LEIBNIZ ALGEBRAS ASSOCIATED WITH FOLIATIONS

Yohsuke Hagiwara and Tadayoshi Mizutani

Abstract

Certain types of singular foliations on a manifold have Leibniz algebra structures on the space of multivector fields. Each of them has a structure of a central extension of a Lie algebra in the sense of Leibniz algebra. To a specific Leibniz cohomology class, there corresponds an isomorphism class of central extension of a Leibniz algebra similarly as in the case of Lie algebra.

1. Introduction

Recently, a lot of interests have been taken in Leibniz algebra, which is introduced by Loday [10, 11] as a non-commutative variation of Lie algebra. A Leibniz algebra g is an *R*-module, where *R* is a commutative ring, endowed with a bilinear map $[,]: g \times g \rightarrow g$ satisfying

$$[g_1, [g_2, g_3]] = [[g_1, g_2], g_3] + [g_2, [g_1, g_3]].$$

Note that we do not require the anti-symmetricity of [,].

In this paper, we consider Leibniz algebra associated with a certain type of singular foliations on a manifold. More precisely, we observe that when an integrable and locally decomposable q-form ω on a manifold M is given, there yields a foliation \mathscr{F} of M whose leaves are either of dimension n-q or 0. Any transversely oriented regular foliation of codimension q is defined by such a q-form. We show that the bundle of (q+1)-vectors $\bigwedge^{q+1} TM$ on M has a Leibniz algebroid structure whose anchor map is a interior product by ω and whose bracket is given by

$$\llbracket X, Y \rrbracket_{\omega} = [\iota_{\omega} X, Y] + (-1)^{q} \langle X | d\omega \rangle Y$$

for any $X, Y \in \mathcal{X}^{q+1}(M)$, where [,] denotes the Schouten bracket, $\langle | \rangle$ the natural pairing and $\mathcal{X}^{q+1}(M)$ the space of (q+1)-vector fields. We see that the isomorphism class of the algebra is determined by the foliation \mathscr{F} . It is not a Lie algebra in general unless q = 0 or q = n - 2. Considering the difference of $\mathcal{X}^{q+1}(M)$ from Lie algebra, it is shown that $\mathcal{X}^{q+1}(M)$ is, as a Leibniz algebra, a central extension of the Lie algebra of vector fields tangent to \mathscr{F} .

Received November 9, 2001; revised February 18, 2002.

As it is known, central extensions of a Lie algebra g with the center A are described by $H^2_{\text{Lie}}(g; A)$ where $H^*_{\text{Lie}}(g; A)$ denotes the Lie algebra cohomology with coefficients in A. One can ask the question: how about the case of Leibniz algebras? We see that the "usual" cohomology of Leibniz algebra does not work, but a slightly different cohomology $H^*(g; A)$ makes a similar one-to-one correspondence between equivalent classes of central extensions and elements in $H^2(g; A)$. It means that, when g' is a central extension of a Leibniz algebra g with the center A, Leibniz algebra structures of g' is determined by an element in $H^2(g; A)$. Applying it to Leibniz algebras associated with foliations, we can obtain a lot of geometric examples of central extensions of Leibniz algebras.

The (co)homology of Leibniz algebra is studied by Loday and Pirashvili [12]. Lodder [14] extends the Leibniz cohomology from a Lie algebra invariant to an invariant for a differential manifold. The notion of Leibniz algebroid over a manifold was defined in [9] as a vector bundle with certain additional conditions as in the case of Lie algebroid, and it was proved that the bundle of (p-1)forms on a Nambu-Poisson manifold has a Leibniz algebroid structure. In [6], one of the author discovered an alternative Leibniz algebroid structure which is a natural generalization of the Lie algebroid associated with a Poisson manifold. Description of all Leibniz algebras of dimension three is given in [1].

2. Leibniz algebras and cohomologies

First we review the notion of Leibniz algebra defined by Loday [10, 11, 12]. Let *R* be a commutative ring and g an *R*-module endowed with a bilinear map $[,]: g \times g \rightarrow g$ satisfying

$$[g_1, [g_2, g_3]] = [[g_1, g_2], g_3] + [g_2, [g_1, g_3]]$$

for $g_1, g_2, g_3 \in \mathfrak{g}$. The map [,] is called the Leibniz bracket on \mathfrak{g} and (2.1) the Leibniz identity. We remark that if [,] is additionally skew-symmetric, then the Leibniz identity is just the Jacobi identity and $(\mathfrak{g}, [,])$ is a Lie algebra. Therefore, a Leibniz algebra is a non-commutative variant of Lie algebra.

Now we consider the cohomology of a Leibniz algebra with values in a module [12]. Suppose that (g, [,]) is a Leibniz algebra and A an R-module equipped with bilinear actions of g

$$[,]:\mathfrak{g}\times A\to A, \quad [,]:A\times\mathfrak{g}\to A$$

such that

$$[a, [g_1, g_2]] = [[a, g_1], g_2] + [g_1, [a, g_2]]$$

$$[g_1, [a, g_2]] = [[g_1, a], g_2] + [a, [g_1, g_2]]$$

$$[g_1, [g_2, a]] = [[g_1, g_2], a] + [g_2, [g_1, a]]$$

for $g_1, g_2 \in \mathfrak{g}$ and $a \in A$. We also use the notations $ga = l_g(a) = [g, a]$ and $ag = r_g(a) = [a, g]$. The condition (2.2)–(2.4) above is equivalent to that

(2.5)
$$l_{[g_1,g_2]} = [l_{g_1}, l_{g_2}]$$

(2.6)
$$r_{[g_1,g_2]} = [l_{g_1}, r_{g_2}]$$

(2.7)
$$r_{g_2} \circ l_{g_1} = -r_{g_2} \circ r_{g_1}$$

where [,] in the right-hand side of (2.5) and (2.6) denotes the commutator of operators.

The Leibniz cohomology of \mathfrak{g} with coefficients in A is the homology of the cochain complex $C^k(\mathfrak{g}; A) = \operatorname{Hom}_R(\otimes^k \mathfrak{g}, A)$ $(k \ge 0)$ whose coboundary operator $\partial^k : C^k(\mathfrak{g}; A) \to C^{k+1}(\mathfrak{g}; A)$ is defined by

$$(2.8) \quad \partial^k c^k(g_1, \dots, g_{k+1}) \\ = \sum_{i=1}^k (-1)^{i-1} g_i(c^k(g_1, \dots, \widehat{g_i}, \dots, g_{k+1})) + (-1)^k (c^k(g_1, \dots, g_k)) g_{k+1} \\ + \sum_{1 \le i < j \le k+1} (-1)^i c^k(g_1, \dots, \widehat{g_i}, \dots, g_{j-1}, [g_i, g_j], g_{j+1}, \dots, g_{k+1})$$

where (g_1, \ldots, g_{k+1}) denotes $g_1 \otimes \cdots \otimes g_{k+1}$. The condition $\partial \circ \partial = 0$ is proved in [12].

When the left action and the (-1) times of the right action agree, we get the following "usual" Leibniz cohomology:

PROPOSITION 2.1. Let g be a Leibniz algebra and A a g-module with respect to the representation of g on A, that is, A is endowed with a bilinear map $g \times A \rightarrow A$ such that $[g_1,g_2]a = g_1(g_2a) - g_2(g_1a)$. Then the operator $\partial^k : C^k(g;A) \rightarrow C^{k+1}(g;A)$ given by

(2.9)
$$\hat{\sigma}^{k} c^{k}(g_{1}, \dots, g_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} g_{i}(c^{k}(g_{1}, \dots, \widehat{g_{i}}, \dots, g_{k+1})) \\ + \sum_{1 \le i < j \le k+1} (-1)^{i} c^{k}(g_{1}, \dots, \widehat{g_{i}}, \dots, g_{j-1}, g_{j}) \\ [g_{i}, g_{j}], g_{j+1}, \dots, g_{k+1}]$$

defines a Leibniz cohomology of \mathfrak{g} with coefficients in A.

In most of the cases, we consider the Leibniz cohomology of this type, which is denoted by $HL^*(\mathfrak{g}; A)$. If $(\mathfrak{g}, [,])$ is a Lie algebra, we obtain the subcomplex of $(C^*(\mathfrak{g}; A), \partial)$ that consists of the skew-symmetric cochains. The cohomology of this subcomplex is just the usual cohomology $H^*_{\text{Lie}}(\mathfrak{g}; A)$ of the Lie algebra $(\mathfrak{g}, [,])$ with coefficients in A. Thus there is a natural homomorphism

$$\iota: H^*_{\operatorname{Lie}}(\mathfrak{g}; A) \to HL^*(\mathfrak{g}; A).$$

The followings are several examples of Leibniz cohomology we have in mind.

Example 2.2 ([2, 4, 16]). Let (M, Π) be a Nambu-Poisson manifold of order p, that is, Π is a p-vector field satisfying

$$[\Pi(df_1,\ldots,df_{p-1}),\Pi]=0$$

for $f_1, \ldots, f_{p-1} \in C^{\infty}(M)$, where [,] denotes the Schouten bracket. It holds that $\bigwedge^{p-1} C^{\infty}(M)$ is a Leibniz algebra by the bracket $[\![,]\!]$ defined by

$$[f_1 \wedge \dots \wedge f_{p-1}, g_1 \wedge \dots \wedge g_{p-1}]]$$

= $\sum_{i=1}^{p-1} g_1 \wedge \dots \wedge \Pi(df_1, \dots, df_{p-1}, dg_i) \wedge \dots \wedge g_{p-1}$

for $f_1, \ldots, f_{p-1}, g_1, \ldots, g_{p-1} \in C^{\infty}(M)$. Furthermore, by the natural action

$$[f_1 \wedge \cdots \wedge f_{p-1}, f] = \Pi(df_1, \dots, df_{p-1}, df),$$

we obtain the Leibniz cohomology $HL^*(\bigwedge^{p-1} C^{\infty}(M); C^{\infty}(M))$.

Example 2.3 ([9]). Let (M, Π) be a Nambu-Poisson manifold of order $p \ge 3$. The space of (p-1)-forms $\Omega^{p-1}(M)$ is a Leibniz algebra by the bracket $[\![,]\!]$ defined by

(2.10)
$$[\![\alpha,\beta]\!] = \mathscr{L}_{\Pi(\alpha)}\beta + (-1)^p (\Pi(d\alpha))\beta$$

for $\alpha, \beta \in \Omega^{p-1}(M)$. By the action of $\Omega^{p-1}(M)$ on $C^{\infty}(M)$

 $[\alpha, f] = \Pi(\alpha, df),$

we obtain the Leibniz cohomology $HL^*(\Omega^{p-1}(M); C^{\infty}(M))$. The cochain complex $C^k(\Omega^{p-1}(M); C^{\infty}(M))$ has the subcomplex $C^k(\bigwedge^{p-1} dC^{\infty}(M); C^{\infty}(M))$, and there exist a natural map from $C^k(\bigwedge^{p-1} C^{\infty}(M); C^{\infty}(M))$ (Example 2.2) to $C^k(\Omega^{p-1}(M); C^{\infty}(M))$ whose image is this subcomplex.

Example 2.4 ([6]). In case of Nambu-Poisson manifold of order 2, the bracket (2.10) gives a Leibniz algebra structure only if the Poisson structure is decomposable (that is, rank $\Pi \leq 2$), and then agrees with the Lie algebra bracket on the space of 1-forms. One of the authors proved that there is a different Leibniz bracket

(2.11)
$$[\![\alpha,\beta]\!]' = \mathscr{L}_{\Pi(\alpha)}\beta - \iota_{\Pi(\beta)} d\alpha$$

on $\Omega^{p-1}(M)$ for $p \ge 2$, which agrees with the Lie bracket when p = 2. It defines a different Leibniz cohomology from that in Example 2.3, but it holds similarly that the cochain complex $C^k(\Omega^{p-1}(M); C^{\infty}(M))$ has the subcomplex $C^k(\bigwedge^{p-1} dC^{\infty}(M); C^{\infty}(M))$ and there exist a natural map from $C^k(\bigwedge^{p-1} C^{\infty}(M); C^{\infty}(M))$ to it.

Example 2.5 ([13]). Let M be a smooth manifold and $(\mathscr{X}(M), [,])$ the Lie

algebra of smooth vector fields on M. It is obvious that $C^{\infty}(M)$ is a $\mathscr{X}(M)$ module with respect to the representation by the Lie derivation. The Leibniz cohomology $HL^*(\mathscr{X}(M); C^{\infty}(M))$ is, by definition ([13]), the homology of the complex of continuous cochains $\operatorname{Hom}_{\mathbb{R}}^{\operatorname{cont}}(\otimes^k \mathscr{X}(M), C^{\infty}(M))$ $(k \ge 0)$ in the C^{∞} topology. The coboundary operator is given as the exterior differential, that is,

$$(2.12) \quad d^{k}c^{k}(X_{1},\ldots,X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1}X_{i}(c^{k}(X_{1},\ldots,\widehat{X_{i}},\ldots,X_{k+1})) \\ + \sum_{1 \le i < j \le k+1} (-1)^{i}c^{k}(X_{1},\ldots,\widehat{X_{i}},\ldots,X_{j-1},[X_{i},X_{j}], \\ X_{i+1},\ldots,X_{k+1})$$

for $X_1, \ldots, X_{k+1} \in \mathscr{X}(M)$. The de Rham cohomology $H^*_{DR}(M)$ of M is just the cohomology of the subcomplex of the skew-symmetric and $C^{\infty}(M)$ -linear co-chains. Then the diagram

(2.13)
$$\begin{array}{c} H^*_{DR}(M) \xrightarrow{\iota} H^*_{GF}(\mathscr{X}(M); C^{\infty}(M)) \\ \pi_{\circ \iota} \downarrow & \swarrow \\ HL^*(\mathscr{X}(M); C^{\infty}(M)) \end{array}$$

commutes where $H^*_{GF}(\mathscr{X}(M); C^{\infty}(M))$ denotes the Gel'fand-Fuks cohomology. The map $\iota: H^*_{DR}(M) \to H^*_{GF}(\mathscr{X}(M); C^{\infty}(M))$ is induced by the inclusion

 $\operatorname{Hom}_{C^{\infty}(M)}^{\operatorname{cont}}(\mathscr{X}^{k}(M);C^{\infty}(M))\to\operatorname{Hom}_{{\pmb{R}}}^{\operatorname{cont}}(\mathscr{X}^{k}(M);C^{\infty}(M))$

where $\mathscr{X}^{k}(M)$ denotes the space of k-vector fields on M and $\pi: H^{*}_{GF}(\mathscr{X}(M); C^{\infty}(M)) \to HL^{*}(\mathscr{X}(M); C^{\infty}(M))$ is induced by the projection $\otimes^{k} \mathscr{X}(M) \to \mathscr{X}^{k}(M)$.

3. Leibniz algebras associated with foliations

The notion of Leibniz algebroid is introduced in [9] as a generalization of the Lie algebroid:

DEFINITION 3.1. A Leibniz algebroid is a smooth vector bundle $\pi : A \to M$ with a Leibniz algebra structure $[\![,]\!]$ on $\Gamma(A)$ (the space of smooth sections of A) and a bundle map $\rho : A \to TM$, called an anchor, such that the induced map $\rho : \Gamma(A) \to \mathcal{X}(M)$ satisfies the following properties:

(1) (Leibniz algebra homomorphism)

$$\rho(\llbracket x, y \rrbracket) = [\rho(x), \rho(y)]$$

(2) (derivation law)

$$\llbracket x, fy \rrbracket = (\rho(x)f)y + f\llbracket x, y \rrbracket$$

for all $x, y \in \Gamma(A)$ and $f \in C^{\infty}(M)$.

Example 3.2. If the bracket $[\![,]\!]$ is skew-symmetric, we recover the Lie algebroid.

Example 3.3. The bundle of (p-1)-forms $\bigwedge^{p-1} T^*M$ over a Nambu-Poisson manifold (M, Π) of order p is a Leibniz algebroid with the anchor map $\Pi : \bigwedge^{p-1} T^*M \to TM$ and the bracket either (2.10) $(p \ge 2$ which we assume Π is decomposable when p = 2) or (2.11) $(p \ge 2)$.

Example 3.4 ([5]). There is a different generalization of Lie algebroid. A Filippov *p*-algebroid, or *p*-Lie algebroid, $(E, \pi, [, ...,])$ over a manifold *M* is a vector bundle *E* endowed with a *p*-Lie bracket [, ...,] on $\Gamma(E)$, that is, the skew-symmetric bracket satisfying the Filippov (or Fundamental) identity

$$[a_1, \dots, a_{p-1}, [b_1, \dots, b_p]] = \sum_{i=1}^p [b_1, \dots, [a_1, \dots, a_{p-1}, b_i], \dots, b_p]$$

for any $a_1, \ldots, a_{p-1}, b_1, \ldots, b_p \in \Gamma(E)$, and a bundle map $\pi : \bigwedge^{p-1} E \to TM$, called an anchor, such that the induced map $\pi : \Gamma(\bigwedge^{p-1} E) \to \mathscr{X}(M)$ satisfies the following properties:

$$[\pi(a_1 \wedge \dots \wedge a_{p-1}), \pi(b_1 \wedge \dots \wedge b_{p-1})]$$

= $\sum_{i=1}^{p-1} \pi(b_1 \wedge \dots \wedge [a_1, \dots, a_{p-1}, b_i] \wedge \dots \wedge b_{p-1}),$
 $a_1, \dots, a_{p-1}, fb] = f[a_1, \dots, a_{p-1}, b] + (\pi(a_1 \wedge \dots \wedge a_{p-1})f)b$

for all $a_1, \ldots, a_{p-1}, b_1, \ldots, b_{p-1}, b \in \Gamma(E)$ and $f \in C^{\infty}(M)$. In this case, it is shown that $\bigwedge^{p-1} E$ is a Leibniz algebroid with the anchor π and the bracket

$$\llbracket a_1 \wedge \cdots \wedge a_{p-1}, b_1 \wedge \cdots \wedge b_{p-1} \rrbracket = \sum_{i=1}^{p-1} b_1 \wedge \cdots \wedge [a_1, \dots, a_{p-1}, b_i] \wedge \cdots \wedge b_{p-1}.$$

In the recent paper [20], it has been shown that any Nambu-Poisson manifold has an associated Filippov algebroid.

Let \mathscr{F} be a transversely oriented foliation of codimension q on M. Then we deduce, by using a partition of unity, that there exists a transverse volume form ω on M such that ω is decomposable (that is, $\omega = \omega_1 \wedge \cdots \wedge \omega_q$ for some 1-forms $\omega_1, \ldots, \omega_q$) and integrable $(d\omega = \gamma \wedge \omega)$ for some 1-form γ). In this paper, we call a decomposable and integrable form ω on M simply an integrable form. We remark that ω needs not to be nonsingular. When ω is nonsingular, the transversely oriented foliation \mathscr{F} is recovered by $\omega_1 = \cdots = \omega_q = 0$ where $\omega = \omega_1 \wedge \cdots \wedge \omega_q$. If ω is singular, it yields a foliation whose leaves are of codimension q where $\omega \neq 0$ and otherwise of dimension 0; we consider the foliation to be given by the interior product $\iota_{\omega} : \bigwedge^{q+1} TM \to TM$. Thus the equivalence class of an integrable form gives a foliation. Now, we will prove that such a foliation given by an integrable q-form on a manifold M gives the Leibniz algebroid structure to the bundle of (q + 1)-vectors.

THEOREM 3.5. Let M be an n-dimensional smooth manifold endowed with a decomposable and integrable q-form ω (q < n). Then $\bigwedge^{q+1} TM$ becomes a Leibniz algebroid over M whose anchor is the interior product $\iota_{\omega} : \bigwedge^{q+1} TM \to TM$ and whose bracket is defined by

$$\llbracket X, Y \rrbracket_{\omega} = [\iota_{\omega} X, Y] + (-1)^{q} \langle X | d\omega \rangle Y.$$

for any $X, Y \in \mathcal{X}^{q+1}(M)$, where [,] denotes the Schouten bracket, $\langle | \rangle$ the natural pairing and $\mathcal{X}^{q+1}(M)$ the space of (q+1)-vector fields.

Proof. This Leibniz algebroid is essentially the same as that in Example 3.3 with the bracket (2.10) by the correspondence $\Pi = (-1)^{nq} \Phi(\omega)$ where Φ is an arbitrary co-volume field on M (that is, a dimensional multivector field). However, we will give a direct verification in the realm of multivector fields.

We abbreviate $[\![,]\!]_{\omega}$ to $[\![,]\!]$. It is easy to see $[\![X, fY]\!] = ((\iota_{\omega}X)f)Y + f[\![X, Y]\!]$. Let us prove $\iota_{\omega}([\![X, Y]\!]) = [\iota_{\omega}X, \iota_{\omega}Y]$. Since ω is integrable, there is a 1-form γ such that $d\omega = \gamma \wedge \omega$. By the decomposability of ω we have $\omega(X(\omega)) = 0$. Thus

(3.1)
$$\iota_{X(\omega)} d\omega = (-1)^q \langle X | d\omega \rangle \omega.$$

Moreover,

$$\begin{aligned} (\mathscr{L}_{X(\omega)}Y)(\omega) &= \mathscr{L}_{X(\omega)}(Y(\omega)) - Y(\mathscr{L}_{X(\omega)}\omega) \\ &= [X(\omega), Y(\omega)] - (-1)^q \langle X \,|\, d\omega \rangle (Y(\omega)). \end{aligned}$$

Therefore, we get

(3.2)
$$\iota_{\omega}\llbracket X, Y \rrbracket = [X(\omega), Y](\omega) + (-1)^{q} \langle X | d\omega \rangle (Y(\omega))$$
$$= [\iota_{\omega} X, \iota_{\omega} Y].$$

Now we will see that the Leibniz identity holds. Let $X, Y, Z \in \mathscr{X}^{q+1}(M)$. By (3.1),

$$d\iota_{X(\omega)} \, d\omega = \omega \wedge (d\langle X \, | \, d\omega \rangle) + (-1)^q \langle X \, | \, d\omega \rangle \, d\omega.$$

Thus we have

$$\begin{split} \llbracket X, Y \rrbracket (d\omega) &= (\mathscr{L}_{X(\omega)} Y) (d\omega) + (-1)^q \langle X | d\omega \rangle \langle Y | d\omega \rangle \\ &= \mathscr{L}_{X(\omega)} \langle Y | d\omega \rangle - Y (\mathscr{L}_{X(\omega)} d\omega) + (-1)^q \langle X | d\omega \rangle \langle Y | d\omega \rangle \\ &= (X(\omega)) \langle Y | d\omega \rangle - Y (d\iota_{X(\omega)} d\omega) + (-1)^q \langle X | d\omega \rangle \langle Y | d\omega \rangle \\ &= (X(\omega)) \langle Y | d\omega \rangle - (Y(\omega)) \langle X | d\omega \rangle. \end{split}$$

Therefore, by (3.2),

$$\llbracket\llbracket X, Y \rrbracket, Z \rrbracket = \llbracket [X(\omega), Y(\omega)], Z \rrbracket + (-1)^q ((X(\omega)) \langle Y | d\omega \rangle - (Y(\omega)) \langle X | d\omega \rangle) Z.$$

Also using (3.2), we have

$$\begin{split} \llbracket X, \llbracket Y, Z \rrbracket \rrbracket &= [X(\omega), \llbracket Y, Z \rrbracket] + (-1)^q \langle X | d\omega \rangle \llbracket Y, Z \rrbracket \\ &= [X(\omega), [Y(\omega), Z] + (-1)^q \langle Y | d\omega \rangle Z] \\ &+ (-1)^q \langle X | d\omega \rangle ([Y(\omega), Z] + (-1)^q \langle Y | d\omega \rangle Z) \\ &= [X(\omega), [Y(\omega), Z]] \\ &+ (-1)^q ((X(\omega)) \langle Y | d\omega \rangle) Z + (-1)^q \langle Y | d\omega \rangle [X(\omega), Z] \\ &+ (-1)^q \langle X | d\omega \rangle [Y(\omega), Z] + \langle X | d\omega \rangle \langle Y | d\omega \rangle Z. \end{split}$$

In the same way, we have

$$\begin{split} \llbracket Y, \llbracket X, Z \rrbracket \rrbracket &= [Y(\omega), [X(\omega), Z]] \\ &+ (-1)^q ((Y(\omega)) \langle X | d\omega \rangle) Z + (-1)^q \langle X | d\omega \rangle [Y(\omega), Z] \\ &+ (-1)^q \langle Y | d\omega \rangle [X(\omega), Z] + \langle X | d\omega \rangle \langle Y | d\omega \rangle Z. \end{split}$$

Then the Leibniz identity

$$\llbracket X, \llbracket Y, Z
rbracket
rbracket = \llbracket \llbracket X, Y
rbracket, Z
rbracket + \llbracket Y, \llbracket X, Z
rbracket$$

is equivalent to

$$[X(\omega), [Y(\omega), Z]] = [[X(\omega), Y(\omega)], Z] + [Y(\omega), [X(\omega), Z]]$$

which is true since $[\mathscr{L}_{X(\omega)}, \mathscr{L}_{Y(\omega)}] = \mathscr{L}_{[X(\omega), Y(\omega)]}$ holds.

COROLLARY 3.6. (1) $(\mathscr{X}^{q+1}(M), [\![,]\!])$ is a Leibniz algebra where

(3.3)
$$[X, Y] = [\iota_{\omega} X, Y] + (-1)^q (X(d\omega)) Y.$$

The interior product ι_{ω} is a Leibniz algebra homomorphism from $\mathscr{X}^{q+1}(M)$ to the Lie algebra of vector fields $(\mathscr{X}(M), [,])$. It also holds that $[\![\ker \iota_{\omega}, Y]\!] = 0$ and $[\![X, \ker \iota_{\omega}]\!] \in \ker \iota_{\omega}$ where $X, Y \in \mathscr{X}^{q+1}(M)$. (2) For any non-zero function f, the multiplication by f induces an isomor-

(2) For any non-zero function f, the multiplication by f induces an isomorphism from the Leibniz algebra $(\mathscr{X}^{q+1}(M), [\![,]\!]_{f\omega})$ to $(\mathscr{X}^{q+1}(M), [\![,]\!]_{\omega})$. That is, the isomorphism class of Leibniz algebra structure is determined by the foliation.

Proof. Since (1) is obvious, we will check (2). We have

$$\begin{split} \llbracket X, Y \rrbracket_{f\omega} &= f[X(\omega), Y] - X(\omega) \wedge Y(df) + (X(\omega \wedge df))Y + (-1)^q \langle X \mid f \ d\omega \rangle)Y \\ &= f\llbracket X, Y \rrbracket_{\omega} + (X(\omega) \wedge Y)(df). \end{split}$$

On the other hand, we have

$$\begin{split} \llbracket fX, fY \rrbracket_{\omega} &= (fX(\omega \wedge df))Y + f\llbracket fX, Y \rrbracket_{\omega} \\ &= f^2 [X(\omega), Y] - fX(\omega) \wedge Y(df) \\ &+ (-1)^q f^2 (X(d\omega))Y + f(X(\omega \wedge df))Y \\ &= f^2 \llbracket X, Y \rrbracket_{\omega} + f(X(\omega) \wedge Y)(df). \end{split}$$

This is equal to $f[[X, Y]]_{f\omega}$, and we obtain (2).

In general, $(\mathscr{X}^{q+1}(M), [\![,]\!])$ is not a Lie algebra unless q = 0 or q = n - 2.

- *Example* 3.7. (1) The case q = n 2 corresponds to the Lie algebra associated with a Poisson manifold of rank 2 via the isomorphism by the volume.
- (2) Consider the case q = 0. For any function f on M, the Lie bracket is given as

$$[X, Y]_f = f[X, Y] + (Xf)Y - (Yf)X$$

where $X, Y \in \mathcal{X}(M)$. This corresponds to the Lie algebra associated with a Nambu-Poisson manifold coming from a volume form.

(3) Consider the case q = n - 1. Then the Leibniz bracket is given as

 $[\![f\Phi,g\Phi]\!]_{\omega} = (fZg - gZf + fg\langle Z|\gamma\rangle)\Phi$

where Φ is a co-volume field, $f, g \in C^{\infty}(M)$, $d\omega = \gamma \wedge \omega$ and $Z = \Phi(\omega)$. Therefore, if ω is a closed (n-1)-form, $(\mathscr{X}^n(M), [\![,]\!]_{\omega})$ is a Lie algebra. This corresponds to $(C^{\infty}(M), [,]_Z)$ defined by an arbitrary vector field Z where

$$[f,g]_Z = fZg - gZf.$$

Sometimes, we have a Lie algebra as a Leibniz subalgebra. For example, let us consider $(\mathscr{X}^2(\mathbb{R}^n), [\![,]\!]_{\omega})$. By Corollary 3.6, it is a Leibniz algebra if ω is an integrable 1-form on \mathbb{R}^n . In the following by a constant bivector field we mean the bivector field of the form

$$\sum_{i < j} a_{ij} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}$$

where $a_{ij} \in \mathbf{R}$.

PROPOSITION 3.8. Let f be a quadratic function on \mathbb{R}^n . In the Leibniz algebra $(\mathscr{X}^2(\mathbb{R}^n), [\![,]\!]_{df})$, the subset of constant bivector fields $\mathscr{X}^2_{\text{const}}(\mathbb{R}^n)$ forms a Lie algebra.

Proof. It follows from a direct computation.

We can relate this Lie algebra to the Lie algebra of matrices; let (j,k) be the

signature and *l* the nullity of any quadratic function f on \mathbb{R}^n . Denote by P_f the matrix diag $(I_{j+k}, 0_l)$ where I_{j+k} is the unit matrix of size j + k and 0_l is the zero matrix of size *l*, and by so(j,k,l) the set of matrices in gl(n) satisfying

$$I_{jkl}A + {}^{t}AI_{jkl} = 0$$

where $I_{jkl} = \text{diag}(I_j, -I_k, I_l)$. Then,

THEOREM 3.9. $(\mathscr{X}_{const}^2(\mathbb{R}^n), [\![,]\!]_{df})$ is isomorphic to $(so(j, k, l), \{,\}_{P_f})$ where $\{X, Y\}_{P_f} = XP_f Y - YP_f X$ for any $X, Y \in so(j, k, l)$.

Proof. It also follows from a direct computation.

In case f is nondegenerate, $(\mathscr{X}_{const}^2(\mathbf{R}^n), [\![,]\!]_{df})$ is isomorphic to (so(j, k), [,]).

4. Central extensions of Leibniz algebras

Let us return to the Leibniz cohomology of a Leibniz algebra g. The condition (2.2)-(2.4) admits the case that the right action $r_g = 0$ for any $g \in g$. If this is the case, we get a different Leibniz cohomology from "usual" one given by Proposition 2.1. In this section, we assume the right action $r_g = 0$, and we use this kind of Leibniz cohomology since it is essential when we consider the extensions of Leibniz algebras.

PROPOSITION 4.1. Let \mathfrak{g} be a Leibniz algebra and A a \mathfrak{g} -module with respect to the representation of \mathfrak{g} on A, that is, A is endowed with a bilinear map $\mathfrak{g} \times A \to A$ such that $[g_1, g_2]a = g_1(g_2a) - g_2(g_1a)$. Then the operator $\delta^k : C^k(\mathfrak{g}; A) \to C^{k+1}(\mathfrak{g}; A)$ given by

(4.1)
$$\delta^{k} c^{k}(g_{1}, \dots, g_{k+1}) = \sum_{i=1}^{k} (-1)^{i-1} g_{i}(c^{k}(g_{1}, \dots, \widehat{g_{i}}, \dots, g_{k+1})) + \sum_{1 \le i < j \le k+1} (-1)^{i} c^{k}(g_{1}, \dots, \widehat{g_{i}}, \dots, g_{j-1}, \dots, g_{j-1})$$

 $[g_i,g_j],g_{j+1},\ldots,g_{k+1})$

defines a Leibniz cohomology of g with coefficients in A.

We denote this Leibniz cohomology by $H^*(\mathfrak{g}; A)$. Note that even though \mathfrak{g} is a Lie algebra and c^k is skew-symmetric, c^{k+1} is not skew-symmetric in general.

Now, we will consider the central extensions of Leibniz algebras. A central extension $(g', [\![,]\!])$ of a Leibniz algebra (g, [,]) with a center A is a Leibniz algebra with a surjective homomorphism $\Pi : g' \to g$ whose kernel A is a center in the sense of $[\![A, g']\!] = 0$. This is equivalent to giving an exact sequence

$$0 \to A \stackrel{\iota}{\to} \mathfrak{g}' \stackrel{\Pi}{\to} \mathfrak{g} \to 0$$

such that A is a center of g'.

The next theorem shows that an analog of the case of Lie algebra holds (see also [12]).

THEOREM 4.2. Let $(\mathfrak{g}, [,])$ be a Leibniz algebra and A a \mathfrak{g} -module. Then an element of $H^2(\mathfrak{g}; A)$ determines an equivalence class of central extensions of \mathfrak{g} with the center A. The action of \mathfrak{g} on A is recovered by $g \cdot a = [\![s(g), a]\!]$ where $(\mathfrak{g}', [\![,]\!])$ is a central extension of \mathfrak{g} and $s : \mathfrak{g} \to \mathfrak{g}'$ an arbitrary linear map satisfying $\Pi \circ s = \mathrm{id}_{\mathfrak{g}}$. Conversely, an equivalence class of central extensions of \mathfrak{g} with the center A defines the action of \mathfrak{g} on A by $g \cdot a = [\![s(g), a]\!]$ where s is as above, and determines an element of $H^2(\mathfrak{g}; A)$. That is, a central extension of a Leibniz algebra \mathfrak{g} with a center A is in one-to-one correspondence to an element of $H^2(\mathfrak{g}; A)$ up to isomorphisms.

Proof. Take an arbitrary "section" s. Then $S = s(\mathfrak{g})$ has a Leibniz bracket $[,]_s$ induced by s. We may write $\mathfrak{g}' = S \oplus A$. Thus it may be written $g'_i = s(g_i) + a_i$ for any $g'_i \in \mathfrak{g}'$ where $\Pi(g'_i) = g_i \in \mathfrak{g}, a_i \in A$ and i = 1, 2. We deduce that the action of \mathfrak{g} on A is independent to the choice of a section map s. It holds

$$\llbracket g'_1, g'_2 \rrbracket = \llbracket s(g_1), s(g_2) \rrbracket + \llbracket s(g_1), a_2 \rrbracket,$$

and from $\Pi(\llbracket g'_1, g'_2 \rrbracket) = [s(g_1), s(g_2)]_s$ it follows

$$\llbracket s(g_1), s(g_2) \rrbracket = s[g_1, g_2] + \psi_s(g_1, g_2)$$

for some linear map $\psi_s : g \otimes g \to A$. It is shown that the Leibniz identity holds if and only if ψ_s is a 2-cocycle. Now, we will see that $[\psi_s] \in H^2(g; A)$ does not depend on the choice of *s*. Take a section \tilde{s} and let $\tilde{a}_i = g'_i - \tilde{s}(g_i)$ (i = 1, 2). Then we may define a 1-cochain $t : g \to A$ by $t(g) = \tilde{s} - s$. Since

$$s([g_1,g_2]) + [[s(g_1),\tilde{a}_2]] + \psi_s(g_1,g_2) = \tilde{s}([g_1,g_2]) + [[\tilde{s}(g_1),a_2]] + \psi_{\tilde{s}}(g_1,g_2)$$

we have

$$(\psi_{\tilde{s}} - \psi_s)(g_1, g_2) = g_1 \cdot t(g_2) - t([g_1, g_2]).$$

The right hand of the equation is just $\delta t(g_1, g_2)$, thus we deduce that $[\psi_s] \in H^2(\mathfrak{g}; A)$ does not depend on the choice of s. We denote this element simply by $[\psi]$.

Next we prove that by the equivalence class of extensions ψ is determined up to coboundaries. Suppose that $(g', [\![,]\!]), (\bar{g}', [\![,]\!]^-)$ are isomorphic central extensions of g, and $\psi_s, \bar{\psi}_{\bar{s}}$ are corresponding cocycles with respect to sections s, \bar{s} respectively. We consider the commutating diagram

where f is a Leibniz algebra isomorphism. We define 1-cochain $t: g \to A$ by $t = f \circ s - \overline{s}$. Then, from $\overline{\psi}_{f \circ s} = f \circ \psi_s$, $f|_A = 1$ and

$$f \circ s([g_1, g_2]) + \llbracket f \circ s(g_1), a_2 \rrbracket^- + \overline{\psi}_{f \circ s}(g_1, g_2)$$

= $\bar{s}([g_1, g_2]) + \llbracket \bar{s}(g_1), a_2 + t(g_2) \rrbracket^- + \overline{\psi}_{\bar{s}}(g_1, g_2)$

where $g'_i = s(g_i) + a_i$, it follows

$$(\psi_s - \overline{\psi}_{\overline{s}})(g_1, g_2) = g_1 \cdot t(g_2) - t([g_1, g_2]) = \delta t(g_1, g_2).$$

Hence we have $[\psi] = [\overline{\psi}]$. Conversely, it is not difficult to see that if corresponding cohomologies with two central extensions of g are equal then they are isomorphic.

We remark that we cannot develop a Leibniz generalization of the abelian extension of a Lie algebra because $\llbracket [a_1, s(g_2)], s(g_3)] + \llbracket s(g_2), \llbracket a_1, s(g_3)] \rrbracket$ does not vanish in general for $g'_i = s(g_i) + a_i$ (i = 1, 2, 3).

As an example of a central extension, we have the Leibniz algebras associated with foliations. For any foliation \mathscr{F}_{ω} given by a *q*-form ω , we have shown that $(\mathscr{X}^{q+1}(M), [\![,]\!]_{\omega})$ is a Leibniz algebra. In fact, it follows from Corollary 3.6(1) that there is a central extension

$$0 \to \ker \iota_{\omega} \xrightarrow{\iota} \mathscr{X}^{q+1}(M) \xrightarrow{\iota_{\omega}} \mathscr{X}_{\omega}(M) \to 0.$$

where $\mathscr{X}_{\omega}(M)$ denotes the image of ι_{ω} , which yields the foliation \mathscr{F}_{ω} . We will calculate the 2-cocycle of this extension. When ω is nonsingular, that is, the given foliation is regular, we may take a section s by $s(X) = Z \wedge X$ where Z is an arbitrary q-vector field satisfying $\omega(Z) = 1$, and then ψ_s is given by

$$\psi_s(X, Y) = \mathscr{L}_X Z \wedge Y + \langle X | \gamma \rangle (Z \wedge Y)$$

where $d\omega = \gamma \wedge \omega$. Therefore, if a foliation is given by $\omega_i = 0$ for non-zero 1-forms $\omega_1, \ldots, \omega_q$,

$$\psi_s(X, Y) = \mathscr{L}_X(Z_1 \wedge \cdots \wedge Z_q) \wedge Y + \left\langle X \mid \sum_{i=1}^q \gamma_{ii} \right\rangle (Y \wedge Z_1 \wedge \cdots \wedge Z_q)$$

where $d\omega_i = \sum_{k=1}^{q} \gamma_{ik} \wedge \omega_k$ and $\omega_i(Z_j) = \delta_{ij}$. For a singular *q*-form $\omega = f\omega'$ where *f* is an arbitrary function and ω' a nonsingular *q*-form, we take a metric *g* and identify the tangent space and the cotangent space. Then we may take a section

$$s(X) = \frac{1}{|\omega|^2} Z \wedge X$$

where $g(Z) = \omega$, which is well-defined since both Z and an element of $\mathscr{X}_{\omega}(M)$ are divisible by f. Using the metric g satisfying $|\omega'| = 1$, the corresponding cocycle with s is given by

$$\psi_s(X, Y) = \mathscr{L}_X Z' \wedge Y' + \langle X | \gamma \rangle (Z' \wedge Y')$$

where Z' and Y' denote $f^{-1}Z$ and $f^{-1}Y$, respectively.

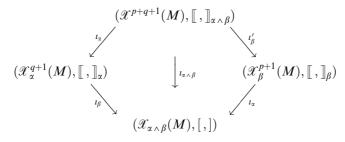
Conversely, by the theorem above, an arbitrary element of $H^2(\mathscr{X}_{\omega}(M); \ker \iota_{\omega})$ determines a Leibniz algebra structure on $\mathscr{X}^{q+1}(M)$.

The following consideration gives us homomorphisms between Leibniz algebras.

PROPOSITION 4.3. Suppose that a p-form α and a q-form β which are both integrable are given, and that $\alpha \land \beta \neq 0$. Then $\alpha \land \beta$ is also integrable, and we get the exact sequence

(4.2)
$$0 \longrightarrow \ker \iota_{\alpha \wedge \beta} \xrightarrow{\iota} \mathscr{X}^{p+q+1}(M) \xrightarrow{\iota_{\alpha \wedge \beta}} \mathscr{X}_{\alpha \wedge \beta}(M) \longrightarrow 0.$$

The following diagram of Leibniz algebra commutes where $\iota'_{\beta} = (-1)^{pq} \iota_{\beta}$ and $\mathscr{X}^{q+1}_{\alpha}(M) \subset \mathscr{X}^{q+1}(M)$ is the image of the interior product $\iota_{\alpha} : \mathscr{X}^{p+q+1}(M) \to \mathscr{X}^{q+1}(M)$.



Proof. It is easy to see that $\alpha \wedge \beta$ is an integrable (p+q)-form. Let us show the above diagram commutes. All the maps are well-defined since $\iota_{\beta}(\mathscr{X}^{q+1}_{\alpha}(M)), \iota_{\alpha}(\mathscr{X}^{p+1}_{\beta}(M)) \subset \mathscr{X}_{\alpha \wedge \beta}(M)$. For any $X, Y \in \mathscr{X}^{p+q+1}(M)$, we calculate

$$egin{aligned} &[\iota_{lpha\,\wedge\,eta}X,\,Y](lpha) = \mathscr{L}_{X(lpha\,\wedge\,eta)}(\,Y(lpha)) - \,Y(\mathscr{L}_{X(lpha\,\wedge\,eta)}lpha) \ &= [(\iota_{lpha}X)(eta),\iota_{lpha}\,Y] - (-1)^{p+q}\langle X\,|\,dlpha\,\wedge\,eta
angle(\,Y(lpha)). \end{aligned}$$

Therefore,

$$\begin{split} \iota_{\alpha}(\llbracket X, Y \rrbracket_{\alpha \wedge \beta}) &= ([\iota_{\alpha \wedge \beta} X, Y] + (-1)^{p+q} \langle X | d(\alpha \wedge \beta) \rangle Y)(\alpha) \\ &= [(\iota_{\alpha} X)(\beta), \iota_{\alpha} Y] + (-1)^{q} \langle X | \alpha \wedge d\beta \rangle (Y(\alpha)) \\ &= [(\iota_{\alpha} X)(\beta), \iota_{\alpha} Y] + (-1)^{q} \langle \iota_{\alpha} X | d\beta \rangle (Y(\alpha)) \\ &= \llbracket \iota_{\alpha} X, \iota_{\alpha} Y \rrbracket_{\beta} \end{split}$$

and thus we conclude that $\iota_{\alpha}: \mathscr{X}^{p+q+1}(M) \to \mathscr{X}^{q+1}(M)$ is a Leibniz homomorphism; similarly for $\iota'_{\beta}: \mathscr{X}^{p+q+1}(M) \to \mathscr{X}^{p+1}(M)$.

Example 4.4. We consider the Lie algebra $sl(2, \mathbf{R})$ with the basis

163

$$e_1 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then it holds that

$$[e_1, e_2] = e_2, \quad [e_2, e_3] = 2e_1, \quad [e_1, e_3] = -e_3.$$

Let us take the dual e_1^*, e_2^*, e_3^* of e_1, e_2, e_3 . From $de_2^* = -e_1^* \wedge e_2^*$, it follows that $(\wedge^2 sl(2, \mathbf{R}), [\![,]\!]_{e_2^*})$ is a Leibniz algebra which is a central extension of the Lie algebra g where

$$g = span(e_1, e_3), [e_3, e_1] = e_3.$$

As we mentioned before, we may take a section $s(X) = e_2 \wedge X$. Then the corresponding cocycle $\psi \in H^2(\mathfrak{g}; \mathfrak{g} \wedge \mathfrak{g})$ is given by

$$\psi(X, Y) = [X, e_2] \land Y - \langle X | e_1^* \rangle e_2 \land Y$$

for any $X, Y \in \mathfrak{g}$. Since it follows that

$$\psi(e_1, e_1) = \psi(e_1, e_3) = \psi(e_3, e_1) = 0, \quad \psi(e_3, e_3) = 2a$$

where $a = e_3 \land e_1 \in \mathfrak{g} \land \mathfrak{g}$, we may write $\psi = 2ae_3^* \otimes e_3^*$.

When we replace e_2^* with ce_2^* where c is a non-zero constant, which preserves the foliation, then by

$$\llbracket g_1, g_2 \rrbracket_{ce_2^*} = c \llbracket g_1, g_2 \rrbracket_{e_2^*}$$

we deduce that the cocycle ψ is replaced with $c^{-1}\psi$.

Now, let us elucidate all the central extension $(\wedge^2 sl(2, \mathbf{R}), [[,]])$ of g. The action of g on $g \wedge g$ is given by

$$(4.3) e_1 \cdot a = -2a, e_3 \cdot a = 0,$$

that is, $g \cdot a = 2\mathscr{L}_{g}a$, and any 1-cochain t is generated by

$$t_1 = ae_1^*, \quad t_3 = ae_3^*$$

Since $\delta t(g_1, g_2) = g_1 \cdot t(g_2) - t([g_1, g_2])$, we have

(4.4)
$$\delta t_1(e_1, e_1) = -2a, \quad \delta t_1(e_1, e_3) = \delta t_1(e_3, e_1) = \delta t_1(e_3, e_3) = 0,$$

(4.5)
$$\delta t_3(e_1, e_3) = \delta t_3(e_3, e_1) = -a, \quad \delta t_3(e_1, e_1) = \delta t_3(e_3, e_3) = 0,$$

thus we may write $\delta t_1 = 2\kappa_{11}$ and $\delta t_3 = \kappa_{13} + \kappa_{31}$ where κ_{ij} denotes $-ae_i^* \otimes e_j^*$. A direct computation shows $\delta \kappa_{13}(e_1, e_3, e_3) \neq 0$, that is, κ_{13} is not a cocycle, thus we deduce that $H^2(\mathfrak{g}; \mathfrak{g} \wedge \mathfrak{g})$ is 1-dimensional and a cocycle $c\kappa_{33}$ where c is a constant determines an element in $H^2(\mathfrak{g}; \mathfrak{g} \wedge \mathfrak{g})$. The corresponding Leibniz algebra structure on $\wedge^2 sl(2, \mathbf{R})$ is then given by

$$\begin{bmatrix} e_2 \land e_1, e_2 \land e_1 \end{bmatrix} = 0, \qquad \begin{bmatrix} e_2 \land e_1, e_2 \land e_3 \end{bmatrix} = -e_2 \land e_3, \\ \begin{bmatrix} e_2 \land e_3, e_2 \land e_1 \end{bmatrix} = e_2 \land e_3, \qquad \begin{bmatrix} e_2 \land e_3, e_2 \land e_3 \end{bmatrix} = -ce_3 \land e_1$$

164

(the rest is given by (4.3) and $[\![g \land g, \land^2 sl(2, \mathbf{R})]\!] = 0$). Thus we have shown that, on any central extension of g with the center $g \land g$, the Leibniz algebra structure is necessarily of this type.

References

- SH. A. AYUPOV AND B. A. OMIROV, On Leibniz algebras, Algebra and Operator Theory, Kluwer Academic Publishers, Dordrecht, 1998, 1–12.
- Y. L. DALETSKII AND L. A. TAKHTAJAN, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39 (1997), 127–141.
- [3] A. FRABETTI AND F. WAGEMANN, On the Leibniz cohomology of vector fields, Ann. Global Anal. Geom., 21 (2002), 177–190.
- [4] P. GAUTHERON, Some remarks concerning Nambu mechanics, Lett. Math. Phys., **37** (1996), 103–116.
- [5] J. GRABOWSKI AND G. MARMO, On Filippov algebroids and multiplicative Nambu-Poisson structures, Differential Geom. Appl., 12 (2000), 35–50.
- [6] Y. HAGIWARA, Nambu-Dirac manifolds, J. Phys. A, 35 (2002), 1263-1281.
- [7] R. IBÁÑEZ, M. DE LEÓN, J. C. MARRERO AND D. MARTÍN DE DIEGO, Dynamics of generalized Poisson and Nambu-Poisson brackets, J. Math. Phys., 38 (1997), 2332–2344.
- [8] R. IBÁÑEZ, M. DE LEÓN, J. C. MARRERO AND E. PADRÓN, Nambu-Jacobi and generalized Jacobi manifolds, J. Phys. A, 31 (1998), 1267–1286.
- [9] R. IBÁÑEZ, M. DE LEÓN, J. C. MARRERO AND E. PADRÓN, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A, 32 (1999), 8129–8144.
- [10] J.-L. LODAY, Cyclic Homology, Grundlehren Math. Wiss. 301, Springer-Verlag, Berlin, 1992.
- [11] J.-L. LODAY, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2), 39 (1993), 269–293.
- [12] J.-L. LODAY AND T. PIRASHVILI, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139–158.
- [13] J. M. LODDER, Leibniz cohomology for differentiable manifolds, Ann. Inst. Fourier (Grenoble), 48 (1998), 73–95.
- [14] J. M. LODDER, Leibniz homology, characteristic classes and K-theory, preprint.
- [15] K. MIKAMI AND T. MIZUTANI, Foliations associated with Nambu-Jacobi structures, preprint.
- [16] N. NAKANISHI, On Nambu-Poisson manifolds, Rev. Math. Phys., 10 (1998), 499-510.
- [17] Y. NAMBU, Generalized Hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405-2412.
- [18] H. J. SUSSMANN, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171–188.
- [19] L. TAKHTAJAN, On foundations of the generalized Nambu mechanics, Comm. Math. Phys., 160 (1994), 295–315.
- [20] J. A. VALLEJO, Nambu-Poisson manifolds and associated n-ary Lie algebroids, J. Phys. A, 34 (2001), 2867–2881.

DEPARTMENT OF MATHEMATICS SAITAMA UNIVERSITY SAITAMA 338-8570, JAPAN