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Abstract

Let X̂X be a smooth connected subvariety of complex projective space P n. The

question was raised in [2] of how to characterize X̂X if it admits a reducible hyper-

plane section L̂L. In the case in which L̂L is the union of rb 2 smooth normal crossing

divisors, each of sectional genus zero, classification theorems were given for dim X̂X b 5

or dim X̂X ¼ 4 and r ¼ 2.

This paper restricts attention to the case of two divisors on a threefold, whose

sum is ample, and which meet transversely in a smooth curve of genus at least 2. A

finiteness theorem and some general results are proven, when the two divisors are in

a restricted class including P1-bundles over curves of genus less than two and surfaces

with nef and big anticanonical bundle. Next, we give results on the case of a projective

threefold X̂X with hyperplane section L̂L that is the union of two transverse divisors, each

of which is either P 2, a Hirzebruch surface Fr, or fF2F2.

Introduction

This paper is a sequel of [2], which initiated the study of a connected sub-
manifold X̂X of complex projective space that has a reducible hyperplane section
L̂L. As dim X̂X increases so does the simplicity of the characterization. In [2] a

description is given of ðX̂X ; L̂LÞ for which L̂L decomposes as ÂA1 þ � � � þ ÂAr into rb 2
smooth components with normal crossings under the hypothesis that h1ðOÂAi

Þ is
equal to the sectional genus of ÂAi for each i. A complete result for the cases
n ¼ 4 and r ¼ 2; and for nb 5 was obtained. Further, in the case of n ¼ 3 and
r ¼ 2 the situation in which the curve A1 VA2 has genus at most 1 was thor-
oughly analyzed. Here we investigate the more delicate issues presented by the
following specialization of the question.

Problem. Let L̂L be a very ample line bundle on a projective threefold X̂X .
Suppose that L̂L decomposes as a divisor into a sum L̂L ¼ ÂAþ B̂B, where ÂA and
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B̂B are smooth connected surfaces meeting transversely along a smooth curve
h ¼ ÂAV B̂B. Assume that each of ÂA, B̂B is either P 2 or Fr. Then describe ðX̂X ; L̂LÞ.

We call h the hinge curve. The curve h is connected [2, Corollary 2.3].

In this paper we shall focus on the situation when h has genus gðhÞb 2: we
refer to [2, Theorems 3.10, 3.11] for the cases when gðhÞa 1. We also refer to
[2, 5, 7] for related results.

The organization of the paper is as follows. In Section 2, we present a
general finiteness theorem for a threefold X̂X with an ample divisor L̂L of the form
ÂAþ B̂B, where ÂA, B̂B are in a restricted class C of surfaces and meet transversely in
a smooth curve of genusb 2. The class C includes surfaces with nef and big
anticanonical bundle; and P1-bundles over either P1 or an elliptic curve. The
finiteness theorem asserts that there is an e > 0 such that the Kodaira dimension
of KX̂X þ ð1=2þ eÞL̂L is �y. By a result of Fujita, this implies that ðX̂X ; L̂LÞ is a
birational transform of members of an explicit list of very special pairs.

In Section 3, it is shown that if the divisors ÂA, B̂B are P 2 or scrolls over P1,
then the restriction of the bundle KX̂X þ L̂L to the divisors in big.

In Section 4, the Hodge Index type theorem for reducible divisors leads to
the elimination of the cases in which both ÂA and B̂B are among P 2 and the
singular quadric fF2F2 with an isolated singularity.

Finally, in Section 5 we study the case when ÂA is P 2, the Hirzebruch surface
Fr, or the singular quadric with isolated singularity fF2F2; and B̂B ¼ Fs, under the
extra assumption that ðÂA; L̂LÂAÞ, ðB̂B; L̂LB̂BÞ are scrolls.

The first author would like to thank the University of Notre Dame for its
support. The third author would like to thank the Duncan Chair of the Uni-
versity of Notre Dame for its support.

1. Background material

We work over the complex field C . Throughout the paper we deal
with projective varieties V , and follow the usual notation of algebraic geometry.
The book [1] is a good reference for standard results and notation of adjunction
theory.

For a line bundle L on an irreducible normal variety V of dimension n the
sectional genus, gðLÞ ¼ gðV ;LÞ, of ðV ;LÞ is defined by 2gðLÞ�2¼ ðKV þðn�1ÞLÞ �
Ln�1.

By Fr with rb 0 we denote the unique P1-bundle over P1 with a section E
taking on the minimal self intersection E2 ¼ �r on the surface. By fF2F2 we denote
F2 with the section, which has self intersection �2, blown down. Note that fF2F2

is isomorphic to any quadric hypersurface QHP 3 that has a single isolated sin-
gularity.

Let V be a normal r-Gorenstein (i.e., rKV is a Cartier divisor) projective
variety of dimension n and let D be a Q-Cartier divisor on V such that kðDÞ ¼ n.
We define the unnormalized spectral value of the pair ðV ;DÞ as
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uðV ;DÞ :¼ supft A Q j kðKV þ tDÞ ¼ �yg:

We refer to [1, §7.1] for details.
The following result follows immediately from [2, §2].

Lemma 1.1. Let L̂L be an ample line bundle on a smooth projective 3-fold
X̂X . Assume that there are two smooth connected divisors ÂA, B̂B on X̂X . Assume
that ÂAþ B̂B A jL̂Lj, that ÂA and B̂B are rational, and that ÂA, B̂B intersect transversely in
a smooth curve h. Then h is connected, and h1ðOX̂X Þ ¼ h2ðOX̂X Þ ¼ 0.

2. A finiteness theorem

In this section we prove a general finiteness theorem for pairs ðX̂X ; L̂LÞ
consisting of an ample line bundle on a smooth projective threefold X̂X , with jL̂Lj
containing a divisor D ¼ ÂAþ B̂B, having two irreducible components from a large
class C of negative Kodaira dimension surfaces. The class C consists of the normal
connected Gorenstein projective surfaces S with the property that given any smooth
connected Cartier divisor C on S, it follows that either h1ðOCÞa 1 or KS � Ca�1.

Lemma 2.1. The class C includes:
1. normal Gorenstein surfaces with �KS nef and big; or
2. Fr, rb 0, the r-th Hirzebruch surface; or
3. a P1-bundle over an elliptic curve.

In cases 1 and 2, smooth connected Cartier divisors C with h1ðOCÞb 2 satisfy
KS � Ca�3.

Proof. Let C be a smooth connected Cartier divisor of S, i.e., let C be a
curve on S with C contained in Sreg, the smooth points of S. We assume that
we are in the situation that h1ðOCÞb 2, since otherwise there is nothing to show.

First assume that �KS is nef and big, and that the result is false, i.e., that
�KS � Ca 2. We know that �KS � C ¼ 0; 1; 2. If �KS � C ¼ 0, then we con-
clude, using the Hodge Index Theorem, that C2 a 0, which contradicts h1ðOCÞb
2. If �KS � C ¼ 1, then we conclude that C2 b 3, which contradicts the Hodge
Index Theorem, i.e., C2aC2K 2

Sa1. If �KS �C¼ 2, then we conclude that C 2b4,
which gives equality in the Hodge Index Theorem, i.e., 4aC2 aC 2K 2

S a 4. This
implies that numerically C@�KS, which implies the contradiction KS þ C@ 0.

For S a Hirzebruch surface the result is a straightforward check.
Assume finally that S is a P1-bundle over an elliptic curve Y . In this

case the section s of minimal self-intersection satisfies e :¼ �s2 b�1, and KS

is numerically equal to �2s� ef for a fiber of the induced projection p :
S ! Y . Since we are assuming that h1ðOCÞb 2, we know that numerically
C ¼ ksþ tf where kb 2. Moreover KS � Cb 0 gives ke� 2t ¼ 2ke� ek � 2tb
0. Since C2 ¼ �ek2 þ 2kt, we have the absurdity that 2a 2gðCÞ � 2 ¼ KS � Cþ
C 2 ¼ ð1� kÞðke� 2tÞa 0. Q.E.D.
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One main result of the paper is the Finiteness Theorem 2.2. This theorem
shows that, if the hinge curve h has genus gðhÞb 2, the pair ðX̂X ; L̂LÞ belongs to an
explicit list of very special cases described by Fujita (see [3, 4] and also [1, 7.8.1]).

Note in the following that the hypothesis that h is connected is automatically
satisfied if ÂA and B̂B are connected [2, Corollary 2.3].

Theorem 2.2 (Finiteness Theorem). Let L̂L be an ample line bundle on a
smooth projective 3-fold X̂X . Assume that there are two divisors ÂA, B̂B on X̂X from the
class C. Assume that ÂAþ B̂B A jL̂Lj and that ÂA, B̂B intersect transversely in a smooth
connected curve h of genus gðhÞb 2. Then uðX̂X ; L̂LÞ > 1=2. In particular, X̂X is of
Kodaira dimension �y, and thus satisfies h3ðOX̂X Þ ¼ 0.

Proof. For simplicity of notation, we omit ’̂s in this proof. The genus
formula yields

ðKX þ LÞ � h ¼ ðKX þ Aþ BÞ � A � B ¼ 2gðhÞ � 2;ð1Þ
or ðKA þ BAÞ � BA ¼ 2gðhÞ � 2, and therefore, by definition of class C, one has
BA � BA b 2gðhÞ � 1, and similarly AB � AB b 2gðhÞ � 1. Then (1) gives

KX � ha�2gðhÞ:ð2Þ
Now compute, for any real number e, 0 < e < 1=ð4gðhÞ � 2Þ,

KX þ 1

2
þ e

� �
L

� �
� h ¼ KX þ L� 1

2
� e

� �
L

� �
� h

¼ 2gðhÞ � 2� 1

2
� e

� �
L � h

a 2gðhÞ � 2� 1

2
� e

� �
ð4gðhÞ � 2Þ

¼ �1þ eð4gðhÞ � 2Þ < 0:

Finally, for h ¼ AVB on X , we have the normal bundle decomposition Nh=X ¼
Nh=A lNh=B and degðNh=AÞ ¼ B2 � A ¼ BA � BA b 2gðhÞ � 1 by the above. It fol-

lows that h1ðNh=AÞ ¼ 0 and Nh=A has not identically zero sections. Similarly for
Nh=B. Then Nh=X is generically spanned by its global sections and h1ðNh=X Þ ¼ 0.
Thus general deformation theory implies that the union of the deformations of
h on X contains an open set. Therefore the inequality ðKX þ ð1=2þ eÞLÞ � h < 0
proved above shows that uðX ;LÞ > 1=2, cf. [1, 7.6.4]. Q.E.D.

A little more can be said on the case of P1-bundles over P1 or surfaces with
nef and big anticanonical bundle.

Proposition 2.3. Let L̂L be an ample line bundle on a smooth projective
3-fold X̂X . Assume that there are two smooth divisors ÂA, B̂B on X̂X each of which
is either a P1-bundle over P1 or a surface with nef and big anticanonical bundle.
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Assume that ÂAþ B̂B A jL̂Lj and that ÂA, B̂B intersect transversely in a smooth connected
curve h. Then H 0ðKX̂X þ L̂LÞ ! H 0ðKhÞ ! 0.

Proof. Tensor the Koszul complex

0 ! OX̂X ! ÂAl B̂B ! L̂L ! L̂Lh ! 0

with KX̂X . Using the hypercohomology spectral sequence, we see that the desired

result will follow if we show that H 2ðKX̂X Þ ¼ H 1ðKX̂X þ ÂAÞ ¼ H 1ðKX̂X þ B̂BÞ ¼ 0.
The assertion H 2ðKX̂X Þ ¼ 0 follows from Lemma 1.1. To see that

H 1ðKX̂X þ ÂAÞ ¼ 0 consider the exact sequence

0 ! KX̂X ! KX̂X þ ÂA ! KÂA ! 0:

Now use Lemma 1.1 and the fact that ÂA is rational. The argument for
H 1ðKX̂X þ B̂BÞ ¼ 0 is identical. Q.E.D.

One consequence of Proposition 2.3 is that, under the same hypotheses
with the added assumption that gðhÞb 2, it follows that the Kodaira dimension
of KX̂X þ L̂L is at least one. This implies that the Kodaira dimension of KX̂X þ 2L̂L
is three, and also that the restriction of KX̂X þ 2L̂L to ÂA (or B̂B) is nontrivial. There-
fore [2, Theorems 3.6, 3.8] specialize to the following result.

Theorem 2.4. Let L̂L be an ample line bundle on a smooth projective 3-fold
X̂X . Assume that there are two smooth divisors ÂA, B̂B on X̂X each of which is either
a P1-bundle over P1 or a surface with nef and big anticanonical bundle. Assume
that ÂAþ B̂B A jL̂Lj and that ÂA, B̂B intersect transversely in a smooth connected curve
h of genusb 2. Then there is a surjective morphism f : X̂X ! X , where X is a
smooth projective 3-fold, such that:

1. f expresses X̂X as the blowup of X at a finite set F, and there is an ample
line bundle L on X such that L̂LG f�L� f�1ðFÞ;

2. KX̂X þ 2L̂LG f�ðKX þ 2LÞ where KX þ 2L is ample;
3. KX þ L is either nef and big, or ðX ;LÞ is a conic fibration over a surface

Y in the sense of adjunction theory [1], i.e., there exists a morphism
n : X ! Y with KX þ LG n�H for an ample line bundle H on a normal
surface Y;

4. f is an embedding in a neighborhood of h; and
5. L ¼ Aþ B where A :¼ fðÂAÞ and B :¼ fðB̂BÞ are Cartier divisors meeting

transversely in fðhÞ and each having at most one point contained in the set
F.

From now on we usually abuse notation, and let h to denote fðhÞ. We also
write hA (respectively hB) to emphasize that we view h as a curve on A (respec-
tively on B).

Lemma 2.5. Let ðX̂X ; L̂LÞ, ðX ;LÞ, ÂA, B̂B, A, B be as in Theorem 2.4. Then
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1. hi;0ðXÞ ¼ 0, i ¼ 1; 2; 3;
2. hiðKX þ AÞ ¼ hiðKX þ BÞ ¼ 0 for all ib 0; and
3. the restriction map gives the following isomorphisms

H 0ðKX þ LÞGH 0ðKA þ hAÞGH 0ðKB þ hBÞGH 0ðKhÞ:

Proof. Noting that the first reduction morphism, f, of Theorem 2.4 is bi-
rational, the first assertion follows immediately from Lemma 1.1 and Theorem
2.2.

To prove 2, consider the exact sequence

0 ! KX þ B ! KX þ L ! KA ! 0:

By the assumption on A, h0ðKAÞ ¼ h1ðKAÞ ¼ 0, h2ðKAÞ ¼ 1, h3ðKAÞ ¼ 0. Thus
from the cohomology sequence associated to the sequence above we infer that
hiðKX þ BÞ ¼ 0 (and by symmetry hiðKX þ AÞ ¼ 0) for all ib 0.

Item 3 follows immediately from the first two assertions. Q.E.D.

Theorem 2.6. Let L̂L be an ample line bundle on a smooth projective 3-
fold X̂X . Assume that there are two smooth divisors ÂA, B̂B on X̂X each of which is
either a P1-bundle over P1 or a surface with nef and big anticanonical bundle.
Assume that ÂAþ B̂B A jL̂Lj and that ÂA, B̂B intersect transversely in a smooth connected
curve h of genus gðhÞb 2. Let X, A, B, L be as in Theorem 2.4. Then
H 0ðKX þ LÞ spans KX þ L in a neighborhood of Aþ B.

Proof. By Lemma 2.5, the desired spannedness of KX þ L will follow from
the spannedness of KA þ hA and KB þ hB. From Theorem 2.4 we know that
KX þ L is nef (and hence KA þ hA and KB þ hB are also).

First assume that ÂA is a P1-bundle over P1. Either the map f of The-
orem 2.4 is an isomorphism on ÂA, in which case A is also a P1-bundle, or, by
[2, Theorem 3.6, 2.], fÂA expresses ÂA as the blowup of A at one point. In this
latter case, ÂA is the Hirzebruch surface F1, and A :¼ fðÂAÞ ¼ P 2 (note that F1 is
the only Hirzebruch surface with a �1-curve). Since KX þ L is nef, KA þ hA is
nef, and for either P 2 or P1-bundles over P1, nef line bundles are spanned.

Now assume that �KÂA is nef and big. Note that �KA is also nef
and big. Indeed, going to the first reduction map we have a birational mor-
phism fÂA : ÂA ! A where some disjoint �1 curves are collapsed. Writing �KÂA ¼
KÂA þ 2ð�KÂAÞ, we see from the basepoint free theorem that �NKÂA is spanned for
Ng 0. Thus �NKA is spanned o¤ the finite set equal to the image of the ex-
ceptional curves. This implies �KA is nef. Since K 2

A > K 2
ÂA
, bigness is clear.

Consider the line bundle hA. We would like to show by Reider’s Theorem
[6] that KA þ hA is spanned. Note that h2A ¼ 2gðhAÞ � 2� KA � hA b 2þ 3 ¼ 5 by
the hypothesis gðhAÞb 2 and Lemma 2.1. Since hA is a smooth curve of posi-
tive genus, and KA � hA < 0, we conclude that hA is nef and big. Therefore by
Reider’s Theorem, either KA þ hA is spanned, or there exists an e¤ective Cartier
divisor lHA such that either hA � l ¼ 0 with l2 ¼ �1, or hA � l ¼ 1 with l2 ¼ 0.
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In the former case, KA � l < 0, since KA � la 0 and KA � lþ l2 is even. This
contradicts the nefness of KA þ hA.

Finally consider the case hA � l ¼ 1 with l2 ¼ 0. Note that since l is e¤ec-
tive, we cannot have �KA � l ¼ 0 by the usual Hodge index relation. Thus we
have KA � l < 0. Since KA � lþ l2 is even, we have that KA � la�2. This im-
plies that ðKA þ hAÞ � la�1, which contradicts nefness of KA þ hA. Q.E.D.

3. Some birationality results

3.1 (Working assumptions). Let L̂L be a very ample line bundle on a 3-
fold X̂X . Assume that there are two smooth transverse divisors ÂA, B̂B on X̂X with

ÂAþ B̂B A jL̂Lj and ÂA; B̂B A fP 2;Frg. Assume that the hinge curve h¼ ÂAV B̂B has genus
gðhÞb 2.

From Theorem 2.4, we know that there exists the first reduction ðX ;LÞ,
f : X̂X ! X , with KX þ 2L ample and KX þ L nef. If A ¼ fðÂAÞ, B ¼ fðB̂BÞ, then
Aþ B A jLj and A;B A fP 2;Frg. Furthermore we know by 5 of Theorem 2.4,
that neither ÂA nor B̂B is a fiber of f and that A, B meet transversely along the curve
fðhÞ isomorphic to h.

Lemma 3.2. Assumptions and notation as in 3.1. The complete linear sys-
tems jKA þ hAj and jKB þ hBj map h generically one-to-one. In particular, KA þ hA,
KB þ hB, and KX þ L are nef and big.

Proof. By Lemma 2.5, we see that jKX þ Lj maps h generically one-to-one
provided that each of the complete linear systems jKA þ hAj and jKB þ hBj map h
generically one-to-one.

Let us see that each of the linear systems map h generically one-to-one.
From 3 of Theorem 2.4, the restriction of KX þ L of one of the divisors A, B
is nef and big. (By ampleness of Aþ B either A or B surjects on the base.)
Assume for simplicity, that KB þ hBAðKX þ LÞB is nef and big. If B ¼ P 2 or
F0, the line bundle KB þ hB is ample, and indeed very ample.

Thus we may restrict attention to the hypothesis that B ¼ Fr, rb 1.
Let E :¼ E þ rf . Then either KB þ hB ¼ aEþ bf is very ample or b ¼ 0 and
KB þ hB ¼ aE. Thus jKB þ hBj maps h generically one-to-one.

Next, we verify that KX þ L is nef and big, using part 3 of Theorem 2.4,
together with its notation. If not, n maps h two-to-one onto a curve nðhÞ with all
restrictions of elements of H 0ðKX þ LÞ to h the pullbacks of sections of HnðhÞ. This
is a contradiction to the assertion that jKX þ Lj maps h generically one-to-one onto
its image.

Finally, to see that ðKX þ LÞAAKA þ hA is nef and big, observe that the map
given by jKA þ hAj is generically one-to-one on hA, and the genus of the curve hA is
not zero. Q.E.D.

The following is a corollary of the preceding lemma.
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Lemma 3.3. Assumptions and notation as in 3.1. Assume A ¼ Fr and let
h ¼ aE þ bf on A. Then ab 3.

Proof. Note that a ¼ h � f b 0, and a0 1 since gðhÞ > 0. Assume a ¼ 2.

Then ðKA þ hAÞ � f ¼ �2þ 2 ¼ 0 and hence jðKX þ LÞAj ¼ jKA þ hAj collapses A
along the ruling f . This contradicts Lemma 3.2. Q.E.D.

4. The cone cases

The main result in this section is that the situation of a reducible ample
divisor L ¼ Aþ B with both of A and B in fP 2;fF2F2g is very restricted. The proof
of this is based on the usual Hodge Index type theorem for ample divisors, which
yields in our case

½ðAþ BÞ � A � A�½ðAþ BÞ � B � B�a ½ðAþ BÞ � A � B�2ð3Þ

with equality if and only if A is a rational multiple of B as homology class.

Lemma 4.1. Let L be an ample line bundle on a smooth connected projec-
tive threefold X. Assume that A, B are two reduced divisors on X that meet trans-
versely in a smooth curve h of genus gðhÞ. Assume that Aþ B A jLj, and that A;B A

fP 2;fF2F2g. Then gðhÞa 1.

Proof. Assume without loss of generality that g :¼ gðhÞb 2. In this case
the degree of h on A (respectively, on B) is uniquely determined by g.

First let us do the case of A ¼ B ¼ P 2. Then hA A jOP 2ðdÞj and hB A
jOP 2ðdÞj where 2g�2¼ dðd�3Þ. Note that d 2 ¼ h2A ¼B �B �A¼ hB �NB=X . Thus

NB=X ¼ OP 2ðdÞ, and similarly NA=X ¼ OP 2ðdÞ. Plugging into equation (3), we get

equality. Thus A ¼ lB as homology classes for some l A Q. Since A2 � B ¼ d 2 ¼
B2 � A, we see that l ¼ 1. Thus since L is ample and since L ¼ 2A ¼ 2B in
homology, it follows that A, B are ample. The Lefschetz theorem yields PicðXÞ ¼
PicðAÞ ¼Z½OP 2ð1Þ�. Therefore KXAOX ðcÞ, OX ðAÞAOX ðaÞ, where ab1 by am-
pleness. Then ðKX þ AÞAAKAAOP 2ð�3Þ gives KX þ AAOX ðcþ aÞAOX ð�3Þ.
Therefore 1þ ca aþ c ¼ �3, or ca�4. So X ¼ P 3 by the Kobayashi-Ochiai
Theorem [1, 3.1.6] and g ¼ 0.

The case of A ¼ B ¼ fF2F2 proceeds in the same way, except that one of the
possibilities allowed by the Kobayashi-Ochiai Theorem [1, 3.1.6] is ðX ;LÞ is
ðP 3;OP 3ð4ÞÞ. In this case g ¼ 1.

Finally, consider the case when one of A, B is P 2 and the other is fF2F2. By
renaming if necessary we may assume that A ¼ P 2 and B ¼ fF2F2. Letting hB ¼
AB ¼ OBðdÞ and hA ¼ BA ¼ OAðdÞ, we have that A2 � B ¼ 2d2, B2 � A ¼ d 2. Also

from d 2 ¼ h2A ¼ B � B � A ¼ hB �NB=X we conclude that NB=X ¼ OBðd 2=2dÞ. Sim-

ilarly we conclude that NA=X ¼ OAð2d2=dÞ. Thus A3 ¼ 4d4=d 2 and B3 ¼ d 4=4d2.
Again by equation (3), we conclude that A, B are positive multiples of L in
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homology and hence ample. Using the argument from the case when both are
P 2, we see that X ¼ P 3. In this case g ¼ 0. Q.E.D.

5. The cone and scroll cases

We keep again our working assumption as in 3.1. In this section we
consider the remaining case when both A and B are Hirzebruch surfaces, under
the extra assumption that ðÂA; L̂LÂAÞ, ðB̂B; L̂LB̂BÞ are scrolls, i.e., ÂA, B̂B are both scrolls
with respect to L̂L.

We start with the following general lemma.

Lemma 5.1. Let L̂L be a very ample line bundle on a 3-fold X̂X . Let
ÂAþ B̂B A jL̂Lj, where ÂA, B̂B are two smooth divisors on X̂X meeting transversely in a
smooth curve h of genus gðhÞ > 0. Assume that each of ðÂA; L̂LÂAÞ and ðB̂B; L̂LB̂BÞ is a
scroll or a cone ( from a vertex not contained in h) over a smooth curve CÂA, CB̂B,
respectively; with scroll (or cone) projections pÂA : ÂA ! CÂA, pB̂B : B̂B ! CB̂B respectively.
Then p ¼ ðpÂA; pB̂BÞ : h ! CÂA � CB̂B maps h isomorphically onto a smooth curve.

Proof. Let xH h be a subscheme of degree 2 (i.e., a pair of distinct points,
or a tangent subscheme supported at a single point). We show that p separates
x. If not, x is contained in a fiber of p. Hence x belongs to a fiber of pÂA and
one of pB̂B, in which case the same holds true for the line l spanned by x. But

since the intersection ÂAV B̂B is transverse and connected, it follows that ÂAV B̂B ¼ l.
This contradicts the hypothesis that gðhÞ > 0. Q.E.D.

Theorem 5.2. Let L̂L be a very ample line bundle on a smooth projective

threefold X̂X . Assume that there exists two irreducible divisors ÂA, B̂B on X̂X meeting
transversely in a smooth curve h, and such that ÂAþ B̂B A jL̂Lj. Assume further that

1. ðÂA; L̂LÂAÞ is ðP 2;OP 2ð1ÞÞ, or ðQ;OP 3ð1ÞQÞ with QHP 3 the singular quadricfF2F2;
and

2. ðB̂B; L̂LB̂BÞ is a scroll over P1.
Then gðhÞ ¼ 0.

Proof. Let us focus on the case where ÂA ¼ P 2. The case of ÂA ¼ fF2F2 is

proved analogously. Let NÂA=X̂X ¼ ÂAÂA GOP 2ðdÞ denote the normal bundle of ÂA in
X̂X . Let hÂA ¼ B̂BÂA ¼ OP 2ðdÞ. Further, let denote by E a section of B̂B with E2 ¼
�ra 0, and by E ¼ E þ rf for a fiber f of the scroll projection. We have B̂BB̂B ¼
MEþNf and hB̂B ¼ ÂAB̂B ¼ aEþ bf for integers M, N, a, b. By Lemma 5.1 we

have g :¼ gðhÞ ¼ ða� 1Þðd� 1Þ. Further, the formulae for the genus on ÂA and B̂B
yield the formulae 2g ¼ ðd� 1Þðd� 2Þ and 2g ¼ ða� 1Þðarþ 2b� 2Þ. Assuming
that gb1, and hence that db3, ab2, immediately gives d¼ 2a and 4a¼ arþ 2b.
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Note that dd ¼ ÂAÂA � B̂BÂA ¼ B̂B � ÂA2 ¼ ÂA2
B̂B
¼ aðarþ 2bÞ. Combined with d ¼ 2a

and 4a ¼ arþ 2b, we conclude that d ¼ d. Since L̂LÂA ¼ OP 2ðd þ dÞ, we get a con-
tradiction to L̂LÂA GOP 2ð1Þ. Q.E.D.

Let us now specialize Lemma 5.1 to the case when ÂA ¼ Fr, B̂B ¼ F s. Denote
by EÂA ¼ EÂA þ rfÂA, E

2
ÂA
¼ �r, fÂA a fiber of the ruling ÂA ¼ Fr ! P1; and similarly for

B̂B. Write

hÂA ¼ aðEÂA þ rfÂAÞ þ bfÂA; hB̂B ¼ aðEB̂B þ sfB̂BÞ þ bfB̂B;ð4Þ

on ÂA, B̂B, respectively,
By Lemma 3.3 we may assume ab 3, ab 3. Furthermore, since h is a

positive genus curve on the Hirzebruch surfaces ÂA, B̂B, we may also assume bb 0,
bb 0.

By Lemma 5.1, OP1�P1ðpðhÞÞ ¼ OP1�P1ða; aÞ, and hence

gðhÞ ¼ ða� 1Þða� 1Þ:ð5Þ

The genus formula also yields

2gðhÞ ¼ ða� 1Þðarþ 2b� 2Þ:
Therefore, from (5), we deduce that

2a ¼ arþ 2b:ð6Þ
Similarly we find

2a ¼ asþ 2b:ð7Þ
Combining (6) and (7), we have

2aa ¼ aðarþ 2bÞ ¼ aðasþ 2bÞ:ð8Þ
Write

NÂA=X̂X ¼ �lðEÂA þ rfÂAÞ þ rfÂA; NB̂B=X̂X ¼ �mðEB̂B þ sfB̂BÞ þ sfB̂B;

for integers l, m, r, s.
Note that on ÂA one has h2

B̂B
¼ ÂA2

B̂B
¼ ÂA2 � B̂B ¼ ÂAÂA � B̂BÂA ¼ NÂA=X̂X � hÂA. Since

h2
B̂B
¼ a2sþ 2ab ¼ aðasþ 2bÞ and NÂA=X̂X � hÂA ¼ �alr� lbþ ra;

we find that aðasþ 2bÞ ¼ �alr� lbþ ra. Similarly, aðarþ 2bÞ ¼ �ams� mbþ sa.
Then by (8) we have

2aa ¼ �alr� lbþ ra ¼ �ams� mb þ sa:ð9Þ

Since ðÂA; L̂LÂAÞ is a scroll, we also have L̂LÂA ð¼ÂAÂA þ B̂BÂA ¼ NÂA=X̂X þ hÂAÞ ¼ EÂA þ jfÂA.
On the other hand, the coe‰cient of EÂA in the expression for NÂA=X̂X þ hÂA is �lþ a.
Therefore the last equality for L̂LÂA implies a� l ¼ 1. Similarly the scroll condi-
tion for ðB̂B; L̂LB̂BÞ gives a� m ¼ 1. So from (9) we have

2aa ¼ �aða� 1Þr� ða� 1Þbþ ra ¼ �aða� 1Þs� ða� 1Þb þ sa:
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Then in particular r ¼ 2aþ ða� 1Þrþ b� b

a
. This implies rb 6 (with r ¼ 6

giving r ¼ b ¼ 0), as well as a divides b, say, b ¼ ab 0.

In the same way, we find s ¼ 2aþ ða� 1Þsþ b � b

a
. So sb 6 (with s ¼ 6

giving s ¼ b ¼ 0), as well as b ¼ ab 0.
Thus formulas (6) and (7) become 2a¼ aðrþ 2b 0Þ and 2a¼ aðsþ 2b 0Þ. From

this we find

4 ¼ ðrþ 2b 0Þðsþ 2b 0Þ:ð10Þ

Since b 0; b 0
b 0 it follows that rsa 4 and hence r; s A f0; 1; 2; 3; 4g.

The following theorem summarizes the discussion above.

Theorem 5.3. Let L̂L be a very ample line bundle on a 3-fold X̂X . Let
ÂAþ B̂B A jL̂Lj, where ÂA, B̂B are two smooth divisors on X̂X meeting transversely in
a smooth curve h of genus gðhÞ > 0. Assume that ÂA ¼ Fr, B̂B ¼ F s are Hirzebruch
surfaces. Further assume that ðÂA; L̂LÂAÞ and ðB̂B; L̂LB̂BÞ are scrolls over smooth curves.
Then r; s A f0; 1; 2; 4g and the possible values of the coe‰cients b ¼ ab 0, b ¼ ab 0 as

in the expressions (4) of h as a curve of ÂA, B̂B respectively are listed in the table
below.

s r 0 1 2 3 4

0 b 0 ¼ b 0 ¼ 1 b 0 ¼ 0, b 0 ¼ 2 b 0 ¼ 0, b 0 ¼ 1
p p

1 b 0 ¼ 2, b 0 ¼ 0
p

b 0 ¼ 1, b 0 ¼ 0
p

b 0 ¼ b 0 ¼ 0

2 b 0 ¼ 1, b 0 ¼ 0 b 0 ¼ 0, b 0 ¼ 1 b 0 ¼ b 0 ¼ 0
p p

3
p p p p p

4
p

b 0 ¼ b 0 ¼ 0
p p p

Proof. A purely numerical check, by using (10) and the symmetry between
r and s, gives the possible values for the integers r, s, b 0, b 0 in the table (the
symbol ‘‘

p
’’ means that the corresponding case does not occur). For example,

if r ¼ 0, equality (10) gives 2 ¼ b 0ðsþ 2b 0Þ. This leads to the cases ðs; b 0; b 0Þ ¼
ð0; 1; 1Þ; ð1; 2; 0Þ; ð2; 1; 0Þ as in the first column. Thus we may assume r; sb 0.
For example, if r ¼ 3, equation (10) gives 4 ¼ 3ðsþ 2b 0Þ þ 2b 0ðsþ 2b 0Þ, so that
b 0 0 0 and hence b 0 > 0, this giving again a numerical contradiction. Q.E.D.
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