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ON THE MULTIPLICITY OF THE IMAGE OF SIMPLE CLOSED

CURVES VIA HOLOMORPHIC MAPS BETWEEN COMPACT

RIEMANN SURFACES

Hiroshi Yamamoto

Abstract

Every non-trivial closed curve C on a compact Riemann surface R is freely

homotopic to the r-fold iterate Cr
0 of some primitive closed geodesic C0 on R. We call

r the multiplicity of C, and denote it by NRðCÞ. Let f be a non-constant holomorphic

map of a compact Riemann surface R1 of genus g1 onto another compact Riemann

surface R2 of genus g2 with g1 b g2 > 1, and C a simple closed geodesic of hyperbolic

length lR1
ðCÞ on R1. In this paper, we give an upper bound for NR2

ð f ðCÞÞ depending

only on g1, g2 and lR1
ðCÞ.

1. Introduction

1.1. Let R be a Riemann surface of analytically finite type, that is, a
Riemann surface obtained by removing n distinct points from a compact Rie-
mann surface of genus g. Take a non-trivial closed curve C on R. Denote by
NRðCÞ > 0 the maximum of all numbers r such that for some non-trivial closed
curve C0 on R, the r-fold iterate Cr

0 of C0 is freely homotopic to C on R. We
define NRðCÞ ¼ 0 for any trivial closed curve C on R (cf. Buser [1], 9.2.6). In
this paper, we call NRðCÞ the multiplicity of C on R. A non-trivial closed curve
C on R is said to be primitive if NRðCÞ ¼ 1.

Let f be a non-constant holomorphic map of a compact Riemann surface
R1 of genus g1 onto another compact Riemann surface R2 of genus g2 with g1 b
g2 > 1. Let C be a simple closed geodesic on R1. The purpose of this paper is
to obtain an upper bound for NR2

ð f ðCÞÞ.

1.2. Assume that f has no branch point. Then f : R1 ! R2 is a holo-
morphic unbranched covering. Since C is a closed geodesic on R1, the image
f ðCÞ is also a closed geodesic on R2. Set r ¼ NR2

ð f ðCÞÞ, and let C0 be the
primitive closed geodesic on R2 such that the r-fold iterate Cr

0 is freely homotopic
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to f ðCÞ on R2. Then we have Cr
0 ¼ f ðCÞ for suitable parametrizations. On

the other hand, the Riemann-Hurwitz relation (see 1.2.7 of Farkas and Kra [2]
for example) yields

2ðg1 � 1Þ ¼ 2df ðg2 � 1Þ þ Bð f Þ;
where Bð f Þ is the total branching number of f and df is the degree of f . Thus,
in this case, we conclude that

NR2
ð f ðCÞÞ ¼ ra df ¼

g1 � 1

g2 � 1
:

A natural question that occurs at this point is the following: In the general
case where f may have branch points, does there exist an upper bound for
NR2

ð f ðCÞÞ depending only on g1 and g2? The answer is ‘‘No.’’. In fact, the
example which will be given in the last section asserts that there is no upper
bound for NR2

ð f ðCÞÞ depending only on g1, g2 and f .
In this paper, we obtain the following.

Theorem. Let f be a non-constant holomorphic map of a compact Riemann
surface R1 of genus g1 onto another compact Riemann surface R2 of genus g2 with
g1 b g2 > 1. Let C be a simple closed geodesic on R1. Then

NR2
ð f ðCÞÞamax

g1 � 1

g2 � 1
;Lðg1; g2; lR1

ðCÞÞ
� �

;

where

Lðg1; g2; lÞ ¼ sinh
p2ð1þ 2ðg1 � g2Þðg1 � 1Þ=ðg2 � 1ÞÞ

hðlÞ ;

hðlÞ ¼ 2p

l
p� 4 arctan tanh

l

4

� �� �
;

and lR1
ðCÞ is the length of C with respect to the hyperbolic metric of constant

Gaussian curvature �1 on R1.

Note that the function L satisfies

log Lðg1; g2; lÞ < Mg21 le
l=2 for all l > 0;

where M is some positive constant.

1.3. Let HolðR1;R2Þ be the set of all non-constant holomorphic maps of
R1 onto R2, and assume that HolðR1;R2Þ is not empty. In 1978, Martens [3]
showed that f A HolðR1;R2Þ is determined by the homology map

f� : H1ðR1;ZÞ ! H1ðR2;ZÞ
induced naturally from f , where H1ðRj ;ZÞ is the first homology group of Rj

with integer coe‰cients. This is called Martens’ rigidity theorem. The result
was strengthened by Tanabe [4] in 1996.
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Let FHðRjÞ denote the set of all free homotopy classes of closed curves on
Rj. Then f also induces a map

cð f Þ : FHðR1Þ C ½c� 7! ½ f ðcÞ� A FHðR2Þ:
Fix a homology basis fha1i; ha2i; . . . ; ha2g1ig on R1, where haji is a homology
class represented by a closed curve aj on R1 for each j. The rigidity theorem
described above yields that f A HolðR1;R2Þ is completely determined by

fcð f Þð½a1�Þ;cð f Þð½a2�Þ; . . . ;cð f Þð½a2g1 �Þg:
Our theorem gives a necessary condition for a map c : FHðR1Þ ! FHðR2Þ to
be induced from some f A HolðR1;R2Þ, and, for example, it is applicable to the
problem on estimating the number of elements of HolðR1;R2Þ. Furthermore, the
auther hope that the results and the method are also applicable to problems on
estimating numbers of objects for Mordell conjecture and Shafarevich conjecture
in the function field case.

The essential tool of our proof is the estimation of hyperbolic length of
closed geodesic loops on Riemann surfaces (Lemma 5, Lemma 6).

1.4. This paper is organized as follows. In Section 2, we will see several
results on hyperbolic geometry of Riemann surfaces. The proof of Theorem will
be given in Section 3. In the last section, we will construct a holomorphic
branched covering f : R1 ! R2 and an infinite sequence fCrgyr¼1 of simple closed
geodesics on R1 satisfying NR2

ð f ðCrÞÞ ¼ r for every r.

2. Several results on hyperbolic geometry

2.1. First we see a few property of hyperbolic geodesic polygons (piece-
wize geodesic simple closed curves) on the open unit disk D endowed with the
hyperbolic metric of constant negative curvature �1.

For each j ¼ 1; 2, let Pj be a geodesic polygon on D satisfying the following
conditions:

(1) Pj consists of k0 þ 3 sides Aj;1, Aj;2, Cj , gj;1; . . . ; gj;k0
and k0 þ 3 vertexes

xj;1, xj;k0þ1, aj;1, aj;2; . . . ; aj;k0þ1 as illustrated in Figure 1,

Figure 1. a geodesic polygon Pj
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(2) for each k ¼ 1; 2, a side Aj;k intersects Cj at right angle, and
(3) dDðaj;1;CjÞ ¼ dDðaj;2;CjÞ ¼ � � � ¼ dDðaj;k0þ1;CjÞ, where dDðaj;k;CjÞ is the

hyperbolic distance between aj;k and Cj.
For each j ¼ 1; 2 and k ¼ 1; 2; . . . ; k0, we set

lj;k ¼ lDðgj;kÞ;

hj ¼ dDðaj;1;CjÞ ¼ � � � ¼ dDðaj;k0þ1;CjÞ;

where lDðgj;kÞ is the hyperbolic length of gj;k.

Lemma 1. If h1 b h2 and l1;k a l2;k for all k ¼ 1; 2; . . . ; k0, then

dDða1;1; a1;k0þ1Þa dDða2;1; a2;k0þ1Þ:

Proof. Without loss of generality, we may assume that k0 ¼ 2. Let xj;2 be
the intersection point of Cj and the unique perpendicular from aj;2 to Cj. Then
for each j ¼ 1; 2 and k ¼ 1; 2, the relationship

sinh
lj;k

2
¼ cosh hj sinh

dDðxj;k; xj;kþ1Þ
2

;

sinh
dDðaj;1; aj;3Þ

2
¼ cosh hj sinh

dDðxj;1; xj;3Þ
2

follows from hyperbolic trigonometry (see Buser [1], 2.3.1 and Figure 4.1.1).
This yields

sinh
dDðaj;1; aj;3Þ

2
¼ sinh

lj;2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ðlj;1=2Þ

cosh2 hj

s
þ sinh

lj;1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ðlj;2=2Þ

cosh2 hj

s
:

Hence we obtain dDða1;1; a1;3Þa dDða2;1; a2;3Þ. r

2.2. Let H be a degenarate right-angled geodesic hexagon in the unit disk

Figure 2. a degenarate right-angled geodesic hexagon H in the unit disk D
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D as illustrated in Figure 2. The hexagon H consists of five geodesic sides L0,
L1, L2, C1, C2, and the remaining side of H is degenerated into a point p0
at infinity. Let L3 be the unique perpendicular from p0 to L0, and q0 the
intersection point of L0 and L3. Denote by G the compact subset of D bounded
by H. For each j ¼ 1; 2, we set

C 0
j ¼ p A G j dDðp;CjÞ ¼ arcsinh

1

sinhðlDðCjÞÞ

� �
:

Then C 0
j intersects L0 at q0 (see Buser [1], 2.3.1). For each q A L3 U fp0g and

j ¼ 1; 2, let P
q
j denote the unique perpendicular from q to Cj, and ajðqÞ the

intersection point of P
q
j and C 0

j (see Figure 3).

Lemma 2. If lDðC1Þa lDðC2Þ, then

dDða1ðq1Þ; a1ðq2ÞÞa dDða2ðq1Þ; a2ðq2ÞÞ
for any q1; q2 A L3 U fp0g.

Proof. For every q A L3 U fp0g, we denote by xjðqÞ the intersection point of
P

q
j and Cj .

Fix q1; q2 A L3 U fp0g arbitrarily. It is su‰cient to consider the case where
q1; q2 A L3 and dDðq0; q1Þb dDðq0; q2Þ. Assume that lDðC1Þa lDðC2Þ. Set

sk ¼ coth2 dDðq0; qkÞ;

tj;k ¼ cosh�2 dDðxjðq0Þ; xjðqkÞÞ
2

; and

uj ¼ tanh2 lDðCjÞ
for j; k ¼ 1; 2. Then we have 0 < u1 a u2 < 1 < s1 a s2. By hyperbolic trigo-
nometry (see Buser [1], 2.3.1), we obtain

Figure 3. a degenarate right-angled geodesic hexagon H
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1

tj;k
¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� uj=sk

p þ 1

 !
; and

sinh
dDðajðq1Þ; ajðq2ÞÞ

2
¼ 1ffiffiffiffi

uj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tj;2

1

tj;1
� 1

� �s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tj;1

1

tj;2
� 1

� �s( )
for j; k ¼ 1; 2. This yields

sinh
dDðajðq1Þ; ajðq2ÞÞ

2
¼ lðs1; s2; ujÞ for j ¼ 1; 2;

where

lðx; y; zÞ ¼ l1ðx; y; zÞ � l1ðy; x; zÞ;

l1ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx; y; zÞ

z

r
; and

l2ðx; y; zÞ ¼
1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z=y

p þ 1

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z=x
p � 1

 !
:

By calculation, we have

q

qz
l1ðx; y; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx; y; zÞ

p
4z3=2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z=y

p
1� z=y

þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z=x

p
1� z=x

� 2

 !
;

and obtain

q

qz
lðx; y; zÞ ¼ q

qz
l1ðx; y; zÞ �

q

qz
l1ðy; x; zÞ

¼ 1

4z3=2

(
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx; y; zÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðy; x; zÞ

p
Þ 1

1� z=x
þ 1

1� z=y
� 2

� �

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx; y; zÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðy; x; zÞ

p
Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z=x
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z=y
p !)

b 0

for any x; y; z A R with 0 < z < 1 < xa y. Hence lðs1; s2; �Þjð0;1Þ is an increasing
function, and dDða1ðq1Þ; a1ðq2ÞÞa dDða2ðq1Þ; a2ðq2ÞÞ. r

2.3. Let G 0 be a copy of G. By pasting G and G 0 together along the sides
L0, L1 and L2, we obtain a degenerate pair of pants Y which has two boundary
geodesics and one puncture. Conversely, every degenerate pair of pants Y with
two boundary geodesics and one puncture can be obtained by the above con-
struction for a suitable G (see Buser [1], 3.1 and 4.4).

2.4. Next we recall several facts of hyperbolic geometry on Riemann
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surfaces. Let R be a hyperbolic Riemann surface of analytically finite type
endowed with the hyperbolic metric of constant negative curvature �1, and L a
closed geodesic on R. We shall use the same symbol for a curve (a continuous
map of an interval into a Riemann surface) and its image if there is no fear of
confusion.

For an arbitrary simple closed geodesic L on R, we set

CRðLÞ ¼ p A R j dRðp;LÞa arcsinh
1

sinhðlRðLÞ=2Þ

� �
;

where dRðp;LÞ is the distance between L and p with respect to the hyperbolic
metric on R. The set CRðLÞ is called the collar around L. The interior of CRðLÞ
is conformally equivalent to an annulus (see Buser [1], 4.1.1).

Lemma 3. Let L be an arbitrary simple closed geodesic on R, and C : I ¼
½0; 1� ! R a closed geodesic loop freely homotopic to the r-fold iterate Lr of L with
some rb 1. If C is included in the collar CRðLÞ and Cð0Þ ¼ Cð1Þ A qCRðLÞ, then

sinh
lRðCÞ
2

� �
¼ sinh

rlRðLÞ
2

� �
coth

lRðLÞ
2

� �
> r:

Proof. We first note that

sinh
sl

2

� �
coth

l

2

� �
> sð2:1Þ

holds for all sb 1 and l > 0.
Let ~CC be a lift of the curve C : ½0; 1� ! R in the universal covering surface

D of R, and h the covering transformation which corresponds to ~CC. Denote by
~ppj ð j ¼ 1; 2Þ the endpoints of ~CC, and by Aj the perpendicular from ~ppj to the axis

AxisðhÞ of h. Then, ~CC, A1, A2, AxisðhÞ together bound a geodesic quadrangle Q.
Dropping the common perpendicular between ~CC and AxisðhÞ, we obtain two
isometric trirectangle T1;T2 (see Figure 4). By 2.3.1 of Buser [1], we have

sinh2 lDðA1Þ ¼ sinh2 lRðCÞ
2

coth2 rlRðLÞ
2

� cosh2 lRðCÞ
2

:ð2:2Þ

Figure 4. a quadrangle Q
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If C is included in the collar CRðLÞ and Cð0Þ ¼ Cð1Þ A qCRðLÞ, then

sinh lDðA1Þ ¼ sinh�1 lRðLÞ
2

;

and we obtain

sinh
lRðCÞ
2

� �
¼ sinh

rlRðLÞ
2

� �
coth

lRðLÞ
2

� �
by (2.2). r

Lemma 4. Let L be an arbitrary closed geodesic on R, and C a rectifiable
closed curve on R which is freely homotopic to the r-fold iterate Lr of L for some
rb 1. If the hyperbolic length lRðCÞ of C satisfies lRðCÞ < 2 arcsinh r, then L is
simple and C is included in the interior of CRðLÞ.

Proof. Since rb 1 and lRðCÞ < 2 arcsinh r, we have

rlRðLÞa lRðCÞ < 2 arcsinh r < 4r arcsinh 1:

Hence, by Lemma 7 of Yamada [5], L is simple.
Let p be an arbitrary point of C. We may assume that Cð0Þ ¼ Cð1Þ ¼ p.

There exists a geodesic loop C 0 : I ! R such that C 0ð0Þ ¼ C 0ð1Þ ¼ p and C 0 is
homotopic to C rel the base point. Similarly as the proof of Lemma 3, we take

a lift fC 0C 0 of C 0 in the universal covering surface D of R. Denote by ~pp1, ~pp2 the
endpoints of fC 0C 0. For j ¼ 1; 2, let Aj be the perpendicular from ~ppj to the axis of
the covering transformation which corresponds to fC 0C 0. The inequality lRðC 0Þa
lRðCÞ < 2 arcsinh r, (2.1) and (2.2) together yield

sinh2 dRðp;LÞa sinh2 lDðA1Þ

¼ sinh2 lRðC 0Þ
2

coth2 rlRðLÞ
2

� cosh2 lRðC 0Þ
2

< r2 sinh�2 rlRðLÞ
2

� 1

< coth2 lRðLÞ
2

� 1 ¼ sinh�2 lRðLÞ
2

:

Thus, we obtain p A InteriorðCRðLÞÞ. r

3. Proof of Theorem

3.1. Before proceeding to the proof of Theorem, we must establish two
preliminary results.

Let R be a hyperbolic Riemann surface of analytically finite type, and p0
a point of R. Assume that there exists a subset Y of R such that Y contains p0
and _YY ¼ Ynfp0g is a degenerate pair of pants which has two distinct boundary
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geodesics with respect to the hyperbolic metric on _RR ¼ Rnfp0g. Let C1, C2

denote the boundary geodesics of _YY , and L0 the unique simple common per-
pendicular between C1 and C2 in _YY . Then, there exist simple curves Aj : I ! Y
ð j ¼ 1; 2Þ and D : I ! Y such that

(1) Ajð0Þ ¼ p0 and Ajð1Þ is a point of Cj for each j ¼ 1; 2,

(2) D is a simple closed curve freely homotopic to C1 on Y satisfying
Dð0Þ ¼ Dð1Þ ¼ p0,

(3) A1jð0;1�, A2jð0;1�, Djð0;1Þ are geodesics with respect to the hyperbolic metric

on _RR,
(4) each Ajjð0;1� ð j ¼ 1; 2Þ is a perpendicular to Cj, and
(5) Djð0;1Þ intersects L0 at right angle.

We set Lj ¼ Ajjð0;1� for j ¼ 1; 2 and L3 ¼ Djð0;1Þ (see Figure 5). The three per-

pendiculars L0, L1, L2 together decompose _YY into two isometric degenerate right-
angled geodesic hexagons G, G 0.

We first state the following assertion.

Lemma 5. Let C : I ! _YY be an arbitrary rectifiable closed curve. Assume
that the hyperbolic length l _RRðCÞ of C satisfies

l _RRðCÞ < 2 arcsinh NRðCÞ:ð3:1Þ

Then C does not intersect L3.

Proof. Let C : I ! _YY be an arbitrary rectifiable closed curve. Assume
that C intersects L3. We shall prove l _RRðCÞb 2 arcsinh NRðCÞ.

There exists a unique geodesic loop C 0 : I ! _RR with respect to the hyper-
bolic metric on _RR such that C 0ð0Þ ¼ C 0ð1Þ ¼ Cð0Þ ¼ Cð1Þ and C 0 is homotopic
to C rel the base point. Then the geodesic loop C 0 is included in _YY and sat-
isfies l _RRðC 0Þa l _RRðCÞ. Hence, we may assume without loss of generality that C
is a closed geodesic loop with respect to the hyperbolic metric on _RR satisfying
Cð0Þ ¼ Cð1Þ A L3. It is su‰cient to consider the case where

l _RRðC1Þa l _RRðC2Þ:ð3:2Þ

For each j ¼ 1; 2, we define the half-collar Cj around Cj by

Figure 5. a figure of Y

on the multiplicity of the image 77



Cj ¼ p A _YY j d _RRðp;CjÞa arcsinh
1

sinhðl _RRðCjÞ=2Þ

� �
:

Let C 0
j be the simple closed boundary curve of Cj lying on the interior of

_YY .

For any q A L3 and j ¼ 1; 2, let P
q
j : I ! _YY denote the unique perpendic-

ular from q to Cj such that Pq
j jð0;1� does not intersect L3. For each j ¼ 1; 2, we

define a projection aj : _YY ! C 0
j as follows:

(1) For any p A _YYnðL1 UL2Þ, there exists a unique point q on L3 such that
p A P

q
1 UP

q
2 . We let ajðpÞ be the unique intersection point of P

q
j and

C 0
j .

(2) For any p A L1 UL2, we let ajðpÞ be the unique intersection point of Lj

and C 0
j .

Set S ¼ C 0
1 UC 0

2 UL3 U ððL0 UL1 UL2ÞnðC1 UC2ÞÞ. Since C is a closed geo-

desic loop in _YY with Cð0Þ ¼ Cð1Þ A L3, there exist points t0; t1; . . . ; tn A I with
0 ¼ t0 < t1 < � � � < tn ¼ 1 such that CðtÞ A S if and only if t ¼ tk for some k ¼
0; 1; . . . ; n. For each k ¼ 0; 1; . . . ; n� 1, we set ak ¼ Cj½tk ; tkþ1�, and let bk denote

the unique geodesic curve from a1ðCðtkÞÞ to a1ðCðtkþ1ÞÞ homotopic to the curve

a1 � ak : ½tk; tkþ1� ! _YY rel a1ðCðtkÞÞ, a1ðCðtkþ1ÞÞ. Fix k arbitrarily, then ak sat-

isfies either ak H _YYnðC1 UC2Þ or ak HC1 UC2. If ak H _YYnðC1 UC2Þ, then Lemma
2 and (3.2) yield

l _RRðakÞb l _RRðbkÞ:ð3:3Þ

In the case of ak HC1 UC2, we also obtain (3.3) by Lemma 1, Lemma 2 and
(3.2). Hence (3.3) holds for all k. Denote by b : I ! _YY the unique closed
geodesic loop homotopic to the closed curve a1 � C : I ! _YY rel bð0Þ ¼ bð1Þ ¼
a1ðCð0ÞÞ ¼ a1ðCð1ÞÞ. Then, by Lemma 3, we have l _RRðbÞ > 2 arcsinh NRðCÞ and
conclude that

l _RRðCÞ ¼
Xn�1

k¼0

l _RRðakÞ

b
Xn�1

k¼0

l _RRðbkÞ

b l _RRðbÞ
> 2 arcsinh NRðCÞ:

The proof of Lemma 5 is finished. r

3.2. We also need the following estimation.

Lemma 6. Let R be a hyperbolic Riemann surface of analytically
finite type. Take k > 0 distinct points p1; p2; . . . ; pk of R and set _RR ¼ Rn
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fp1; p2; . . . ; pkg. Let C be an arbitrary simple closed geodesic with hyperbolic
length lRðCÞ on R.

Then there exists a simple closed geodesic C 0 on _RR such that
(a) C 0 is freely homotopic to C on R, and
(b) the hyperbolic length l _RRðC 0Þ of C 0 satisfies

l _RRðC 0Þa 2p2ðk þ 1Þ
hðlRðCÞÞ ;

where

hðlÞ ¼ 2p

l
p� 4 arctan tanh

l

4

� �� �
:

Proof. Take an annulur cover

r : A0 ¼ fz A C j 1 < jzj < r0g ! R

of R with respect to C, i.e., r is a holomorphic unbranched covering of R
such that rðfz A A0 j jzj ¼

ffiffiffiffi
r0

p gÞ ¼ C and rjfz A A0 j jzj¼
ffiffiffi
r0

p g is an injection. Set
l0 ¼ lRðCÞ. Then, by calculation, we have

l0 log r0 ¼ 2p2:ð3:4Þ

Let CRðCÞ be the collar around C, i.e.,

CRðCÞ ¼ p A R j dRðp;CÞa arcsinh
1

sinhðl0=2Þ

� �� �
:

Then, by the collar theorem, there exists a number r1 A ½1; ffiffiffiffi
r0

p � such that
(1) A1 ¼ fz A C j r1 < jzj < r0=r1gHA0 is a component of the interior of

r�1ðCRðCÞÞ, and
(2) the restricted map rjA1

is an injection.
By calculation, we obtain a relation

log r1 ¼
4p

l0
arctan tanh

l0

4

� �
:ð3:5Þ

By (3.4) and (3.5), the conformal modulus MðA1Þ ¼ logðr0=r21Þ of A1 satisfies

MðA1Þ ¼ log
r0

r21

¼ log r0 � 2 log r1

¼ 2p

l0
p� 4 arctan tanh

l0

4

� �� �
¼ hðl0Þ:

Let fz1; z2; . . . ; zk 0 gHA1 be the finite set of distinct points such that
fz1; z2; . . . ; zk 0 g ¼ A1 V r�1ðfp1; p2; . . . ; pkgÞ and r1 ¼ x0 a x1 a x2 a � � �a xk 0 a

xk 0þ1 ¼ r0=r1 ðxj ¼ jzj j; j ¼ 1; 2; . . . ; k 0Þ. Since
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x1

x0
� x2

x1
� � � � � xk 0

xk 0�1
� rk 0þ1

xk 0
¼ r0

r21
¼ expðMðA1ÞÞ ¼ expðhðl0ÞÞ;

there exists a number j0 such that

xj0þ1

xj0
b

r0

r21

� �1=ðk 0þ1Þ
¼ ðexpðhðl0ÞÞÞ1=ðk

0þ1Þ:ð3:6Þ

Set

A2 ¼ fz A C j xj0 < jzj < xj0þ1gHA1:

Then rðA2ÞH _RR and

L ¼ fz A C j jzj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj0xj0þ1

p gHA2

is the closed geodesic of A2. The hyperbolic length lA2
ðLÞ of L satisfies

lA2
ðLÞ ¼ 2p2

logðxj0þ1=xj0Þ
:ð3:7Þ

Let C 0 be the simple closed geodesic of _RR freely homotopic to rðLÞ on _RR.
Then C 0 is freely homotopic to C on R. By (3.6) and (3.7), the hyperbolic length
l _RRðC 0Þ on _RR satisfies

l _RRðC 0Þa lA2
ðLÞ

¼ 2p2

logðxj0þ1=xj0Þ

a
2p2ðk 0 þ 1Þ

hðl0Þ

a
2p2ðk þ 1Þ

hðl0Þ
:

This completes the proof of Lemma 6. r

3.3. Proof of Theorem. Let C be an arbitrary simple closed geodesic on R1

and f a non-constant holomorphic map of R1 onto R2. Assume that

NR2
ð f ðCÞÞ > Lðg1; g2; lR1

ðCÞÞ:ð3:8Þ

We shall prove

NR2
ð f ðCÞÞa g1 � 1

g2 � 1
:

Denote by BPð f ÞHR1 the set of all branch points of f . Set _RR2 ¼ R2n
f ðBPð f ÞÞ, _RR1 ¼ f �1ð _RR2Þ and _ff ¼ f j _RR1

. Then _RR1 and _RR2 are Riemann surfaces
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of analytically finite type ðg1; n1Þ and ðg2; n2Þ respectively. The map _ff : _RR1 ! _RR2

is a holomorphic unbranched covering. The Riemann-Hurwitz relation yields

2ðg1 � 1Þ ¼ 2df ðg2 � 1Þ þ Bð f Þ;

where Bð f Þ is the total branching number of f and df is the degree of f . Thus
we have n2 aBð f Þa 2ðg1 � g2Þ and n1 a n2df a 2ðg1 � g2Þðg1 � 1Þ=ðg2 � 1Þ, and
conclude by Lemma 6 that there exists a simple closed geodesic C 0 on _RR1 such
that

(a) C 0 is freely homotopic to C on R1, and
(b) the hyperbolic length l _RR1

ðC 0Þ of C 0 satisfies

l _RR1
ðC 0Þa 2p2ð1þ 2ðg1 � g2Þðg1 � 1Þ=ðg2 � 1ÞÞ

hðlR1
ðCÞÞ :ð3:9Þ

By (3.8) and (3.9), we obtain

lR2
ð f ðC 0ÞÞa l _RR2

ð f ðC 0ÞÞð3:10Þ

¼ l _RR1
ðC 0Þ

a
2p2ð1þ 2ðg1 � g2Þðg1 � 1Þ=ðg2 � 1ÞÞ

hðlR1
ðCÞÞ

< 2 arcsinh NR2
ð f ðCÞÞ ¼ 2 arcsinh NR2

ð f ðC 0ÞÞ:

Set r0 ¼ NR2
ð f ðCÞÞ ¼ NR2

ð f ðC 0ÞÞ. Let C0 be the primitive closed geodesic of
R2 such that the r0-fold iterate Cr0

0 of C0 is freely homotopic to f ðCÞ on R2. By
(3.10) and Lemma 4, we conclude that C0 is a simple curve, and that f ðC 0Þ is
included in the interior of the collar

CR2
ðC0Þ ¼ p A R2 j dR2

ðp;C0Þa arcsinh
1

sinhðlR2
ðC0Þ=2Þ

� �� �
around C0.

First we consider the case of ðR2n _RR2ÞV InteriorðCR2
ðC0ÞÞ ¼ j. In this

case, the closed geodesic f ðC 0Þ of _RR2 is freely homotopic to Cr0
0 on _RR2. Then

by the Riemann-Hurwitz relation we have r0 a df a ðg1 � 1Þ=ðg2 � 1Þ. Next
we see the case of ðR2n _RR2ÞV InteriorðCR2

ðC0ÞÞ0j. Denote all the elements of
ðR2n _RR2ÞV InteriorðCR2

ðC0ÞÞ by fp1; . . . ; pn3g ð1a n3 a n2Þ. Let B1, B2 be two
boundary simple closed curves of CR2

ðC0Þ. For each j A f1; 2; . . . ; n3g, we take a
simple closed curve Dj on R2 as follows: For each i ¼ 1; 2, let Ci be the simple
closed geodesics of R2nfpjg freely homotopic to Bi on R2nfpjg. The geodesics
C1 and C2 together bound a doubly connected domain Yj of R2 containing pj .

The domain _YYj ¼ Yjnfpjg is a degenerate pair of pants on R2nfpjg. Let L0 be

the unique simple common perpendicular between C1 and C2 in _YYj with respect
to the hyperbolic metric on R2nfpjg. We take a simple closed curve Dj : I ! Yj

so that
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(1) Dj is a simple closed curve freely homotopic to C1 on Yj satisfying
Djð0Þ ¼ Djð1Þ ¼ pj,

(2) Dj jð0;1Þ is a geodesic of R2nfpjg, and

(3) Dj intersects L0 at right angle.
Let D 0

j denote a connected component of Dj V InteriorðCR2
ðC0ÞÞ con-

taining pj. Then, for each j, we have D 0
j V f ðC 0Þ ¼ j as follows: Suppose

that D 0
j V f ðC 0Þ is not empty. Take a point x of D 0

j V f ðC 0Þ, and let a be the
unique geodesic loop of R2nfpjg homotopic rel x to f ðC 0Þ on R2nfpjg. Then
a is included in _YYj. Indeed, by Baer-Zieschang theorem (A.3 of Buser [1]), there
exists a self-homeomorphism w of R2nfpjg isotopic to the identity and there
exists an isotopy hw : ðR2nfpjgÞ � I ! R2nfpjg such that hwð�; 0Þ ¼ id, hwð�; 1Þ ¼
wð�Þ, and wðInteriorðCR2

ðC0ÞÞnfpjgÞ¼ _YYj. The set D 0
j nfpjg consists of two com-

ponents at most. Take a point y A D 0
j nfpjg so that

(1) y is in a component of D 0
j nfpjg containing x, and

(2) for each t A I , define a curve dt by dtðsÞ ¼ hwðy; stÞ ðs A IÞ, then dt is
included in _YYj.

Let � be a curve from x to y with �HD 0
j . We set

zt ¼ �dthwð��1 f ðC 0Þ�; tÞd�1
t ��1; t A I :

Then z0 ¼ ���1 f ðC 0Þ���1 is homotopic rel x to z1 ¼ �d1wð��1 f ðC 0Þ�Þd�1
1 ��1 by

the homotopy zt ðt A IÞ. The loop z0 is homotopic rel x to a, and the loop z1
is included in _YYj. This implies that a is included in _YYj . On the other hand,
(3.10) yields

lR2nfpjgðaÞa lR2nfpjgð f ðC 0ÞÞ

a l _RR2
ð f ðC 0ÞÞ

< 2 arcsinh NR2
ð f ðC 0ÞÞ ¼ 2 arcsinh NR2

ðaÞ:

This contradicts the assertion of Lemma 5. Therefore we obtain D 0
j V f ðC 0Þ ¼ j.

Since each component of CR2
ðC0ÞnðD 0

1 U � � �UD 0
n3
Þ is topologically a disk

or an annulus, and is included in _RR2, the closed geodesic f ðC 0Þ is the r0-fold

iterate ðC 0
0Þ

r0 of some simple closed geodesic C 0
0 of _RR2. Hence, by the Riemann-

Hurwitz relation we obtain r0adf a ðg1 � 1Þ=ðg2 � 1Þ. Theorem is now proved.
r

4. Example

In this section, we shall give an example which asserts that there is no upper
bound for NR2

ð f ðCÞÞ depending only on g1 and g2.
Let R2 be a Riemann surface of genus 2. Fix four distinct points

p1; q1; p2; q2 A R2 and two disjoint simple arcs aj from pj to qj ð j ¼ 1; 2Þ. We
cut R2 along the arcs a1, a2. Each cut aj has two edges, labeled aþj edge and a�j
edge. We take two replicas of R2 with cuts, and call them sheet I and sheet
II. To construct a Riemann surface R1, we attach the aþj edge on sheet I and
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the a�j edge on sheet II, and then attach the aþj edge on sheet II and the a�j edge

on sheet I for each j ¼ 1; 2. Then we obtain a compact Riemann surface R1 of
genus 5 and two-sheeted branched covering f : R1 ! R2 which is branched over
p1; q1; p2; q2 with branch order two (see Figure 6).

We take two simple closed curves g1 and g2 on R1 with base point p A R1, as
illustrated in Figure 6. For an arbitrary positive integer r, let Cr be the simple
closed geodesic freely homotopic to gr1g2 on R1, where gr1 is the r-fold iterate
of g1. Then the image curve f ðCrÞ is freely homotopic to the r-fold iterate of
the simple closed curve C0 ¼ f ðg1Þ on R2, and we have NR2

ð f ðCrÞÞ ¼ r. This
example implies that there is no upper bound for NR2

ð f ðCÞÞ depending only on
g1, g2 and f .
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