ

X
S:qðSÞ¼N

II ðr0ðA 0
SÞ þ 1Þ

where the symbols
PI resp (

PII ) mean that the summation is carried over the
segments of the first kind (of the second kind). The theorem follows from
Lemmas 3.6 and 3.7.

Remark 3.8. An obvious modification of the above proof shows that the
pencil ð f � tl ord f : t A CÞ has at most tð f Þ � 1 nonzero special values.

Example 3.9. Let 1 < n < m be integers such that d ¼ GCDðm; nÞ < n.
Put weight X ¼ m, weight Y ¼ n and let f ðX ;Y Þ ¼ ðbX n=d � aY m=dÞd þ terms
of weight >mn, (ab0 0) be a power series with an isolated singularity at 0 A C2.
Using Theorem 3.2 we check that the pencil ft � tY m, t A C has at most one
nonzero special value. One can prove that this value always exists.
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4. Preliminary lemmas

Let j ¼ jðX ;Y Þ A CfX ;Yg be a nonzero power series without constant
term and l ¼ bX � aY be a linear form. Put qj ¼ aðqj=qX Þ þ bðqj=qYÞ (we do
not assume that in jða; bÞ0 0!) and note that ord qj ¼ ord j� 1 if and only if
in j0 const: lord j.

It is easy to check the following two properties:
(i) if qj1 0 ðmod jÞ then j1 0 ðmod lÞ,
(ii) if j ¼ lkc in CfX ;Yg, c without constant term and cD 0 ðmod lÞ

then qj ¼ lkqc and qcD 0 ðmod lÞ.

Lemma 4.1. Let kb 0 be the greatest integer such that lk divides j and let
j ¼ lkjm1

1 � � � jms
s with s > 0 irreducible and pairwise coprime ji A CfX ;Yg. Then

qj ¼ lkj0j
m1�1
1 � � � jms�1

s in CfX ;Yg and j; j0 are coprime.

Proof. Di¤erentiating the product j ¼ lkjm1

1 � � � jms
s we get

qj ¼ lkj0j
m1�1
1 � � � jms�1

s

where j0 ¼ m1ðqj1Þj2 � � � js þ � � � þ j1 � � � js�1msðqjsÞ. If ji ði0 0Þ were a factor
of j0 then ji would be a factor of qji. This implies ji 1 0 ðmod lÞ by property
(i), which is impossible because l does not divide ji. To check that l does not
divide j0 we use property (ii).

Remark. It is easy to check that ord j0 ¼
Ps

i¼1 ord ji � ðord j� ord qjÞ:

The following is well-known (see Section 5, Lemma 5.2).

Lemma 4.2. If in f ¼ jm1

1 � � � jmt
t with ji linear pairwise linearly independent

then f ¼ f1 � � � ft in CfX ;Yg and in fi ¼ jmi

i for i ¼ 1; . . . ; t.

Using the above lemmas we will prove

Lemma 4.3. Let qf ¼ aðqf =qXÞ þ bðqf =qYÞ with ða; bÞ A C2 such that

in f ða; bÞ0 0. Then qf ¼ A ~AA in CfX ;Yg where ord A ¼ tð f Þ � 1, ord ~AA ¼
ord f � tð f Þ and for every irreducible factor h of qf : ð f ; hÞ0=ord h ¼ ord f if and
only if h divides A.

Proof. Let in f ¼ jm1

1 � � � jmt
t , ji linear and t ¼ tð f Þ. Then inðqf Þ ¼

qðin f Þ ¼ j0j
m1�1
1 � � � jmt�1

t in CfX ;Yg with coprime j0, in f . By Lemma 4.2
we get a factorization qf ¼ g0g1 � � � gt where in g0 ¼ j0 and in gi ¼ jmi�1

i for
i ¼ 1; . . . ; t. By Remark to Lemma 4.1 we get

ord g0 ¼
Xt

i¼1

ord ji � 1 ¼ t� 1 ¼ tð f Þ � 1:
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Put A ¼ g0, ~AA ¼ g1 � � � gt. Let h be an irreducible factor of qf , if h divides A
then the curves f ¼ 0, h ¼ 0 are transverse and ð f ; hÞ0 ¼ ðord f Þðord hÞ. If h
divides ~AA they are not, thus ð f ; hÞ0 > ðord f Þðord hÞ.

5. Newton polygon and factorization of power series

Let us keep the notation introduced in Section 1. The following two
lemmas are well-known.

Lemma 5.1. Let f ¼ f ðX ;YÞ be a nonzero power series without constant
term. Then there is a factorization

f ¼ uX d1Y d2
Y
S ANf

fS in CfX ;Yg

where u is a unit, such that
(i) Nð fSÞ ¼ fS 0g where S 0 is the segment with vertices ðjSj1; 0Þ and ð0; jSj2Þ,
(ii) inð fS;S 0Þ ¼ const: inð f ;SÞ�.

Lemma 5.2. Suppose that Nð f Þ ¼ fSg where S is a segment with vertices
on the axes. Suppose that inð f ;SÞ ¼ c1 � � �cm with coprime ci. Then there is a
factorization

f ¼ f1 � � � fm
such that

(i) Nð fiÞ ¼ fSðiÞg where SðiÞ is a segment parallel to S,
(ii) inð fi;SðiÞÞ ¼ ci for i ¼ 1; . . . ;m:

6. Proof of the main result

We will prove our theorem for polars qf ¼ aðqf =qXÞ þ bðqf =qYÞ such that
ab in f ða; bÞ0 0. If a ¼ 0 or b ¼ 0 but in f ða; bÞ0 0 then the proof needs some
modifications (see [LP], p. 318). By Lemma 5.1 we may write

(1) qf ¼ uX d1Y d2
Q

T ANðqf Þðqf ÞT in CfX ;Yg where u is a unit and
(2) ðqf ÞT is an elementary power series; Nððqf ÞT Þ ¼ fT 0g where T 0 is the

segment with vertices ðjT j1; 0Þ and ð0; jT j2Þ,
(3) inððqf ÞT ;T 0Þ ¼ const: inðqf ;TÞ�.

The proposition below is already proved in [LP] but it is not stated there ex-
plicitly.

Proposition 6.1. Suppose that f A CfX ;Yg has an isolated singularity at
ð0; 0Þ A C2. Then there is a factorization

qf ¼ g
Y

S AN��
f

gS in CfX ;Yg
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such that
(i) ord g ¼ dð f Þ þ tð f Þ � 1, ord gS ¼ kSk þ eðSÞ for S A N��

f ,
(ii) If S A N��

f is a segment of the first kind then there is a segment T A Nqf

(necessarily unique) parallel to S. We have gS ¼ ðqf ÞT .
(iii) Suppose that S A N��

f is a segment of the second kind. Then

(aÞ for every T A NðgSÞ the power series ðqf ÞT divides gS.
(bÞ If jSj1 < jSj2 (resp. jSj2 < jSj1) then for every T A NðgSÞ : jT j1=jT j2

a jSj1=jSj2 (resp. jSj1=jSj2 a jT j1=jT j2).
(g) Every barier of the Newton diagram of f parallel to a segment of

NðgSÞ passes through the vertex of S lying on the axis vS ¼ 0.
(d) If there is no segment of NðgSÞ parallel to a segment of N��

f then
dð f ;SÞ ¼ 0.

Proof. If N��
f ¼ j then dð f Þ þ tð f Þ ¼ ord f , thus we may assume that

N��
f 0j. According to [LP], Theorem 1.1 p. 310 there is a factorization

(4) qf ¼ v
Q

S AN��
f
gS in CfX ;Yg such that

(5) ord gS ¼ kSk þ eðSÞ for every S A N�
f ,

(6) if ord v > 0 then ord v ¼ 1 and ð f ; vÞ0 ¼ ord f .
Moreover, by the definition of v given in [LP], p. 317 we have

(7) ord v > 0 if and only if in f ¼ const: X a0Y b0 for some a0; b0 > 0.
To define the power series g we consider two cases.

Case 1. The initial form in f is not a monomial. Then there exists the
principal segment U A N�

f and in f ¼ inð f ;UÞ. It is easy to see that
ord inð f ;UÞ�red ¼ tð f Þ � 1� eðUÞ. Consequently

dð f Þ ¼ dð f ;UÞ ¼ kUk � ord inð f ;UÞ�red ¼ kUk þ eðUÞ � ðtð f Þ � 1Þ

and ord gU ¼ kUk þ eðUÞ ¼ dð f Þ þ tð f Þ � 1 by (5). Put g ¼ vgU . Note that v
is a unit by (7) hence ord g ¼ ord gU ¼ dð f Þ þ tð f Þ � 1.

Case 2. The initial form in f is a monomial. If in f ¼ const: X ord f or
in f ¼ const: Y ord f then dð f Þ þ tð f Þ � 1 ¼ 0. We put g ¼ v. By (7) v is a unit
and consequently ord g ¼ 0. If in f ¼ const: X a0Y b0 with a0 > 0 and b0 > 0
then dð f Þ þ tð f Þ � 1 ¼ 1. We put g ¼ v. By (6) and (7) we get ord g ¼ 1.

By the definition of the series g we can rewrite (4) in the form
(8) qf ¼ g

Q
S AN��

f
gS, ord g ¼ dð f Þ þ tð f Þ � 1

The conditions (ii) and (iii) (a), (b), (g) follow immediately from the definition of
gS given in [LP] p. 317. To check (iii) (d) we observe that by [LP], Lemma 2.3
the initial form inð f ;SÞ is the sum of two monomials. Thus dð f ;SÞ ¼ 0.

Proposition 6.2. Let S A N��
f and T A Nqf be parallel. Then there is a

factorization

ðqf ÞT ¼ ASBS in CfX ;Yg
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such that
(i) If ord AS > 0 then AS is S-elementary. Suppose that ord AS > 0 and

let NðASÞ ¼ f ~SSg. Then the power series inðAS; ~SSÞ and inð f ;SÞ are
coprime.

(ii) We have ord BS ¼ dð f ;SÞ. If ord BS > 0 then BS is S-elementary.

Suppose that ord BS > 0 and let NðBSÞ ¼ f ~~SS~SSg. Then the power series

inðBS;
~~SS~SSÞ divides inð f ;SÞ.

Proof. Let q ¼ aðq=qXÞ þ bðq=qXÞ with ab in f ða; bÞ0 0. We may as-
sume that jSj1 < jSj2. By [LP], Theorem 2.1 (5), p. 313 we get

(9) inðqf ;TÞ ¼ aðq=qXÞ inð f ;SÞ:
Let us consider the factorization

(10) inð f ;SÞ ¼ X aSY bSck1
1 � � �ckm

m with irreducible, pairwise coprime ci A
CfX ;Yg

and let l ¼ Y . We apply Lemma 4.1 to inð f ;SÞ and l:

(11) ðq=qXÞ inð f ;SÞ ¼ Y bSc0X
maxðaS�1;0Þck1�1

1 � � �ckm�1
m

where c0 and inð f ;SÞ are coprime. By (2), (3) and (11) we get

(12) inððqf ÞT ;T 0Þ ¼ c0c
k1�1
1 � � �ckm�1

m :
Clearly the power series c1; . . . ;cm and c0 (if ord c0 > 0) are S-elementary.
According to Lemma 5.2 we get the factorization

(13) ðqf ÞT ¼ g0g1 � � � gm in CfX ;Yg such that
� ord g0 > 0 if and only if ord c0 > 0. If ord g0 > 0 then g0 is S-

elementary, Nðg0Þ ¼ fSð0Þg and inðg0;Sð0ÞÞ ¼ c0,
�� ord gj > 0 if and only if kj > 1 (for j ¼ 1; . . . ;m). If ord gj > 0 then

gj is S-elementary, NðgjÞ ¼ fSð jÞg and Nðgj ;Sð jÞÞ ¼ c
kj�1
j .

Let AS ¼ g0 and BS ¼ g1 � � � gm. By (13) we get ðqf ÞT ¼ ASBS. Suppose that
ord AS > 0. Then NðASÞ ¼ f ~SSg where ~SS ¼ Sð0Þ and inðAS; ~SSÞ ¼ inðg0;Sð0ÞÞ
¼ c0, consequently inðAS; ~SSÞ and inð f ;SÞ are coprime. On the other hand

ord BS ¼
Xm
j¼1

ord gj ¼
Xm
j¼1

ðkj � 1Þ ord cj

¼
Xm
j¼1

kj ord cj �
Xm
j¼1

cj

¼ ord inð f ;SÞ� � inð f ;SÞ�red ¼ dð f ;SÞ:

Suppose that ord BS > 0. The power series BS is S-elementary as a product of

S-elementary power series. If NðBSÞ ¼ f ~~SS~SSg then inðBS;
~~SS~SSÞ ¼

Qm
j¼1 c

kj�1
j divides

inð f ;SÞ.

Proposition 6.3. Let S A N��
f and let h be an irreducible factor of gS.

Then ð f ; hÞ0=ord hbmaxðaðSÞ; bðSÞÞ. The inequality ð f ; hÞ0=ord h > maxðaðSÞ;
bðSÞÞ holds if and only if the following two conditions are fulfiled
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(a) the power series h is S-elementary,
(b) if ~SS is the unique segment of Nh then the system of equations inðh; ~SSÞ ¼ 0,

inð f ;SÞ ¼ 0 has a solution in ðCnf0gÞ � ðCnf0gÞ.

Proof. Proposition 6.3 follows from [LP], Lemma 3.2, p. 316 which remains
true when we replace the phrase ‘‘if the pair f ; h is nondegenerate’’ by ‘‘if and
only if the pair f ; h is nondegenerate’’.

Now we can give the proof of Theorem 1.1. Let us consider the facto-
rization

qf ¼ g
Y

S AN��
f

gS in CfX ;Yg

such that in Proposition 6.1.
Let S A N��

f be a segment of the first kind. Then by Proposition 6.1 (ii) we

have gS ¼ ðqf ÞT where T A Nqf is a segment parallel to S. Let gS ¼ ðqf ÞT ¼
ASBS be the factorization of ðqf ÞT such that in Proposition 6.2. Then
ord BS ¼ dð f ;SÞ by Proposition 6.2 (ii) and consequently ord AS ¼ ord gS �
ord BS ¼ kSk þ eðSÞ � dð f ;SÞ by Proposition 6.1 (i). Moreover if ord AS > 0
(resp. ord BS > 0) then AS (resp. BS) is S-elementary. Let h be an irreducible
factor of ASBS ¼ gS. Then ð f ; hÞ0=ord hbmaxðaðSÞ; bðSÞÞ by Proposition 6.3.
Using Proposition 6.2 we check that h divides BS if and only if h fulfils conditions
(a) and (b) from Proposition 6.3. Thus ð f ; hÞ0=ord h > maxðaðSÞ; bðSÞÞ if and
only if h is a divisor of BS. Summing up, we have checked that the factorization
gS ¼ ASBS where S A N�

f is of the first kind, satisfies all conditions stated in
Theorem 1.1. Now suppose that S A N��

f is of the second kind. We consider
two cases.

Case 1. There is no segment T A Nqf parallel to S. Then dð f ;SÞ ¼ 0 by
6.1 (iii) (d) and we put AS ¼ A 0

S ¼ 1, A 00
S ¼ gS and BS ¼ 1. Using Proposition

6.1 we check that the factorization gS ¼ A 0
SA

00
SBS has all properties needed in

Theorem 1.1.

Case 2. There is a segment T A Nqf parallel to S. Then by Proposition
6.2 we get

ðqf ÞT ¼ A 0
SBS in CfX ;Yg:

On the other hand ðqf ÞT divides gS by Proposition 6.1 (iii) and we can write

gS ¼ A 00
Sðqf ÞT in CfX ;Yg:

Thus we get gS ¼ ASBS with AS ¼ A 0
SA

00
S . As in the case of the segment of

the first kind we check that the factorizations gS ¼ ASBS, AS ¼ A 0
SA

00
S have all

properties stated in Theorem 1.1. To finish the proof it su‰ces to check that
there is a factorization g ¼ AB in CfX ;Yg with ord A ¼ tð f Þ � 1 such that h is
an irreducible factor of g with property ð f ; hÞ0=ord h ¼ ord f if and only if h
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divides A. To this purpose we apply Lemma 4.3 to the series qf and observe
that if h is an irreducible factor of

Q
S AN��

f
gS then ð f ; hÞ0=ord hbmaxðaðSÞ; bðSÞÞ

for a segment S A N��
f and maxðaðSÞ; bðSÞÞ > ord f .
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