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Abstract We describe prime ideals of height 2minimally generated by three elements

in a Gorenstein, Nagata local ring of Krull dimension 3 and multiplicity at most 3. This

subject is related to a conjecture of Y. Shimoda and to a long-standing problem of

J. Sally.

1. Introduction

It is not known whether a Noetherian local ring such that all its prime ideals

different from the maximal ideal are complete intersections has Krull dimension

at most 2. This problem was posed by Y. Shimoda and still remains unanswered

in its full generality. In fact, it is a partial version of a more general question of

J. Sally’s, namely, that the existence of a uniform bound on the minimal number

of generators of all its prime ideals is equivalent to the dimension of the ring

being at most 2.

Note that, in the Shimoda problem, one may assume without loss of gener-

ality that the local ring is Cohen–Macaulay and has dimension at most 3 (see

[5] for more details, particularly [5, Remarks 2.2 and 2.4]). Similarly, one may

ask whether one can display a prime ideal of height 2 and minimally generated

by at least three elements in a Cohen–Macaulay local ring of dimension 3. By a

result due to M. Miller [9, Theorem 2.1], under reasonably general hypotheses, a

local domain of dimension at least 4 containing a field possesses an abundance

of prime ideals of height 2 that are not complete intersections.

The purpose of the paper is threefold: to generalize the results obtained in

the first part of [5], to give simpler proofs, and finally to display a wide collection

of examples to illustrate the range of behavior that occurs.

Let (R,m, k) be a Cohen–Macaulay local ring, with k infinite, dimR= 3, and

multiplicity e(R). Let (x, y, z)R be a minimal reduction of m. We ask for k to be

infinite just to ensure that m has a minimal reduction minimally generated by

three elements (see [3, Remark 4.5.9]). If R is regular local, then we do not need

such an hypothesis, as m is then its own minimal reduction.

Kyoto Journal of Mathematics, Vol. 55, No. 2 (2015), 461–475

DOI 10.1215/21562261-2871794, © 2015 by Kyoto University

Received January 21, 2014. Revised April 1, 2014. Accepted April 7, 2014.

2010 Mathematics Subject Classification: Primary 13C15, 13H15; Secondary 14C17.

Planas-Vilanova’s work partially supported by grant MTM2010-20279-C02-01.

http://dx.doi.org/10.1215/21562261-2871794
http://www.ams.org/msc/


462 Goto, O’Carroll, and Planas-Vilanova

Take a= (a1, a2, a3) ∈N
3
+ and b= (b1, b2, b3) ∈N

3
+, where N+ denotes the set

of positive integers; set N = {0} ∪ N+. Let c = a+ b, c = (c1, c2, c3). Let M be

the matrix

M=

(
xa1 ya2 za3

yb2 zb3 xb1

)
,

and let v1 = xc1 − yb2za3 , v2 = yc2 − xa1zb3 , and v3 = zc3 − xb1ya2 be the 2× 2

minors of M up to a change of sign. Consider I = (v1, v2, v3)R, the determinantal

ideal generated by the 2× 2 minors of M. Then I is a non-Gorenstein height-

unmixed ideal of height 2, minimally generated by three elements (see [11], where

these ideals were called Herzog–Northcott ideals, or HN ideals for short).

Throughout the paper we fix this notation, and (R,m, k) and I will be defined

as above. Under additional assumptions on R, we will study the minimal primary

decomposition of I and prove that either I itself is prime or else I has a minimal

prime which is not a complete intersection, thus leading to the existence of prime

ideals of height 2 and minimally generated by at least three elements.

Set m1 = c2c3 − a2b3, m2 = c1c3 − a3b1, m3 = c1c2 − a1b2, and m= (m1,m2,

m3) ∈ N
3
+. Note that each mi ≥ 3. We will always suppose that m1 ≤m2 ≤m3

and that gcd(m1,m2,m3) = 1. (Changing a to (b2, b1, b3) and b to (a2, a1, a3)

changesm to (m2,m1,m3); similarly, changing a to (b1, b3, b2) and b to (a1, a3, a2)

changes m to (m1,m3,m2).) Let S(I) = 〈m1,m2,m3〉 denote the numerical semi-

group generated by m1,m2,m3 (see, e.g., [12]).

Recall that a numerical semigroup S is a subset of N, closed under addi-

tion, with 0 ∈ S , and such that G(S) := N \ S , the set of gaps of S , is finite.

The cardinality of G(S) is denoted by g(S) and is called the genus of S . The
Frobenius number F (S) of S is the greatest integer in G(S). One can prove

that g(S) ≥ (F (S) + 1)/2. Moreover, S is irreducible if it cannot be expressed

as the intersection of two numerical semigroups properly containing it, and S is

symmetric if it is irreducible and F (S) is odd. Alternatively, S is symmetric if

and only if g(S) = (F (S) + 1)/2 (cf. [12, Lemma 2.14 and Corollary 4.5]). Let

{m1 <m2 < · · ·<mr} be the (necessarily unique) minimal system of generators

of a numerical semigroup S . The multiplicity of S is defined by the expression

mult(S) = m1 and the embedding dimension of S is defined by the expression

embed(S) = r (see [12, Theorem 2.7 and Proposition 2.10]). Every numerical

semigroup of embedding dimension 2 is symmetric ([12, Corollary 4.7]).

For any other unexplained notation, we refer to [3] or [6]. Our main result is

as follows. Note that a minimal prime over I is necessarily of height 2.

THEOREM

Let (R,m, k) be a Gorenstein, Nagata local ring, with k infinite, and dimR= 3.

Let (x, y, z)R be a minimal reduction of m. Let I = (xc1 − yb2za3 , yc2 − xa1zb3 ,

zc3 − xb1ya2)R. Suppose that S(I) = 〈m1,m2,m3〉 is not contained in any sym-

metric semigroup S with mult(S) =m1. If e(R)≤ 3, then either I is prime, or
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else there exists a minimal prime p over I such that p is not a complete inter-

section.

This result generalizes [5, Proposition 2.8], since on the one hand, a complete

Noetherian local ring R is Nagata (see [7, Chapter 12, Section 31, Corollary 2]),

and on the other hand, we do not need the ring to be a domain or contain

the residue field. As a consequence, it generalizes the main result in [5], since

the hypotheses of [5, Theorem 2.3] imply that R is Gorenstein and Nagata. In

other words, we obtain the following result. Recall that a Noetherian local ring

is Shimoda if every prime ideal in the punctured spectrum is of the principal

class.

COROLLARY

Let (R,m, k) be a Shimoda ring of dimension d ≥ 2. Then d = 2 provided that

either R is regular, or R is Gorenstein and Nagata, k is infinite, and e(R)≤ 3.

We finish the paper with examples that show that each one of the particular

cases arising in the main theorem can occur.

2. Preliminary results

We start by substantiating some remarks on the multiplicity of R and R/I .

REMARK 2.1

We first observe that R/I is a 1-dimensional Cohen–Macaulay ring. Next we

remark that xR/I is a minimal reduction of mR/I . Indeed, and with an obvious

abuse of notation, in R/I one has the following equalities: xc1 = yb2za3 , yc2 =

xa1zb3 , and zc3 = xb1ya2 . Then it is easy to check that yc2c3 = xm2ya2b3 . Since y

is not a zero divisor in R/I , ym1 = xm2 and xm2 belongs to (xR/I)m1 since m1 ≤
m2. Therefore y ∈ xR/I , the integral closure of the ideal xR/I . Analogously, one

can check that zm1 = xm3 ∈ (xR/I)m1 , so z ∈ xR/I . Hence xR/I is a reduction

of (x, y, z)R/I . Since (x, y, z)R/I is a reduction of mR/I , xR/I is a reduction of

mR/I . Since dimR/I = 1, xR/I is a minimal reduction of mR/I . Observe also

that x+ I forms a regular sequence in R/I . In particular,

e(R/I) = eR/I(mR/I;R/I) = eR/I(xR/I;R/I)

= eR/I(x+ I;R/I) = lengthR/I

(
(R/I)/(x+ I)R/I

)
= lengthR

(
R/(xR+ I)

)
.

Analogously, if p is a minimal prime over I , then xR/p is a minimal reduction

of mR/p and e(R/p) = eR/p(xR/p;R/p) = lengthR(R/(xR+ p)).

LEMMA 2.2

We have e(R/I) =m1e(R).
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Proof

By Remark 2.1, e(R/I) = lengthR(R/(xR+ I)), where xR+ I = (x, yc2 , yb2za3 ,

zc3)R. With S = R/xR, note that R/(xR + I) ∼= S/(yc2 , yb2za3 , zc3)S. In the

2-dimensional Cohen–Macaulay local ring S, and with an obvious abuse of nota-

tion, y, z is a regular sequence and a system of parameters. By [5, Lemma 2.9],

lengthR(R/(xR + I)) = lengthS(S/(y
c2 , yb2za3 , zc3)S) = m1 lengthS(S/(y, z)S).

Since S/(y, z)S ∼= R/(x, y, z)R and (x, y, z)R is a minimal reduction of m,

lengthS(S/(y, z)S) = lengthR(R/(x, y, z)R) = eR(x, y, z;R) = eR(m;R) = e(R).

�

We now fix some more notations.

SETTING 2.3

For a minimal prime p over I , let D =R/p, which is a 1-dimensional Noetherian

local domain with maximal ideal mD , say. Let V =D be the integral closure of D

in its quotient field; then V is a Dedekind domain by the Krull–Akizuki theorem.

If Q is a maximal ideal of V , then VQ is a discrete valuation ring (DVR). Let

mVQ
=QVQ denote its maximal ideal, kVQ

its residue field, and νQ its valuation.

If V is local, then let mV denote its maximal ideal, kV its residue field, and ν its

valuation. If V is local and k = kV under the natural identification, then one says

that k is residually rational. If R is a Nagata ring, then V is a finitely generated

D-module.

PROPOSITION 2.4

Let p be a minimal prime over I. Then the following hold.

(a) For any Q, there exists η = η(Q) ∈N+ such that (νQ(x), νQ(y), νQ(z)) =

η(m1,m2,m3).

(b) e(D)> 1.

Suppose that, in addition, R is Nagata. Then the following hold.

(c) e(D) =m1σp, where σp =
∑

Q η(Q)[kVQ
: k].

(d) e(D) =m1 if and only if V is a DVR, η = 1, and k is residually rational.

(e) Moreover, if e(D) =m1, then D is analytically irreducible.

Proof

Any maximal ideal Q of V contracts to mD through the natural inclusion D ⊆ V ,

so mDV ⊆ Q. Therefore, in VQ, on applying νQ to the equalities xc1 = yb2za3 ,

yc2 = xa1zb3 , and zc3 = xb1ya2 , one gets (νQ(x), νQ(y), νQ(z)) = η(m1,m2,m3),

for some nonzero rational number η = η(Q) depending on Q and p (see [11,

Remark 4.4]). Write η = u/v, with u, v ∈ N+. Then v(νQ(x), νQ(y), νQ(z)) =

u(m1,m2,m3), and on taking the greatest common divisor, one has v gcd(νQ(x),

νQ(y), νQ(z)) = ugcd(m1,m2,m3) = u. So gcd(νQ(x), νQ(y), νQ(z)) = u/v and

η = u/v ∈N+.
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By Remark 2.1, e(D) = lengthR(R/(xR + p)). If lengthR(R/(xR + p)) = 1,

then m = xR + p and R/p is a DVR with valuation ν, say, and uniformizing

parameter x (by abuse of notation), so ν(x) = 1. By applying (a), this forces

m1 = 1, which is in contradiction to m1 ≥ 3. This proves (b).

Suppose that R is Nagata. Applying Remark 2.1 and [6, Theorem 11.2.7],

we have that

e(D) = eD(xD;D) =
∑
Q

eVQ
(xVQ;VQ)[kVQ

: k],

where Q runs over the maximal ideals of V . Applying (a), we have that (νQ(x),

νQ(y), νQ(z)) = η(m1,m2,m3), for some η = η(Q) ∈N+. In particular, eVQ
(xVQ;

VQ) = length(VQ/xVQ) = η(Q)m1. Therefore

e(D) = eD(xD;D) =
∑
Q

eVQ
(xVQ;VQ)[kVQ

: k] =m1

∑
Q

η(Q)[kVQ
: k] =m1σp,

where σp =
∑

Q η(Q)[kVQ
: k]. Hence e(D) =m1σp ≥m1, and e(D) =m1 is equiv-

alent to σp = 1. Moreover, σp = 1 is equivalent to V being local and so a DVR

with valuation ν, say, η = 1 (i.e., ν(x) = m1, ν(y) = m2, and ν(z) = m3) and

[kV : k] = 1. Furthermore, in this case, D is analytically irreducible since the mD-

adic completion of D can be seen as a subring in the mV -adic completion of V ,

which is a DVR, whence a domain. (For the converse statement, see [8, Section 1,

p. 486].) �

Given a numerical semigroup S with Frobenius number F (S), set N(S) = {s ∈
S | s < F (S)}, and let n(S) = |N(S)| be its cardinality. Note that g(S) + n(S) =
F (S)+1. Since g(S)≥ (F (S)+1)/2, it follows that (F (S)+1)≥ 2n(S) (see [12,
just before Proposition 2.26]).

PROPOSITION 2.5

Suppose that R is Nagata, and suppose that S(I) is not contained in any sym-

metric semigroup S with mult(S) =m1. Let p be a minimal prime over I such

that e(D) =m1. Then D is not Gorenstein.

Proof

Observe that D cannot be a DVR since m1 ≥ 3. Hence the conductor (D :D V )⊆
mD, where V =D. By Remark 2.1, xD is a minimal reduction of mD, so xD =mD

(see [6, Corollary 1.2.5]). By [6, Theorem 6.8.1], mD ⊆mDV = (xD)V = xV . By

Proposition 2.4(d), V is a DVR with uniformizing parameter t and valuation

ν, say, and ν(x) =m1, ν(y) =m2, and ν(z) =m3. In particular, the numerical

semigroup 〈m1,m2,m3〉 is contained in the numerical semigroup ν(D). Moreover,

xV = tm1V and (D :D V ) ⊆ mD ⊆ mDV = xV = tm1V . Therefore, mD ⊆ tm1V

and

S(I) = 〈m1,m2,m3〉 ⊆ ν(D)⊆ {0} ∪ {n ∈ Z | n≥m1}.(1)
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Thus, ν(D) is a numerical semigroup containing S(I) and of multiplicity

mult(ν(D)) = m1. By hypothesis, g(ν(D)) > (F (ν(D)) + 1)/2 or, equivalently,

(F (ν(D)) + 1)> 2n(ν(D)).

By Proposition 2.4(d), k is residually rational. Applying [1, p. 40, Remark]

(see also [8, Proposition 1]), we obtain lengthV (V/(D :D V )) = F (ν(D)) + 1

and lengthD(D/(D :D V )) = n(ν(D)). In particular, lengthV (V/(D :D V )) >

2 lengthD(D/(D :D V )) and, by [6, Theorem 12.2.2], D cannot be Gorenstein.

�

Now let p run through Min(R/I), the set of minimal primes over I . Let nI

be the cardinality of Min(R/I). For each minimal prime p over I , set lp =

lengthRp
(Rp/Ip). Recall from Proposition 2.4(c) that e(R/p) =m1σp.

COROLLARY 2.6

Suppose that R is Nagata. Then e(R) =
∑

p
σplp. In particular, nI ≤ e(R). More-

over, for small values of e(R), we have the following possibilities.

(a) If e(R) = 1, then nI = 1, Min(R/I) = {p}, (σp, lp) = (1,1), and I = p is

prime with e(R/p) =m1.

(b) Suppose that e(R) = 2. Then

(b.1) nI = 1, Min(R/I) = {p}, (σp, lp) = (2,1), and I = p is prime with

e(R/p) = 2m1, or

(b.2) nI = 1, Min(R/I) = {p}, (σp, lp) = (1,2), and I is p-primary with

e(R/p) =m1, or

(b.3) nI = 2, Min(R/I) = {p1,p2}, (σpi , lpi) = (1,1) for i = 1,2, and I =

p1 ∩ p2 with each e(R/pi) =m1.

(c) Suppose that e(R) = 3. Then

(c.1) nI = 1, Min(R/I) = {p}, (σp, lp) = (3,1), and I = p is prime with

e(R/p) = 3m1, or

(c.2) nI = 1, Min(R/I) = {p}, (σp, lp) = (1,3), and I is p-primary with

e(R/p) =m1, or

(c.3) nI = 2, Min(R/I) = {p1,p2}, (σp1 , lp1) = (1,2), (σp2 , lp2) = (1,1), and

I = q1 ∩ p2 with q1 a p1-primary ideal and each e(R/pi) =m1, or

(c.4) nI = 2, Min(R/I) = {p1,p2}, (σp1 , lp1) = (2,1), (σp2 , lp2) = (1,1), and

I = p1 ∩ p2 with e(R/p1) = 2m1 and e(R/p2) =m1, or

(c.5) nI = 3, Min(R/I) = {p1,p2,p3}, (σpi , lpi) = (1,1) for i = 1,2,3, and

I = p1 ∩ p2 ∩ p3 with each e(R/pi) =m1.

In particular, if e(R)≤ 3, then either I is prime, or else there exists a minimal

prime p over I such that e(D) =m1, with D not Gorenstein, provided that S(I)
is not contained in any symmetric semigroup S with mult(S) =m1.

Proof

By Lemma 2.2, the associativity law of multiplicities, and Proposition 2.4,
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m1e(R) = e(R/I) = eR/I(xR/I;R/I)

=
∑
p

eR/p(xR/p;R/p) lengthRp
(Rp/Ip) =m1

∑
p

σplp.

Thus e(R) =
∑

p
σplp. In particular, nI ≤ e(R). If e(R) = 1, then one deduces

that I has a unique minimal prime p and that, for such p, lengthRp
(Rp/Ip) = 1,

so I = p. (See [5, Proposition 2.6]; recall that, for a Cohen–Macaulay local ring

R, e(R) = 1 is equivalent to R being a regular local ring (cf. [10, Theorem 40.6

and Corollary 25.3] or [6, Exercise 11.8]).) The rest of the assertions follow anal-

ogously. One finishes by applying Propositions 2.4(c) and 2.5. �

EXAMPLE 2.7

Let (R,m, k) be a Cohen–Macaulay, Nagata local ring, with k infinite, and

dimR = 3. Let (x, y, z)R be a minimal reduction of m. Let I = (x3 − yz, y2 −
xz, z2 − x2y)R. If e(R)≤ 3, then either I is prime, or else there exists a minimal

prime p over I such that D is not Gorenstein with e(D) = 3, these two cases

overlapping precisely when e(R) = 1. (See Section 4 to note that each of the two

possibilities can occur.) Moreover, in the latter case, D is an almost Gorenstein

ring and the canonical ideal ωD of D is minimally generated by two elements.

Proof

Note that S(I) = 〈3,4,5〉 is not contained in any symmetric semigroup S with

mult(S) = 3. By Corollary 2.6, either I is prime, or else

there exists a minimal prime p over I such that e(D) = 3 and

D is not Gorenstein.
(2)

In the latter case (2), by Proposition 2.4, k is residually rational and such a D

is analytically irreducible.

Suppose that (2) holds. Then the chain of inclusions (1) in Proposition 2.5

must be a chain of equalities, so ν(D) = 〈3,4,5〉. Note that F (ν(D)) = 2. So

lengthV (V/(D :D V )) = F (ν(D))+1 = 3. Since V is a DVR, it follows that (D :D
V ) = t3V , so (D :D V ) =mD = xV = t3V . In particular, mDV ⊆D and D is an

almost Gorenstein ring (see [4, Corollary 3.12]; see also [2]).

Since (D :D V ) =mD, lengthD(D/(D :D V )) = 1. Furthermore, D being ana-

lytically irreducible implies that D admits a canonical ideal ωD (see, e.g., [4,

Proposition 2.7]). By [6, Theorem 12.2.3], and since k is residually rational,

3 = lengthV
(
V/(D :D V )

)
= lengthD

(
V/(D :D V )

)
≥ 2 lengthD

(
D/(D :D V )

)
+ μ(ωD)− 1 = 1+ μ(ωD),

where μ stands for the minimal number of generators. Therefore, μ(ωD) ≤ 2.

Since D is not Gorenstein, this forces μ(ωD) = 2. (Alternatively, this follows also

from the definition of almost Gorenstein from [2, p. 418].) �



468 Goto, O’Carroll, and Planas-Vilanova

3. Main theorem

Now, we can state and prove the main result of the paper. We keep the same

notations.

THEOREM 3.1

Let (R,m, k) be a Gorenstein, Nagata local ring, with k infinite, and dimR= 3.

Let (x, y, z)R be a minimal reduction of m. Let I = (xc1 − yb2za3 , yc2 − xa1zb3 ,

zc3 − xb1ya2)R. Suppose that S(I) = 〈m1,m2,m3〉 is not contained in any sym-

metric semigroup S with mult(S) =m1. If e(R)≤ 3, then either I is prime, or

else there exists a minimal prime p over I such that p is not a complete inter-

section.

Proof

By Corollary 2.6, either I is prime, or else there exists a minimal prime p over I

such that D is not Gorenstein. In particular, since R is Gorenstein, p cannot be

a complete intersection (see [3, Proposition 3.1.19]). �

The following result clarifies the hypothesis that “S(I) is not contained in any

symmetric semigroup S with mult(S) =m1.” Let T be the numerical semigroup

T = 〈m1,m2,m3〉 with 3≤m1 ≤m2 ≤m3 and gcd(m1,m2,m3) = 1. In particu-

lar, mult(T ) =m1 and embed(T )≤ 3. If embed(T ) = 2, then T is symmetric (see

[12, Corollary 4.5]). Therefore, in order to fulfill the hypotheses of Proposition 2.5

and Theorem 3.1, we can suppose that embed(T ) = 3. Hence m1 <m2 <m3.

PROPOSITION 3.2

Let T = 〈m1,m2,m3〉 be a numerical semigroup with 3 ≤ m1 < m2 < m3 and

gcd(m1,m2,m3) = 1. Suppose that embed(T ) = 3. Let Δ = {〈3,4,5〉, 〈3,5,7〉,
〈4,5,7〉, 〈4,7,9〉}. Then T is not contained in any symmetric semigroup S with

mult(S) =m1 if and only if T ∈Δ.

Proof

The if implication is a simple check. We now prove the only if implication. Take

T = 〈m1,m2,m3〉, and suppose that T /∈Δ. Let us show that T is contained in

a symmetric semigroup S with mult(S) =m1.

Observe that, since embed(T ) = 3, m3 /∈ 〈m1,m2〉 and m3 > m2. For the

sake of simplicity, set BG(m1,m2) = G(〈m1,m2〉) ∩ {m ∈ N+ |m>m2}, where
G(〈m1,m2〉) is the set of gaps of 〈m1,m2〉 (BG standing for big gaps). Thus

m3 ∈BG(m1,m2).

Suppose that m1 = 3 and m2 = 4. Then m3 ∈BG(m1,m2) = {5}, in contra-

diction to T /∈Δ. Analogously, if m1 = 3 and m2 = 5, then m3 ∈BG(m1,m2) =

{7}, in contradiction to T /∈ Δ. Therefore, if m1 = 3, then m2 ≥ 6 and T ⊆
〈3,4〉= {0,3,4,6, �→}, which is symmetric.

Suppose that m1 = 4. Set S1 = 〈4,5,6〉= {0,4,5,6,8, �→} and S2 = 〈4,6,7〉=
{0,4,6,7,8,10, �→}, which are symmetric. Let us prove that either T ⊆ S1, or
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else T ⊆ S2. Indeed, if m2 = 5, then m3 ∈BG(m1,m2) = {6,7,11}. Since T /∈Δ,

m3 ∈ {6,11} and T ⊆ S1. Suppose that m2 = 6. Ifm3 = 9, then T ⊆ S1. Ifm3 = 9,

then T ⊆ S2. Suppose that m2 = 7. Since T /∈ Δ, then m3 = 9 and T ⊆ S2. If

m1 = 4 and m2 ≥ 8, then T ⊆ S1.

Suppose that m1 ≥ 5. Take S1 = 〈m1,m1 + 1, . . . ,2m1 − 2〉 and S2 = 〈m1,

m1 + 2, . . . ,2m1 − 1〉. One can check that F (S1) = 2m1 − 1, F (S2) = 2m1 + 1,

and that S1 and S2 are symmetric.

If m2 ≥ 2m1, then T ⊆ S1. Suppose that m2 = 2m1−1. If m3 = 2m1+1, then

T ⊆ S2. If m3 = 2m1 +1, then T ⊆ 〈m1,2m1 − 1,2m1 +1, . . . ,3m1 − 4,3m1 − 2〉,
which is symmetric (with Frobenius number 4m1 − 3).

Suppose that m2 ≤ 2m1 − 2. If m3 = 2m1 − 1, then T ⊆ S1. If m3 = 2m1 − 1

and m2 = m1 + 1, then T ⊆ S2. Finally, if m2 = m1 + 1 and m3 = 2m1 − 1,

then T ⊆ 〈m1,m1 +1,m1 +4, . . . ,2m1 − 1〉, which is symmetric (with Frobenius

number 2m1 + 3). �

REMARK 3.3

Recall that a = (a1, a2, a3) ∈ N
3
+, b = (b1, b2, b3) ∈ N

3
+, and c = a + b. Moreover

m1 = c2c3−a2b3 = a2a3+a3b2+ b2b3, m2 = c1c3−a3b1 = a1a3+a1b3+ b1b3, and

m3 = c1c2 − a1b2 = a1a2 + a2b1 + b1b2. It is easy to check that the following four

matrices:

M1 =

(
x y z

y z x2

)
, M2 =

(
x y z

y z x3

)
,

M3 =

(
x2 y2 z

y z x

)
, M4 =

(
x3 y2 z

y z x

)
,

give rise to the corresponding ideals of (2× 2)-minors

I1 = (x3 − yz, y2 − xz, z2 − x2y)R, I2 = (x4 − yz, y2 − xz, z2 − x3y)R,

I3 = (x3 − yz, y3 − x2z, z2 − xy2)R, I4 = (x4 − yz, y3 − x3z, z2 − xy2)R,

with S(I1) = 〈3,4,5〉, S(I2) = 〈3,5,7〉, S(I3) = 〈4,5,7〉, and S(I4) = 〈4,7,9〉, the
four semigroups appearing in the set Δ.

In fact, these are the only examples with prescribed semigroup in Δ. Indeed,

if m1 = 3, then a2, a3, b2 and b3 must be equal to 1. Substituting in the expres-

sions of m2 and m3 leads to a (2×2)-system with solution a1 = (1/3)(2m2−m3)

and b1 = (1/3)(2m3 − m2). If m2 = 4 and m3 = 5, then a1 = 1 and b1 = 2. If

m2 = 5 and m2 = 7, then a1 = 1 and b1 = 3.

If m1 = 4, then this forces either a2 = 2 and a3, b2, and b3 equal to 1, or else

b3 = 2 and a2, a3, and b2 equal to 1. If a2 = 2, then substituting in the expressions

of m2 and m3, one gets a (2×2)-system with solution a1 = (1/4)(3m2−m3) and

b1 = (1/2)(m3−m2). If m2 = 5 and m3 = 7, then a1 = 2 and b1 = 1. If m2 = 7 and

m3 = 9, then a1 = 3 and b1 = 1. Finally, if b3 = 2, substituting in the expressions

of m2 and m3, one gets a (2× 2)-system with solution a1 = (1/2)(m2 −m3) and

b1 = (1/4)(3m3 −m2). However, m2 <m3 would force a1 < 0, which makes no

sense.
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4. Examples

Our next purpose is to display examples of each one of the cases in Corollary 2.6.

First we fix the notations for the rest of the paper.

SETTING 4.1

Let k be a field, and let X , Y , Z, W , t be indeterminates over k. Set A =

k[X,Y,Z], mA = (X,Y,Z)A, and S =AmA
, the localization of A in mA. Call mS

the maximal ideal of S. Take a, b, c and m ∈ N
3
+ as in Section 1, and suppose

that m1 < m2 < m3 and gcd(m1,m2,m3) = 1. Let J = (Xc1 − Y b2Za3 , Y c2 −
Xa1Zb3 ,Zc3 −Xb1Y a2)A⊂ mA. By [11, Theorem 7.8], J is a prime ideal of A.

In fact, J = ker(ϕm : A→ k[t]), where ϕm sends X , Y , and Z to tm1 , tm2 , and

tm3 , respectively. In particular, JS is a prime ideal of S.

SetB =A[W ] =K[X,Y,Z,W ],mB = (X,Y,Z,W )B, and T =BmB
, the local-

ization of B in mB . Call mT the maximal ideal of T . By abuse of notation, we con-

sider elements of A to be elements of B and elements of S to be elements of T . Let

n≥ 1, g1, . . . , gn, with gi ∈mi
A and f =Wn+g1W

n−1+ · · ·+gn ∈ (WB+mAB)n.

Note that JB + fB ⊂mB .

We now specify our model for the ring R and our model for the ideal I that

will exemplify the results considered in the paper, particularly as regards Theo-

rem 3.1 and Corollary 2.6. Take R= T/fT , the factor ring of T modulo f . Let mR

denote the maximal ideal of R. Let lowercase letters x, y, z, w denote the corre-

sponding image elements in R. Thus mR = (x, y, z,w)R and clearly (R,mR, k)

is a Gorenstein, Nagata local ring of dimension dimR = 3. Since w is inte-

gral over the ideal (x, y, z)R, (x, y, z)R is a minimal reduction of mR. Now take

I = JR= (xc1 − yb2za3 , yc2 −xa1zb3 , zc3 −xb1ya2)R. Clearly e(R) = n, by a stan-

dard result (see [6, Example 11.2.8], say); alternatively, by calculation, since x, y, z

is a regular sequence in R, e(R) = eR((x, y, z)R;R) = lengthR(R/(x, y, z)R), so,

setting T ′ = T/(X,Y,Z)T , we have that

e(R) = lengthT
(
T/(X,Y,Z, f)T

)
= lengthT ′(T ′/WnT ′) = n.

Let us study the minimal primary decomposition of I for different particular

choices of the element f . We start with the cases in Corollary 2.6 in which I is

prime.

EXAMPLE 4.2 (CASES (a), (b.1), AND (c.1))

(a) In Setting 4.1, take f =Wn −Xn−1Y . When n ∈ {1,2}, take m= (m1,

m2,m3) in {(3,4,5), (4,5,7), (4,7,9)}; when n = 3, take m in {(3,4,5), (3,5,7),
(4,5,7)}. Note that for each choice of n and m, gcd(nm1, nm2, nm3, (n− 1)m1+

m2) = 1. Let P = ker(ψ), where ψ : B → k[t] sends X , Y , Z, and W to tnm1 ,

tnm2 , tnm3 , and t(n−1)m1+m2 , respectively. Then P = JB + fB. In particular,

JT + fT is a prime ideal of T . Thus e(R) = n and I is a prime ideal of R.

(b) Take f =Wn −Xn−1Z, n= 3, in Setting 4.1, and take m in {(3,4,5),
(3,5,7), (4,7,9)}. Note that, for each choice of m, gcd(nm1, nm2, nm3,
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(n − 1)m1 +m3) = 1. Let P = ker(ψ), where ψ : B → k[t] sends X , Y , Z, and

W to tnm1 , tnm2 , tnm3 , and t(n−1)m1+m3 , respectively. Then P = JB + fB. In

particular, JT + fT is a prime ideal of T . Thus e(R) = n and I is a prime ideal

of R.

Proof

(a) It suffices to adapt the proofs of [11, Remark 7.2, Lemma 7.5, and Theo-

rem 7.8] to the ring B and the ideal JB + fB, with the variables X , Y , Z, and

W being given weights nm1, nm2, nm3, and (n − 1)m1 +m2, respectively. In

this regard, note that JB + fB is unmixed, since J(B/fB) is unmixed by [11,

Proposition 2.2(b)].

(b) This follows similarly, with the variables X , Y , Z, and W now given

weights nm1, nm2, nm3, and (n− 1)m1 +m3, respectively. �

An example covering Corollary 2.6(b.1) when m = (3,5,7) is shown in Exam-

ple 4.11. Before proceeding, we need some prior observations.

REMARK 4.3

Take g ∈ mA. Then g defines a surjective evaluation map ϕg : B → A, where

ϕg fixes k, X , Y , and Z and sends W to g. Note that if p ∈ B \ mB , then

p(0,0,0, g(0,0,0)) = p(0,0,0,0) = 0, so ϕg(p) ∈ A \mA, and if q ∈ A \mA, then

q ∈ B \ mB and ϕg(q) = q. In particular, ϕg can be extended to a morphism,

ϕg : T → S, say, that is, a retraction of the natural inclusion S ⊂ T .

LEMMA 4.4

Let g ∈mA. Then ker(ϕg :B →A) = (W − g)B and ker(ϕg : T → S) = (W − g)T .

In particular, JB+(W −g)B is a prime ideal of height 3 in B and JT +(W −g)T

is a prime ideal of height 3 in T .

Proof

That ker(ϕg : B → A) = (W − g)B follows easily from the appropriate division

algorithm. The second assertion follows since localization is a flat functor, so

kernels are preserved. In particular, since JA is a prime of height 2 in A and

ϕg(JB) = JA, via ϕ−1
g , JB + (W − g)B/(W − g)B is a prime of height 2 in

B/(W − g)B, so JB+(W − g)B is a prime ideal of height 3 in B because W − g

is prime in B. Analogously, JT +(W − g)T is a prime ideal of height 3 in T . �

Next we note some elementary facts about lifting a minimal primary decompo-

sition over an ideal. We use these facts below without explicit mention.

REMARK 4.5

Let L,K be ideals in a Noetherian ring C such that L ⊇ K. For i = 1, . . . , r,

consider ideals Qi and Pi with Pi ⊇ Qi ⊇ L such that in C/K we have the

minimal primary decomposition L/K =
⋂

iQi/K, where each Pi/K is a prime
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ideal and Qi/K is Pi/K-primary. Then in C, L =
⋂

iQi is a minimal primary

decomposition, and for i= 1, . . . , r, each Pi is a prime ideal and Qi is Pi-primary.

In particular, if L/K is an unmixed ideal in C/K, then L is an unmixed ideal

in C.

Proof

Note that, for each i, C/Pi � (C/K)/(Pi/K), so C/Pi is a domain. Moreover,

C/Qi � (C/K)/(Qi/K), so in C/Qi each divisor of zero is nilpotent. The remain-

der of the assertions follow from the basic theory of ideals in factor rings. �

EXAMPLE 4.6 (CASES (b.2) AND (c.2))

Take f =Wn, n≥ 1, in Setting 4.1. Then P = JB +WB is a prime ideal of B

contained in mB . Set p= PR. Then e(R) = n, Min(R/I) = {p}, (σp, lp) = (1, n),

and I is p-primary with e(R/p) =m1.

Proof

By Lemma 4.4, P is a prime ideal of height 3. Since I = JR is unmixed (see

[11, Proposition 2.2]), it follows easily that PT is the unique prime minimal over

JT + fT .

Set U = TPT (the localization of T at the prime PT ). Then V = U/IU is

a 1-dimensional local domain with maximal ideal generated by the image of W

in V . Hence V is a DVR. It is immediate that V/WnV is of length n (as a

V -module). By definition, this length is the local length of JT + fT at PT .

Since R= T/fT , we deduce that lp, the local length of I at its unique minimal

prime p= PR, equals n. �

EXAMPLE 4.7 (CASES (b.3) AND (c.3))

Take f =Wn−1(W −X), n≥ 2, in Setting 4.1. Then P1 = JB +WB and P2 =

JB + (W −X)B are prime ideals of B contained in mB . Set pi = PiT , i= 1,2.

Then e(R) = n, Min(R/p) = {p1,p2}, (σp1 , lp1) = (1, n−1), (σp2 , lp2) = (1,1), and

I = q1 ∩ p2 is a minimal primary decomposition with q1 a p1-primary ideal and

e(R/pi) =m1.

Proof

By Lemma 4.4, P1 = JB+WB and P2 = JB+(W −X)B are prime ideals of B

contained in mB . Since I = JR is unmixed, it follows that the Pi’s are the only

minimal primes above JT +fT . Note that P1 and P2 are distinct, since ϕ0(P1) =
ϕ0(P2), as is easily seen from the fact that X /∈ J . In particular, W /∈ P2 and

W −X /∈ P1. A simple localization argument shows that JT + fT = P1 ∩P2. �

EXAMPLE 4.8 (CASE (c.4))

Take f = (Wn−1 −Xn−2Y )(W −X), n= 3, in Setting 4.1. As in Example 4.2,

take m = (m1,m2,m3) in {(3,4,5), (4,5,7), (4,7,9)}. Then we claim that P1 =

JB + (Wn−1 − Xn−2Y )B and P2 = JB + (W − X)B are prime ideals of B
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contained in mB . The latter holds by Lemma 4.4. To see the former, it suf-

fices to repeat the argument of Example 4.2(a) only now having ψ send X , Y ,

Z, and W to t(n−1)m1 , t(n−1)m2 , t(n−1)m3 , and t(n−2)m1+m2 , respectively. Note

that in each case gcd((n− 1)m1, (n− 1)m2, (n− 1)m3, (n− 2)m1 +m2) = 1. Set

pi = PiT , i = 1,2. Then e(R) = n, Min(R/p) = {p1,p2}, (σp1 , lp1) = (n − 1,1),

(σp2 , lp2) = (1,1), and I = p1 ∩ p2 is a minimal primary decomposition with

e(R/p1) = (n− 1)m1 and e(R/p2) =m1. (We leave the details to the reader.)

EXAMPLE 4.9 (CASE (c.5))

Take f = Wn−2(W −X)(W − Y ), n ≥ 3, in Setting 4.1. By Lemma 4.4, P1 =

JB +WB, P2 = JB + (W −X)B, and P3 = JB + (W − Y )B are prime ideals

of B contained in mB . Set pi = PiT , i = 1,2,3. Then e(R) = n, Min(R/p) =

{p1,p2,p3}, (σp1 , lp1) = (1, n−2), (σpi , lpi) = (1,1), for i= 2,3, and I = q1∩p2∩p3
is a minimal primary decomposition with q1 a p1-primary ideal and e(R/pi) =m1,

for i= 1,2,3. (The details are left to the reader.)

REMARK 4.10

We can even find examples with f a prime element in B, hence R a domain,

with some restrictions on the base field k. Note that, in Example 4.2, for n= 3,

f =W 3 −X2Y is irreducible in B. Indeed, suppose that f has a factor of the

form W − g, for some g ∈A. Then ϕg(f) = 0, so g3 =X2Y . Since X and Y are

irreducible elements in the unique factorization domain (UFD) A, this yields a

contradiction.

For the cases (b.3) and (c.3), as in Example 4.7, and with m= (3,4,5) and

n= 2, take f =W 2 −XZ, which is irreducible in B, by an analogous argument.

If char(k) = 2, then I = (JR+(w−y)R)∩ (JR+(w+y)R) is a minimal primary

decomposition.

For the case (c.4), as in Example 4.8, and with m= (4,5,7) and n= 3, take

f =W 3 −X2Z, which analogously is irreducible in B.

If k is separable and does not contain a cube root of unity different from 1,

then one can show, by a rather lengthy and technical argument not given here,

that I = (JR+(w−y)R)∩ (JR+(w2+yw+y2)R) is a minimal primary decom-

position. (Hint: Extend the base field from k to k[λ], where λ is a primitive cube

root of unity. Use the properties of integral and faithfully flat extensions, together

with the Cohen–Seidenberg theorem [7, Theorem 5, pp. 33–34], particularly [7,

Theorem 5(vi)].)

For the case (c.5), as in Example 4.9, with m= (4,5,7) and n= 3 and f =

W 3−X2Z as above, if k contains a cube root of unity λ = 1 (and so three distinct

cube roots of unity 1, λ,λ2), then I =
⋂2

j=0(JR + (w − λjy)R) is a minimal

primary decomposition.

Note that, in these examples, for instance, when f =W 2 −XZ, while R is a

domain, it is not a UFD, since w, x, and z are prime elements in R yet w2 = xz.

Here, (x,w)R is a nonprincipal prime ideal of height 1 (and R is not Shimoda;

see Section 1).
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EXAMPLE 4.11 (CASE (b.1), m= (3,5,7))

Let k be a field of characteristic different from 2 not containing a square root of

−1. Let f =W 2+XZ. Then JB+ fB = JB+(W 2 +Y 2)B. An analogue of the

Hint in Remark 4.10 above shows that JB+ fB is a prime ideal. Thus e(R) = 2

and I is a prime ideal.

REMARK 4.12

The examples above prove that all the cases in Corollary 2.6 and in the main

theorem can occur. They also suggest that the condition e(R)≤ 3 is not strictly

necessary. However, the proof of Theorem 3.1 strongly relies on applying the

associative law of multiplicities for small values of e(R). It seems clear then that

radically different techniques will be needed in order to extend Theorem 3.1 (still

in dimension 3) to the case of higher, or indeed arbitrary, multiplicities.
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