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Abstract In this article, we study the rigidity properties of deformation parameters of

the natural action of a discontinuous subgroup Γ ⊂ G, on a homogeneous space G/H,

where H stands for a closed subgroup of a Euclidean motion group G := On(R)� Rn.

That is, we prove the following local (and global) rigidity theorem: the parameter space

admits a rigid (equivalently a locally rigid) point if and only if Γ is finite. Remarkably,

it turns out thatH is compact whenever Γ is infinite, which makes accessible the study

of the corresponding parameter and deformation spaces and their topological and local

geometrical features.This shows that theCalabi–Markusphenomenonoccurs in this set-

ting. That is, if H is a closed noncompact subgroup of G, then G/H does not admit a

compact Clifford–Klein form, unless G/H itself is compact. We also answer a question

posed by T. Kobayashi. That is, no homogeneous spaceG/H admits a noncommutative

free group as a discontinuous group.

1. Introduction

Let G be a Lie group, and let Γ⊂G be a finitely generated discrete subgroup.

We denote by Hom(Γ,G) the set of deformation parameters of Γ in G, that is,

the space of all homomorphisms Γ→G endowed with the topology of pointwise

convergence.

This article is concerned with the study of some properties of the natural

action of a discontinuous subgroup Γ⊂G, on a homogeneous space G/H , where

H stands for a closed subgroup of a Euclidean motion group G := On(R)�R
n

and On(R) designates the orthogonal group of Rn. This problem of describing

deformations was first formulated and advocated by T. Kobayashi [15], [12] for

the general non-Riemannian setting. Specifically, as proposed in [10], the problem

involves describing the deformations of Γ inside G and explicitly determining the

set of deformation parameters that allow Γ to deform in such a way so as not

to destroy the proper discontinuity on G/H . To these purposes, the parameter
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space

R(Γ,G,H) :=

⎧⎨
⎩ϕ ∈Hom(Γ,G)

∣∣∣∣∣
ϕ is injective and ϕ(Γ)

acts properly discontinuously

on G/H

⎫⎬
⎭(1)

was introduced in [12] and plays a crucial role in this problem. In order to be

precise on parameters, one considers the deformation space T (Γ,G,H), which is

merely the quotient space of the parameter space (1) given above, through the

equivalence relation arising from inner automorphisms.

When H is a noncompact, it may happen that there does not exist an infinite

discrete subgroup Γ of G which acts properly discontinuously on G/H . This

phenomenon is called the Calabi–Markus phenomenon.

When it comes to the setting of a solvable Lie group G, T. Kobayashi [12]

showed that, for a proper closed subgroup H of G, there exists a discontinuous

subgroup Γ for G/H such that the fundamental group π1(Γ\G/H) is infinite,

showing that the Calabi–Markus phenomenon does not occur in this context.

In the context of Euclidean motion groups, we show that when Γ is infi-

nite (this is for instance the case for crystallographic groups) the proper action

obliges the subgroup H that is not supposed to be connected to instead be

compact. This phenomenon makes easier the study of the parameter space and

its topological features. As such, this important fact allows us to prove that the

Calabi–Markus phenomenon occurs in the setting of Euclidean motion groups. In

the same framework, T. Kobayashi [16] posed the following questions for general

Lie groups.

QUESTION 1

Does G/H admit a Clifford–Klein form of infinite fundamental group?

QUESTION 2

Does G/H admit a noncommutative free group as a discontinuous group?

We will give complete answers to these questions in the same context. More

precisely, we prove the following.

THEOREM 1.1

Let G be the Euclidean motion group.

1. The Calabi–Markus phenomenon occurs for G. That is, if H is a closed

noncompact subgroup of G, then G/H does not admit a compact Clifford–Klein

form, unless G/H itself is compact.

2. If H is a connected subgroup of G, then G/H admits a Clifford–Klein

form of infinite fundamental group if and only if H is compact.

3. G/H admits no noncommutative free group as a discontinuous group.

More precisely, G itself admits no noncommutative free discrete subgroups.
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Our second study concerns the rigidity property of the action of discontinuous

groups acting on the homogeneous space of a Euclidean motion group. Recall

that Γ is said to be locally rigid if there is a neighborhood Ω of the inclusion map

ϕ0 : Γ→G in Hom(Γ,G) such that any ϕ ∈Ω is conjugate to ϕ0 under the action

of G. Let Γ be generated by a finite set Σ. Local rigidity means that there is

an identity neighborhood U ⊂G such that if ϕ : Γ→G is a homomorphism such

that ϕ(γ) ∈ γ ·U for any γ ∈Σ, then there is some g ∈G for which ϕ(γ) = gγg−1

for any γ ∈ Γ.

Using cohomologies of groups, Weil [24] studied the local rigidity for locally

Riemannian symmetric spaces. T. Kobayashi [15] initiated the general theory

of rigidity and deformation theory of discontinuous groups for non-Riemannian

homogeneous spaces in general. His results include the case where the group

is G × G and H = ΔG, the diagonal group, producing some more irreducible

non-Riemannian symmetric spaces of arbitrary high dimension endowed with a

uniform lattice for which the local rigidity does not hold (see [15]).

The rigidity problem was extensively studied in many contexts of solvable Lie

groups. The main substantial outcome was to show that the deformation space

admits a stratification into matrixlike sets (see [1]–[3]). In the present article,

a global (and local) rigidity theorem is obtained for a Euclidean motion group

G. That is, the related parameter space R(Γ,G,H) admits a rigid point if and

only if Γ is finite. In this last situation, we also show that R(Γ,G,H) is a finite

union of G-orbits for which the corresponding subgroups act fixed-point freely

on G/H , any homomorphism is stable in the sense of Kobayashi–Nasrin [17], and

the deformation space T (Γ,G,H) is a finite set. More precisely, we will prove

the following.

THEOREM 1.2

Let G be the Euclidean motion group, let H be a closed subgroup of G, and let Γ

be a discontinuous subgroup for G/H . Then the following results are equivalent.

1. R(Γ,G,H) admits a locally rigid point.

2. R(Γ,G,H) admits a rigid point.

3. Any point of R(Γ,G,H) is rigid.

4. Γ is finite.

The outline of the article is as follows. In the next section, we record some back-

ground about the theory of deformation of discrete subgroups acting on homo-

geneous spaces. In the third section, we prove some general facts on subgroups

of Euclidean motion groups. Many elementary linear algebra results appear to

be useful. The last section is devoted to proving the main results of the article.

2. Background

We begin this section by fixing some notation and terminology and recording

some basic facts about deformations. The readers could consult the references
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[2], [11]–[13], [15], [16], and some references therein for broader information about

the subject. Concerning the entire subject, we strongly recommend [11] and [16].

2.1. Proper and fixed point actions
Let M be a locally compact space, and let K be a locally compact topological

group. The continuous action of the group K on M is said to be:

(1) proper if, for each compact subset S ⊂ M , the set KS = {k ∈K : k · S ∩
S �= ∅} is compact;

(2) fixed point free (or free) if, for each m ∈ M , the isotropy group Km =

{k ∈K : k ·m=m} is trivial;

(3) properly discontinuous if K is discrete and the action of K on M is

proper and free.

In the case where M =G/H is a homogeneous space and K is a subgroup

of G, it is well known that the action of K on M is proper if SHS−1 ∩K is

compact for any compact set S in G. Likewise the action of K on M is free if,

for every g ∈G, K ∩ gHg−1 = {e}. In this context, the subgroup K is said to be

a discontinuous group for the homogeneous space M if K is a discrete subgroup

of G and K acts properly and freely on M .

As a first example, let Mg be a Riemann surface of genus g ≥ 2. Let G =

PSL2(R), and let H = SO2. The fundamental group Γ = π1(Mg) of Mg is a

discontinuous group for G/H and we have Mg =Γ\G/H .

On the other hand, let M be a smooth manifold with a local structure

S (complex structure, affine structure, Lorentz structure, symplectic structure,

pseudo-Riemannian structure, etc.). Let M̃ be the universal covering of M , and

let

G=
{
ϕ ∈Diff(M̃), ϕ preserves the structure S

}
.

If G is a Lie group acting transitively on M̃ and Γ is the fundamental group of

M , then M̃ = G/H , where H is the isotropy group of a point and M = Γ\M̃ .

Here, Γ is a discontinuous group for G/H .

2.2. Clifford–Klein forms
Let Γ be a discontinuous subgroup for the homogeneous space G/H . The quo-

tient space Γ\G/H is said to be a Clifford–Klein form for the homogeneous

space G/H . The following point was emphasized in [14]. Any Clifford–Klein

form is endowed with a smooth manifold structure for which the quotient canon-

ical surjection π : G/H → Γ\G/H turns out to be an open covering and par-

ticularly a local diffeomorphism. On the other hand, any Clifford–Klein form

Γ\G/H inherits any G-invariant geometric structure (e.g., complex structure,

pseudo-Riemannian structure, conformal structure, symplectic structure) from

the homogeneous space G/H through the covering map π.
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2.3. Parameter and deformation spaces
The material dealt with in this section is taken from the pioneering paper of

T. Kobayashi [16]. The reader could also consult [15] and [12] for precise defi-

nitions. As in the first introductory section, we designate by Hom(Γ,G) the set

of group homomorphisms from Γ to G endowed with the pointwise convergence

topology. The same topology is obtained by taking generators γ1, . . . , γk of Γ and

then using the injective map

Hom(Γ,G)→G× · · · ×G,ϕ 	→
(
ϕ(γ1), . . . , ϕ(γk)

)
to equip Hom(Γ,G) with the relative topology induced from the direct product

G× · · · ×G. The related parameter space R(Γ,G,H) defined as in (1), which is

introduced by T. Kobayashi [15] for general settings, stands for an interesting

object when the rigidity fails (see Section 3). Such a space plays a crucial role

as we will see later. For each ϕ ∈ R(Γ,G,H), the space ϕ(Γ)\G/H is a Clifford–

Klein form which is a Hausdorff topological space and is even equipped with the

structure of a smooth manifold for which the quotient canonical map is an open

covering. Let now ϕ ∈ R(Γ,G,H), and let g ∈ G. We consider the element ϕg

of Hom(Γ,G) defined by ϕg(γ) = gϕ(γ)g−1, γ ∈ Γ. It is clear that the element

ϕg ∈ R(Γ,G,H) and that the map

ϕ(Γ)\G/H −→ ϕg(Γ)\G/H, ϕ(Γ)xH 	→ ϕg(Γ)gxH

is a natural diffeomorphism. We consider then the orbit space T (Γ,G,H) =

R(Γ,G,H)/G instead of R(Γ,G,H) in order to avoid the inessential part of

deformations from inner automorphisms and to be quite precise on parameters.

We call the set T (Γ,G,H) the deformation space of the action of Γ on the

homogeneous space G/H .

2.4. The concept of rigidity
We keep the same notation and assumptions. Generalizing Weil’s notion of the

local rigidity of discontinuous groups for Riemannian symmetric spaces,

T. Kobayashi introduced the notions of local rigidity and of rigidity of dis-

continuous groups for non-Riemannian homogeneous spaces (see [12]). Notably,

Kobayashi [15] proved that, for the reductive case, the local rigidity may fail

even for irreducible symmetric spaces of high dimensions. We briefly recall here

some details. For more comprehensive information, we refer the readers to [2], [7],

[10]–[13], [15]–[17], [21], and [23]. For ϕ ∈ R(Γ,G,H), the discontinuous subgroup

ϕ(Γ) for the homogeneous space G/H is said to be locally rigid (resp., rigid) (see

[12]) as a discontinuous group of G/H if the orbit of ϕ under the inner con-

jugation is open in R(Γ,G,H) (resp., in Hom(Γ,G)). This means equivalently

that any point sufficiently close to ϕ should be conjugate to ϕ under an inner

automorphism of G. So, the homomorphisms which are locally rigid are those

which correspond to isolated points in the deformation space T (Γ,G,H). When

every point in R(Γ,G,H) is locally rigid, the deformation space turns out to be
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discrete and the Clifford–Klein form Γ\G/H does not admit continuous defor-

mations. If a given ϕ ∈ R(Γ,G,H) is not locally rigid, then it admits continuous

deformations and the related Clifford–Klein form is continuously deformable.

3. Euclidean motion groups and first structural results

3.1. Euclidean motion groups
For any positive integer n, let I(n) := On(R)�R

n be the semidirect product of

the orthogonal group On(R) (with respect to the canonical Euclidean product

〈·, ·〉 on R
n) and R

n. Here, On(R) merely acts on R
n naturally. From now on,

I(n) will be denoted G unless stated otherwise. Any element γ of G is therefore

written as

γ = (A,x),

where A stands for an orthogonal matrix and x ∈R
n. The multiplication law of

G is submitted to the equation

(2) γγ′ = (A,x)(A′, x′) = (AA′, x+Ax′)

for every γ = (A,x) and γ′ = (A′, x′) ∈ G. Obviously, the unity element of G

equals (I,0) with I = In being the unity matrix of Mn(R).

3.2. On orthogonal matrices
Let ⊥ mean the orthogonality symbol with respect to the canonical Euclidean

product 〈·, ·〉 on R
n, mentioned above. The following results are immediate.

1. For any A ∈On(R) and any subspace V of Rn, we have A(V )⊕⊥A(V ⊥) =

R
n. Here, A(V ) denotes the subspace of Rn that is the image of V by the linear

map associated to A.

2. A subspace V of Rn is fixed by A if and only if V ⊥ is.

3. Let χA denote the characteristic polynomial of a matrix A. Then two

matrices A,B ∈On(R) are similar if and only if χA = χB .

4. Note that, for any θ ∈R, the orthogonal transformation

r(θ) =

(
cosθ − sinθ

sinθ cosθ

)
.

Then for any A ∈On(R), there exists S ∈On(R) such that

(3) S−1AS =

⎛
⎜⎜⎜⎜⎜⎝

Ip
−Iq

r(θ1)
. . .

r(θl)

⎞
⎟⎟⎟⎟⎟⎠ ,

for some positive integers p, q, and l such that p + q + 2l = n and some reals

θ1, . . . , θl.

5. The following lemma is an elementary linear algebra result and will be of

use later.
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LEMMA 3.1

Let {Oi}i∈J be a family of commuting orthogonal matrices on R
n. Then there

exist S ∈On(R) and some integers m+,m−,m±, l ∈N with m++m−+m±+2l=

n such that, for any i ∈ J ,

S−1OiS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−

di(−1,1)

r(θ1,i)
. . .

r(θl,i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some reals θ1,i, . . . , θl,i, where

di(−1,1) =

⎛
⎜⎝
ε1,i

. . .

εm±,i

⎞
⎟⎠ ∈Mm±(R) and

εk,i ∈ {−1,1} for k ∈ {1, . . . ,m±}.

Proof

The Motzkin–Taussky theorem (see [18]) says that any family of commuting

diagonalizable matrices (Oj)j∈J in Mn(C) is simultaneously diagonalizable. The

idea uses an induction on the integer n and the reason is that, for i0 ∈ J and for

any j ∈ J , Oj fixes any eigenspace of Oi0 and induces on each one a diagonalizable

endomorphism.

We remark first that one can find i0 ∈ J and λ ∈ C depending upon i0, for

which the eigenspace

Eλ = ker(Oi0 − λI)

of Oi0 is of dimension less than n. Otherwise, λ ∈R and all Oi, i ∈ J , are multiples

of the identity and the lemma is trivial. Assume now that λ /∈R. Then Eλ, Eλ,

and also

Fλ :=Eλ ⊕Eλ

are stable by all the Oj ’s (j ∈ J). For fixed j ∈ J , let v ∈ Eλ be an eigenvector

of Oj associated to an eigenvalue λj . Then v ∈ Eλ is also an eigenvector of Oj

associated to λj . This means that if λ′ = ±1 is an eigenvalue of the induced

endomorphism by Oj′ on Fλ, j
′ ∈ J , then ±1 is of even multiplicity.

We will deploy an induction on n. Assume for a while that n= 2. If λ ∈C\R,
then any Oi (i ∈ J) having ±1 as an eigenvalue coincides, thanks to the above

with ±I2. So no matrix of the family has the set {1,−1} as a spectrum and this

closes the proof in this case.

Suppose now that n > 2, and suppose that the result holds for any integer

k < n. Let Oi1 , i1 ∈ J , have an eigenvalue λi1 �=±1. Consider

Fλi1
=Eλi1

⊕Eλi1
,
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and for any j ∈ J , consider Oj,i1 the matrix corresponding to the restriction

endomorphism associated to Oj on Fλi1
. The family {Oj,i1}j∈J is thus a family

of commuting diagonalizable matrices in M2p1(C), for which 2p1 = dim(Fλi1
).

If 2p1 = n and if the spectrum of some Oj , j ∈ J , contains ±1 as an eigen-

value, then it only does so with an even multiplicity. On the other hand, there

exists a common unitary basis of eigenvectors (v1, . . . , vp1) of Eλi1
and (v1, . . . ,

vp1) of Eλi1
, which we arrange as (v1, v1, . . . , vp1 , vp1) to obtain a basis of Fλi1

.

This allows us to get the result in this case.

More generally, fixing the complex eigenvalues λi1 , . . . , λik of some Oi1 , . . . ,

Oik , respectively, for i1, . . . , ik ∈ J , one can write

(4) C
n = Fλi1

⊕ · · · ⊕ Fλik
⊕Hk,

where Hk denotes the orthogonal supplementary subspace of Fλi1
⊕ · · · ⊕ Fλik

.

Now, for any j ∈ J , the restriction of Oj to Hk admits no nonreal eigenvalues.

So if dim(Hk) = 0, then we are done. Otherwise, the spectrum of Oj |Hk
is sitting

inside {−1,1} for any j ∈ J and therefore Oj |Hk
coincides with

Aj(−1,1) =

⎛
⎜⎝
±1

. . .

±1

⎞
⎟⎠ ∈Mq(R),

where q = dimHk. Let

E(±1) =
⋂
j∈J

ker(Oj ∓ I),

and letH(−1,1) be the orthogonal supplementary of E(1)⊕E(−1) inHk, accord-

ing to the decomposition (4). This yields the refined decomposition of Rn as

(5) R
n = F1 ⊕ · · · ⊕ Fl ⊕ H̃k,

where 2l =
∑k

j=1 dimFλij
, dimFi = 2 for i ∈ {1, . . . , l}, H̃k is the orthogonal

supplement of F1 ⊕ · · · ⊕ Fl, and the spectrum of Oj |H̃k
is sitting in R. If m+ =

dimE(1),m− = dimE(−1), andm± = dimH(−1,1), then there exists S ∈On(R)

such that, for any j ∈ J ,

(6) S−1OjS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−

dj(−1,1)

r(θ1,j)
. . .

r(θl,j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where for any j ∈ J

dj(−1,1) =

⎛
⎜⎝
ε1,j

. . .

εm±,j

⎞
⎟⎠ ∈Mm±(R),

εk,j ∈ {−1,1} for k ∈ {1, . . . ,m±}.

This achieves the proof with the convention that if one of the integers m+, m−,

m±, l is zero, then the corresponding block does not show up. �

Note here that, according to the matrix form in Lemma 3.1 above, Rn decomposes

into direct sums of subspaces as

(7) R
n =E(1)⊕⊥ E(−1)⊕⊥ H(−1,1)⊕⊥ F1 ⊕⊥ · · · ⊕⊥ Fl,

where E(±1) =
⋂

j∈J ker(Oj ∓ I), the Fi’s are two-dimensional subspaces of Rn,

and H(−1,1) is an orthogonal supplement for which the restriction S−1OiS

coincides with di(−1,1).

3.3. General facts on Euclidean motion groups
For any g = (A,x) ∈ G, denote by O(g) and O(A) ∈ N

∗ ∪ {∞} the orders of g

and A, respectively. Let EA(1) = ker(A − I), and let P (A) be the orthogonal

projection on EA(1).

FACT 3.2

We have that P (A) depends polynomially upon A. In particular, if A is of finite

order p, say, then

(8) P (A) =
1

p
(I +A+ · · ·+Ap−1).

Proof

The first statement is a well-known fact. Assume that A has a finite order,

say, p. If x ∈ EA(1), then clearly P (A)(x) = x. On the other hand, (8) says

that P (A)(I − A) = 0. As such, I − A induces an isomorphism on EA(1)
⊥. If

y ∈EA(1)
⊥, then there exists y′ ∈EA(1)

⊥ such that y = (I −A)y′ and therefore

P (A)y = P (A)(I −A)y′ = 0. �

Let p1 and p2 be the natural projections from G into On(R) and R
n, respectively.

Then (2) says that p1(Γ) is a subgroup of On(R) for any subgroup Γ of G.

Note that p2(Γ) is not a subgroup of Rn in general. Take indeed Γ generated

by (A,x) such that x �= 0 and A is of order k ∈ N
∗ such that P (A)(x) = 0.

Then

p2(Γ) =
{ p∑

i=0

Aix, p ∈ {0, . . . , k− 1}
}
,
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which is not a subgroup of Rn. For discrete subgroups of G, the following result

appears to be immediate.

FACT 3.3

Let Γ be a discrete subgroup of G. Then Γ is infinite if and only if p2(Γ) is.

Proof

Given an infinite discrete subgroup Γ for which p2(Γ) = {x1, . . . , xk} (k ∈ N
∗),

one can write Γ =
⋃k

i=1 Axi ×{xi}, where Axi = {A ∈On(R) | (A,xi) ∈ Γ}. There
exists therefore i0 ∈ {1, . . . , k} such that the set Axi0

× {xi0} is an infinite set

sitting inside the compact set On(R)× {xi0}, so it cannot be discrete. �

FACT 3.4

Let Γ be a discrete subgroup of G, and let γ = (A,x) ∈ Γ. Then O(γ) = p if and

only if O(A) = p and P (A)(x) = 0. That is, for γ ∈ Γ, O(γ) = +∞ if and only if

P (A)(x) �= 0.

Proof

Let p = O(γ). We remark first that γp = (Ap, (
∑p−1

s=0 A
s)x) = (I,0). Then the

order of A divides that of γ. If q = O(A) < p, then γq = (I, (
∑q−1

s=0 A
s)x) and

therefore O(γ) = ∞ if ever (
∑q−1

s=0 A
s)x �= 0. Hence, q = p and (

∑p−1
s=0 A

s)x =

pP (A)(x) = 0. The converse is trivial. �

The following establishes a necessary and sufficient condition for two elements to

be conjugate.

FACT 3.5

Two elements (A,x) and (A′, x′) are conjugate in G if and only if there exists

S ∈On(R) such that S−1AS =A′ and Sx′ − x ∈EA(1)
⊥. In particular, if (A,x)

and (A′, x′) are of finite orders, then they are conjugate in G if and only if A

and A′ are conjugate in On(R).

Proof

Let g = (S, y) ∈G. A direct computation shows that

(9) g−1(A,x)g =
(
S−1AS,S−1

[
x+ (A− I)y

])
.

So A′ = S−1AS and x′ = S−1[x+(A− I)y]. Therefore, Sx′−x= (A− I)y, which

gives in turn that P (A)(Sx′ − x) = 0 and finally Sx′ − x ∈EA(1)
⊥.

Conversely, if A′ = S−1AS and Sx′ − x ∈EA(1)
⊥, then the equation

(A− I)z = Sx′ − x

has at least a solution z0, say. Take y = z0. Then (A−I)y = Sx′−x and therefore

x′ = S−1[x+ (A− I)y]. This gives that

(A′, x′) = (S−1,−S−1y)(A,x)(S, y).
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If (A,x) and (A′, x′) are of finite orders, then by Fact 3.4, x ∈EA(1)
⊥ and x′ ∈

EA′(1)⊥. So if there exists S ∈On(R) such that A′ = S−1AS, then Sx′ ∈EA(1)
⊥

and also Sx′ − x ∈EA(1)
⊥. Then the arguments above complete the proof. �

3.4. On discrete subgroups of Euclidean motion groups
We now prove our first main result.

PROPOSITION 3.6

Let {γi}i∈J be a commuting family of G. There exist some integers m+, m−,

m±, and l satisfying m++m−+m±+2l= n and g ∈G such that, for any i ∈ J ,

(10) g−1γig =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−

di(−1,1)

r(θ1,i)
. . .

r(θl,i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ym+,i

0m−

0m±

02
...

02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ym+,i ∈R
m+ ,

dj(−1,1) =

⎛
⎜⎝
ε1,j

. . .

εm±,j

⎞
⎟⎠ ∈Mm±(R)

(
εk,j ∈ {−1,1} for k ∈ {1, . . . ,m±}

)
,

θ1,i, . . . , θl,i ∈ R, and 02, 0m− , and 0m± are the zeros of R
2, R

m− , and R
m± ,

respectively.

Proof

Let γi = (Ai, xi) for i ∈ J . A direct application of Lemma 3.1 shows that there

exists S ∈On(R) such that, for i ∈ J , (S,0)−1γi(S,0) = (S−1AiS,S
−1xi) := δi is

of the form

δi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−

di(−1,1)

r(θ1,i)
. . .

r(θl,i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ym+,i

ym−,i

zm±,i

x1,i

...

xl,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the integers m+, m−, m±, and l are as in Lemma 3.1. Trivially they do

not depend upon i ∈ J , and if one of them is zero, then this reduces to the fact

that the corresponding block of the R
n side does not show up.
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For any i, j ∈ J ,

δiδj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

Im−

di,j(−1,1)

r(θ1,i,j)
. . .

r(θl,i,j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ym+,i + ym+,j

ym−,i − ym−,j

zm±,i + di(−1,1)zm±,j

x1,i + r(θ1,i)x1,j

...

xl,i + r(θl,i)xl,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where di,j(−1,1) = di(−1,1)dj(−1,1) and θs,i,j = θs,i + θs,j for 1 ≤ s ≤ l. The

fact that γi and γj commute for any i, j ∈ J says that

ym−,i = ym−,j := ym−

and that (di(−1,1), zm±,i) and (dj(−1,1), zm±,j) of I(m±) commute. Let us opt

for the notation

(
di(−1,1), zm±,i

)
=

⎛
⎜⎝
⎛
⎜⎝
εi,1

. . .

εi,m±

⎞
⎟⎠ ,

⎛
⎜⎝

τi,1
...

τi,m±

⎞
⎟⎠
⎞
⎟⎠ (i ∈ J),

where for k ∈ {1, . . . ,m±}, εi,k ∈ {−1,1}, and τi,k ∈ R. The commutativity con-

dition hence says that

(1− εj,k)τi,k = (1− εi,k)τj,k.

Since εik,k =−1 for some ik ∈ J ,

(1− εj,k)

2
τik,k = τj,k,

and τj,k = 0 whenever εj,k = 1. Let, for k ∈ {1, . . . ,m±}, τk = τik,k. Then

(
di(−1,1), zm±,i

)
=

⎛
⎜⎜⎝
⎛
⎜⎝
εi,1

. . .

εi,m±

⎞
⎟⎠ ,

⎛
⎜⎜⎝

1−εi,1
2 τ1
...

1−εi,m±
2 τm±

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

On the other hand, let the integer ik ∈ J for all k ∈ {1, . . . , l} be such that

r(θk,ik) := r(θk) �= I2 and x′
k := xk,ik . So for j ∈ J ,

(11) x′
k + r(θk)xk,j = xk,j + r(θk,j)x

′
k

and equivalently

xk,j =
(
I2 − r(θk,j)

)(
I2 − r(θk)

)−1
x′
k,
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for any j ∈ J . Let xk = (I2 − r(θk))
−1x′

k. Then (S,0)−1γi(S,0) takes the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−

εi,1
. . .

εi,m±
r(θ1,i)

. . .

r(θl,i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ym+,i

ym−
1−εi,1

2 τ1
...

1−εi,m±
2 τm±

(I2 − r(θ1,i))x1
...

(I2 − r(θl,i))xl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, for t = t(t0m+ ,
1
2

t
ym− ,

1
2τ1, . . . ,

1
2τm± ,

t x1, . . . ,
t xl) and g = (S,0)(I, t) =

(S,St), one gets

(12)

g−1γig

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−
εi,1

. . .

εi,m±
r(θ1,i)

. . .

r(θl,i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ym+,i

0m−
0
...
0
02
...
02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�

3.5. Further results on discrete subgroups of Euclidean motion groups
We start the section with the following results.

LEMMA 3.7

Let Γ be a subgroup of G. Then Γ is finite if and only if p1(Γ) is finite and

any element in Γ is of finite order. Furthermore, if Γis compact, then Γ∩ {I} ×
(Rn\{0}) = ∅.

Proof

The necessary condition is trivial. For the converse, suppose that p1(Γ) = {A1,

. . . ,Ap}, and suppose that Γ is infinite, which is equivalent to the fact that p2(Γ)

is infinite as in Fact 3.3. Then Γ =
⊔

1≤i≤p{(Ai, x), (Ai, x) ∈ Γ}, and necessarily

there exists i0 ∈ {1, . . . , p} such that the set {(Ai0 , x), (Ai0 , x) ∈ Γ} is infinite. So

for x′ �= x, (Ai0 , x)(Ai0 , x
′)−1 = (I, x− x′) �= (I,0) is an element of Γ of infinite

order. This is absurd. If now Γ contains (I, y), y �= 0, then {(I,my),m ∈ Z} ⊂ Γ.

So Γ cannot be compact. �

The compact subgroups of G are of paramount importance in this work. We

quote the following result (see [8]).
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LEMMA 3.8

LetG=K � V be the semidirect product Lie group, where V is a finite-dimensional

vector group and K is compact. Then for every compact subgroup U ⊆G, there

exists v ∈ V with vUv−1 ⊆K.

Let us announce next the following result, which will be of use.

LEMMA 3.9 (SEE [19, LEMMAS 4 AND 5])

Let γ1 = (A,x) and γ2 = (B,y) be in G such that γ1 and γ2 generate a discrete

subgroup of G. If ‖A− I‖< 1
2 and ‖B − I‖< 1

2 , then γ1 and γ2 commute.

We now prove the following result.

PROPOSITION 3.10

Let Γ be a discrete subgroup of G. Then Γ is finite if and only if any element of

Γ is of finite order.

Proof

When Γ is finite, the statement is clear. Thanks to Lemma 3.7, it is sufficient to

prove that p1(Γ) is finite. Assume then that p1(Γ) is infinite (so not discrete).

There exists an infinite sequence {γp = (Ap, xp)}{p∈N} in Γ for which the sequence

{Ap}{p∈N} converges to I . As above, for a given p0 ∈ N we have ‖Ap − I‖ < 1
2 ,

for p≥ p0. Then for any p > q ≥ p0, γp and γq commute thanks to Lemma 3.9.

Now, apply Proposition 3.6 to the commuting family {γp}{p≥p0} to get that γp
is conjugate to

γ′
p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+

−Im−

ε1,p
. . .

εm±,p

r(θ1,p)
. . .

r(θl,p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ym+,p

0m−

0
...

0

02
...

02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where r(θi,p) ∈ SO2(R) for i ∈ {1, . . . , l}, and εi,p ∈ {−1,1} for i ∈ {1, . . . ,m±}.
Thanks to Fact 3.4, we get ym+,p = 0 and then an infinite sequence inside the

compact On(R) × {0}. We end up with a convergent infinite extract sequence

inside Γ. This is absurd and so p1(Γ) is finite. �

The following is thus immediate.

COROLLARY 3.11

A discrete subgroup Γ of G is infinite if and only if it contains an element of

infinite order.



The Calabi–Markus phenomenon and a rigidity theorem 339

4. Calabi–Markus phenomenon and proofs of the main results

4.1. On the Calabi–Markus phenomenon
Let us come back for a while to a general locally compact group G. Let Γ be a

discrete subgroup of G. We focus attention here on the Γ-action on G/H when

H is a noncompact closed subgroup of G. Then, the action of Γ on G/H is not

automatically properly discontinuous. In fact, it may happen that there does not

exist an infinite discrete subgroup Γ of G which acts properly discontinuously

on G/H . This phenomenon was first discovered by E. Calabi and L. Markus

[6] for (G,H) = (SO(n,1),SO(n − 1,1)), and is called the Calabi–Markus phe-

nomenon as mentioned in the introduction. T. Kobayashi [15] proved that the

Calabi–Markus phenomenon occurs if and only if rankRG = rankRH when G

is a reductive linear Lie group and H is a closed reductive subgroup of G. On

the other hand, for a solvable Lie group G, T. Kobayashi [12] showed that, for

a proper closed subgroup H of G, there exists a discontinuous subgroup Γ for

G/H such that the fundamental group π1(Γ\G/H) is infinite, showing that the

Calabi–Markus phenomenon does not occur in this context.

4.2. Proof of Theorem 1.1
The first point of the theorem immediately follows from the important following

tool.

PROPOSITION 4.1

Let G be the Euclidean motion group, let H be a closed subgroup of G, and let Γ

be an infinite discrete subgroup of G. Then Γ acts properly on G/H if and only

if H is compact.

Proof

Remark first that Γ acts properly on G/H if and only if gΓg−1 acts properly on

G/g′Hg′−1 for any g, g′ ∈G. Suppose that H is not compact. We can then find

a sequence {(hp, yp)}p∈N of H such that limp→∞‖yp‖=∞. As in Corollary 3.11,

take γ = (A,x) ∈ Γ of infinite order as given in (12). Then x �= 0 by Fact 3.4, and

up to conjugation, γp = (Ap, px). For p ∈N, there exists α(p) ∈N such that

α(p)‖x‖ ≤ ‖yp‖<
(
α(p) + 1

)
‖x‖.

Let z+p = λx ∈ S(0,‖yp‖)∩Rx where α(p)≤ λ < α(p) + 1. Consider

tp = z+p − α(p)x=
(
λ− α(p)

)
x,

and then ‖tp‖< ‖x‖. Furthermore, On(R) acts transitively on S(0,‖yp‖). Hence,

there exists Op ∈On(R) such that Opyp = z+p . Let B′(0,‖x‖) be the closed ball

and K =On(R)×B′(0,‖x‖). Then

(Op,−tp)(hp, yp)(h
−1
p O−1

p Aα(p),0) = (Aα(p),−tp +Opyp)

=
(
Aα(p), α(p)x

)
= γα(p) ∈ Γ∩KHK−1.
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As the set {γα(p)}p∈N is infinite, we meet a contradiction and then H must be

compact. The converse is trivial. �

Proposition 4.1 also shows that it is not possible to get a Clifford–Klein form

Γ\G/H of infinite fundamental groups unless H is compact, which proves the

second point. We now tackle the third point of the theorem. We give the following

result, known as Bieberbach’s theorem (see [4] and [5]), for which a simpler proof

can be found in [19, Theorem 1].

THEOREM 4.2

Any discrete subgroup Γ of G contains an abelian normal subgroup of finite index

in Γ.

We next record the following result (see [9, Main Theorem]).

THEOREM 4.3

A closed solvable subgroup of a locally compact, almost connected group G′ (the

quotient G′/G′
0 is compact, where G′

0 designates the connected component of the

identity of G′) is compactly generated.

Now, the following result is immediate.

COROLLARY 4.4

A discrete subgroup of a Euclidean motion group is finitely generated.

Proof

Let Γ be a discrete subgroup of a Euclidean motion group. By Theorem 4.2,

Γ admits an abelian normal subgroup Γa of finite index q, say, in Γ. Let then

Γ/Γa = {e, δ1, . . . , δq−1}, where e designates the identity of G. By Theorem 4.3,

the abelian discrete subgroup Γa is finitely generated since G is almost connected.

Let then {γ1, . . . , γk} be a family of generators of Γa for some positive integer k.

Then {γ1, . . . , γk, δ1, . . . , δq−1} generates Γ. �

The next theorem originally given in [20, Theorem 6.6.1] is a key to completing

the proof.

THEOREM 4.5

If W is a subgroup of a free group F , then W is a free group. Moreover, if W

has finite index m in F , then the rank of W is precisely nm+ 1−m where n is

the rank of F .

We get the following lemma.
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LEMMA 4.6

Any discrete free subgroup of a Euclidean motion group is abelian.

Proof

Let Γ be a discrete free subgroup of a Euclidean motion group G. Due to Theo-

rem 4.2, Γ admits an abelian normal subgroup Γa of finite index q, say, in Γ. By

Corollary 4.4, Γ and Γa are finitely generated. Let p denote the rank of Γ, and

let l denote that of Γa. Theorem 4.5 gives that Γa is free, and therefore Γa is

trivial or isomorphic to Z. Since Γ is torsion-free, Γa is isomorphic to Z and hence

l= 1, which gives in turn that 1 = 1+ q(p−1) and conclusively q(p−1) = 0. This

allows us to conclude that p= 1 and then that Γ is abelian. �

This completes the proof of the theorem. �

REMARK 4.7

1. Given a closed subgroup H of G, one important question is whether it is

possible to find a nontrivial discrete subgroup Γ of G in such a way that Γ\G/H

is a Clifford–Klein form. We show hereafter that this is not true in general in

the setting of Euclidean motion groups. When for instance G/H is compact, it

fails in general to admit a compact Clifford–Klein form Γ\G/H with a nontrivial

discontinuous subgroup Γ for G/H . Indeed, take n= 4, G= I(4), and

H =

{((
A 0

0 B

)
,

(
x

x′

)) ∣∣∣∣A,B ∈O2(R) and x,x′ ∈R
2

}
.

Then H is not compact and therefore the proper action holds if and only if Γ

is finite as in Proposition 4.1. Let g = (A,x) be an element of G of finite order.

Then A itself is of finite order, and according to (3), A is conjugate to an element

of the form (
A1 0

0 A2

)
,

where Ai belongs to O2(R), i= 1,2. By using Fact 3.5, the element g is conjugate

to an element of H . Hence, any element of G of finite order is conjugate to an

element of H . This entails that the unique Clifford–Klein form is G/H since the

fixed-point-free action holds uniquely when Γ is trivial.

2. For the same context where G= I(4), we show that one can find nontrivial

discontinuous subgroups for a compact homogeneous space G/H . Let

H =

{((
I2 0

0 A

)
,

(
x1

x2

)) ∣∣∣∣A ∈O2(R), x1, x2 ∈R
2

}
.

Then G/H is compact and the proper action holds if and only if Γ is finite. Let

γ =

((
r( 2π3 ) 0

0 r( 2π3 )

)
,0

)

and Γ = 〈γ〉. Then clearly Γ\G/H is a compact Clifford–Klein form.
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We keep all our notation and settings. For a discontinuous subgroup Γ for a

homogeneous space G/H , we pose that

Hom0(Γ,G) =
{
ϕ ∈Hom(Γ,G) : ϕ is injective

}
and

Hom0
d(Γ,G) =

{
ϕ ∈Hom0(Γ,G) : ϕ(Γ) is discrete

}
.

Then clearly Hom0(Γ,G) and Hom0
d(Γ,G) coincide whenever Γ is finite.

We now proceed to prove Theorem 1.2. We first have the following.

LEMMA 4.8

For any ϕ ∈Hom(Γ,G), there exist ϕ1 ∈Hom(Γ,On(R)) and a map ϕ2 : Γ→R
n

such that ϕ(γ) = (ϕ1(γ), ϕ2(γ)) and ϕ2(γγ
′) = ϕ2(γ) + ϕ1(γ)ϕ2(γ

′), for any γ

and γ′ ∈ Γ.

Proof

The homomorphism condition says that(
ϕ1(γγ

′), ϕ2(γγ
′)
)
=
(
ϕ1(γ), ϕ2(γ)

)(
ϕ1(γ

′), ϕ2(γ
′)
)
,

for γ and γ′ ∈ Γ. This gives in turn that

ϕ1 ∈Hom
(
Γ,On(R)

)
and ϕ2(γγ

′) = ϕ2(γ) +ϕ1(γ)ϕ2(γ
′). �

As an immediate and important consequence of Proposition 4.1, we get the fol-

lowing description of the parameter space of the action of any discontinuous

group acting on a homogeneous space G/H , where G stands for the Euclidean

motion group.

COROLLARY 4.9

Let Γ be a discrete subgroup of the Euclidean motion group G acting properly on

G/H . Then

R(Γ,G,H) =
{
ϕ ∈Hom0

d(Γ,G) : ϕ(Γ) acts freely on G/H
}
.

4.3. Proof of Theorem 1.2
Assume first that Γ is infinite. For ϕ ∈ R(Γ,G,H) and μ a positive real num-

ber, write as in Lemma 4.8 ϕ(γ) = (ϕ1(γ), ϕ2(γ)) for γ ∈ Γ, and let ϕμ be the

homomorphism defined as

ϕμ(γ) =
(
ϕ1(γ), μϕ2(γ)

)
, for γ ∈ Γ.

Then clearly ϕμ(Γ) is discrete and (ϕμ)μ tends to ϕ when μ tends to 1. Since

H is compact, ϕμ(Γ) acts properly on G/H . Furthermore, if (A,x) ∈ ϕ(Γ), then

there exist μ ∈R
∗ and (S, t) ∈G such that (S, t)(A,μx)(S, t)−1 = (B,y) ∈H . This

means that (A,μx), (A,x), and (B,y) are of finite orders because of P (A)(μx) =

P (A)(x) = 0. Hence, A and B are similar thanks to Fact 3.5 and then ϕ(Γ)
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does not act freely on G/H , which is absurd. Therefore, ϕμ ∈ R(Γ,G,H) for any

μ ∈R
∗.

Assume now that the orbit of ϕ is open in R(Γ,G,H). There exists ε > 0

such that, for any μ ∈ ]1− ε,1 + ε[, there exists (Mμ, tμ) ∈G such that

ϕμ(γ) = (Mμ, tμ)ϕ(γ)(Mμ, tμ)
−1.

This entails already that

(13) Mμ ∈
⋂
γ∈Γ

C
(
ϕ1(γ)

)
and

(14) Mμϕ2(γ) =
(
ϕ1(γ)− In

)
tμ + μϕ2(γ).

Here, C (ϕ1(γ)) denotes the set of commutators of ϕ1(γ). As Γ is infinite, there

exists an element γ0 ∈ Γ of infinite order thanks to Corollary 3.11. Let (ϕ1(γ0),

ϕ2(γ0)) = (A0, x0). Then (14) gives

Mμx0 = (A0 − In)tμ + μx0.

Since (A0 − In)tμ ∈ {ker(A0 − In)}⊥, P (A0)Mμx0 = μP (A0)x0. As P (A0) is a

polynomial of A0 by Fact 3.2, it commutes with Mμ by (13). Hence,

MμP (A0)x0 = μP (A0)x0

and P (A0)x0 is not zero by Fact 3.4. This is absurd as Mμ is orthogonal.

Let now Γ be finite. An injective homomorphism ϕ from Γ into On(R) ⊂
Gln(R) is a representation of Γ in R

n. By [22], there exists a finite number

of classes of representations of dimension n. Let us denote by ψ1, . . . , ψm some

representatives from each class, such that for any ϕ ∈ Hom0(Γ,On(R)) there

exists an “orthogonal” intertwining operator A and j ∈ {1, . . . ,m} for which

(15) ϕ=AψjA
−1.

For any i ∈ {1, . . . ,m}, let [ψi] be the orbit of ψi in Hom0(Γ,On(R)) in such

a way that Hom0(Γ,On(R)) =
⊔m

i=1[ψi].

Let now {ϕs}s∈N be a sequence in Hom0(Γ,G) converging to ϕ. Denote

ϕs = (ϕ1,s, ϕ2,s), and denote ϕ= (ϕ1, ϕ2). We remark that, by Lemma 4.8, the

sequence {ϕ1,s}s∈N is in Hom(Γ,On(R)). Let γ ∈ Γ such that ϕ1,s(γ) = I . Then

ϕs(γ) is an element of infinite order whenever ϕ2,s(γ) �= 0. This means conclu-

sively that {ϕ1,s}s∈N is in Hom0(Γ,On(R)) and converges to ϕ1. Therefore, one

of the orbits [ψi] contains an infinite number of elements of this sequence, and

therefore, due to its convergence there exists i0 ∈ {1, . . . ,m}, s0 ∈ N, such that,

for any s≥ s0, ϕ1,s ∈ [ψi0 ] and so ϕ1 ∈ [ψi0 ]. Equivalently, for s≥ s0 there exists

As ∈On(R) such that ϕ1,s =Asϕ1A
−1
s . Hence, p1(ϕs(Γ)) =Asp1(ϕ(Γ))A

−1
s . On

the other hand, by Lemma 3.8, there exist ts and t ∈R
n such that

(I, t)ϕ(Γ)(I,−t) = p1
(
ϕ(Γ)

)
× {0} and

(I, ts)ϕs(Γ)(I,−ts) = p1
(
ϕp(Γ)

)
× {0},
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and then one can easily check that ϕs = (As, t− ts)(ϕ1,0)(As, t− ts)
−1, which

entails that ϕ is rigid. This completes the proof. �
As an immediate consequence of Theorem 1.2, we get the following.

COROLLARY 4.10

Let G be the Euclidean motion group, and let Γ be a finite subgroup of G. Then

Hom0(Γ,G)/G is finite.

REMARK 4.11

Corollary 4.10 shows immediately that, for any finite subgroup Γ, the parameter

space R(Γ,G,H) is a finite union of G-orbits for which the corresponding sub-

groups act fixed point freely on G/H . Then R(Γ,G,H) is open in Hom(Γ,G)

(thus, any homomorphism is stable in the sense of Kobayashi–Nasrin [17]) and

the deformation space T (Γ,G,H) is a finite set.

4.4. A concluding remark
Let M(n) := SOn(R) � R

n be the semidirect product of the rotation group

SOn(R) (with respect to the canonical Euclidean product on R
n) and R

n. Then

obviously, one can remark that the statement of Proposition 4.1 holds for M(n)

and so does that of Corollary 4.9. This allows us to affirm the following.

THEOREM 4.12

The conclusions of Theorem 1.1 hold for the group M(n) for any n≥ 2.

As for the rigidity problem, the matter of taking a positive orthogonal operator

A in (15) allows us to confirm the following result.

THEOREM 4.13

The conclusion of Theorem 1.2 holds for the group M(n) for any n≥ 2.

When more generally the compact component SOn(R) is replaced by a general

compact subgroup of Aut(Rn), the statement of Proposition 4.1 clearly fails to

hold as many examples reveal. In this case, we so far do not know about the

validity of the results stated in this article.
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