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Abstract On a general filtered probability space (Ω,F , (Ft, t ∈ [0,1]), P ), for a given

signal Ut = Bt +
∫ t
0
u̇s ds, where (Bt, t ∈ [0,1]) is a Brownian motion and u̇ is adapted

and in L2(dt× dP ), we prove that the filtration of U , denoted (Ut, t ∈ [0,1]), is equal to

the filtration of its innovation processZ, which is defined asZt = Ut−
∫ t
0
EP [u̇s | Us]ds,

t ∈ [0,1], if and only if

H
(
Z(ν) | μ

)
=

1

2
Eν

[∫ 1

0

∣∣EP [u̇s | Us]
∣∣2 ds]

where dν = exp(−
∫ 1
0
EP [u̇s | Us]dZs − 1

2

∫ 1
0
|EP [u̇s | Us]|2 ds)dP in the case in which

the density has expectation 1; otherwise, we give a localized version of the same strength

with a sequence of stopping times of the filtration of U .

1. Introduction

Let (Ω,F , (Ft, t ∈ [0,1]), P ) be a probability space satisfying the usual conditions,

and denote by (W,H,μ) the classical Wiener space, that is, W = C0([0,1],R
d)

and H is the corresponding Cameron–Martin space consisting of Rd-valued abso-

lutely continuous functions on [0,1] with square integrable derivatives, which is a

Hilbert space under the norm |h|2H =
∫ 1

0
|ḣ(s)|2 ds, where ḣ denotes the Radon–

Nikodym derivative of the absolutely continuous function t→ h(t) with respect

to the Lebesgue measure on [0,1]. Denote by (Bt, t ∈ [0,1]) the filtration of the

canonical Wiener process, completed with respect to μ-negligible sets. The ques-

tion that we address in this paper is the following. Assume that U : Ω→W is a

map of the following form:

U(ω)(t) = Ut(ω) =Bt(ω) +

∫ t

0

u̇s(ω)ds,

where B = (Bt, t ∈ [0,1]) is a Brownian motion on Ω and (s,ω) → u̇s(ω) is an

R
d-valued map belonging to the space L2

a(P ;H), which consists of the elements

of L2([0,1]×Ω,B([0,1])⊗F , dt× dP ) that are (Fs, s ∈ [0,1])-adapted for almost
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all s ∈ [0,1]. Let us define the innovation process Z associated to U as

Zt = Ut −
∫ t

0

EP [u̇s | Us]ds,

where (Ut, t ∈ [0,1]) is the filtration generated by U . It is well known that Z is a

P -Brownian motion with respect to (Ut, t ∈ [0,1]), and Z is naturally adapted to

(Ut, t ∈ [0,1]). This means that the information obtained via Z is included in the

information obtained from U . P. Frost [4] and T. Kailath [5] have conjectured that

in practical situations the converse of this observation is also true. V. A. Beneš

[2] has remarked that this conjecture holds if and only if there is a hidden process

which is a strong solution of a certain stochastic differential equation from which

one can construct the initial system. This conjecture has also been proved under

a restrictive supplementary hypothesis (cf. [1]) where u̇ is independent of the

Brownian motion B. The main objection to these works lies in the fact that the

condition of [2] is unverifiable from the observed data; hence, numerically it is

not useful. The second objection is that it uses a hypothesis of independence

which is too strong to be encountered in engineering applications. In this paper

we give a necessary and sufficient condition in the most general case using the

entropic characterization of the almost sure invertibility of adapted perturbations

of identity (APIs). Let us explain the idea and the difference from the other works.

For simplicity, assume that

(1.1) EP

[
exp

(
−

∫ 1

0

EP [u̇s | Us]dZs −
1

2

∫ 1

0

∣∣EP [u̇s | Us]
∣∣2 ds)]

= 1,

and denote by ρ(−δZ û) the Girsanov exponential inside the above expectation.

Here we use the notation δZ to denote the Itô integral of the Lebesgue density

of the vector field which is defined as (t,ω)→ û(t,ω) =
∫ t

0
EP [u̇s | Us](ω)ds with

respect to Z. Define a new measure ν by dν = ρ(−δZ û)dP . Then the observation

process U is adapted to the filtration of the innovation process Z up to negligible

sets if and only if we have

H
(
Z(ν)

∣∣ μ)
=

1

2
Eν

[
|û|2H

](
=

1

2
Eν

∫ 1

0

∣∣EP [u̇s | Us]
∣∣2 ds),

where Z(ν) denotes the pushforward of the measure ν under Z, and H(Z(ν) | μ)
is the relative entropy of Z(ν) with respect to the Wiener measure μ, that is,

H
(
Z(ν)

∣∣ μ)
=

∫
W

dZ(ν)

dμ
log

dZ(ν)

dμ
dμ.

Clearly, the verification of this condition, namely, the equality of the entropy to

the total kinetic energy of û, requires only the knowledge about the observa-

tion process U . However, the calculation of the relative entropy may be time-

consuming. In fact, as it follows from Theorem 3, all these results are valid when

one works causally with time; in other words, they hold also when one works on

the time interval [0, t] for t ≥ 0, since they are restrictable even to the random

time intervals. The final result says that we can also suppress the hypothesis

(1.1) by using a sequence of (Ut, t ∈ [0,1])-stopping times.
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2. Characterization of the invertible shifts on the canonical space

We begin with the definition of the notion of almost sure invertibility with respect

to a measure. This notion is extremely important since it makes things work. Let

us note that in this section all the expectations and conditional expectations are

taken with respect to the Wiener measure μ.

DEFINITION 1

Let T :W →W be a measurable map.

• T is called (μ-)almost surely left invertible if there exists a measurable map

S :W →W such that S ◦ T = IW μ-almost surely.

• Moreover, in this case it is trivial to see that T ◦S = IW Tμ-almost surely,

where Tμ denotes the image of the measure μ under the map T .

• If Tμ is equivalent to μ, then we say in short that T is μ-almost surely

invertible.

• Otherwise, we may say that T is (μ,Tμ)-invertible in the case when preci-

sion is required or just μ-almost surely left invertible, and S is called the μ-left

inverse of T .

Let L2
a(μ,H) be the μ-square integrable equivalence classes of Cameron–Martin

space (denoted by H) valued functions; hence, t→ (w→ u(w)) is an absolutely

continuous function of t ∈ [0,1] with a ds-square integrable Lebesgue density

denoted as u̇s(w). Moreover, we assume that w → u̇s(w) is Bs-measurable for

ds-almost all s ∈ [0,1], which is a Hilbert space. For short we call them adapted

vector fields of class L2. Similarly, L0
a(μ,H) denotes the set of adapted vector

fields whose Cameron–Martin norm is μ-almost surely finite. Under the topology

of convergence in probability, L0
a(μ,H) is a nonlocally convex Fréchet space. For

the reader’s convenience, let us note that L0
a(μ,H) is the completion of L2

a(μ,H)

under the topology of convergence in probability.

Although the following theorem has been proved in [6], for the reader’s con-

venience we give a short and different proof.

THEOREM 1

For any u ∈ L2
a(μ,H), we have the following inequality:

H(Uμ | μ)≤ 1

2
E

∫ 1

0

|u̇s|2 ds,

where H(Uμ | μ) is the relative entropy of the measure Uμ with respect to μ.

Proof

Let L be the Radon–Nikodym density of Uμ with respect to μ. For any 0≤ g ∈
Cb(W ), using the Girsanov theorem, we have

E[g ◦U ] =E[gL]≥E
[
g ◦UL ◦Uρ(−δu)

]
;
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hence,

L ◦UE
[
ρ(−δu)

∣∣ U]
≤ 1

μ-almost surely. Consequently, using the Jensen inequality, we have

H(Uμ | μ) = E[L logL] =E[logL ◦U ]

≤ −E
[
logE

[
ρ(−δu)

∣∣ U]]
≤ −E

[
logρ(−δu)

]

=
1

2
E

∫ 1

0

|u̇s|2 ds. �

THEOREM 2

Assume that U = IW + u is an API, that is, u ∈ L2
a(μ,H) such that s→ u̇(s,w)

is Bs-measurable for almost all s. Then U is almost surely left invertible with a

left inverse V if and only if

H(Uμ | μ) = 1

2
E

[
|u|2H

]
=

1

2
E

∫ 1

0

|u̇s|2 ds,

that is, if and only if the entropy of Uμ is equal to the energy of the drift u.

Proof

Due to Theorem 1, the relative entropy is finite as soon as u ∈ L2
a(μ,H). Let us

suppose now that the equality holds, and let us denote by L the Radon–Nikodym

derivative of Uμ with respect to μ. Using the Itô representation theorem, we can

write

L= exp
(
−

∫ 1

0

v̇s dWs −
1

2

∫ 1

0

|v̇s|2 ds
)

Uμ-almost surely. Let V = IW + v, as described in [3]. From the Itô formula and

Paul Lévy’s theorem, it is immediate that V is a Uμ-Wiener process; hence,

(2.1) E[L logL] =
1

2
E

[
L|v|2H

]
.

Now, for any f ∈Cb(W ), we have from the Girsanov theorem that

E[f ◦U ] =E[fL]≥E
[
f ◦UL ◦Uρ(−δu)

]
.

Consequently,

L ◦UE
[
ρ(−δu)

∣∣ U]
≤ 1

μ-almost surely. Let us denote E[ρ(−δu) | U ] by ρ̂. We then have logL ◦ U +

log ρ̂ ≤ 0 μ-almost surely. Taking the expectation with respect to μ and the

Jensen inequality gives

H(Uμ | μ) = E[L logL]≤−E[log ρ̂]

≤ −E
[
logρ(−δu)

]
=

1

2
E

[
|u|2H

]
.
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Since log is a strictly concave function, the equality E[log ρ̂] = E[logρ(−δu)]

implies that ρ(−δu) = ρ̂ μ-almost surely. Hence we obtain

E
[
L logL+ logρ(−δu)

]
=E

[
log

(
L ◦Uρ(−δu)

)]
= 0,

and since L ◦Uρ(−δu)≤ 1 μ-almost surely, we should have that

(2.2) L ◦Uρ(−δu) = 1

μ-almost surely. Combining the exponential representation of L with (2.2) implies

0 =
(∫ 1

0

v̇s dWs

)
◦U +

1

2
|v ◦U |2H + δu+

1

2
|u|2H

= δ(v ◦U) + δu+ (v ◦U,u)H +
1

2

(
|u|2H + |v ◦U |2H

)
(2.3)

= δ(v ◦U + u) +
1

2
|v ◦U + u|2H

μ-almost surely. From (2.1) it follows that v ◦ U ∈ L2
a(μ,H); hence taking the

expectations on both sides of (2.3) with respect to μ is licit, and this implies that

v ◦U + u= 0 μ-almost surely, which means that V = IW + v is the μ-left inverse

of U .

To show the necessity, let us denote by (Lt, t ∈ [0,1]) the martingale

Lt =E[L | Bt] =E
[dUμ

dμ

∣∣∣ Bt

]
,

and let

Tn = inf
(
t : Lt <

1

n

)
.

Since U ◦ V = IW (Uμ)-almost surely, V can be written as V = IW + v (Uμ)-

almost surely, and v ∈ L0
a(Uμ,H), that is, v(t,w) =

∫ t

0
v̇s(w)ds, v̇ is adapted

to the filtration (Bt) completed with respect to Uμ, and
∫ 1

0
|v̇s|2 ds <∞ (Uμ)-

almost surely. Noting that {t≤ Tn} ⊂ {L> 0} and that μ and Uμ are equivalent

on {L> 0}, we conclude that
∫ Tn

0

|v̇s|2 ds <∞

μ-almost surely. Consequently, the inequality

Eμ

[
ρ(−δvn)

]
≤ 1

holds true for any n≥ 1, where vn(t,w) =
∫ t

0
1[0,Tn](s,w)v̇s(w)ds. By positivity

we also have

Eμ

[
ρ(−δvn)1{L>0}

]
≤ 1.

Since limn→∞ Tn = ∞ (Uμ)-almost surely, we also have that limn→∞ Tn = ∞
μ-almost surely on the set {L> 0}, and the Fatou lemma implies that
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Eμ

[
ρ(−δv)1{L>0}

]
= Eμ

[
lim
n

ρ(−δvn)1{L>0}
]

(2.4)
≤ lim inf

n
Eμ

[
ρ(−δvn)1{L>0}

]
≤ 1.

From the identity U ◦ V = IW (Uμ)-almost surely, we have that v + u ◦ V = 0

(Uμ)-almost surely; hence, v ◦U+u= 0 μ-almost surely. An algebraic calculation

gives immediately that

(2.5) ρ(−δv) ◦Uρ(−δu) = 1

μ-almost surely. Now applying the Girsanov theorem to API U and using the

relation (2.5), we obtain

E[g ◦U ] = E[gL] =E
[
g ◦U

(
ρ(−δv)1{L>0}

)
◦Uρ(−δu)

]
≤ E

[
gρ(−δv)1{L>0}

]
,

for any positive g ∈ Cb(W ). (Note that, on the set {L > 0}, ρ(−δv) is perfectly

well defined with respect to μ.) Therefore,

L≤ ρ(−δv)1{L>0}

μ-almost surely. Now, this last inequality combined with (2.4) gives that

L= ρ(−δv)1{L>0}

μ-almost surely; hence,

L ◦Uρ(−δu) = 1

μ-almost surely. To complete the proof it suffices to remark that

H(Uμ | μ) = E[L logL] =E[logL ◦U ]

= E
[
− logρ(−δu)

]

=
1

2
E

[
|u|2H

]
. �

The following result comes almost for free.

THEOREM 3

Assume that U = IW + u is an API which is μ-almost surely left invertible, and

let τ be any stopping time such that, for uτ defined as uτ (t,w) = u(t∧ τ(w),w),

E
[
ρ(−δuτ )

]
= 1.

Then Uτ = IW + uτ is μ-almost surely invertible; in other words, there exists

some API, say, V ′ such that V ′ ◦Uτ = Uτ ◦ V ′ = IW μ-almost surely.

Proof

Since E[ρ(−δuτ )] = 1, Uτμ is equivalent to the Wiener measure μ; hence its

Radon–Nikodym density can be written as

dUτμ

dμ
= ρ(−δξ).
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From the Girsanov theorem it follows that

(2.6) ρ(−δξ) ◦UτE
[
ρ(−δuτ )

∣∣ Uτ
]
= 1

μ-almost surely. Let z be the innovation process of Uτ , which is defined as

zt = Uτ
t −

∫ t

0
E[u̇τ

s | Uτ
s ]ds, where (Uτ

s , s ∈ [0,1]) denotes the filtration correspond-

ing to Uτ . Applying the Girsanov theorem again, this time using the Brownian

motion z (cf. [6] for the details), we find that

E
[
ρ(−δuτ )

∣∣ Uτ
]
= exp

(
−

∫ 1

0

E[u̇τ
s | Uτ

s ]dzs −
1

2

∫ 1

0

∣∣E[u̇τ
s | Uτ

s ]
∣∣2 ds).

This relation combined with (2.6) gives the relation

ξ̇t ◦Uτ +E
[
u̇1[0,τ ](t)

∣∣ Uτ
t

]
= 0

(dt× dμ)-almost surely. Besides, for any A ∈ L∞(μ), we have that

E
[
AE

[
u̇t1[0,τ ](t)

∣∣ Uτ
t

]]
= E

[
E[A | Uτ

t ]u̇t1[0,τ ](t)
]

= E
[
E[A | Ut]u̇t1[0,τ ](t)

]
= E

[
AE[u̇τ

t | Ut]
]

= E[Au̇τ
t ],

where the last equality follows from the left invertibility of U . Hence, we obtain

ξ̇t ◦Uτ + u̇1[0,τ ](t) = ξ̇t ◦Uτ + u̇τ
t = 0

(dt × dμ)-almost surely, which is equivalent to the μ-almost sure invertibility

of Uτ . �

3. The case of a general probability space

The following result is essential for the proof of the conjecture. We use the nota-

tions explained in the introduction, and we differentiate carefully between the

Wiener measure μ and the probability P as well as the respective expectations

and conditional expectations to avoid any ambiguity. In particular, we denote by

L2
a(P,H) the space of adapted, P -square integrable vector fields; this is exactly

the same space as L2
a(μ,H), where the Wiener space is replaced by a general

probability space Ω, μ is replaced by a probability P defined on (Ω,F), and

the canonical filtration (Bt, t ∈ [0,1]) of the Wiener space is replaced by a gen-

eral filtration (Ft, t ∈ [0,1]) of (Ω,F). Similarly, L0
a(P,H) denotes the version of

L0
a(μ,H) on this general probability space; we remark that it is the completion

of L2
a(P,H) with respect to the convergence in probability P .

THEOREM 4

Let U = B + u = B +
∫ ·
0
u̇s ds be an API mapping Ω to W with u ∈ L2(P,H).

Then

H
(
U(P ) | μ

)
=

1

2
EP

[
|u|2H

]
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if and only if there exists some v : W → H (of the form v =
∫ ·
0
v̇s ds) with v̇

adapted ds-almost surely to the filtration (Bt(W )) such that

U(ω) =B(ω)− v ◦U(ω),

which implies in particular that B = Z, where Z is the innovation process associ-

ated to U . In other words, U is a solution of the following stochastic differential

equation:

dUt =−v̇t ◦U dt+ dBt.

Proof

Note first that U is not necessarily a strong solution. Let us now prove the

necessity. Since U is an API, U(P ) is absolutely continuous with respect to the

Wiener measure μ. Let l be the corresponding Radon–Nikodym derivative. We

can represent it as a Girsanov exponential U(P )-almost surely; that is, we have

l =
dU(P )

dμ
= ρ(−δv)

= exp
(
−

∫ 1

0

v̇s dWs −
1

2

∫ 1

0

|v̇s|2 ds
)
,

U(P )-almost surely, where (Wt) is the canonical Wiener process. For any positive

f ∈Cb(W ), it follows from the Girsanov theorem that

EP [f ◦U ] =Eμ[fl]≥EP

[
f ◦Ul ◦Uρ(−δBu)

]
,

where

ρ(−δBu) = exp
(
−

∫ 1

0

u̇s dBs −
1

2

∫ 1

0

|u̇s|2 ds
)
.

This inequality, which is valid for any positive, measurable f , implies that

l ◦UEP

[
ρ(−δBu)

∣∣ U]
≤ 1

P -almost surely. Therefore,

H
(
U(P )

∣∣ μ)
= Eμ[l log l] =EP [log l ◦U ]

≤ −EP

[
logEP

[
ρ(−δBu)

∣∣ U]]
≤ 1

2
EP

[
|u|2H

]
.

The equality hypothesis H(U(P ) | μ) = 1
2EP [|u|2H ] and the strict convexity of the

function x→− logx imply that

l ◦Uρ(−δBu) = 1

P -almost surely. Therefore,

1 = ρ(−δv) ◦Uρ(−δB)

= exp−
[
(δv) ◦U +

1

2
|v ◦U |2H + δBu+

1

2
|u|2H

]

= exp−
[
δB(v ◦U) + (v ◦U,u)H +

1

2
|v ◦U |2H + δBu+

1

2
|u|2H

]
,
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which implies that

δB(u+ v ◦U) +
1

2
|v ◦U + u|2H = 0

P -almost surely. Since EP [|v ◦U |2H ] =Eμ[l|v|2H ] = 2Eμ[l log l], it follows that v ◦
U + u= 0 P -almost surely. Note that we can write

U =B + u= Z + û, û=

∫ ·

0

EP [u̇s | Us]ds,

since u=−v ◦U , u̇ is adapted to the filtration of U , and therefore B = Z.

Sufficiency. If U = B − v ◦ U , then Z = B and v ◦ U + u = 0. Let l again

denote the Radon–Nikodym derivative of U(P ) with respect to μ. As before

we can write l = ρ(−δξ) U(P )-almost surely, for some ξ : W → H such that

ξ =
∫ ·
0
ξ̇s ds,

∫ 1

0
|ξ̇s|2 ds < ∞ U(P )-almost surely, and ξ̇s is Bs(W )-measurable

ds-almost surely. Using the Girsanov theorem as above, we find that

l ◦UEP

[
ρ(−δBu)

∣∣ U]
≤ 1

but the hypothesis implies that ρ(−δBu) is U -measurable. It then follows that

δB(u+ ξ ◦U) +
1

2
|ξ ◦U + u|2H ≤ 0

P -almost surely. Since EP [|ξ ◦U |2H ] = 2H(U(P ) | μ)<∞, it follows that ξ ◦U =

v ◦U P -almost surely. Consequently

H
(
U(P ) | μ

)
=Eμ[l log l] =EP [log l ◦U ] =−EP

[
logρ(−δBu)

]
=

1

2
EP

[
|u|2H

]
,

and this completes the proof. �

Theorem 4 says that U = B + u with u ∈ L0
a(P,H) is the weak solution of the

stochastic differential equation

dUt = dBt − v̇t ◦U dt

if and only if we have equality between the entropy H(U(P ) | μ) and the total

kinetic energy of u with respect to the probability P . A natural question is: When

is this solution strong? The following theorem gives the answer.

THEOREM 5

Assume that U is a weak solution of the stochastic differential equation

dUt = dBt − v̇t ◦U dt,

with the hypothesis that v ◦U ∈ L0
a(P,H). Define the sequence of stopping times

(tn, n≥ 1) as

tn = inf
(
t :

∫ t

0

|v̇s|2 ds > n
)
.

Let

u̇n(t,ω) =−v̇t ◦U(ω)1[0,tn◦U ](t),
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and let Un =B+un where un(t,ω) =
∫ t

0
u̇n(s,ω)ds. Define a new probability Qn

by dQn = ρ(−δB(un))dP . Then

H
(
B(Qn)

∣∣ μ)
=

1

2
EQn

[
|un|2H

]

for any n≥ 1 if and only if U is a strong solution.

Proof

Necessity. Since, under Qn, Un is a Brownian motion, since the hypothesis com-

bined with Theorem 4 implies that vn ◦ U is measurable with respect to the

filtration of B up to Qn-negligible sets, and since Qn is equivalent to P , it fol-

lows that vn ◦ U is adapted to the same filtration completed with P -negligible

sets. Since limn→∞ vn ◦U = v ◦U , U is also adapted to the P -completion of the

filtration of B; hence U is a strong solution of the above stochastic differential

equation.

Sufficiency. If U is a strong solution, then it is of the form U = Û(B) =

B − v ◦ Û(B) and Û : W → W has a μ-almost surely left inverse V = IW + v.

Since Qn is equivalent to P , we also have that U = Û(B) Qn-almost surely.

Moreover, B = Un + vn ◦ U and vn ◦ U is adapted to the filtration of B up to

Qn-negligible sets for any n ≥ 1. Due to Theorem 4 this is equivalent to the

equality

H
(
B(Qn)

∣∣ μ)
=

1

2
EQn

[
|un|2H

]
,

for any n≥ 1. �

4. Proof of the innovation conjecture

We are now at a position to give the proof of the conjecture. We shall do it in

two steps by using the notation explained in the introduction. The first step is

with a supplementary hypothesis to explain clearly the idea; the second one is in

full generality.

We have the relation

U =B + u= Z + û,

and we shall denote by (Zt, t ∈ [0,1]) the filtration generated by the innovation

process Z. We use also the notation

ρ(−δZ û) = exp
(
−

∫ 1

0

EP [u̇s | Us]dZs −
1

2

∫ 1

0

∣∣EP [u̇s | Us]
∣∣2 ds).

First we give a proof with a supplementary hypothesis which will be suppressed

in the final proof.

PROPOSITION 1

Assume that

EP

[
ρ(−δZ û)

]
= 1.
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Denote by ν the probability defined by dν = ρ(δZ û)dP . Then Ut = Zt for any

t ≥ 0 up to negligible sets and û = v ◦ Z, with v ∈ L0(μ,H) and with v̇s being

Bs(W )-measurable ds-almost surely, if and only if

H
(
Z(ν)

∣∣ μ)
=

1

2
Eν

[
|û|2H

]
.

Proof

By Paul Lévy’s theorem, U is a Brownian motion under the measure ν and

Z = U − û. Then Theorem 4 says that (replacing B by U and P by ν), û is a

functional of Z and that s→EP [u̇s | Us] is adapted to the filtration (Zs, s ∈ [0,1])

ds-almost surely. Hence, U is Z-measurable. Moreover, the same theorem implies

the existence of some v ∈ L0(μ,H) which is defined as

dZ(ν)

dμ
= ρ(δv)

such that û= v ◦Z. �

Now we are ready to give the full proof.

THEOREM 6

Let Tn = inf(t :
∫ t

0
|EP [u̇s | Us]|2 ds > n). Define

ûn(t,ω) = û(t∧ Tn, ω),

Un = Z + ûn.

Then Zt = Ut for any t ≥ 0 up to negligible sets, and hence û should be of the

form ũ ◦Z with some ũ ∈ L0
a(μ,H) if and only if we have

(4.1) H
(
Z(νn)

∣∣ μ)
=

1

2
Eνn

[
|ûn|2H

]

for any n≥ 1, where dνn = ρ(−δZ ûn)dP and

ρ(−δZ ûn) = exp
(
−

∫ Tn

0

EP [u̇s | Us]dZs −
1

2

∫ Tn

0

∣∣EP [u̇s | Us]
∣∣2 ds).

Proof

Sufficiency. Under the measure νn, Un is a Brownian motion and Z = Un− ûn. It

follows from Theorem 4 that ûn is ((Zt), νn)-adapted if and only if the relation

(4.1) holds true. Since νn is equivalent to P , Un is also ((Zt), P )-adapted for

any n ≥ 1; since Un → U in L0(P,W ) (i.e., P -equivalence classes of W -valued

measurable functions under the topology of convergence in probability P ), U is

also ((Zt), P )-adapted.

Necessity. Assume that U is ((Zt), P )-adapted; then it is also ((Zt), νn)-

adapted since νn ∼ P for any n≥ 1. Hence Un is also ((Zt), νn)-adapted for any

n≥ 1 and this is equivalent to (4.1) for any n≥ 1. �
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