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Abstract Let K = Q(
√
−D) be an imaginary quadratic field with discriminant −D,

and let χ be the Dirichlet character corresponding to the extensionK/Q. Letm= 2n or

2n+1with n a positive integer. Let f be a primitive form of weight 2k+1 and character

χ for Γ0(D) or a primitive form of weight 2k for SL2(Z) according to whether m = 2n

orm= 2n+ 1. For such an f let Im(f) be the lift of f to the space of Hermitian modu-

lar forms constructed by Ikeda. We then give an explicit formula of the Koecher–Maass

series L(s, Im(f)) of Im(f). This is a generalization of Mizuno.

1. Introduction

Mizuno [M] gave explicit formulas of the Koecher–Maass series of the Hermitian

Eisenstein series of degree 2 and of the Hermitian Maass lift. In this paper, we

give an explicit formula of the Koecher–Maass series of the Hermitian Ikeda lift.

Let K =Q(
√
−D) be an imaginary quadratic field with discriminant −D. Let O

be the ring of integers in K, and let χ be the Kronecker character corresponding

to the extension K/Q. For a nondegenerate Hermitian matrix or alternating

matrix T with entries in K, let UT be the unitary group defined over Q whose

group UT (R) of R-valued points is given by

UT (R) =
{
g ∈GLm(R⊗K)

∣∣ tgTg = T
}

for any Q-algebra R, where g denotes the automorphism of Mn(R⊗K) induced

by the nontrivial automorphism of K over Q. We also define the special unitary

group SUT over Qp by SUT = UT ∩RK/Q(SLm), where RK/Q is the Weil restric-

tion. In particular, we write UT as U (m) or U(m,m) if T =
(

O −1m
1m O

)
. For a more

precise description of U (m) see Section 2. Put Γ
(m)
K = U(m,m)(Q) ∩GL2m(O).

For a modular form F of weight 2l and character ψ for Γ
(m)
K we define the

Koecher–Maass series L(s,F ) of F by
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L(s,F ) =
∑
T

cF (T )

e∗(T )(detT )s
,

where T runs over all SLm(O)-equivalence classes of positive definite semi-integral

Hermitian matrices of degree m, cF (T ) denotes the T th Fourier coefficient of F ,

and e∗(T ) =#(SUT (Q)∩ SLm(O)).

Let k be a nonnegative integer. Then for a primitive form f ∈S2k+1(Γ0(D), χ)

Ikeda [I2] constructed a lift I2n(f) of f to the space of modular forms of weight

2k+2n and a character det−k−n for Γ
(2n)
K . This is a generalization of the Maass

lift considered by Kojima [Ko], Gritsenko [G], Krieg [Kr], and Sugano [Su]. Sim-

ilarly for a primitive form f ∈S2k(SL2(Z)) he constructed a lift I2n+1(f) of f

to the space of modular forms of weight 2k + 2n and a character det−k−n for

Γ
(2n+1)
K . For the rest of this section, let m= 2n or m= 2n+1. We then call Im(f)

the Ikeda lift of f for U(m,m) or the Hermitian Ikeda lift of degree m. Ikeda

also showed that the automorphic form Lift (m)(f) on the adèle group U (m)(A)

associated with Im(f) is a cuspidal Hecke eigenform whose standard L-function

coincides with
m∏
i=1

L(s+ k+ n− i+ 1/2, f)L(s+ k+ n− i+ 1/2, f,χ),

where L(s+ k + n− i+ 1/2, f) is the Hecke L-function of f and L(s+ k + n−
i+1/2, f,χ) is its “modified twist” by χ. For the precise definition of L(s+ k+

n− i+ 1/2, f,χ) see Section 2. We also call Lift(m)(f) the adèlic Ikeda lift of f

for U(m,m). Then we express the Koecher–Maass series of Im(f) in terms of the

L-functions related to f . This result was already obtained in the case m= 2 by

Mizuno [M].

The method we use is similar to that in the proof of the main result of [IK1]

or [IK2]. We explain it more precisely. In Section 3, we reduce our computation

to a computation of a certain formal power series P̂m,p(d;X, t) in t associated

with local Siegel series similarly to [IK1] (see Theorem 3.4 and Section 5).

Section 4 is devoted to the computation of them. This computation is similar

to that in [IK1], but we should be careful in dealing with the case where p is

ramified in K. After such an elaborate computation, we can get explicit formulas

of P̂m,p(d;X, t) for all prime numbers p (see Theorems 4.3.1, 4.3.2, and 4.3.6).

In Section 5, by using explicit formulas for P̂m,p(d;X, t), we immediately get an

explicit formula for L(s, Im(f)).

Using the same argument as in the proof of our main result, we can give an

explicit formula of the Koecher–Maass series of the Hermitian Eisenstein series of

any degree, which can be regarded as a zeta function of a certain prehomogeneous

vector space. We also note that the method used in this paper is useful for giving

an explicit formula for the Rankin–Selberg series of the Hermitian Ikeda lift, and

as a result we can prove the period relation of the Hermitian Ikeda lift, which

was conjectured by Ikeda [I2]. We will discuss these topics in subsequent papers

[Ka1] and [Ka2].
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NOTATION

Let R be a commutative ring. We denote by R× and R∗ the semigroup of nonzero

elements of R and the unit group of R, respectively. For a subset S of R we

denote by Mmn(S) the set of (m,n)-matrices with entries in S. In particular,

put Mn(S) =Mnn(S). Put GLm(R) = {A ∈Mm(R) | detA ∈ R∗}, where detA

denotes the determinant of a square matrix A. Let K0 be a field, and let K be

a quadratic extension of K0 or K =K0 ⊕K0. In the latter case, we regard K0

as a subring of K via the diagonal embedding. We also identify Mmn(K) with

Mmn(K0)⊕Mmn(K0) in this case. If K is a quadratic extension of K0, then let ρ

be the nontrivial automorphism of K over K0, and if K =K0⊕K0, then let ρ be

the automorphism of K defined by ρ(a, b) = (b, a) for (a, b) ∈K. We sometimes

write x instead of ρ(x) for x ∈K in both cases. Let R be a subring of K. For an

(m,n)-matrix X = (xij)m×n write X∗ = (xji)n×m, and for an (m,m)-matrix A,

we write A[X] =X∗AX . Let Hern(R) denote the set of Hermitian matrices of

degree n with entries in R, that is, the subset of Mn(R) consisting of matrices X

such that X∗ =X . Then a Hermitian matrix A of degree n with entries in K is

said to be semi-integral over R if tr(AB) ∈K0 ∩R for any B ∈Hern(R), where

tr denotes the trace of a matrix. We denote by Ĥern(R) the set of semi-integral

matrices of degree n over R.

For a subset S of Mn(R) we denote by S× the subset of S consisting of

nondegenerate matrices. If S is a subset of Hern(C) with C the field of complex

numbers, then we denote by S+ the subset of S consisting of positive definite

matrices. The group GLn(R) acts on the set Hern(R) in the following way:

GLn(R)×Hern(R) � (g,A)−→ g∗Ag ∈Hern(R).

Let G be a subgroup of GLn(R). For a G-stable subset B of Hern(R) we denote

by B/G the set of equivalence classes of B under the action of G. We some-

times identify B/G with a complete set of representatives of B/G. We abbreviate

B/GLn(R) as B/∼ if there is no fear of confusion. Two Hermitian matrices A

and A′ with entries in R are said to be G-equivalent and we write A ∼G A′ if

there is an element X of G such that A′ =A[X]. For square matrices X and Y

we write X⊥Y =
(
X O
O Y

)
.

We put e(x) = exp(2π
√
−1x) for x ∈C, and for a prime number p we denote

by ep(∗) the continuous additive character of Qp such that ep(x) = e(x) for

x ∈Z[p−1].

For a prime number p we denote by ordp(∗) the additive valuation of Qp

normalized so that ordp(p) = 1, and put |x|p = p−ordp(x). Moreover, we denote

by |x|∞ the absolute value of x ∈C. Let K be an imaginary quadratic field, and

let O be the ring of integers in K. For a prime number p put Kp =K ⊗Qp, and

put Op =O⊗Zp. Then Kp is a quadratic extension of Qp or Kp
∼=Qp ⊕Qp. In

the former case, for x ∈Kp, we denote by x the conjugate of x over Qp. In the

latter case, we identify Kp with Qp ⊕Qp, and for x= (x1, x2) with xi ∈Qp, we

put x= (x2, x1). For x ∈Kp we define the norm NKp/Qp
(x) by NKp/Qp

(x) = xx,
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put νKp(x) = ordp(NKp/Qp
(x)), and put |x|Kp = |NKp/Qp

(x)|p. Moreover, put

|x|K∞ = |xx|∞ for x ∈C.

2. Main results

For a positive integer N let

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣ c≡ 0 mod N

}
,

and for a Dirichlet character ψ mod N , we denote by Ml(Γ0(N), ψ) the space of

modular forms of weight l for Γ0(N) and nebentype ψ, and by Sl(Γ0(N), ψ)

its subspace consisting of cusp forms. We simply write Ml(Γ0(N), ψ) (resp.,

Sl(Γ0(N), ψ)) as Ml(Γ0(N)) (resp., as Sl(Γ0(N))) if ψ is the trivial character.

Throughout the paper, we fix an imaginary quadratic extension K of Q with

discriminant −D, and denote by O the ring of integers in K. For such a K let

U (m) = U(m,m) be the unitary group defined in Section 1. Put Jm =
(
Om −1m
1m Om

)
,

where 1m denotes the unit matrix of degree m. Then

U (m)(Q) =
{
M ∈GL2m(K)

∣∣ Jm[M ] = Jm
}
.

Put

Γ (m) = Γ
(m)
K = U (m)(Q)∩GL2m(O).

Let Hm be the Hermitian upper half-space defined by

Hm =
{
Z ∈Mm(C)

∣∣∣ 1

2
√
−1

(Z −Z∗) is positive definite
}
.

The group U (m)(R) acts on Hm by

g〈Z〉= (AZ +B)(CZ +D)−1 for g =

(
A B

C D

)
∈ U (m)(R),Z ∈Hm.

We also put j(g,Z) = det(CZ +D) for such Z and g. Let l be an integer. For

a subgroup Γ of U (m)(Q) commensurable with Γ (m) and a character ψ of Γ ,

we denote by Ml(Γ,ψ) the space of holomorphic modular forms of weight l with

character ψ for Γ . We denote by Sl(Γ,ψ) the subspace of Ml(Γ,ψ) consisting of

cusp forms. In particular, if ψ is the character of Γ defined by ψ(γ) = (detγ)−l

for γ ∈ Γ , then we write M2l(Γ,ψ) as M2l(Γ,det
−l), and so on. Let F (z) be an

element of M2l(Γ
(m),det−l). We then define the Koecher–Maass series L(s,F )

for F by

L(s,F ) =
∑

T∈Ĥerm(O)
+
/SLn(O)

cF (T )

(detT )se∗(T )
,

where cF (T ) denotes the T th Fourier coefficient of F , and e∗(T ) =#(SUT (Q)∩
SLm(O)).

Now we consider the adèlic modular form. Let A be the adèle ring of Q,

and let Af be the non-archimedean factor of A. Let h= hK be a class number

of K. Let G(m) = ResK/Q(GLm), and let G(m)(A) be the adèlization of G(m).
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Moreover, put C(m) =
∏

pGLm(Op). Let U (m)(A) be the adèlization of U (m). We

define the compact subgroup K(m)
0 of U (m)(Af ) by U (m)(A) ∩

∏
pGL2m(Op),

where p runs over all rational primes. Then we have that

U (m)(A) =

h⊔
i=1

U (m)(Q)γiK(m)
0 U (m)(R)

with some subset {γ1, . . . , γh} of U (m)(Af ). We can take γi as

γi =

(
ti 0

0 t∗−1
i

)
,

where {ti}hi=1 = {(ti,p)}hi=1 is a certain subset of G(m)(Af ) such that t1 = 1 and

G(m)(A) =

h⊔
i=1

G(m)(Q)tiG
(m)(R)C(m).

Put Γi = U (m)(Q) ∩ γiK0γ
−1
i U (m)(R). Then for an element (F1, . . . , Fh) ∈⊕h

i=1M2l(Γi,det
−l), we define (F1, . . . , Fh)

� by

(F1, . . . , Fh)
�(g) = Fi

(
x〈i〉

)
j(x, i)−2l(detx)l

for g = uγixκ with u ∈ U (m)(Q), x ∈ U (m)(R), and κ ∈ K0. We denote by

M2l(U (m)(Q)\U (m)(A),det−l) the space of automorphic forms obtained in this

way. We also put

S2l

(
U (m)(Q)\U (m)(A),det−l

)
=

{
(F1, . . . , Fh)

�
∣∣ Fi ∈S2l(Γi,det

−l)
}
.

We can define the Hecke operators which act on the space M2l(U (m)(Q)\U (m)(A),

det−l). For the precise definition of them, see [I2].

Let Ĥerm(O) be the set of semi-integral Hermitian matrices over O of degree

m as in the Notation. We note that A belongs to Ĥerm(O) if and only if its

diagonal components are rational integers and
√
−DA ∈ Herm(O). For a non-

degenerate Hermitian matrix B with entries in Kp of degree m, put γ(B) =

(−D)[m/2] detB.

Let Ĥerm(Op) be the set of semi-integral matrices over Op of degree m as in

the Notation. We put ξp = 1,−1, or 0 according to whether Kp =Qp⊕Qp, Kp is

an unramified quadratic extension of Qp, or Kp is a ramified quadratic extension

of Qp. For T ∈ Ĥerm(Op)
× we define the local Siegel series bp(T, s) by

bp(T, s) =
∑

R∈Hern(Kp)/Hern(Op)

ep
(
tr(TR)

)
p−ordp(μp(R))s,

where μp(R) = [ROm
p +Om

p :Om
p ]. We remark that there exists a unique polyno-

mial Fp(T,X) in X such that (see [Sh1])

bp(T, s) = Fp(T, p
−s)

[(m−1)/2]∏
i=0

(1− p2i−s)

[m/2]∏
i=1

(1− ξpp
2i−1−s).

We then define a Laurent polynomial F̃p(T,X) as
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F̃p(T,X) =X−ordp(γ(T ))Fp(T, p
−mX2).

We remark that we have (see [I2])

F̃p(T,X
−1) =

(
−D,γ(T )

)
p
F̃p(T,X) if m is even,

F̃p(T, ξpX
−1) = F̃p(T,X) if m is even and p �D,

and

F̃p(T,X
−1) = F̃p(T,X) if m is odd.

Here (a, b)p is the Hilbert symbol of a, b ∈Q×
p . Hence we have that

F̃p(T,X) =
(
−D,γ(B)

)m−1

p
Xordp(γ(T ))Fp(T, p

−mX−2).

Now we put

Ĥerm(O)+i =
{
T ∈Herm(K)+

∣∣ t∗i,pTti,p ∈ Ĥerm(Op) for any p
}
.

First let k be a nonnegative integer, and letm= 2n be a positive even integer.

Let

f(z) =
∞∑

N=1

a(N)e(Nz)

be a primitive form in S2k+1(Γ0(D), χ). For a prime number p not dividing D

let αp ∈C such that αp + χ(p)α−1
p = p−ka(p), and for p |D put αp = p−ka(p).

We note that αp �= 0 even if p |D. Then for the Kronecker character χ we define

Hecke’s L-function L(s, f,χi) twisted by χi as

L(s, f,χi) =
∏
p �D

{(
1− αpp

−s+kχ(p)i
)(
1− α−1

p p−s+kχ(p)i+1
)}−1

×
{∏

p |D(1− αpp
−s+k)−1 if i is even,∏

p |D(1− α−1
p p−s+k)−1 if i is odd.

In particular, if i is even, then we sometimes write L(s, f,χi) as L(s, f) as usual.

Moreover, for i= 1, . . . , h we define a Fourier series

Im(f)i(Z) =
∑

T∈Ĥerm(O)+i

aIm(f)i(T )e
(
tr(TZ)

)
,

where

aI2n(f)i(T ) =
∣∣γ(T )∣∣k ∏

p

∣∣det(ti,p)det(ti,p)∣∣np F̃p(t
∗
i,pTti,p, α

−1
p ).

Next let k be a positive integer, and let m = 2n+ 1 be a positive odd integer.

Let

f(z) =

∞∑
N=1

a(N)e(Nz)

be a primitive form in S2k(SL2(Z)). For a prime number p let αp ∈C such that

αp + α−1
p = p−k+1/2a(p). Then we define Hecke’s L-function L(s, f,χi) twisted
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by χi as

L(s, f,χi) =
∏
p

{(
1− αpp

−s+k−1/2χ(p)i
)(
1− α−1

p p−s+k−1/2χ(p)i
)}−1

.

In particular, if i is even, then we write L(s, f,χi) as L(s, f) as usual. Moreover,

for i= 1, . . . , h we define a Fourier series

I2n+1(f)i(Z) =
∑

T∈Ĥer2n+1(O)+i

aI2n+1(f)i(T )e
(
tr(TZ)

)
,

where

aI2n+1(f)i(T ) =
∣∣γ(T )∣∣k−1/2∏

p

∣∣det(ti,p)det(ti,p)∣∣n+1/2

p
F̃p(t

∗
i,pTti,p, α

−1
p ).

REMARK

Ikeda [I2] defined F̃p(T,X) as

F̃p(T,X) =Xordp(γ(T ))Fp(T, p
−mX−2),

and we define it by replacing X with X−1 in this paper. This change does not

affect the results.

Then Ikeda [I2] showed the following.

THEOREM 2.1

Let m = 2n or 2n + 1. Let f be a primitive form in S2k+1(Γ0(D), χ) or in

S2k(SL2(Z)) according to whether m = 2n or m = 2n + 1. Moreover, let Γi

be the subgroup of U (m) defined as above. Then Im(f)i(Z) is an element of

S2k+2n(Γi,det
−k−n) for any i. In particular, Im(f) := Im(f)1 is an element of

S2k+2n(Γ
(m),det−k−n).

This is a Hermitian analogue of the lifting constructed in [I1]. We call Im(f) the

Ikeda lift of f for U (m).

It follows from Theorem 2.1 that we can define an element (Im(f)1, . . . ,

Im(f)h)
� of S2k+2n(U (m)(Q)\U (m)(A),det−k−n), which we call Lift (m)(f).

THEOREM 2.2

Let m = 2n or 2n + 1. Suppose that Lift (m)(f) is not identically zero. Then

Lift (m)(f) is a Hecke eigenform in S2k+2n(U (m)(Q)\U (m)(A),det−k−n) and its

standard L-function L(s,Lift (m)(f), st) coincides with

m∏
i=1

L(s+ k+ n− i+ 1/2, f)L(s+ k+ n− i+ 1/2, f,χ)

up to bad Euler factors.

We call Lift (m)(f) the adèlic Ikeda lift of f for U (m).
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Let QD be the set of prime divisors of D. For each prime q ∈ QD, put

Dq = qordq(D). We define a Dirichlet character χq by

χq(a) =

{
χ(a′) if (a, q) = 1,

0 if q | a,

where a′ is an integer such that

a′ ≡ a mod Dq and a′ ≡ 1 mod DD−1
q .

For a subset Q of QD put χQ =
∏

q∈Q χq and χ′
Q =

∏
q∈QD,q /∈Q χq . Here we make

the convention that χQ = 1 and χ′
Q = χ if Q is the empty set. Let

f(z) =

∞∑
N=1

cf (N)e(Nz)

be a primitive form in S2k+1(Γ0(D), χ). Then there exists a primitive form

fQ(z) =

∞∑
N=1

cfQ(N)e(Nz)

such that

cfQ(p) = χQ(p)cf (p) for p /∈Q

and

cfQ(p) = χ′
Q(p)cf (p) for p ∈Q.

Let L(s,χi) = ζ(s) or L(s,χ) according to whether i is even or odd, where

ζ(s) and L(s,χ) are Riemann’s zeta function and the Dirichlet L-function for

χ, respectively. Moreover, we define Λ̃(s,χi) by

Λ̃(s,χi) = 2(2π)−sΓ(s)L(s,χi)

with Γ(s) the Gamma function.

Then our main results in this paper are as follows.

THEOREM 2.3

Let k be a nonnegative integer, and let n be a positive integer. Let f be a primitive

form in S2k+1(Γ0(D), χ). Then, we have

L
(
s, I2n(f)

)
=Dns+n2−n/2−1/22−2n+1

×
2n∏
i=2

Λ̃(i, χi)
∑

Q⊂QD

χQ

(
(−1)n

) 2n∏
j=1

L(s− 2n+ j, fQ, χ
j−1).

THEOREM 2.4

Let k be a positive integer, and let n be a nonnegative integer. Let f be a primitive

form in S2k(SL2(Z)). Then, we have that

L
(
s, I2n+1(f)

)
=Dns+n2+3n/22−2n

2n+1∏
i=2

Λ̃(i, χi)

2n+1∏
j=1

L(s− 2n− 1 + j, f,χj−1).
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REMARK

We note that L(s, I2n+1(f)) has an Euler product.

3. Reduction to local computations

To prove our main result, we reduce the problem to local computations. Let

Kp = K ⊗ Qp and Op = O ⊗ Zp as in the Notation. Then Kp is a quadratic

extension of Qp or Kp = Qp ⊕Qp. In the former case let fp be the exponent

of the conductor of Kp/Qp. If Kp is ramified over Qp, then put ep = fp − δ2,p,

where δ2,p is Kronecker’s delta. If Kp is unramified over Qp, then put ep = fp = 0.

In the latter case, put ep = fp = 0. Let Kp be a quadratic extension of Qp,

and let � = �p and π = πp be prime elements of Kp and Qp, respectively.

If Kp is unramified over Qp, then we take � = π = p. If Kp is ramified over

Qp, then we take π so that π = NKp/Qp
(�). Let Kp = Qp ⊕ Qp. Then put

� = π = p. Let χKp be the quadratic character of Q×
p corresponding to the qua-

dratic extension Kp/Qp. We note that we have χKp(a) = (−D0, a)p for a ∈Q×
p

if Kp =Qp(
√
−D0) with D0 ∈Zp. Moreover, put H̃erm(Op) = pepĤerm(Op). We

note that H̃erm(Op) = Herm(Op) ifKp is not ramified overQp. LetK be an imag-

inary quadratic extension ofQ with discriminant −D. We then put D̃ =
∏

p |D pep

and H̃erm(O) = D̃Herm(O). An element X ∈Mml(Op) with m≥ l is said to be

primitive if there is an element Y of Mm,m−l(Op) such that (XY ) ∈GLm(Op).

If Kp is a field, then this is equivalent to saying that rankOp/�Op
X = l. If

Kp =Qp⊕Qp andX = (X1,X2) ∈Mml(Zp)⊕Mml(Zp), then this is equivalent to

saying that rankZp/pZp
X1 = rankZp/pZp

X2 = l. Now let m and l be positive inte-

gers such that m≥ l. Then for an integer a and A ∈ H̃erm(Op),B ∈ H̃erl(Op) put

Aa(A,B) =
{
X ∈Mml(Op)/p

aMml(Op)
∣∣A[X]−B ∈ paH̃erl(Op)

}
,

and

Ba(A,B) =
{
X ∈Aa(A,B)

∣∣X is primitive
}
.

Suppose thatA andB are nondegenerate. Then the number pa(−2ml+l2)#Aa(A,B)

is independent of a if a is sufficiently large. Hence we define the local density

αp(A,B) representing B by A as

αp(A,B) = lim
a→∞

pa(−2ml+l2)#Aa(A,B).

Similarly we can define the primitive local density βp(A,B) as

βp(A,B) = lim
a→∞

pa(−2ml+l2)#Ba(A,B)

if A is nondegenerate. We remark that the primitive local density βp(A,B) can be

defined even if B is not nondegenerate. In particular, we write αp(A) = αp(A,A).

We also define υp(A) for A ∈Herm(Op)
× as

υp(A) = lim
a→∞

p−am2

#
(
Υa(A)

)
,
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where

Υa(A) =
{
X ∈Mm(Op)/p

aMm(Op)
∣∣A[X]−A ∈ paHerm(Op)

}
.

The relation between αp(A) and υp(A) is as follows.

LEMMA 3.1

Let T ∈ H̃erm(Op)
×. Suppose that Kp is ramified over Qp. Then we have that

αp(T ) = p−m(m+1)fp/2+m2δ2,pυp(T ).

Otherwise, αp(T ) = υp(T ).

Proof

The proof is similar to that for [Ki3, Lemma 5.6.5], and we here give an outline

of the proof. The last assertion is trivial. Suppose that Kp is ramified over Qp.

Let {Ti}li=1 be a complete set of representatives of Herm(Op)/p
r+ep Herm(Op)

such that Ti ≡ T mod pr H̃erm(Op). Then it is easily seen that

l=
[
pr H̃erm(Op) : p

r+ep Herm(Op)
]
= pm(m−1)fp/2.

Define a mapping

φ :

l⊔
i=1

Υr+ep(Ti)−→Ar(T,T )

by φ(X) =X mod pr. For X ∈Ar(T,T ) and Y ∈Mm(Op) we have that

T [X + prY ]≡ T [X] mod pr H̃erm(Op).

Namely, X + prY belongs to Υr+ep(Ti) for some i and therefore φ is surjective.

Moreover, for X ∈Ar(T,T ) we have that #(φ−1(X)) = p2m
2ep . For a sufficiently

large integer r we have that #Υr+ep(Ti) =#Υr+ep(T ) for any i. Hence

pm(m−1)fp/2#Υr+ep(T ) =

l∑
i=1

#Υr+ep(Ti)

= p2m
2ep#Ar(T,T ) = pm

2ep#Ar+ep(T,T ).

Recall that ep = fp − δ2,p. Hence

#Υr+ep(T ) = pm(m+1)fp/2−m2δ2p#Ar+ep(T,T ).

This proves the assertion. �

For T ∈ Herm(K)+, let G(T ) denote the set of SLm(O)-equivalence classes of

positive definite Hermitian matrices T ′ such that T ′ is SLm(Op)-equivalent to T

for any prime number p. Moreover, put

M∗(T ) =
∑

T ′∈G(T )

1

e∗(T ′)

for a positive definite Hermitian matrix T of degree m with entries in O.
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Let U1 be the unitary group defined in Section 1. Namely, let

U1 =
{
u ∈RK/Q(GL1)

∣∣ uu= 1
}
.

For an element T ∈Herm(Op), let

Ũp,T =
{
detX

∣∣X ∈ UT (Kp)∩GLm(Op)
}
,

and put U1,p = U1(Kp)∩O∗
p . Then Ũp,T is a subgroup of U1,p of finite index. We

then put lp,T = [U1,p : Ũp,T ]. We also put

up =

⎧⎪⎪⎨⎪⎪⎩
(1 + p−1)−1 if Kp/Qp is unramified,

(1− p−1)−1

if Kp =Qp ⊕Qp,

2−1 if Kp/Qp is ramified.

To state the mass formula for SUT , put ΓC(s) = 2(2π)−sΓ(s).

PROPOSITION 3.2

Let T ∈Herm(O)+. Then

M∗(T ) =
(detT )m

∏m
i=2D

i/2ΓC(i)

2m−1
∏

p lp,Tupυp(T )
.

Proof

The assertion is more or less well known (see [R]). But for the sake of completeness

we here give an outline of the proof. Let SUT (A) be the adèlization of SUT , and

let {xi}Hi=1 be a subset of SUT (A) such that

SUT (A) =

H⊔
i=1

QxiSUT (Q),

whereQ= SUT (R)
∏

p<∞(SUT (Kp)∩SLm(Op)).Wenote that the strong approx-

imation theorem holds for SLm. Hence, by using the standard method we can

prove that

M∗(T ) =
H∑
i=1

1

#(x−1
i Qxi ∩ SUT (Q))

.

We recall that the Tamagawa number of SUT is 1 (see [W]). Hence, by [R, (1.1)

and (4.5)], we have that

M∗(T ) =
(detT )m

∏m
i=2D

i/2ΓC(i)

2m−1
∏

p lp,T

υp(1)

υp(T )
.

We can easily show that υp(1) = u−1
p . This completes the assertion. �

COROLLARY

Let T ∈ H̃erm(O)+. Then
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M∗(T ) =
2cDm2

(detT )m
∏m

i=2ΓC(i)

2m−1Dm(m+1)/4+1/2
∏

p uplp,Tαp(T )
,

where cD = 1 or 0 according to whether 2 divides D or not.

For a subset T of Op put

Herm(T ) = Herm(Op)∩Mm(T ),

and for a subset S of Op put

Herm(S,T ) =
{
A ∈Herm(T )

∣∣ detA ∈ S
}

and H̃erm(S,T ) = Herm(S,T )∩ H̃erm(Op). In particular, if S consists of a single

element d, then we write Herm(S,T ) as Herm(d,T ), and so on. For d ∈ Z>0 we

also define the set H̃erm(d,O)+ in a similar way. For each T ∈ H̃erm(Op)
× put

F (0)
p (T,X) = Fp(p

−epT,X)

and

F̃ (0)
p (T,X) = F̃p(p

−epT,X).

We remark that

F̃ (0)
p (T,X) =X−ordp(detT )Xepm−fp[m/2]F (0)

p (T, p−mX2).

For d ∈Z×
p put

λm,p(d,X) =
∑

A∈H̃erm(d,Op)/SLm(Op)

F̃
(0)
p (A,X)

uplp,Aαp(A)
.

An explicit formula for λm,p(p
id0,X) will be given in the next section for d0 ∈Z∗

p

and i≥ 0.

Now let H̃erm =
∏

p(H̃erm(Op)/SLm(Op)). Then the diagonal embedding

induces a mapping

φ : H̃erm(O)+/
∏
p

SLm(Op)−→ H̃erm.

PROPOSITION 3.3

In addition to the above notation and the assumption, for a positive integer d let

H̃erm(d) =
∏
p

(
H̃erm(d,Op)/SLm(Op)

)
.

Then the mapping φ induces a bijection from H̃erm(d,O)+/
∏

p SLm(Op) to

H̃erm(d), which will be denoted also by φ.

Proof

The proof is similar to that of [IS, Proposition 2.1], but it is a little bit more

complex because the class number of K is not necessarily 1. It is easily seen that
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φ is injective. Let (xp) ∈ H̃erm(d). Then by [Sc, Theorem 6.9], there exists an

element y in Herm(K)+ such that dety ∈ dNK/Q(K×). Then we have that dety ∈
detxpNKp/Qp

(K×
p ) for any p. Thus by [J, Theorem 3.1] we have xp = g∗pygp with

some gp ∈ GLm(Kp) for any prime number p. For p not dividing Dd we may

suppose that gp ∈GLm(Op). Hence, (gp) defines an element of RK/Q(GLm)(Af ).

Since we have d−1 dety ∈Q×∩
∏

pNKp/Qp
(Kp), we see that d

−1 dety =NK/Q(u)

with some u ∈K×. Thus, by replacing y with
( 1m−1 O

O u−1

)
y
( 1m−1 O

O u−1

)
, we may

suppose that dety = d. Then we have NKp/Qp
(detgp) = 1. It is easily seen that

there exists an element δp ∈GLm(Kp) such that det δp = detg−1
p and δ∗pxpδp = xp.

Thus we have gpδp ∈ SLm(Kp) and

xp = (gpδp)
∗ygpδp.

By the strong approximation theorem for SLm there exists an element γ ∈
SLm(K), γ∞ ∈ SLm(C), and (γp) ∈

∏
p SLm(Op) such that

(gpδp) = γγ∞(γp).

Put x= γ∗yγ. Then x belongs to H̃erm(d,O)+, and φ(x) = (xp). This proves the

surjectivity of φ. �

THEOREM 3.4

Let f be a primitive form in S2k+1(Γ0(D), χ) or in S2k(SL2(Z)) according to

whether m= 2n or 2n+ 1. For such an f and a positive integer d0 put

bm(f ;d0) =
∏
p

λm,p(d0, α
−1
p ),

where αp is the Satake p-parameter of f . Moreover, put

μm,k,D =Dm(s−k+l0/2)+(k−l0/2)[m/2]−m(m+1)/4−1/2

× 2−cDm(s−k−2n−l0/2)−m+1
m∏
i=2

ΓC(i),

where l0 = 0 or 1 according to whether m is even or odd. Then for Re(s)� 0,

we have that

L
(
s, Im(f)

)
= μm,k,D

∞∑
d0=1

bm(f ;d0)d
−s+k+2n+l0/2
0 .

Proof

We note that L(s, Im(f)) can be rewritten as

L
(
s, Im(f)

)
= D̃ms

∑
T∈H̃erm(O)+/SLm(O)

aIm(f)(D̃
−1T )

e∗(T )(detT )s
.

For T ∈ H̃erm(O)+ the Fourier coefficient aIm(f)(D̃
−1T ) of Im(f) is uniquely

determined by the genus to which T belongs, and can be expressed as



334 Hidenori Katsurada

aIm(f)(D̃
−1T ) = (D[m/2]D̃−m detT )k−l0/2

∏
p

F̃ (0)
p (T,α−1

p ).

Thus the assertion follows from the Corollary to Proposition 3.2 and Proposi-

tion 3.3 similarly as in [IS]. �

4. Formal power series associated with local Siegel series

For d0 ∈Z×
p put

P̂m,p(d0,X, t) =

∞∑
i=0

λ∗
m,p(p

id0,X)ti,

where for d ∈Z×
p we define λ∗

m,p(d,X) as

λ∗
m,p(d,X) =

∑
A∈H̃erm(dNKp/Qp (O∗

p),Op)/GLm(Op)

F̃
(0)
p (A,X)

αp(A)
.

We note that ∑
A∈H̃erm(dNKp/Qp (O∗

p),Op)/GLm(Op)

F̃
(0)
p (A,X−1)

αp(A)

is χKp((−1)m/2d)λ∗
m,p(d,X) or λ∗

m,p(d,X) according to whether m is even and

Kp is a field, or not. In Proposition 4.3.7 we will show that we have

λ∗
m,p(d,X) = upλm,p(d,X)

for d ∈Z×
p and therefore

P̂m,p(d0,X, t) = up

∞∑
i=0

λm,p(p
id0,X)ti.

We also define Pm,p(d0,X, t) as

Pm,p(d0,X, t) =

∞∑
i=0

λ∗
m,p(π

i
pd0,X)ti.

We note that Pm,p(d0,X, t) = P̂m,p(d0,X, t) if Kp is unramified over Qp or Kp =

Qp ⊕Qp, but it is not necessarily the case if Kp is ramified over Qp. In this

section, we give explicit formulas of Pm,p(d0,X, t) for all prime numbers p (see

Theorems 4.3.1 and 4.3.2) and therefore explicit formulas for P̂m,p(d0,X, t) (see

Theorem 4.3.6).

From now on we fix a prime number p. Throughout this section we simply

write ordp as ord and so on if the prime number p is clear from the context. We

also write νKp as ν. We also simply write H̃erm,p instead of H̃erm(Op), and so

on.
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4.1. Preliminaries
Let m be a positive integer. For a nonnegative integer i≤m let

Dm,i =GLm(Op)

(
1m−i 0

0 �1i

)
GLm(Op),

and for W ∈ Dm,i, put Πp(W ) = (−1)ipi(i−1)a/2, where a= 2 or 1 according to

whether Kp is unramified over Qp or not. Let Kp =Qp ⊕Qp. Then for a pair

i= (i1, i2) of nonnegative integers such that i1, i2 ≤m, let

Dm,i =GLm(Op)

((
1m−i1 0

0 p1i1

)
,

(
1m−i2 0

0 p1i2

))
GLm(Op),

and for W ∈Dm,i put Πp(W ) = (−1)i1+i2pi1(i1−1)/2+i2(i2−1)/2. In either the case

where Kp is a quadratic extension of Qp or Kp =Qp ⊕Qp, we put Πp(W ) = 0

for W ∈Mn(O×
p ) \

⋃m
i=0Dm,i.

First we give the following lemma, which can easily be proved by the usual

Newton approximation method in Op.

LEMMA 4.1.1

Let A,B ∈ H̃erm(Op)
×. Let e be an integer such that peA−1 ∈ H̃erm(Op). Suppose

that A≡B mod pe+1 H̃erm(Op). Then there exists a matrix U ∈GLm(Op) such

that B =A[U ].

LEMMA 4.1.2

Let S ∈ H̃erm(Op)
× and T ∈ H̃ern(Op)

× with m≥ n. Then

αp(S,T ) =
∑

W∈GLn(Op)\Mn(Op)×

p(n−m)ν(detW )βp

(
S,T [W−1]

)
.

Proof

The assertion can be proved by using the same argument as in the proof of [Ki3,

Theorem 5.6.1]. We here give an outline of the proof. For each W ∈Mn(Op), put

Be(S,T ;W ) =
{
X ∈Ae(S,T )

∣∣XW−1 is primitive
}
.

Then we have that

Ae(S,T ) =
⊔

W∈GLn(Op)\Mn(Op)×

Be(S,T ;W ).

Take a sufficiently large integer e, and for an element W of Mn(Op), let {Ri}ri=1

be a complete set of representatives of pe H̃erm(Op)[W
−1]/pe H̃erm(Op). Then

we have r = pν(detW )n. Put

B̃e(S,T ;W ) =
{
X ∈Mmn(Op)/p

eMmn(Op)W
∣∣

S[X]≡ T mod pe H̃erm(Op) and XW−1 is primitive
}
.

Then

#
(
B̃e(S,T ;W )

)
= pν(detW )m#

(
Be(S,T ;W )

)
.
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It is easily seen that

S[XW−1]≡ T [W−1] +Ri mod pe H̃erm(Op)

for some i. Hence the mapping X �→XW−1 induces a bijection from B̃e(S,T ;W )

to
⊔r

i=1Be(S,T [W
−1] +Ri). Recall that ν(W )≤ ord(detT ). Hence

Ri ≡O mod p[e/2] H̃erm(Op),

and therefore by Lemma 4.1.1,

T [W−1] +Ri = T [W−1][G]

for some G ∈GLn(Op). Hence

#
(
B̃e(S,T ;W )

)
= pν(detW )n#

(
Be

(
S,T [W−1]

))
.

Hence

αp(S,T ) = p−2mne+n2e#
(
Ae(S,T )

)
= p−2mne+n2e

∑
W∈GLn(Op)\Mn(Op)×

pν(detW )(−m+n)#
(
Be

(
S,T [W−1]

))
.

This proves the assertion. �

Now by using the same argument as in the proof of [Ki1, Theorem 1], we obtain

the following result.

COROLLARY

Under the same notation as above, we have that

βp(S,T ) =
∑

W∈GLn(Op)\Mn(Op)×

p(n−m)ν(detW )Πp(W )αp

(
S,T [W−1]

)
.

For two elements A,A′ ∈Herm(Op) we simply write A∼GLm(Op) A
′ as A∼A′ if

there is no fear of confusion. For variables U and q put

(U, q)m =

m∏
i−1

(1− qi−1U), φm(q) = (q, q)m.

We note that φm(q) =
∏m

i=1(1− qi). Moreover, for a prime number p put

φm,p(q) =

⎧⎪⎪⎨⎪⎪⎩
φm(q2) if Kp/Qp is unramified,

φm(q)2 if Kp =Qp ⊕Qp,

φm(q) if Kp/Qp is ramified.

LEMMA 4.1.3

(a) Let Ω(S,T ) = {w ∈Mm(Op) | S[w]∼ T}. Then we have that

αp(S,T )

αp(T )
=#

(
Ω(S,T )/GLm(Op)

)
p−m(ord(detT )−ord(detS)).
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(b) Let Ω̃(S,T ) = {w ∈Mm(Z) | S ∼ T [w−1]}. Then we have that

αp(S,T )

αp(S)
=#

(
GLm(Op)\Ω̃(S,T )

)
.

Proof

(a) The proof is similar to that of [BS, Lemma 2.2]. First we prove that∫
Ω(S,T )

|dx|= φm,p(p
−1)

αp(S,T )

αp(T )
,

where |dx| is the Haar measure on Mm(Kp) normalized so that∫
Mm(Op)

|dx|= 1.

To prove this, for a positive integer e let T1, . . . , Tl be a complete set of represen-

tatives of {T [γ] mod pe | γ ∈GLm(Op)}. Then it is easy to see that∫
Ω(S,T )

|dx|= p−2m2e
l∑

i=1

#
(
Ae(S,Ti)

)
,

and by Lemma 4.1.1, Ti is GLm(Op)-equivalent to T if e is sufficiently large.

Hence, we have that

#
(
Ae(S,Ti)

)
=#

(
Ae(S,T )

)
for any i. Moreover, we have that

l=#
(
GLm(Op/p

eOp)
)
/#

(
Ae(T,T )

)
= pm

2eφm,p(p
−1)/αp(T ).

Hence ∫
Ω(S,T )

|dx|= lp−2m2e#
(
Ae(S,T )

)
= φm,p(p

−1)
αp(S,T )

αp(T )
,

which proves the above equality. Now we have that∫
Ω(S,T )

|dx|=
∑

W∈Ω(S,T )/GLm(Op)

|detW |mKp
=

∑
W∈Ω(S,T )/GLm(Op)

|detW detW |mp .

We remark that |detW detW |p = p−m(ord(detT )−ord(detS)) for any W ∈Ω(S,T )/

GLm(Op). Thus the assertion has been proved.

(b) By Lemma 4.1.2 we have that

αp(S,T ) =
∑

W∈GLm(Op)\Mm(Op)×

βp

(
S,T [W−1]

)
.

Then we have that βp(S,T [W
−1]) = αp(S) or 0 according to whether S ∼ T [W−1]

or not. Thus the assertion (b) holds. �

For a subset T of Op, we put

Herm(T )k =
{
A= (aij) ∈Herm(T )

∣∣ aii ∈ πkZp

}
.
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From now on put

Herm,∗(Op) =

⎧⎪⎪⎨⎪⎪⎩
Herm(Op)1 if p= 2 and fp = 3,

Herm(�Op)1 if p= 2 and fp = 2,

Herm(Op) otherwise,

where � is a prime element of Kp. Moreover, put ip = 0 or 1 according to whether

p= 2 and f2 = 2, or not. Suppose that Kp/Qp is unramified or Kp =Qp ⊕Qp.

Then an element B of H̃erm(Op) can be expressed as B ∼GLm(Op) 1r⊥pB2 with

some integer r and B2 ∈Herm−r,∗(Op). Suppose that Kp/Qp is ramified. For an

even positive integer r, define Θr by

Θr =

r/2︷ ︸︸ ︷(
0 �ip

�̄ip 0

)
⊥· · ·⊥

(
0 �ip

�̄ip 0

)
,

where �̄ is the conjugate of � over Qp. Then an element B of H̃erm(Op)

is expressed as B ∼GLm(Op) Θr⊥πipB2 with some even integer r and B2 ∈
Herm−r,∗(Op). For these results, see [J].

A nondegenerate square matrix W = (dij)m×m with entries in Op is called

reduced if W satisfies the following conditions: dii = pei with ei a nonnegative

integer, and dij is a nonnegative integer less than or equal to pej − 1 for i < j,

and dij = 0 for i > j. It is well known that we can take the set of all reduced

matrices as a complete set of representatives of GLm(Op)\Mm(Op)
×. Let m be

an integer. For B ∈ H̃erm(Op) put

Ω̃(B) =
{
W ∈GLm(Kp)∩Mm(Op)

∣∣B[W−1] ∈ H̃erm(Op)
}
.

Let r ≤m, and let ψr,m be the mapping from GLr(Kp) into GLm(Kp) defined

by ψr,m(W ) = 1m−r⊥W .

LEMMA 4.1.4

(a) Assume that Kp is unramified over Qp or Kp = Qp ⊕ Qp. Let B1 ∈
Herm−n0(Op). Then ψm−n0,m induces a bijection from GLm−n0(Op)\Ω̃(B1) to

GLm(Op)\Ω̃(1n0⊥B1), which will also be denoted by ψm−n0,m.

(b) Assume that Kp is ramified over Qp and that n0 is even. Let B1 ∈
H̃erm−n0(Op). Then ψm−n0,m induces a bijection from GLm−n0(Op)\Ω̃(B1) to

GLm(Op)\Ω̃(Θn0⊥B1), which will also be denoted by ψm−n0,m. Here ip is the

integer defined above.

Proof

(a) Clearly ψm−n0,m is injective. To prove the surjectivity, take a representa-

tive W of an element of GLm(Op)\Ω̃(1n0⊥B1). Without loss of generality we

may assume that W is a reduced matrix. Since we have that (1n0⊥B1)[W
−1] ∈

H̃erm(Op), we have that W =
( 1n0 0

0 W1

)
with W1 ∈ Ω̃(B1). This proves the asser-

tion.

(b) The assertion can be proved in the same manner as (a). �
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LEMMA 4.1.5

Let B ∈ H̃erm(Op)
×. Then we have that

αp(π
rdB) = prm

2

αp(B)

for any nonnegative integer r and d ∈Z∗
p.

Proof

The assertion can be proved by using the same argument as in the proof of [Ki3,

Theorem 5.6.4(a)]. �

Now we prove induction formulas for local densities different from Lemma 4.1.2

(see Lemmas 4.1.6, 4.1.7, and 4.1.8). For technical reasons, we formulate and

prove them in terms of Hermitian modules. Let M be Op free module, and let b

be a mapping from M ×M to Kp such that

b(λ1u+ λ2u2, v) = λ1b(u1, v) + λ2b(u2, v)

for u, v ∈M and λ1, λ2 ∈Op, and

b(u, v) = b(v,u) for u, v ∈M.

We call such an M a Hermitian module with a Hermitian inner product b.

We set q(u) = b(u,u) for u ∈ M . Take an Op-basis {ui}mi=1 of M , and put

TM = (b(ui, uj))1≤i,j≤m. Then TM is a Hermitian matrix, and its determinant is

uniquely determined, up to NKp/Qp
(O∗

p), by M . We say M is nondegenerate if

detTM �= 0. Conversely for a Hermitian matrix T of degree m, we can define a

Hermitian module MT so that

MT =Opu1 +Opu2 + · · ·+Opum

with (b(ui, uj))1≤i,j≤m = T . Let M1 and M2 be submodules of M . We then write

M =M1⊥M2 if M =M1 +M2, and b(u, v) = 0 for any u ∈M1, v ∈M2. Let M

and N be Hermitian modules. Then a homomorphism σ : N −→ M is said to

be an isometry if σ is injective and b(σ(u), σ(v)) = b(u, v) for any u, v ∈ N . In

particular, M is said to be isometric to N if σ is an isomorphism. We denote

by U ′
M the group of isometries of M to M itself. From now on we assume that

TM ∈ H̃erm(Op) for a Hermitian module M of rank m. For Hermitian modules

M and N over Op of rank m and n, respectively, put

A′
a(N,M) =

{
σ :N −→M/paM

∣∣ q(σ(u))≡ q(u) mod pep+a
}
,

and

B′
a(N,M) :=

{
σ ∈A′

a(N,M)
∣∣ σ is primitive

}
.

Here a homomorphism σ :N −→M is said to be primitive if φ induces an injective

mapping from N/�N to M/�M . Then we can define the local density α′
p(N,M)

as

α′
p(N,M) = lim

a→∞
p−a(2mn−n2)#

(
A′

a(N,M)
)
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if M and N are nondegenerate, and we can define the primitive local density

β′
p(N,M) as

β′
p(N,M) = lim

a→∞
p−a(2mn−n2)#

(
B′
a(N,M)

)
if M is nondegenerate as in the matrix case. It is easily seen that

αp(S,T ) = α′
p(MT ,MS)

and

βp(S,T ) = β′
p(MT ,MS).

Let N1 be a submodule of N . For each φ1 ∈ B′
a(N1,M), put

B′
a(N,M ;φ1) =

{
φ ∈ B′

a(N,M)
∣∣ φ|N1 = φ1

}
.

We note that we have

B′
a(N,M) =

⊔
φ1∈B′

a(N1,M)

B′
a(N,M ;φ1).

Suppose that Kp is unramified over Qp. Then put Ξm = 1m. Suppose that

Kp is ramified over Qp and that m is even. Then put Ξm =Θm.

LEMMA 4.1.6

Let m1, m2, n1, and n2 be nonnegative integers such that m1 ≥ n1 and m1+m2 ≥
n1 + n2. Moreover, suppose that m1 and n1 are even if Kp is ramified over Qp.

Let A2 ∈ H̃erm2(Op), and let B2 ∈ H̃ern2(Op). Then we have that

βp(Ξm1⊥A2,Ξn1⊥B2) = βp(Ξm1⊥A2,Ξn1)βp(Ξm1−n1⊥A2,B2),

and in particular, we have that

βp(Ξn1⊥A2,Ξn1⊥B2) = βp(Ξn1⊥A2,Ξn1)βp(A2,B2).

Proof

Let M =MΞm1⊥A2 , N1 =MΞn1
, N2 =MB2 , and N =N1⊥N2. Let a be a suffi-

ciently large positive integer. Let N1 =Opv1 ⊕ · · · ⊕Opvn1 and N2 =Opvn1+1 ⊕
· · · ⊕Opvn1+n2 . For each φ1 ∈ B′

a(N1,M), put ui = φ1(vi) for i= 1, . . . , n1. Then

we can take elements un1+1, . . . , um1+m2 ∈M such that

(ui, uj) = 0 (i= 1, . . . , n1, j = n1 + 1, . . . ,m1 +m2),

and (
(ui, uj)

)
n1+1≤i,j≤m1+m2

=Ξm1−n1⊥A2.

Put N ′
1 =Opu1 ⊕ · · · ⊕Opun1 . Then we have N ′

1 =MΞn1
. For φ ∈ B′

a(N1,M ;φ1)

and i= 1, . . . , n2 we have that

φ(vn1+i) =

m1+m2∑
j=1

an1+i,juj

with an1+i,j ∈Op. Put Ξn1 = (bij)1≤i,j≤n1 . Then we have that
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(
φ(vj), φ(vn1+i)

)
=

n1∑
γ=1

an1+i,γbjγ = 0

for i= 1, . . . , n2 and j = 1, . . . , n1. Hence we have an1+i,γ = 0 for i= 1, . . . , n2 and

γ = 1, . . . , n1. This implies that φ|N2 ∈ B′
a(N2,MA2⊥Ξm1−n1

). Then the mapping

B′
a(N1,M ;φ1) � φ �→ φ|N2 ∈ B′

a(N2,MA2⊥Ξm−n1
)

is bijective. Thus we have that

#B′
a(N,M) =#B′

a(N1,M)#B′
a(N2,MΞm−n1⊥A2).

This implies that

βp(Ξm1⊥A2,Ξn1⊥B2) = βp(Ξm1⊥A2,Ξn1)βp(Ξm1−n1⊥A,B2). �

LEMMA 4.1.7

In addition to the notation and the assumption in Lemma 4.1.6, suppose that A1

and A2 are nondegenerate. Then

αp(Ξm1⊥A2,Ξn1) = βp(Ξm1⊥A2,Ξn1),

and we have that

αp(Ξm1⊥A2,Ξn1⊥B2) = αp(Ξm1⊥A2,Ξn1)αp(Ξm1−n1⊥A2,B2),

and in particular, we have that

αp(Ξn1⊥A2,Ξn1⊥B2) = αp(Ξn1⊥A2,Ξn1)αp(A2,B2).

Proof

The first assertion can easily be proved. By Lemmas 4.1.2 and 4.1.4, we have

αp(Ξm1⊥A2,Ξn1⊥B2)

=
∑

W∈GLn1+n2 (Op)\Ω̃(Ξn1⊥B2)

p(n1+n2−(m1+m2))ν(detW )

× βp

(
Ξm1⊥A2, (Ξn1⊥B2)[W

−1]
)

=
∑

X∈GLn2 (Op)\Ω̃(B2)

p(n2−(m1−n1+m2))ν(detX)βp

(
Ξm1⊥A2,Ξn1⊥B2[X

−1]
)
.

By Lemma 4.1.6 and the first assertion, we have that

βp

(
Ξm1⊥A2,Ξn1⊥B2[X

−1]
)
= αp(Ξm1⊥A2,Ξn1)βp

(
Ξm1−n1⊥A2,B2[X

−1]
)
.

Hence again by Lemma 4.1.2, we prove the second assertion. �

LEMMA 4.1.8

(a) Suppose thatKp is unramified overQp. LetA ∈Herl(Op),B1 ∈Hern1(Op),

and B2 ∈Hern2(Op) with m≥ 2n1. Then we have that

βp(1m⊥A,B1⊥B2) = βp(1m⊥A,B1)βp

(
(−B1)⊥1m−2n1⊥A,B2

)
.
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(b) Suppose that Kp is ramified over Qp. Let A ∈ H̃erl(Op), B1 ∈ H̃ern1(Op),

and B2 ∈ H̃ern2(Op) with m≥ n1. Then we have that

βp(Θ2m⊥A,B1⊥B2) = βp(Θ2m⊥A,B1)βp

(
(−B1)⊥Θ2m−2n1⊥A,B2

)
.

Proof

First suppose that Kp is ramified over Qp. Let M =MΘ2m⊥A, N1 =MB1 , N2 =

MB2 , and N =N1⊥N2. Let a be a sufficiently large positive integer. Let N1 =

Opv1⊕· · ·⊕Opvn1 and N2 =Opvn1+1⊕· · ·⊕Opvn1+n2 . For each φ1 ∈ B′
a(N1,M),

put ui = φ1(vi) for i= 1, . . . , n1. Then we can take elements un1+1, . . . , u2m+l ∈M

such that

(ui, un1+j) = δij�
ip , (un1+i, un1+j) = 0 (i, j = 1, . . . , n1),

(ui, uj) = 0 (i= 1, . . . ,2n1, j = 2n1 + 1, . . . ,2m+ l),

and (
(ui, uj)

)
2n1+1≤i,j≤2m+l

=Θ2m−2n1⊥A,

where δij is Kronecker’s delta. Let B1 = (bij)1≤i,j≤n1 , put

u′
j = uj − �̄−ip

n1∑
γ=1

b̄γjun1+γ

for j = 1, . . . , n1, and put M ′ =Opu
′
1⊕· · ·⊕Opu

′
n1
. Then we have (u′

i, u
′
j) =−bij

and hence we have M ′ = M(−B1). For φ ∈ B′
a(N1,M ;φ1) and i = 1, . . . , n2 we

have that

φ(vn1+i) =

2m+l∑
j=1

an1+i,juj

with an1+i,j ∈Op. Then we have that(
φ(vj), φ(vn1+i)

)
=

n1∑
γ=1

an1+i,γbjγ + an1+i,n1+j�
ip = 0

for i= 1, . . . , n2 and j = 1, . . . , n1. Hence we have that

φ(vn1+i) =

n1∑
j=1

an1+i,ju
′
j +

2m+l∑
j=2n1+1

an1+i,juj .

This implies that φ|N2 ∈ B′
a(N2,M(−B1)⊥MA⊥Θ2m−2n1

). Then the mapping

B′
a(N1,M ;φ1) � φ �→ φ|N2 ∈ B′

a(N2,M(−B1)⊥MA⊥Θ2m−2n1
)

is bijective. Thus we have that

#B′
a(N,M) =#B′

a(N1,M)#B′
a(N2,M(−B1)⊥MΘ2m−2n1⊥A).

This implies that

βp(Θ2m⊥A,B1⊥B2) = βp(Θ2m⊥A,B1)βp

(
(−B1)⊥Θ2m−2n1⊥A,B2

)
.
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This proves (b). Next suppose thatKp is unramified overQp. For an even positive

integer r define Θr by

Θr =

r/2︷ ︸︸ ︷(
0 1

1 0

)
⊥· · ·⊥

(
0 1

1 0

)
.

Then we have Θr ∼ 1r. By using the same argument as above we can prove that

βp(Θm⊥A,B1⊥B2) = βp(Θm⊥A,B1)βp

(
(−B1)⊥Θm−2n1⊥A,B2

)
or

βp(Θm−1⊥1⊥A,B1⊥B2) = βp(Θm−1⊥1⊥A,B1)βp

(
(−B1)⊥Θm−2n1⊥1⊥A,B2

)
according to whether m is even or not. Thus we prove the assertion (a). �

LEMMA 4.1.9

Let k be a positive integer.

(a) Suppose that Kp is unramified over Qp.

(1) Let b ∈Zp. Then we have that

βp(12k, pb) = (1− p−2k)(1 + p−2k+1).

(2) Let b ∈Z∗
p. Then we have that

αp(12k, b) = βp(12k, b) = 1− p−2k

and

αp(12k−1, b) = βp(12k−1, b) = 1+ p−2k+1.

(b) Suppose that Kp is ramified over Qp.

(1) Let B ∈Herm,∗(Op) with m≤ 2. Then we have that

βp(Θ2k, π
ipB) =

m−1∏
i=0

(1− p−2k+2i).

(2) Let B =
(

0 �
�̄ 0

)
. Then we have that

αp(Θ2k,B) = βp(Θ2k,B) = 1− p−2k.

Proof

(a) Put B = (b). Let p �= 2. Then we have that Kp =Qp(
√
ε) with ε ∈ Z∗

p such

that (ε, p)p =−1. Then we have that

#Ba(12k,B) =#
{
(xi) ∈M4k,1(Zp)/p

aM4k,1(Zp)
∣∣∣ (xi) �≡ 0 mod p,

2k∑
i=1

(x2
2i−1 − εx2

2i)≡ pb mod pa
}
.
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Let p= 2. Then we have that K2 =Q2(
√
−3) and

#Ba(12k,B) =#
{
(xi) ∈M4k,1(Z2)/2

aM4k,1(Z2)
∣∣∣ (xi) �≡ 0 mod 2,

2k∑
i=1

(x2
2i−1 + x2i−1x2i + x2

2i)≡ 2b mod 2a
}
.

In any case, by [Ki2, Lemma 9], we have that

#Ba(12k,B) = p(4k−1)a(1− p−2k)(1 + p−2k+1).

This proves the assertion (a.1). Similarly the assertion (a.2) holds.

(b) First let m = 1, and put B = (b) with b ∈ 2Zp. Then 2−1b ∈ Zp. Let

p �= 2, or let p = 2 and f2 = 3. Then we have Kp = Qp(�) with � a prime

element of Kp such that �̄ = −�. Then an element x = (x2i−1 +�x2i)1≤i≤2k

of M2k,1(Op)/p
aM2k,1(Op) is primitive if and only if (x2i−1)1≤i≤2k �≡ 0 mod p.

Moreover, we have that

Θ2k[x] = 2
∑

1≤i≤2k

(x2ix2i+1 − x2i−1x2i+2)π.

Hence we have that

#Ba(12k,B) =#
{
(xi) ∈M4k,1(Zp)/p

aM4k,1(Zp)
∣∣∣ (x2i−1)1≤i≤2k �≡ 0 mod p

2k∑
i=1

(x2ix2i+1 − x2i−1x2i+2)≡ 2−1b mod pa
}
.

Let p= 2, and let f2 = 2. Then we have that K2 =Q2(�) with � a prime element

of K2 such that η := 2−1(�+ �̄) ∈Z∗
2. Then we have that

#Ba(12k,B)

=#
{
(xi) ∈M4k,1(Z2)/2

aM4k,1(Z2)
∣∣∣ (x2i−1)1≤i≤2k �≡ 0 mod 2,

2k∑
i=1

{
η(x2ix2i+1 + x2i−1x2i+2) + x2i−1x2i+1 + πx2ix2i+2

}
≡ 2−1b mod 2a

}
.

Thus, in any case, by a simple computation we have that

#Ba(12k,B) = p(2k−1)a(p2ka − p2k(a−1)).

Thus the assertion (b.1) has been proved form= 1. Next let πipB = (bij)1≤i,j≤2 ∈
Her2,∗(Op). Let M =MΘ2k

, N1 =Mπipb11
, and N =MB . Let a be a sufficiently

large positive integer. For each φ1 ∈ B′
a(N1,M), put

B′
a(N,M ;φ1) =

{
φ ∈ B′

a(N,M)
∣∣ φ|N1 = φ1

}
.

Let N =Opv1 ⊕Opv2, and put u1 = φ1(v1). Then we can take elements u2, . . . ,

u2k ∈M such that

M =Opu1 ⊕Opu2 ⊕ · · · ⊕Opu2k
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and

(u1, u2) =�, (u2, u2) = 0, (ui, uj) = 0 for i= 1,2, j = 3, . . . ,2k,

and

(ui, uj)3≤i,j≤2k =Θ2k−2.

Then by the same argument as in the proof of Lemma 4.1.8, we can prove that

B′
a(N,M ;φ1)

=
{
(xi)1≤i≤2k−1 ∈M2k−1,1(Op)/p

aM2k−1,1(Op)
∣∣ (xi)2≤i≤2k−2 �≡ 0 mod �,

−x1x̄1b11 − x1b12 − x̄1b̄12 +Θ2k−2

[
(xi)2≤i≤2k−2

]
≡ b22 mod pa

}
.

Hence by the assertion for m= 1, we have that

βp(Θ2k,B)

= βp(Θ2k, b11)p
−a

∑
x1∈Op/�aOp

βp(Θ2k−2, b22 + b11x1x̄1 + x1b12 + x̄1b̄12)

= (1− p−2k)(1− p−2k+2).

Thus the assertion (b.1) has been proved for m= 2. The assertion (b.2) can be

proved by using the same argument as above. �

LEMMA 4.1.10

Let k and m be integers with k ≥m.

(a) Suppose that Kp is unramified over Qp. Let A ∈ Herl(Op) and B ∈
Herm(Op). Then we have that

βp(pA⊥12k, pB) = βp(12k, pB) =

2m−1∏
i=0

(
1− (−1)ip−2k+i

)
.

(b) Let Kp =Qp⊕Qp. Let l be an integer. Let B ∈Herm(Op). Then we have

that

βp(12k, pB) =

2m−1∏
i=0

(1− p−2k+i).

(c) Suppose that Kp is ramified over Qp. Let A ∈ Herl,∗(Op), and let B ∈
Herm,∗(Op). Then we have that

βp(π
ipA⊥Θ2k, π

ipB) = βp(Θ2k, π
ipB) =

m−1∏
i=0

(1− p−2k+2i).

Proof

(a) Suppose that Kp is unramified over Qp. We prove the assertion by induc-

tion on m. Let degB = 1, and let a be a sufficiently large integer. Then, by
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Lemma 4.1.9, we have that

βp(pA⊥12k, pB) = p−al
∑

x∈Ml1(Op)/paMl1(Op)

βp

(
12k, pB − pA[x]

)
= (1− p−2k)(1 + p−2k+1).

This proves the assertion for m= 1. Let m> 1, and suppose that the assertion

holds for m − 1. Then B can be expressed as B ∼GLm(Op) B1⊥B2 with B1 ∈
Her1(Op) and B2 ∈Herm−1(Op). Then by Lemma 4.1.8, we have that

βp(pA⊥12k, pB1⊥pB2) = βp(pA⊥12k, pB1)βp

(
pA⊥(−pB1)⊥12k−2, pB2

)
.

Thus the assertion holds by the induction assumption.

(b) Suppose that Kp =Qp ⊕Qp. Then we easily see that

βp(12k, pB) = p(−4km+m2)#B1(12k,Om).

We have that

B1(12k,Om)

= {(X,Y ) ∈M2k,l(Zp)/pM2k,l(Zp)⊕M2k,l(Zp)/pM2k,l(Zp)
∣∣

tY X ≡Om mod pMm(Zp) and rankZp/pZp
X = rankZp/pZp

Y =m}.

For each X ∈M2k,l(Zp)/pM2k,l(Zp) such that rankZp/pZp
X =m, put

#B1(12k,Om;X)

=
{
Y ∈M2k,l(Zp)/pM2k,l(Zp)

∣∣
tY X ≡Om mod pMm(Zp) and rankZp/pZp

Y =m
}
.

By a simple computation we have that

#
{
X ∈M2k,l(Zp)/pM2k,l(Zp)

∣∣ rankZp/pZp
X =m

}
=

m−1∏
i=0

(p2k − pi),

and

#B1(12k,Om;X) =

m−1∏
i=0

(p2k−m − pi).

This proves the assertion.

(c) Suppose that Kp is ramified over Qp. We prove the assertion by induc-

tion on m. Let degB = 1, and let a be a sufficiently large integer. Then, by

Lemma 4.1.9, we have that

βp(π
ipA⊥Θ2k, π

ipB) = p−al
∑

x∈Ml1(Op)/paMl1(Op)

βp

(
Θ2k, π

ipB − πipA[x]
)

= 1− p−2k.

Let degB = 2. Then by Lemma 4.1.9, we have that
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βp(π
ipA⊥Θ2k, π

ipB) = p−2la
∑

x∈Ml2(Op)/paMl2(Op)

βp

(
Θ2k, π

ipB − πipA[x]
)

= (1− p−2k)(1− p−2k+2).

Let m ≥ 3. Then B can be expressed as B ∼GLm(Op) B1⊥B2 with degB1 ≤ 2.

Then the assertion for m holds by Lemma 4.1.8, the induction hypothesis, and

Lemma 4.1.9. �

LEMMA 4.1.11

(a) Suppose that Kp is unramified over Qp. Let l and m be integers with

l≥m. Then we have that

αp(1l,1m) = βp(1l,1m) =

m−1∏
i=0

(
1− (−p)−l+i

)
.

(b) Let Kp =Qp ⊕Qp. Let l and m be integers with l≥m. Then we have

αp(1l,1m) = βp(1l,1m) =
m−1∏
i=0

(1− p−l+i).

(c) Suppose that Kp is ramified over Qp. Let k and m be even integers with

k ≥m. Then we have that

αp(Θ2k,Θ2m) = βp(Θ2k,Θ2m) =
m−1∏
i=0

(1− p−2k+2i).

Proof

In any case, we easily see that the local density coincides with the primitive

local density. Suppose that Kp is unramified over Qp. Then, by Lemma 4.1.7,

we have

αp(1l,1m) = αp(1l,1)αp(1l−1,1m−1).

We easily see that

αp(1l,1) = 1− (−1)lp−l.

This proves the assertion (a). Suppose that Kp is ramified over Qp. Then by

Lemma 4.1.7, we have that

αp(Θ2k,Θm) = αp(Θ2k,Θ2)αp(Θ2k−2,Θ2m−2).

Moreover, by Lemma 4.1.9, we have that

αp(Θ2k,Θ2) = 1− p−2k.

This proves the assertion (c). Suppose that Kp =Qp ⊕Qp. Then the assertion

can be proved similarly to Lemma 4.1.10(b). �



348 Hidenori Katsurada

4.2. Primitive densities
For an element T ∈ H̃erm(Op), we define a polynomial Gp(T,X) in X by

Gp(T,X) =

m∑
i=0

∑
W∈GLm(Op)\Dm,i

(Xpm)ν(detW )Πp(W )F (0)
p

(
T [W−1],X

)
.

LEMMA 4.2.1

(a) Suppose that Kp is unramified over Qp. Let B1 ∈ Herm−n0(Op). Then

we have that

αp(1n0⊥pB1) =

n0∏
i=1

(
1− (−p)−i

)
αp(pB1).

(b) Let Kp =Qp ⊕Qp. Let B1 ∈Herm−n0(Op). Then we have that

αp(1n0⊥pB1) =

n0∏
i=1

(1− p−i)αp(pB1).

(c) Suppose that Kp is ramified over Qp. Let n0 be an even integer. Let B1 ∈
Herm−n0,∗(Op). Then we have that

αp(Θn0⊥πipB1) =

n0/2∏
i=1

(1− p−2i)αp(π
ipB1).

Proof

Suppose that Kp is unramified over Qp. By Lemma 4.1.7, we have that

αp(1n0⊥pB1) = αp(1n0⊥pB1,1n0)αp(pB1).

By using the same argument as in the proof of Lemma 4.1.10, we can prove that

αp(1n0⊥pB1,1n0) = αp(1n0),

and hence by Lemma 4.1.11, we have that

αp(1n0⊥pB1) =

n0∏
i=1

(
1− (−p)−i

)
αp(pB1).

This proves the assertion (a). The assertions (b) and (c) can be proved similarly.

�

LEMMA 4.2.2

Let m be a positive integer, and let r be a nonnegative integer such that r ≤m.

(a) Suppose that Kp is unramified over Qp. Let T = 1m−r⊥pB1 with B1 ∈
Herr(Op). Then

βp(12k, T ) =

m+r−1∏
i=0

(
1− p−2k+i(−1)i

)
.
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(b) Suppose that Kp = Qp ⊕Qp. Let T = 1m−r⊥pB1 with B1 ∈ Herr(Op).

Then

βp(12k, T ) =

m+r−1∏
i=0

(1− p−2k+i).

(c) Suppose that Kp is ramified over Qp, and suppose that m− r is even.

Let T =Θm−r⊥πipB1 with B1 ∈Herr,∗(Op). Then

βp(Θ2k, T ) =

(m+r−2)/2∏
i=0

(1− p−2k+2i).

Proof

Suppose that Kp is unramified over Qp. By Lemma 4.1.8, we have that

βp(12k, T ) = βp(12k, pB1)βp

(
(−pB1)⊥12k−2r,1m−r

)
.

By using the same argument as in the proof of Lemma 4.1.11, we can prove that

βp((−pB1)⊥12k−2r,1m−r) = βp(12k−2r,1m−r). Hence the assertion follows from

Lemmas 4.1.10 and 4.1.11. The assertions (b) and (c) can be proved similarly. �

COROLLARY

(a) Suppose that Kp is unramified over Qp or Kp = Qp ⊕ Qp. Let T =

1m−r⊥pB1 with B1 ∈Herr(Op). Then we have that

Gp(T,Y ) =

r−1∏
i=0

(
1− (ξpp)

m+iY
)
.

(b) Suppose that Kp is ramified over Qp, and suppose that m− r is even.

Let T =Θm−r⊥πipB1 with B1 ∈Herr,∗(Op). Then

Gp(T,Y ) =

[(r−2)/2]∏
i=0

(1− p2i+2[(m+1)/2]Y ).

Proof

Let k be a positive integer such that k ≥m. Put Ξ2k =Θ2k or 12k according to

whether Kp is ramified over Qp or not. Then it follows from [Sh1, Lemma 14.8]

that for B ∈ H̃erm(Op)
× we have

bp(p
−epB,2k) = αp(Ξ2k,B).

Hence, by the definition of Gp(T,X) and the Corollary to Lemma 4.1.2, we have

βp(Ξ2k, T ) =Gp(T, p
−2k)

[(m−1)/2]∏
i=0

(1− p2i−2k)

[m/2]∏
i=1

(1− ξpp
2i−1−2k).

Suppose that Kp is unramified over Qp or Kp =Qp⊕Qp. Then by Lemma 4.2.2,

we have that
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Gp(T, p
−2k) =

r−1∏
i=0

(
1− (ξpp)

m+ip−2k
)
.

This equality holds for infinitely many positive integers k, and both sides of it

are polynomials in p−2k. Thus the assertion (a) holds. Similarly the assertion (b)

holds. �

LEMMA 4.2.3

Let B ∈ H̃erm(Op). Then we have that

F (0)
p (B,X) =

∑
W∈GLm(Op)\Ω̃(B)

Gp

(
B[W−1],X

)
(pmX)ν(detW ).

Proof

Let k be a positive integer such that k ≥m. By Lemma 4.1.2, we have that

αp(Ξ2k,B) =
∑

W∈GLm(Op)\Ω̃(B)

βp

(
Ξ2k,B[W−1]

)
p(−2k+m)ν(detW ).

Then the assertion can be proved by using the same argument as in the proof of

the Corollary to Lemma 4.2.2. �

COROLLARY

Let B ∈ H̃erm(Op). Then we have that

F̃ (0)(B,X) =Xepm−fp[m/2]
∑

B′∈H̃erm(Op)/GLm(Op)

X−ord(detB′)αp(B
′,B)

αp(B′)

×Gp(B
′, p−mX2)Xord(detB)−ord(detB′).

Proof

We have that

F̃ (0)(B,X)

=Xepm−fp[m/2]X−ord(detB)F (0)(B,p−mX2)

=Xepm−fp[m/2]
∑

W∈GLm(Op)\Ω̃(B)

X−ord(detB)

×Gp

(
B[W−1], p−mX2

)
(X2)ν(detW )

=Xepm−fp[m/2]

×
∑

B′∈H̃erm(Op)/GLm(Op)

∑
W∈GLm(Op)\Ω̃(B′,B)

X−ord(detB)

×Gp(B
′, p−mX2)(X2)ν(detW )
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=Xepm−fp[m/2]
∑

B′∈H̃erm(Op)/GLm(Op)

X−ord(detB′)#
(
GLm(Op)\Ω̃(B′,B)

)
×Gp(B

′, p−mX2)Xord(detB)−ord(detB′).

Thus the assertion follows from Lemma 4.1.3(b). �

Let

F̃m,p(d0) =

∞⋃
i=0

H̃erm
(
πid0NKp/Qp

(O∗
p),Op

)
,

and let

Fm,p,∗(d0) = F̃m,p(d0)∩Herm,∗(Op).

First suppose that Kp is unramified over Qp or Kp =Qp ⊕Qp. Let Hm be

a function on Herm(Op)
× satisfying the following condition: Hm(1m−r⊥pB) =

Hr(pB) for any B ∈Herr(Op).

Let d0 ∈Z∗
p. Then we put

Q(d0,Hm, r, t) =
∑

B∈p−1F̃r,p(d0)∩Herr(Op)

Hm(1m−r⊥pB)

αp(1m−r⊥pB)
tord(det(pB)).

Next suppose that Kp is ramified over Qp. Let Hm be a function on Herm(Op)
×

satisfying the following condition:

Hm(Θm−r⊥πipB) =Hr(π
ipB) for any B ∈Herr,∗(Op) if m− r is even.

Let d0 ∈Z∗
p, and let m− r be even. Then we put

Q(d0,Hm, r, t) =
∑

B∈π−ip F̃r,p(d0)∩Herr,∗(Op)

Hm(Θm−r⊥πipB)

αp(Θm−r⊥πipB)
tord(det(π

ipB)).

Then by Lemma 4.2.1 we easily obtain the following.

PROPOSITION 4.2.4

(a) Suppose that Kp is unramified over Qp or Kp =Qp ⊕Qp. Then for any

d0 ∈Z∗
p and a nonnegative integer r we have that

Q(d0,Hm, r, t) =
Q(d0,Hr, r, t)

φm−r(ξpp−1)
.

(b) Suppose that Kp is ramified over Qp. Then for any d0 ∈ Z∗
p and a non-

negative integer r such that m− r is even, we have that

Q(d0,Hm, r, t) =
Q(d0,Hr, r, t)

φ(m−r)/2(p−2)
.

4.3. Explicit formulas of formal power series of Koecher–Maass type
In this section we give an explicit formula for Pm(d0,X, t).
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THEOREM 4.3.1

Let m be even, and let d0 ∈Z∗
p.

(a) Suppose that Kp is unramified over Qp. Then

Pm(d0,X, t) =
1

φm(−p−1)
∏m

i=1(1− t(−p)−iX)(1 + t(−p)−iX−1)
.

(b) Suppose that Kp =Qp ⊕Qp. Then

Pm(d0,X, t) =
1

φm(p−1)
∏m

i=1(1− tp−iX)(1− tp−iX−1)
.

(c) Suppose that Kp is ramified over Qp. Then

Pm(d0,X, t) =
tmip/2

2φm/2(p−2)

{ 1∏m/2
i=1 (1− tp−2i+1X−1)(1− tp−2iX)

+
χKp((−1)m/2d0)∏m/2

i=1 (1− tp−2iX−1)(1− tp−2i+1X)

}
.

THEOREM 4.3.2

Let m be odd, and let d0 ∈Z∗
p.

(a) Suppose that Kp is unramified over Qp. Then

Pm(d0,X, t) =
1

φm(−p−1)
∏m

i=1(1 + t(−p)−iX)(1 + t(−p)−iX−1)
.

(b) Suppose that Kp =Qp ⊕Qp. Then

Pm(d0,X, t) =
1

φm(p−1)
∏m

i=1(1− tp−iX)(1− tp−iX−1)
.

(c) Suppose that Kp is ramified over Qp. Then

Pm(d0,X, t) =
t(m+1)ip/2+δ2p

2φ(m−1)/2(p−2)
∏(m+1)/2

i=1 (1− tp−2i+1X)(1− tp−2i+1X−1)
.

To prove Theorems 4.3.1 and 4.3.2, put

Km(d0,X, t) =
∑

B′∈F̃r,p(d0)

Gp(B
′, p−mX2)

αp(B′)
(tX−1)ord(detB

′).

PROPOSITION 4.3.3

Let m and d0 be as above. Then we have that

Pm(d0,X, t) =Xmep−[m/2]fpKm(d0,X, t)

×

⎧⎪⎪⎨⎪⎪⎩
∏m

i=1(1− t2X2p2i−2−2m)−1 if Kp/Qp is unramified,∏m
i=1(1− tXpi−1−m)−2 if Kp =Qp ⊕Qp,∏m
i=1(1− tXpi−1−m)−1 if Kp/Qp is ramified.
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Proof

We note that B′ belongs to H̃erm,p(d0) if B belongs to H̃erm−l,p(d0) and αp(B
′,

B) �= 0. Hence by the Corollary to Lemma 4.2.3 we have that

Pm(d0,X, t)

=Xmep−[m/2]fp
∑

B∈F̃m,p(d0)

1

αp(B)

∑
B′

Gp(B
′, p−mX2)X−ord(detB′)αp(B

′,B)

αp(B′)

×Xord(detB)−ord(detB′)tord(detB)

=Xmep−[m/2]fp
∑

B′∈F̃m,p(d0)

Gp(B
′, p−mX2)

αp(B′)
(tX−1)ord(detB

′)

×
∑

B∈F̃m,p(d0)

αp(B
′,B)

αp(B)
(tX)ord(detB)−ord(detB′).

Hence by using the same argument as in the proof of [BS, Theorem 5] and by

Lemma 4.1.3(a), we have that∑
B∈F̃m,p(d0)

αp(B
′,B)

αp(B)
(tX)ord(detB)−ord(detB′)

=
∑

W∈Mm(Op)×/GLm(Op)

(tXp−m)ν(detW )

=

⎧⎪⎪⎨⎪⎪⎩
∏m

i=1(1− t2X2p2i−2−2m)−1 if Kp/Qp is unramified,∏m
i=1(1− tXpi−1−m)−2 if Kp =Qp ⊕Qp,∏m
i=1(1− tXpi−1−m)−1 if Kp/Qp is ramified.

Thus the assertion holds. �

In order to prove Theorems 4.3.1 and 4.3.2, we introduce some notation. For a

positive integer r and d0 ∈Z×
p let

ζm(d0, t) =
∑

T∈Fm,p,∗(d0)

1

αp(T )
tord(detT ).

We make the convention that ζ0(d0, t) = 1 or 0 according to whether d0 ∈ Z∗
p

or not. To obtain an explicit formula of ζm(d0, t) let Zm(u,d) be the integral

defined as

Zm,∗(u,d) =

∫
Fm,p,∗(d0)

|detx|s−m|dx|,

where u = p−s and |dx| is the measure on Herm(Kp) so that the volume of

Herm(Op) is 1. Then by [S, Theorem 4.2] we obtain the following result.
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PROPOSITION 4.3.4

Let d0 ∈Z∗
p.

(a) Suppose that Kp is unramified over Qp. Then

Zm,∗(u,d0) =
(p−1, p−2)[(m+1)/2](−p−2, p−2)[m/2]∏m

i=1(1− (−1)m+ipi−1u)
.

(b) Suppose that Kp =Qp ⊕Qp. Then

Zm,∗(u,d0) =
φm(p−1)∏m

i=1(1− pi−1u)
.

(c) Suppose that Kp is ramified over Qp.

(1) Let p �= 2. Then

Zm,∗(u,d0)

=
1

2
(p−1, p−2)[(m+1)/2]

×

⎧⎨⎩
1∏(m+1)/2

i=1 (1−p2i−2u)
if m is odd,

( 1∏m/2
i=1 (1−p2i−1u)

+
χKp ((−1)m/2d0)p

−m/2∏m/2
i=1 (1−p2i−2u)

) if m is even.

(2) Let p= 2, and let f2 = 2. Then

Zm,∗(u,d0)

=
1

2
(p−1, p−2)[(m+1)/2]

×

⎧⎨⎩
u(m+1)/2∏(m+1)/2

i=1 (1−p2i−2u)
if m is odd,

um/2p−m/2( 1∏m/2
i=1 (1−p2i−1u)

+
χKp ((−1)m/2d0)p

−m/2∏m/2
i=1 (1−p2i−2u)

) if m is even.

(3) Let p= 2, and let f2 = 3. Then

Zm,∗(u,d0) =
1

2
(p−1, p−2)[(m+1)/2]

×

⎧⎨⎩
u∏(m+1)/2

i=1 (1−p2i−2u)
if m is odd,

p−m( 1∏m/2
i=1 (1−p2i−1u)

+
χKp ((−1)m/2d0)p

−m/2∏m/2
i=1 (1−p2i−2u)

) if m is even.

Proof

First suppose that Kp is unramified over Qp, Kp = Qp ⊕ Qp, or Kp is rami-

fied over Qp and p �= 2. Then Zm,∗(u,d0) coincides with Zm(u,d0) in [S, Theo-

rem 4.2]. Hence the assertion follows from (1) and (2) and the former half of [S,

Theorem 4.2(3)]. Next suppose that p = 2 and f2 = 2. Then Zm,∗(u,d0) is not

treated in [S, Theorem 4.2], but we can prove the assertion (c.2) using the same

argument as in the proof of the latter half of [S, Theorem 4.2(3)]. Similarly we

can prove (c.3) by using the same argument as in the proof of the former half of

[S, Theorem 4.2(3)]. �



Koecher–Maass series of the Ikeda lift for U(m,m) 355

COROLLARY

Let d0 ∈Z∗
p.

(a) Suppose that Kp is unramified over Qp. Then

ζm(d0, t) =
1

φm(−p−1)

1∏m
i=1(1 + (−1)ip−it)

.

(b) Suppose that Kp =Qp ⊕Qp. Then

ζm(d0, t) =
1

φm(p−1)

1∏m
i=1(1− p−it)

.

(c) Suppose that Kp is ramified over Qp.

(1) Let m be even. Then

ζm(d0, t) =
pm(m+1)fp/2−m2δ2,pκp(t)

2φm/2(p−2)

×
{ 1∏m/2

i=1 (1− p−2i+1t)
+

χKp((−1)m/2d0)p
−ipm/2∏m/2

i=1 (1− p−2it)

}
,

where ip = 0 or 1 according to whether p= 2 and fp = 2, or not, and

κp(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if p �= 2,

tm/2p−m(m+1)/2 if p= 2 and f2 = 2,

p−m if p= 2 and f2 = 3.

(2) Let m be odd. Then

ζm(d0, t) =
pm(m+1)fp/2−m2δ2,pκp(t)

2φ(m−1)/2(p−2)

1∏(m+1)/2
i=1 (1− p−2i+1t)

,

where

κp(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if p �= 2,

t(m+1)/2p−m(m+1)/2 if p= 2 and f2 = 2,

tp−m if p= 2 and f2 = 3.

Proof

First suppose that Kp is unramified over Qp. Then by a simple computation we

have

ζm(d0, t) =
Zm,∗(p

−mt, d0)

φm(p−2)
.

Next suppose that Kp =Qp ⊕Qp. Then similarly to above

ζm(d0, t) =
Zm,∗(p

−mt, d0)

φm(p−1)2
.

Finally suppose that Kp is ramified over Qp. Then by a simple computation and

Lemma 3.1
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ζm(d0, t) =
pm(m+1)fp/2−m2δ2,pZm,∗(p

−mt, d0)

φm(p−1)
.

Thus the assertions follow from Proposition 4.3.4. �

PROPOSITION 4.3.5

Let d0 ∈Z∗
p.

(a) Suppose that Kp is unramified over Qp. Then

Km(d0,X, t)

=

m∑
r=0

p−r2(tX−1)r
∏r−1

i=0 (1− (−1)m(−p)iX2)

φm−r(−p−1)
ζr(d0, tX

−1).

(b) Suppose that Kp =Qp ⊕Qp. Then

Km(d0,X, t)

=

m∑
r=0

p−r2(tX−1)r
∏r−1

i=0 (1− piX2)

φm−r(p−1)
ζr(d0, tX

−1).

(c) Suppose that Kp is ramified over Qp. Then

Km(d0,X, t)

=

m/2∑
r=0

p−4ipr
2

(tX−1)(m/2+r)ip
∏r−1

i=0 (1− p2iX2)

φ(m−2r)/2(p−2)
ζ2r

(
(−1)m/2−rd0, tX

−1
)

if m is even, and

Km(d0,X, t)

=

(m−1)/2∑
r=0

p−(2r+1)2ip(tX−1)((m+1)/2+r)ip
∏r−1

i=0 (1− p2i+1X2)

φ(m−2r−1)/2(p−2)

× ζ2r+1

(
(−1)(m−2r−1)/2d0, tX

−1
)

if m is odd.

Proof

The assertions can be proved by using the Corollary to Lemma 4.2.2 and Propo-

sition 4.2.4 (see [IK2, Proposition 3.1]). �

It is well known that #(Z∗
p/NKp/Qp

(O∗
p)) = 2 if Kp/Qp is ramified. Hence we can

take a complete set Np of representatives of Z∗
p/NKp/Qp

(O∗
p) so that Np = {1, ξ0}

with χKp(ξ0) =−1.

Proof of Theorem 4.3.1

(a) By the Corollary to Proposition 4.3.4 and Proposition 4.3.5, we have that
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Km(d0,X, t) =
1

φm(−p−1)

Lm(d0,X, t)∏m
i=1(1 + (−1)ip−iX−1t)

,

where Lm(d0,X, t) is a polynomial in t of degree m. Hence

Pm(d0,X, t) =
1

φm(−p−1)

Lm(d0,X, t)∏m
i=1(1 + (−1)ip−iX−1t)

∏m
i=1(1− p−2iX2t2)

.

We have that

F̃ (B,−X−1) = F̃ (B,X)

for any B ∈ F̃
(0)
p (B,X). Hence we have that

Pm(d0,−X−1, t) = Pm(d0,X, t),

and therefore the denominator of the rational function Pm(d0,X, t) in t is at

most
m∏
i=1

(
1 + (−1)ip−iX−1t

) m∏
i=1

(
1− (−1)ip−iXt

)
.

Thus

Pm(d0,X, t) =
a

φm(−p−1)
∏m

i=1(1 + (−1)ip−iX−1t)
∏m

i=1(1− (−1)ip−iXt)
,

with some constant a. It is easily seen that we have a = 1. This proves the

assertion.

(b) The assertion can be proved by using the same argument as above.

(c) By the Corollary to Proposition 4.3.4 and Proposition 4.3.5, we have that

Km(d,X, t)

=
1

2

{ L(0)(X, t)∏m/2
i=1 (1− p−2i+1X−1t)

+
χKp((−1)m/2d0)L

(1)(X, t)∏m/2
i=1 (1− p−2iX−1t)

}
with some polynomials L(0)(X, t) and L(1)(X, t) in t of degree at most m. Thus

we have

Pm(d,X, t)

=
1

2

{ L(0)(X, t)∏m/2
i=1 (1− p−2i+1X−1t)

∏m
i=1(1− p−iXt)

+
χKp((−1)m/2d0)L

(1)(X, t)∏m/2
i=1 (1− p−2iX−1t)

∏m
i=1(1− p−iXt)

}
.

For l= 0,1 put

P (l)
m (X, t) =

1

2

∑
d∈Np

χKp

(
(−1)m/2d

)l
Pm(d,X, t).

Then

P (0)
m (X, t) =

L(0)(X, t)

2φm/2(p−2)

1∏m/2
i=1 (1− p−2i+1X−1t)

∏m
i=1(1− p−iXt)

,
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and

P (1)
m (X, t) =

L(1)(X, t)

2φm/2(p−2)

1∏m/2
i=1 (1− p−2iX−1t)

∏m
i=1(1− p−iXt)

.

Then by the functional equation of Siegel series we have that

Pm(d,X−1, t) = χKp

(
(−1)m/2d

)
Pm(d,X, t)

for any d ∈Np. Hence we have that

P (0)
m (X−1, t) = P (1)

m (X, t).

Hence the reduced denominator of the rational function P
(0)
m (X, t) in t is at most

m/2∏
i=1

(1− p−2i+1X−1t)

m/2∏
i=1

(1− p−2iXt),

and similarly to (a) we have that

P (0)
m (X, t) =

1

2φm/2(p−2)
∏m/2

i=1 (1− p−2i+1X−1t)
∏m/2

i=1 (1− p−2iXt)
.

Similarly

P (1)
m (X, t) =

1

2φm/2(p−2)
∏m/2

i=1 (1− p−2iX−1t)
∏m/2

i=1 (1− p−2i+1Xt)
.

We have

Pm(d0,X, t) = P (0)
m (X, t) + χKp

(
(−1)m/2d0

)
P (1)
m (X, t).

This proves the assertion. �

Proof of Theorem 4.3.2

The assertion can also be proved by using the same argument as above. �

THEOREM 4.3.6

Let d0 ∈Z∗
p.

(a) Suppose that Kp is unramified over Qp or that Kp =Qp ⊕Qp. Then

P̂m(d0,X, t) = Pm(d0,X, t)

for any m> 0.

(b) Suppose that Kp is ramified over Qp. Then

P̂2n+1(d0,X, t) = P2n+1(d0,X, t)

and

P̂2n(d0,X, t) =
1

2φn(p−2)

{ tnip∏n
i=1(1− tp−2i+1X−1)(1− tp−2iX)

+
χKp((−1)nd0)(tχKp(p))

nip∏n
i=1(1− tp−2iχKp(p)X

−1)(1− tp−2i+1χKp(p)X)

}
.
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Proof

The assertion (a) is clear from the definition. We note that Pm(d0,X, t) does not

depend on the choice of π. Suppose that Kp is ramified over Qp. If m= 2n+ 1,

then it follows from Theorem 4.3.2(c) that

λ∗
m,p(π

id,X) = λ∗
m,p(π

i,X)

for any d ∈Z∗
p and, in particular, we have that

λ∗
m,p(p

id0,X) = λ∗
m,p(π

i,X).

This proves the assertion. Suppose that m= 2n. Write P̂2n(d0,X, t) as

P̂2n(d0,X, t) = P̂2n(d0,X, t)even + P̂2n(d0,X, t)odd,

where

P̂2n(d0,X, t)even =
1

2

{
P̂2n(d0,X, t) + P̂2n(d0,X,−t)

}
and

P̂2n(d0,X, t)odd =
1

2

{
P̂2n(d0,X, t)− P̂2n(d0,X,−t)

}
.

We have

P̂2n(d0,X, t)even =
∞∑
i=0

λ∗
2n,p(p

2id0,X,Y )t2i =
∞∑
i=0

λ∗
2n,p(π

2id0,X,Y )t2i

and

P̂2n(d0,X, t)odd =

∞∑
i=0

λ∗
2n,p(p

2i+1d0,X)t2i+1 =

∞∑
i=0

λ∗
2n,p(π

2i+1d0πp
−1,X)t2i+1.

Hence we have

P̂2n(d0,X, t)even =
1

2

{
P2n(d0,X, t) + P2n(d0,X,−t)

}
,

and

P̂2n(d0,X,Y, t)odd =
1

2

{
P2n(d0πp

−1,X, t)− P2n(d0πp
−1,X,−t)

}
,

and hence we have

P̂2n(d0,X, t) = P
(0)
2n (d0,X, t) +

1

2

(
1 + χKp(πp

−1)
)
χKp

(
(−1)nd0

)
P

(1)
2n (d0,X, t)

+
1

2

(
1− χKp(πp

−1)
)
χKp

(
(−1)nd0

)
P

(1)
2n (d0,X,−t).

Assume that χKp(πp
−1) = 1. Then χ(d0πp

−1) = χ(d0), and we have that

P̂2n(d0,X, t) = P2n(d0,X, t).

Suppose that χKp(πp
−1) =−1. Then χ(d0πp

−1) =−χ(d0), and we have that

P̂2n(d0,X, t) = P
(0)
2n (d0,X, t) + χKp

(
(−1)nd0

)
P

(1)
2n (d0,X,−t).

Since π ∈ NKp/Qp
(K×

p ), we have that χKp(πp
−1) = χKp(p). This proves the

assertion. �
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COROLLARY

Let m= 2n be even. Suppose that Kp is ramified over Qp. For l= 0,1 put

P̂
(l)
2n (X, t) =

1

2

∑
d∈Np

χKp

(
(−1)nd

)l
P̂2n(d,X, t).

Then we have that

P̂2n(d,X, t) =
1

2

(
P̂

(0)
2n (X, t) + χKp

(
(−1)nd

)
P̂

(1)
2n (X, t)

)
,

P̂
(0)
2n (X, t) = P

(0)
2n (X, t),

and

P̂
(1)
2n (X, t) = P

(1)
2n

(
X,χKp(p)t

)
.

The following result will be used to prove Theorems 2.3 and 2.4.

PROPOSITION 4.3.7

Let d ∈Z×
p . Then we have that

λ∗
m,p(d,X) = upλm,p(d,X).

Proof

Let I be the left-hand side of the above equation. Let

GLm(Op)1 =
{
U ∈GLm(Op)

∣∣ detU detU = 1
}
.

Then we note that there exists a bijection from H̃erm(d,Op)/GLm(Op)1 to

H̃erm(dNKp/Qp
(O∗

p),Op)/GLm(Op). Hence

I =
∑

A∈H̃erm(d,Op)/GLm(Op)1

F̃
(0)
p (A,X)

αp(A)
.

Now for T ∈ H̃erm(d,Op), let l be the number of SLm(Op)-equivalence classes in

H̃erm(d,Op) which are GLm(Op)-equivalent to T . Then it can easily be shown

that l= lp,T . Hence the assertion holds. �

5. Proof of the main theorem

Proof of Theorem 2.3

For a while put λ∗
p(d) = λ∗

m,p(d,α
−1
p ). Then by Theorem 3.4 and Proposition 4.3.7,

we have that

L
(
s, I2n(f)

)
= μ2n,k,D

∑
d

∏
p

(
u−1
p λ∗

p(d)
)
d−s+k+2n.

Then by Theorems 4.3.1(a), 4.3.1(b), and 4.3.6(a), λ∗
p(d) depends only on pordp(d)

if p �D. Hence we write λ∗
p(d) as λ̃p(p

ordp(d)). On the other hand, if p |D, then

by Theorems 4.3.1(c) and 4.3.6(b), λ∗
p(d) can be expressed as
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λ∗
p(d) = λ(0)

p (d) + χKp

(
(−1)ndp−ordp(d)

)
λ(1)
p (d),

where λ
(l)
p (d) is a rational number depending only on pordp(d) for l= 0,1. Hence

we write λ
(l)
p (d) as λ̃

(l)
p (pordp(d)). Then we have that

bm(f ;d) =
∑

Q⊂QD

∏
p |d,p �D

(
u−1
p λ̃p(p

ordp(d))
∏
q∈Q

χKq (p
ordp(d))

)
×

∏
p |d,p |D,p/∈Q

(
u−1
p λ̃(0)

p (pordp(d))
∏
q∈Q

χKq (p
ordp(d))

)
×

∏
p |d,p∈Q

(
u−1
p λ̃(1)

p (pordp(d))
∏

q∈Q,q �=p

χKq (p
ordp(d))

) ∏
q∈Q

χKq

(
(−1)n

)
for a positive integer d. We note that for a subset Q of QD we have that

χQ(m) =
∏
q∈Q

χKq (m)

for an integer m coprime to any q ∈Q, and

χ′
Q(p) = χKp(p)

∏
q∈Q,q �=p

χKq (p)

for any p ∈Q. Hence, by Theorems 4.3.1 and 4.3.6 and the Corollary to Theo-

rem 4.3.6, we have that

L
(
s, I2n(f)

)
= μ2n,k,D

∑
Q⊂QD

∏
p �D

∞∑
i=0

u−1
p λ̃p(p

i)χQ(p
i)p(−s+k+2n)i

×
∏

p |D,p/∈Q

∞∑
i=0

u−1
p λ̃(0)

p (pi)χQ(p
i)p(−s+k+2n)iχQ

(
(−1)n

)

×
∏
p∈Q

∞∑
i=0

u−1
p λ̃(1)

p (pi)
( ∏
q∈Q,q �=p

χKq (p
i)
)
p(−s+k+2n)i

= μ2n,k,D

∑
Q⊂QD

χQ

(
(−1)n

) ∏
p �D

(
u−1
p P2n,p

(
1, α−1

p , χQ(p)p
−s+k+2n

))
×

∏
p |D,p/∈Q

(
u−1
p P

(0)
2n,p

(
α−1
p , χQ(p)p

−s+k+2n
))

×
∏
p∈Q

(
u−1
p P

(1)
2n,p

(
α−1
p , χ′

Q(p)p
−s+k+2n

))
.

Now for l= 0,1 write P
(l)
2n,p(X, t) as

P
(l)
2n,p(X, t) = tnip P̃

(l)
2n,p(X, t),

where ip = 0 or 1 according to whether 4 | D and p = 2, or not. Notice that

up = (1− χ(p)p−1)−1 if p �D and up = 2−1 if p |D. Hence we have that
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L
(
s, I2n(f)

)
= μ2n,k,D

∑
Q⊂QD

χQ

(
(−1)n

)
×

∏
p∈Q′

D

p(−s+k+2n)n
( ∏
p∈QD,p/∈Q

χQ(p)
∏
p∈Q

χ′
Q(p)

)n

×
∏
p �D

((
1− χ(p)p−1

)
P2n,p

(
1, α−1

p , χQ(p)p
−s+k+2n

))
×

∏
p |D,p/∈Q

(
2P̃

(0)
2n,p

(
α−1
p , χQ(p)p

−s+k+2n
))

×
∏
p∈Q

(
2P̃

(1)
2n,p

(
α−1
p , χ′

Q(p)p
−s+k+2n

))
,

where Q′
D =QD\{2} or QD according to whether 4 |D or not. Note that

22cDn(−s+k+2n)
∏

p∈Q′
D

p(−s+k+2n)n =D(−s+k+2n)n,

and ∏
p∈QD,p/∈Q

χQ(p)
∏
p∈Q

χ′
Q(p) = 1.

Thus the assertion follows from Theorem 4.3.1. �

Proof of Theorem 2.4

The assertion follows directly from Theorems 3.4 and 4.3.2. �
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