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Abstract Let F be a non-archimedean local field. Recently, Broussous, Sécherre, and

Stevens extended the notion of an endo-class, introduced by Bushnell and Henniart for

GLN (F ) with N ≥ 1, to an inner form of GLN (F ) over F , and conjectured that this

endo-class for discrete series representations is preserved by the Jacquet–Langlands cor-

respondence. Explicit realizations of the correspondence are given by Silberger and Zink

for level-zero discrete series representations and by Bushnell and Henniart for totally

ramified ones. In this paper, we show that these realizations confirm the conjecture.

Introduction

Let F be a non-archimedean local field of finite residue characteristic p, and

let D be a central division F -algebra of dimension d2, d ≥ 1. Let oF and oD

be the rings of integers in F and D, respectively. Let m be a positive integer.

The product N =md being fixed, there exist bijective maps, referred to as the

Jacquet–Langlands correspondence, between the sets of irreducible discrete series

representations of GLm(D) such that a character relation is preserved (see [1],

[9], [12], [13]). There exist a series of works by Bushnell and Henniart (see [7], [8],

[11]) and by Silberger and Zink (see [17], [18]) in which the Jacquet–Langlands

correspondences were described explicitly in terms of types. The notion of an

endo-class was introduced in [6], and it was proved in [5] and [8] that an endo-

class is an invariant associated to an irreducible supercuspidal representation

of GLN (F ), which is constructed as a compactly induced representation of a

compact-mod-center subgroup of GLN (F ). Broussous, Sécherre, and Stevens [4]

extended the notion of an endo-class over F for GLN (F ) to any group of the form

GLm(D), that is, we can associate an endo-class over F to any discrete series

representation of GLm(D), and it was conjectured that the Jacquet–Langlands

correspondence preserves this endo-class over F . In this paper, we prove that the

realizations of [6] and [17] confirm this conjecture.

More precisely, we give a description of the result obtained. The simple char-

acters for G = GLm(D) are parameterized by 4-tuples [A, n,0, β], which are

referred to as simple strata, consisting of a hereditary oF -order A in A with
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P= rad(A), a positive integer n, and an element β ∈ A which generates a field

extension F [β] over F , with the technical condition kF (β)< 0 and with β ∈P−n.

By [14], associated with a simple stratum [A, n,0, β] in A=Mm(D), we have a

compact open subgroup H1(β,A) of G and a finite set C (A,0, β) of simple char-

acters of H1(β,A).

From [15] and [16], it follows that every irreducible discrete series represen-

tation π of G contains a simple character θ ∈ C (A,0, β) attached to a simple

stratum [A, n,0, β] in A. Neither the simple stratum nor the simple character is

unique. The endo-class, denoted by Θ, for the pair ([A, n,0, β], θ) was defined

by [6] and [4] so that this Θ depends only on the representation π of G as

follows. A potential simple character (ps-character for short) is an equivalence

class, denoted by Θ, in the set of such pairs ([A, n,m,β], θ) in A as above, where

[A, n,m,β] is a simple stratum in A and θ ∈ C (A,m,β). Indeed, another pair

([A′, n′,m′, β], θ′) in a central simple F -algebra A′ is referred to as equivalent to

([A, n,m,β], θ), denoted by(
[A, n,m,β], θ

)
∼
(
[A′, n′,m′, β], θ′

)
,

if θ′ is the transfer of θ (see Definition 1.7). The pair ([A, n,m,β], θ) is referred

to as a realization of Θ. Two ps-characters Θ1 and Θ2 are referred to as endo-

equivalent if, in a central simple F -algebra A, they are defined by realizations

([Ai, ni,mi, βi], θi), for i = 1,2, of the same degree and normalized level, and

such that the simple characters θ1 and θ2 intertwine in A× (see Definition 1.9).

Two simple characters contained in the irreducible discrete series representation

π of G intertwine in G. Hence, the endo-class Θ above depends only on the

representation π. Write this Θ as ΘG(π).

Let Dmd be a central division F -algebra of dimension m2d2, and let JL be

the Jacquet–Langlands correspondence between the sets of isomorphism classes of

irreducible discrete series representations of G=GLm(D) and H =D×
md. Then,

the equality

ΘH ◦ JL=ΘG

was conjectured by [4, Conjecture 9.5].

It was stated in [4, Introduction] that this conjecture can be seen as a general-

ization of the preservation of the level-zero representations through the Jacquet–

Langlands correspondence, which was proved by [17]. This is explained as fol-

lows. From [10], every irreducible discrete series representation of G=GLm(D)

of level zero contains the trivial representation 1U1(A) for some principal heredi-

tary oF -order A in A=Mm(D) with P= rad(A), where U1(A) = 1+P. We view

[A,0,0,0] as a simple stratum in A, as in [19], and view ([A,0,0,0],1U1(A)) as the

realization of the trivial ps-character Θ0. Moreover, we have H1(0,A) = U1(A)

and

C (A,0,0) = {1U1(A)}.

Hence, by the definition of endo-class, that statement is explained.
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Let F be a finite extension of Qp with p �= 2. For a positive integer m,

set A =Mpm(F ), and let D be a central division F -algebra of dimension p2m.

Then, there exists the Jacquet–Langlands correspondence JL between the sets

of isomorphism classes of irreducible discrete series representations of G=A× =

GLpm(F ) and H =D×. Let Awr
m (F ) be the set of isomorphism classes of irre-

ducible supercuspidal representations π of G which are totally ramified : this

means that π is not isomorphic to the representation χπ : g �→ χ(det(g))π(g) for

any unramified quasicharacter χ �= 1 of F×. Set Awr
0 (D) = JL(Awr

m (F )). Then,

we obtain a canonical bijection, denoted again by JL,

JL :Awr
m (F )	Awr

0 (D).

In [6], the representations in Awr
m (F ) and Awr

0 (D) were explicitly constructed

as induced representations of quasicharacters of compact-mod-center subgroups,

and the correspondence JL was described.

Let π be an irreducible supercuspidal representation of G = GLpm(F ) in

Awr
m (F ). Then, from the construction of π, we can choose a pair ([A, n,0, β], θ),

as above, such that π contains θ. Set π′ = JL(π). Then, from the realization of

JL, we can also choose a pair ([oD, n′,0, ιβ],Dθ) such that π′ contains Dθ, where

ι : F [β]→D denotes an F -embedding. For a finite unramified extension K/F of

degree divisible by pm, set AK =A⊗oF
oK and DAK = oD⊗oF

oK . Then, through

the identification AK = A⊗F K =D ⊗F K =DK , we can set AK = DAK and

take an element y0 ∈ A
×
K such that ιβ = y−1

0 βy0 =Ad(y−1
0 )β, where we identify

β = β ⊗ 1 in AK . Then, we can choose simple characters θ(K) and Dθ(K) of

H1(β,AK) and H1(ιβ,DAK), respectively, such that

θ = θ(K) |H1(β,A), Dθ = Dθ(K) |H1(ιβ,oD).

We prove that Dθ(K) = θ(K) ◦Ad(y0) and that Dθ(K) is the transfer of θ(K).

Thus, by [14, Theorem 3.53] for transfers, Dθ is the transfer of θ, that is,(
[A, n,0, β], θ

)
∼
(
[oD, n′,0, ιβ],Dθ

)
,

which implies ΘH(π′) =ΘG(π).

The remainder of the present paper is organized as follows. In Section 1,

we recall the notation of ps-character and endo-class defined in [5] and [4]. In

Section 2, we recall the conjecture on the preservation of the endo-class of the

Jacquet–Langlands correspondence given in [4]. In Section 3, we prove that the

realizations of [5] and [17] confirm this conjecture.

1. Endo-class of ps-characters

We recall the definition of endo-class and ps-character for an inner form of

GLN (F ) in [4], which is a generalization of the F -split GLN (F ) defined in [5].
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1.1. Simple character
Let F be a non-archimedean local field. Let K be a commutative or noncommu-

tative finite extension of F , let oK be the ring of integers in K, and let pK be

the maximal ideal of oK .

Let A be a simple central F -algebra of finite dimension, and let V be a simple

left A-module. Write D = EndA(V )op. Then, D is a central division F -algebra,

and V can be viewed as a right D-vector space. There exists a canonical isomor-

phism A	 EndD(V ).

DEFINITION 1.1

A nonempty set of right oD-lattices L = {Li : i ∈ Z} in V is referred to as an

oD-lattice chain in V if the following conditions are satisfied: (1) Li � Li+1 for

all i ∈ Z, and (2) there exists a positive integer e satisfying Li+e = LipD for all

i ∈ Z. This integer e is referred to as the oD-period of L and is denoted by eD(L).

For k ∈ Z, set

Pk(L) = {a ∈A : aLi ⊂ Li+k, i ∈ Z}.

Then, A = A(L) = P0(L) is a hereditary oF -order in A. All such orders are

obtained in this way from an oD-lattice chain L in V . The set P=P(L) =P1(L)
is the Jacobson radical of A, and we have Pk(L) =Pk for all k ∈ Z, k ≥ 0. Thus,

we have compact open subgroups of G defined by

U(A) = U0(A) =A×, Uk(A) = 1+Pk, k ∈ Z, k > 0.

The G-centralizer K(A) of A is defined by

K(A) = {g ∈G : gAg−1 =A}.

Then, for A=A(L), g ∈ K(A) if and only if there exists a unique n= ν(g) ∈ Z such

that gLi = Li+n for all i ∈ Z. We define a function νA : K(A)→ Z by νA(g) = ν(g)

for g ∈ K(A). Then, we have KerνA = U(A).

DEFINITION 1.2

(a) A stratum in A is a 4-tuple [A, n,m,β] made of a hereditary oF -order A

in A, m,n ∈ Z with 0≤m≤ n and β ∈P−n.

(b) Two strata [A, n,m,βi], i= 1,2, are referred to as equivalent if β2 −β1 ∈
P−m.

Here, [A,0,0,0] is referred to as the null stratum as is defined in [19].

DEFINITION 1.3

A stratum [A, n,m,β] in A is referred to as pure if it satisfies the following

conditions:

(a) the sub-F -algebra F [β] generated by β is a field, say, E = F [β];

(b) A is E-pure, that is, E× ⊂ K(A);

(c) νA(β) =−n.
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Let [A, n,m,β] be a pure stratum in A. Let B be the A-centralizer of β, and

write B = CA(β). For each k ∈ Z, we set nk(β,A) = {x ∈ A : βx− xβ ∈Pk} and

define the quantity k0(β,A) by

min
{
k ∈ Z : k ≥ νA(β) and nk+1(β,A)⊂A∩B +P

}
.

DEFINITION 1.4

A stratum [A, n,m,β] in A is referred to as simple if it is pure and if m ≤
−k0(β,A)− 1.

It is convenient to view the null stratum [A,0,0,0] in A as a simple stratum, as

in [19]. Hereafter, we do so.

A simple stratum [A, n,m,β] in A gives rise to a pair

H(β,A)⊂ J(β,A)⊂A

of oF -orders in A (see [14]). If β = 0, then we set

H(0,A) = J(0,A) =A.

We take the standard filtration subgroups of the unit groups

Hk(β,A) =H(β,A)∩Uk(A),

Jk(β,A) = J(β,A)∩Uk(A),

for k ∈ Z, k ≥ 0.

We fix a level-one additive character ψ = ψF of F ; that is, pF ⊂Kerψ and

ψ | oF �= 1. Through this character ψ = ψF , a finite set of characters, referred

to as simple characters, of the compact group Hm+1(β,A), say, C (A,m,β) =

C (A,m,β,ψ), was defined in [14].

Associated with the null simple stratum [A,0,0,0] in A, we view C (A,0,0)

as the set consisting of the single trivial character 1U1(A) of the group H1(0,A) =

U1(A), that is (see [15, Remark 4.4]),

(1.1) C (A,0,0) = {1U1(A)}.

1.2. Ps-character and endo-class
Let β be a nonzero element in a finite subextension of F in A, and set E = F [β].

We denote by νE the normalized valuation on E. The set {piE : i ∈ Z} is an

E-pure oF -lattice chain on the F -space E, unique up to translation. We set

A(E) = EndF (E) and (see [8, (1.1.2)])

A(E) = End0oF

(
{piE : i ∈ Z}

)
.

Then, A(E) is a hereditary oF -order in A(E). Set

kF (β) = k0
(
β,A(E)

)
.

Then, unless β ∈ F , we have kF (β)≥ νE(β).
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DEFINITION 1.5 ([5, DEFINITION 1.5])

A simple pair over F is a pair (k,β) consisting of a nonzero element β in some

finite extension of F and an integer 0≤ k ≤−kF (β)− 1.

If (k,β) is a simple pair over F , then [A(E),−νE(β), k, β] is a simple stratum in

A(E). Thus, we have a set of quasisimple characters of Hk+1(β,A(E)) (see [14,

Section 3.3.3])

CF (k,β) = C
(
A(E), k, β

)
= C

(
A(E), k, β,ψF

)
.

We also view the pair (0,0) as a simple pair over F . It is referred to as the null

simple pair. By definition, we have CF (0,0) = {1U1(oE)}, where U1(oE) = 1+pF .

Let A be a central simple F -algebra, and let V be a simple left A-module.

Let D =EndA(V )op. For a real number r, denote by �r� the greatest integer that
is less than or equal to r.

DEFINITION 1.6 (SEE [4])

A realization of a nonnull simple pair (k,β) in A is a stratum in A of the form

[A, n,m,ϕ(β)] made of:

(a) a homomorphism ϕ of F -algebras from F [β] to A;

(b) a ϕ(F [β])-pure hereditary oF -order A in A;

(c) an integer m such that k = �m/eF [ϕ(β)](A)�.

It is convenient to view the null stratum [A,0,0,0] in A as the realization of the

null simple pair (0,0) in A.

From [14, Proposition 2.5], the realization [A, n,m,ϕ(β)] in Definition 1.6 is

a simple stratum in A. Thus, we have a set

C
(
A,m,ϕ(β)

)
= C

(
A,m,ϕ(β), ψF

)
of simple characters of Hm+1(ϕ(β),A). For a realization [A, n,m,ϕ(β)] in A of

a nonnull simple pair (k,β) over F , it follows from [14, Section 3.3.3] that there

exists a canonical bijective map (cf. [16, Definition 2.11])

τA,m,ϕ(β) : CF (k,β)→ C
(
A,m,ϕ(β)

)
.

This map is referred to as a transfer map. If (k,β) = (0,0), then it is the trivial

map by definition. We denote by τA,0,0 the transfer map CF (0,0)→ C (A,0,0).

Given a simple pair (k,β) over F , we consider a pair([
A, n,m,ϕ(β)

]
, θ
)

made of a realization [A, n,m,ϕ(β)] in A and a simple character θ ∈ C (A,m,

ϕ(β)).

DEFINITION 1.7 (SEE [4, SECTION 1.2])

Let [A′, n′,m′, ϕ′(β)] be another realization of the simple pair (k,β) in some

simple central F -algebra A′, and let θ′ be a simple character in C (A′,m′, ϕ′(β)).
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We say that ([A, n,m,ϕ(β)], θ) and ([A′, n′,m′, ϕ′(β)], θ′) are equivalent, denoted

by ([
A, n,m,ϕ(β)

]
, θ
)
∼
([
A′, n′,m′, ϕ′(β)

]
, θ′

)
,

if the equality θ′ = τA′,m′,ϕ′(β) ◦ τ−1
A,m,ϕ(β)(θ) is satisfied.

It is easy to see that, given a simple pair (k,β) over F , it is an equivalence

relation on the set of such pairs ([A, n,m,ϕ(β)], θ), which is denoted by C (k,β).

DEFINITION 1.8 (SEE [4, DEFINITION 1.5])

A potential simple character over F (or ps-character) is a triple (Θ, k, β) made

of a simple pair (k,β) over F and an equivalence class Θ in C (k,β).

If a pair ([A, n,m,ϕ(β)], θ) belongs to an equivalence class Θ, we write

Θ
(
A,m,ϕ(β)

)
= θ.

DEFINITION 1.9 (SEE [4, DEFINITION 1.10])

For i = 1,2, let (Θi, ki, βi) be a ps-character over F . We say that these ps-

characters are endo-equivalent, denoted by

Θ1 ≈Θ2,

if these ps-characters satisfy the following conditions:

(a) k1 = k2;

(b) [F [β1] : F ] = [F [β2] : F ];

(c) there exists a central simple F -algebra A together with realizations

([A, ni,mi, ϕi(βi)] of (ki, βi), i= 1,2, in A such that Θ1(A,m1, ϕ1(β1)) and Θ2(A,

m2, ϕ2(β2)) intertwine in A×.

2. The Jacquet–Langlands correspondence and endo-classes

We recall from [4, Conjecture 9.5] that an endo-class over F is invariant under

the Jacquet–Langlands correspondence.

2.1. Simple type
Let D be a central division F -algebra of dimension d2 over F , d ≥ 1, and let

V be a right D-vector space of dimension m≥ 1. Set A=EndD(V ). Through a

D-basis of V , we identify A=Mm(D) and set G=A× =GLm(D).

Associated with a simple stratum [A, n,0, β] in A, we have the compact open

subgroups J(β,A) ⊃ J1(β,A) = J(β,A) ∩ U1(A), as defined in Section 1.1. Let

E = F [β], let B = CA(E), and let B = A ∩ B. Then, there exists a canonical

isomorphism

J(β,A)/J1(β,A)	 U(B)/U1(B),
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and there exist a central E-algebra DE of dimension d2E and a positive integer

mE such that B 	MmE
(DE).

DEFINITION 2.1 ([10, SECTION 0.6], [15, 2.5.1])

A simple type of level zero in G is a pair (U, τ), where

(a) U = U(A) for a principal hereditary oF -order in A with r = eF (A);

(b) τ is an irreducible representation of U = U(A), trivial on U1(A) and

inflated from a representation σ⊗r
0 of the quotient groupU(A)/U1(A)	GLs(kD)r,

where σ0 is an irreducible cuspidal representation of GLs(kD) and r, s are positive

integers satisfying rs=m.

We say that a simple type (U, τ) = (U(A), τ) of level zero in G is attached to the

null simple stratum [A,0,0,0] in A (see [15, Remark 4.1]).

DEFINITION 2.2

A simple type of positive level in G is a pair (J,λ), attached to a nonnull simple

stratum [A, n,0, β] in A, given as follows:

(a) there exists a simple stratum [A, n,0, β] in A such that J = J0(β,A) and

that if E = F [β], B =CA(E) and B=A∩B, B is a principal hereditary oE-order

in B with r = eE(B);

(b) there exist a simple character θ ∈ C (A,0, β,ψF ) and a simple type

(U(B), τ) of level zero in B× such that λ is a representation of J of the form

λ= κ⊗ σ,

where

(1) κ is a β-extension of ηθ;

(2) σ is the representation of J , trivial on J1, deduced from τ via the isomor-

phism J/J1 	 U(B)/U1(B) and τ is an irreducible representation of U = U(B),

trivial on U1(B) and inflated from a representation σ⊗r
0 of the quotient group

U(B)/U1(B)	GLmE/r(kDE
)r, where σ0 is an irreducible cuspidal representa-

tion of GLmE/r(kDE
).

2.2. Conjecture about preservation of the endo-class
Let A=Mm(D), and let G=A× be as defined in Section 2.1. Let NrdA :A→ F

be the reduced norm.

An irreducible smooth representation π of G is referred to as essentially

square-integrable (or discrete series) if there exists an unramified character χ of

F× such that (χ ◦NrdA)⊗ π is square-integrable modulo F×. Let A2(G) be the

set of isomorphism classes of irreducible essentially square-integrable representa-

tions of G, and let E(F ) be the set of endo-classes of ps-characters over F (see

[4, Section 9.3]).
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THEOREM 2.3

For each π ∈ A2(G), there exist a simple type (J,λ) in G attached to a simple

stratum [A, n,0, β] in A such that π | J contains λ.

Proof

This follows from [2] and [16]. �

From Theorem 2.3, for each π ∈ A2(G), a pair ([A, n,0, β], θ) is given such that

the character θ occurs in π |H1(β,A). Let (Θ,0, β) be the ps-character defined

by the pair ([A, n,0, β], θ) and denote by Θ its endo-class. This endo-class Θ

depends only on the representation π, as in the Introduction. Thus, we write this

endo-class Θ as ΘG(π). Hence, we get a map

ΘG :A2(G)→E(F ).

For π ∈A2(G), we denote by χπ the character function of π.

THEOREM 2.4 ([1], [9], [12], [13])

Let D′ be another central simple F -algebra of dimension d′2, d′ ≥ 1, and let

G′ = GLm′(D′) for a positive integer m′ with m′d′ =md. Then, there exists a

canonical bijection, referred to as the Jacquet–Langlands correspondence,

(2.1) JL :A2(G)→A2(G′)

such that, if π′ = JL(π) for π ∈A2(G), then we have that

(−1)mχπ(g) = (−1)m
′
χπ′(g′),

where g and g′ are regular elliptic elements of G and G′, respectively, whose

characteristic polynomials over F are the same.

In [4, 9.3], the following conjecture is given:

(2.2) ΘG′
(
JL(π)

)
=ΘG(π),

for any π ∈A2(G).

REMARK 2.5

Moreover, it is probable that there exists a single simple pair (0, β) over F

such that, as representatives, ΘG′(JL(π)) and ΘG(π) have ps-characters over

F (Θ′,0, β) and (Θ,0, β), respectively.

3. Some examples for the conjecture

We shall see that the Jacquet–Langlands correspondences given by Bushnell and

Henniart [6] and Silberger and Zink [17] satisfy the equality (2.2).

3.1. An example for level-zero representations
Let A=Mm(D), and let G=A× =GLm(D) be as above.
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DEFINITION 3.1 ([10, SECTION 0.6])

An irreducible smooth representation π of G is referred to as level zero if there

exists a principal hereditary oF -order A in A such that its representation space

V has a nonzero U1(A)-fixed vector.

Let A2
0(G) be the subset of level-zero representations in A2(G). If a smooth

representation π of G belongs to A2
0(G), then, from [10, Theorem 5.5(i)], it

contains a simple type (J,λ) = (U(A), τ) of level zero in G. Thus, we obtain a

ps-character (Θ,0,0) with ([A,0,0,0],1U1(A)) ∈Θ, that is,

Θ(A,0,0) = 1U1(A) ∈ C (A,0,0),

and consequently the endo-class, denoted by ΘG(π), of this (Θ,0,0).

We now let D′ be a central division F -algebra of dimension m2d2, and let

G′ =GL1(D
′). Then, from Theorem 2.4, we have the Jacquet–Langlands corre-

spondence JL: A2(G′)→A2(G).

PROPOSITION 3.2 ([17, PROPOSITION 3.2])

The Jacquet–Langlands correspondence JL induces a canonical bijection A2
0(G

′)→
A2

0(G).

We again denote by

JL :A2
0(G

′)→A2
0(G)

the bijection of Proposition 3.2.

THEOREM 3.3

Let JL be the correspondence defined above. Then, for π ∈A2
0(G

′), we have

ΘG

(
JL(π)

)
=ΘG′(π).

Proof

Suppose that a class Θ′ belongs to the endo-class ΘG′(π) and that a class Θ

belongs to the endo-class ΘG(JL(π)). Then, we have the realizations ([A
′,0,0,0],

1U1(A′)) ∈Θ′ and ([A,0,0,0],1U1(A)) ∈Θ. Since, by definition, we have C (A′,0,

0) = {1U1(A′)} and C (A,0,0) = {1U1(A)}, we obtain

1U1(A) = τA,0,0 ◦ τ−1
A′,0,0(1U1(A′)),

where, for example, τA,0,0 is the transfer CF (0,0) → C (A,0,0) defined in Sec-

tion 1.2. Hence, by Definition 1.7, we have(
[A,0,0,0],1U1(A)

)
∼
(
[A′,0,0,0],1U1(A′)

)
and so Θ=Θ′. This shows the equality of this theorem and the proof is complete.

�
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3.2. An example for totally ramified representations
In this section, we shall show that the explicit Jacquet–Langlands correspondence

realized by Bushnell and Henniart [6] also satisfies the conjecture (2.2). This is

never trivial. We first recall the realization of the correspondence.

Let F be a finite extension of Qp with p �= 2, and let D be a central division

F -algebra of dimension pm, m≥ 1. Set G=GLpm(F ) and G′ =GL1(D) =D×.

Let π be an irreducible smooth representation of an inner form of G. Denote

by t(π) the cardinality of the unramified characters χ of F× such that (χ◦Nrd)⊗
π 	 π, where Nrd denotes the reduced norm. This is referred to as the inertial

degree of π. The representation π is referred to as totally ramified if t(π) = 1 is

satisfied.

From Theorem 2.4, there exists the Jacquet–Langlands correspondence

JL :A2(G)→A2(G′).

Denote by Awr
m (F ) the set of isomorphism classes of irreducible totally ramified

supercuspidal representations of G=GLpm(F ), as in [6]. Then, this is a subset

of A2(G). We can define a subset Awr
0 (D) of A2(G′) by

Awr
0 (D) = JL

(
Awr

m (F )
)
.

Thus, we get a canonical bijection, denoted again by JL,

JL :Awr
m (F )→Awr

0 (D).

In [6], this correspondence is explicitly described. From [7, (1.4.4)], we have

t(JL(π)) = t(π), for π ∈A2(G). Thus, every π ∈Awr
0 (D) is totally ramified.

We prepare notation to describe JL. Set A=Mpm(F ). Let A be the minimal

hereditary oF -order in A, and denote by S wr(A) the set of elements α of K(A)

satisfying the following conditions (see [6, Section 1.1]):

(1) [A, n,0, α] is a simple stratum in A, where n=−νA(α);

(2) the field extension F [α]/F is of degree pm.

Then, since A is minimal, the extension F [α]/F is totally ramified.

We fix a level-one character ψF of F× as before. Let β ∈ S wr(A). Then, asso-

ciated with the simple stratum [A, n,0, β] in A, we have compact open subgroups

of G=A×

H1(β,A)⊂ J1(β,A)

as in Section 1.1. In order to indicate the base field, we write them as follows:

H1
F (β,A)⊂ J1

F (β,A).

We have a certain open subgroup I1F (β,A) of G that is normalized by F [β]× and

satisfies

H1
F (β,A)⊂ I1F (β,A)⊂ J1

F (β,A).
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See [6, Section 6.4] for the definition. This group depends only on the simple

stratum [A, n,0, β] in A. We can define the subgroup IF (β,A) of G by

IF (β,A) = F [β]×I1F (β,A).

We denote by

D(A, β,ψF ) = DF (β,ψF )

the group of certain quasicharacters of the group IF (β,A) defined in [6, Sec-

tion 8.4]. To simplify, we will write IF (β,A) as IF (β).

We define the subset S wr(oD) of G′ = D× like S wr(A) ⊂ G = GLpm(F ).

Let α ∈ S wr(oD). Then, associated with the simple stratum [oD,−νD(α),0, α]

in D, we similarly have the compact open subgroups H1(α,oD)⊂ J1(α,oD) (see

[3], [14]) and the group DI1(α,oD), defined in [6, Section 6.4], that is normalized

by F [α]× and satisfies

H1(α,oD)⊂ DI1(α,oD)⊂ J1(α,oD).

We define the open subgroup DI(α,oD) of G′ =D× by

DI(α,oD) = F [α]×DI1(α,oD).

We also write

DH1
F (α) =H1(α,oD), DJ1

F (α) = J1(α,oD), DI1F (α) = DI1(α,oD).

We denote by

D(oD, α,ψF ) = DDF (α,ψF )

the group of certain quasicharacters of the group DIF (α) = DI(α,oD) (see [6,

Comment 8.4]).

Write GF = G = GLpm(F ) and G′
F = G′ = D× to indicate the base field.

Now we can describe the Jacquet–Langlands correspondence JL as follows.

THEOREM 3.4 ([6, COROLLARIES 2–4 TO THEOREM 3.1])

For π ∈Awr
m (F ), there exist β ∈ S wr(A) and λ ∈ DF (β,ψF ) such that

π 	 c-IndGF

IF (β)λ,

and there exist ιβ ∈D× and Dλ ∈ DDF (ιβ,ψF ) such that

JL(π)	 Ind
G′

F

DIF (ιβ)Dλ.

Here, the element ιβ ∈ oD is conjugate to β = β ⊗ 1 in A⊗F K =D ⊗F K for

some finite unramified extension K/F (see below).

In Theorem 3.4, we write

πF (λ) = c-IndGF

IF (β)λ, πD(Dλ) = Ind
G′

F

DIF (ιβ)Dλ.
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3.3. Realizations for the endo-classes
Assume that a smooth representation π of G = GLpm(F ) belongs to Awr

m (F ).

From Theorem 3.4, we have π 	 πF (λ) for some λ ∈ DF (β,ψF ). We may identify

π = πF (λ). Since H1
F (β)⊂ I1F (β), by the definition of the quasicharacter λ in [6,

Section 8.4], we get that

θ = λ |H1
F (β) ∈ C (A,0, β,ψF ).

Thus, π = πF (λ) contains the simple character θ. Hence, we can associate π with

a pair ([A, n,0, β], θ), where n=−νA(β). Let (Θ,0, β) be the ps-character over F

defined by the pair ([A, n,0, β], θ). Hence, we can associate π with the endo-class

of (Θ,0, β). We denote this endo-class as ΘG(π).

Set π′ = JL(π) ∈ Awr
0 (D). Then, again from Theorem 3.4, we have π′ 	

πD(Dλ) for some Dλ ∈ DDF (ιβ,ψF ). We also identify π′ = πD(Dλ). Then, we

obtain

(3.1) Dθ = Dλ | DH1
F (ιβ) ∈ C (oD,0, ιβ,ψF )

and consequently a pair ([oD, n′,0, ιβ],Dθ), where n′ =−νD(ιβ). Let (DΘ,0, ιβ)

be the ps-character over F defined by the pair ([oD, n′,0, ιβ],Dθ). Thus, we

can associate π′ with the endo-class of (DΘ,0, ιβ). We denote this endo-class

as ΘG′(π′).

In order to show the conjecture (2.2) that ΘG′(π′) =ΘG(π), we shall show

that

(3.2)
(
[A, n,0, β], θ

)
∼
(
[oD, n′,0, ιβ],Dθ

)
in the sense of Definition 1.7.

3.4. Relationship between the quasicharacters
We retain the notation and assumptions of Section 3.2. We observe the relation-

ship between the quasicharacters λ and Dλ in Theorem 3.4.

Assume that K is a finite unramified extension of F of degree divisible by

pm. Set AK =A⊗F K and DK =D⊗F K. For the hereditary oF -orders A and

oD in A=Mpm(F ) and D, respectively, we also set

AK =A⊗oF
oK , DAK = oD ⊗oF

oK .

Then, from [6, Lemma 2.5], there exists an isomorphism of K-algebras ι :AK →
DK such that

ιβ ∈ S wr(oD), ι(AK) = DAK .

We remark that ιβ ∈G′ =D×. For the simple stratum [A, n,0, β] in A=Mpm(F ),

from [6, Proposition 5.1], the stratum [AK , n,0, β⊗1] in AK =Mpm(K) is simple.

We identify β = β ⊗ 1. The open subgroup of GK =A×
K

IK(β) =K[β]×I1K(β)

is defined in the same way as that of IF (β). Here, since the extension K/F is

unramified and the extension F [β]/F is totally ramified, K[β] = K · F [β] is a
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totally ramified extension field of K of degree pm. Let ζ be a level-one additive

character of K such that ζ | F = ψF . Then, we denote by D(AK , β, ζ) = DK(β, ζ)

the set of certain quasicharacters of IK(β) with respect to ζ , as above.

We obtain IK(β)∩A× = IK(β) from [6, Proposition 1.5].

Let Fnr/F be a maximal unramified extension, and let F̃ be the completion of

Fnr with respect to the discrete valuation ν. Hereafter, we fix a level-one character

Ψ of F̃ such that Ψ | F = ψF . For K/F finite and contained in Fnr, we set Ψ
K =

Ψ |K. From this character ΨK , we obtain the sets of quasicharacters DK(β,ΨK)

and DDK(ιβ,ΨK). Then, it follows from [6, Section 1.3.2] that, through the

K-isomorphism ι above, the map μ �→ μ ◦ ι induces a bijection

DK(β,ΨK)	 DDK(ιβ,ΨK),

denoted again by ι.

PROPOSITION 3.5 ([6, SECTION 2.5])

Let λ ∈ DF (β,ψF ) and Dλ ∈ DDF (ιβ,ψF ) be the quasicharacters in Theorem 3.4.

Then, there exists a quasicharacter λ(K) ∈ DK(β,ΨK) such that

λ(K) | IF (β) = λ, Dλ= λ(K) ◦ ι−1 | DIF (ιβ).

Proof

The quasicharacters λ(K) and Dλ are replaced by λ̃K satisfying λ̃K | IF (β) =
λ and λ̃K ◦ ι−1 | DIF (ιβ) = ι(λ̃K)F in [6, Section 2.5], respectively. Thus, the

equalities of this proposition follow and the proof is complete. �

In the proof of Proposition 3.5, we remark that the representation πD(Dλ) defined

in Section 3.2 is replaced by Dπ(λ) in [6, Section 2.5]. By the proof of [6, Sec-

tion 3.3 Lemma 2], we can identify

DK =AK , DAK =AK

and find a K-automorphism ι of DK =AK satisfying the conditions: (1) ι(AK) =

AK and (2) ι(F [β])⊂D. Thus, we have ι=Ad(y0) for some y0 ∈ U(AK) =A
×
K .

PROPOSITION 3.6

The group DIF (ιβ) and the quasicharacter Dλ in Proposition 3.5 may be replaced

by

DIF (y
−1
0 βy0) = y−1

0 IK(β)y0 ∩D×, λ(K) ◦Ad(y0) | DIF (y
−1
0 βy0).

Proof

This follows from the proof of [6, Section 3.3 Lemma 2]. The proof is complete. �

Since we have y0 ∈A
×
K , we obtain

IK(ιβ) = IK(y−1
0 βy0) = y−1

0 IK(β)y0.
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3.5. Simple and quasisimple characters
Let A be the minimal hereditary oF -order in A=Mpm(F ), and let β ∈ S wr(A).

Then, the pair (0, β) is a simple pair over F . Set E = F [β]. Then, the field E

is a totally ramified extension of F of degree pm. Let A(E) and A(E) be the

objects defined in Section 1.2. Then, through a basis of E as an F -vector space,

we identify

A(E) =Mpm(F ) =A.

Then, we may set A(E) =A. Thus, in A=A(E), we identify[
A(E), n,0, β

]
= [A, n,0, β],

and

(3.3) CF (0, β) = C
(
A(E),0, β,ψF

)
= C (A,0, β,ψF ),

with respect to the fixed level-one additive character ψF of F .

Let K/F be an unramified extension of degree divisible by pm, and let ΨK

be a character of K as before such that ΨK | F = ψF . Set AK =A⊗F K,AK =

A ⊗oF
oK , and Ẽ = E ⊗F K. Then, we have Ẽ = E · K = K[β] and this is a

totally ramified extension of K of degree pm, as seen in Section 3.3. Thus, we

can identify

AK(Ẽ) = EndK(Ẽ) =AK , AK(Ẽ) = End0oK

(
{pi

Ẽ
: i ∈ Z}

)
=AK .

Hence, we have [AK(Ẽ), n,0, β] = [AK , n,0, β] and

(3.4) CK(0, β) = C
(
AK(Ẽ),0, β,ΨK

)
= C (AK ,0, β,ΨK).

3.6. Descent of transfers
We come back to Section 3.4 and investigate the representation πD(Dλ) of G′ =

D×. From Proposition 3.5, we can set

θ(K) = λ(K) |H1
K(β) ∈ C (AK ,0, β,ΨK)

as in Section 3.3. Then, we have θ(K) |H1
F (β) = θ. Hereafter, set ιβ = y−1

0 βy0.

We can also set

Dθ(K) = λ(K) ◦Ad(y0) | DH1
K(ιβ) ∈ C (DAK ,0, ιβ,ΨK).

Since DAK =AK , we have

H1
K(ιβ) =H1(ιβ,AK) =H1(ιβ,DAK) = DH1

K(ιβ)

and

DH1
K(ιβ)∩D× = DH1

F (ιβ) =H1(ιβ,oD).

Hence, from the equality (3.1), we obtain

Dθ = Dθ(K) | DH1
F (ιβ) ∈ C (oD,0, ιβ,ψF ).

To prove the equivalence (3.2), it is enough to prove the following condition.
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Condition C1. Dθ is the transfer of θ.

From (3.3), (3.4), and the definition [14, Section 3.3], there exist canonical

bijections, referred to as the transfers,

τF = τA,0,β : CF (0, β) = C (A,0, β,ψF )→ C (oD,0, ιβ,ψF )

and

τK = τAK ,0,β : CK(0, β) = C (AK ,0, β,ΨK)→ C (DAK ,0, ιβ,ΨK).

From [14, Theorem 3.53], we get the following commutative diagram:

C (AK ,0, β,ΨK)
τK−−−−→ C (DAK ,0, ιβ,ΨK)

res

⏐⏐	 ⏐⏐	res

C (A,0, β,ψF ) −−−−→
τF

C (oD,0, ιβ,ψF ),

where the vertical maps are the restrictions. Hence, to prove Condition C1, it is

enough to prove the following condition.

Condition C2. τK(θ′) = θ′ ◦Ad(y0), for θ′ ∈ C (AK ,0, β,ΨK).

In fact, if Condition C2 is satisfied, then by setting θ′ = θ(K), we obtain that

τK
(
θ(K)

)
= θ(K) ◦Ad(y0) = Dθ(K).

Thus, by the commutative diagram above, we obtain that

τF (θ) = τF
(
res

(
θ(K)

))
= res

(
τK

(
θ(K)

))
= res

(
D
θ(K)

)
= Dθ,

which means Condition C1 holds.

Since [AK , n,0, β] is a simple stratum in AK = Mpm(K) and K[β]/K is a

totally ramified extension of degree pm, we have

β = β ⊗ 1 ∈ S wr(AK).

Moreover, we have ιβ = y−1
0 βy0 for the element y0 ∈A

×
K defined above.

Finally, in order to prove Condition C2, by replacing the base field K of

Condition C2 by the field F , it is enough to prove the following.

PROPOSITION 3.7

Let A be the minimal hereditary oF -order in A=Mpm(F ) and let β ∈ S wr(A).

Let y0 be an element of A× and let ι : F [β]→ A be an F -embedding defined by

ιβ = y−1
0 βy0. Then, the transfer

τF = τA,0,β : CF (0, β) = C (A,0, β,ψF )→ C (A,0, ιβ,ψF )

satisfies

τF (θ) = θ ◦Ad(y0), θ ∈ C (A,0, β,ψF ).

We devote the next section to a proof of this proposition.
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3.7. A proof of the auxiliary proposition
Hereafter, let V be an F -vector space of dimension pm, m≥ 1, let A=EndF (V ),

and let G=A×. If necessary, through an F -basis of V , we identify A=Mpm(F )

and G=GLpm(F ).

Let A be the minimal hereditary oF -order in A, and let β ∈ S wr(A). Set

E = F [β]. Then, E is a totally ramified extension of F of degree pm, and A is

E-pure. Thus, V is a one-dimensional E-vector space. Identifying V = E, we

have A=EndF (V ) = EndF (E) =A(E) and A=End0oF
({piE : i ∈ Z}) =A(E), as

in Section 3.5. We set L= {piE : i ∈ Z} and write A=A(L). We remark that the

element y0 ∈A(L)× satisfies

y−1
0 A(L)y0 =A(L).

We prove Proposition 3.7 by the method of [8, (3.6.14)]. Set B =CA(E) and

B=B ∩A. Then, we may identify B =E and B= oE . Set

Ṽ = V ⊕ V =E ⊕E.

Then, Ṽ is a 2pm-dimensional F -vector space, and it can be viewed as a two-

dimensional E-vector space. Set

Ã=EndF (Ṽ ).

We distinguish the factors V of Ṽ as follows: Ṽ = V ⊕ V = V1 ⊕ V2. Set Ai =

EndF (Vi), i= 1,2. We view A as the oF -order in A1. Then, the elements β and

y0 belong to A1, and L is the oF -lattice chain in V1 = V . This L can be also

viewed as the oF -lattice chain in V2 = V . In the F -space V1, we set

L1 = y−1
0 L= {y−1

0 piE : i ∈ Z}.

Since y0 ∈A(L)× =KerνA, we have L1 = L and so

(3.5) y−1
0 P(L)ky0 =P(L)k, k ≥ 0.

For i= 1,2, we set

Li
j = p

j
E , j ∈ Z,

and Li = {Li
j : j ∈ Z}= L.

We define oF -lattices in Ṽ = V1 ⊕ V2 by

Mj = L1
j ⊕L2

j , j ∈ Z,

and set M= {Mj : j ∈ Z}. Then, M is an oF -lattice chain in Ṽ of oF -period pm,

and also an oE-lattice chain in Ṽ of oE-period one. Set

Ã=A(M) = {x ∈ Ã : xMj ⊂Mj , j ∈ Z}

and P̃=P(M). Then, Ã is a hereditary oF -order in Ã, and P̃ is the Jacobson

radical of Ã. For i = 1,2, let ei be the canonical projection Ṽ = V1 ⊕ V2 → Vi.

Then, we have

Ã=
∐
i,j

eiÃej .
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In particular, we identify Ai = EndF (Vi) = eiÃei, i = 1,2. Then, there exists a

canonical embedding A1 ×A2 ↪→ Ã. For β ∈A, set

ϕ(β) = (ιβ, β) = (y−1
0 βy0, β) ∈A1 ×A2 ⊂ Ã.

Then, the map β �→ ϕ(β) defines an F -embedding E = F [β]→ Ã, denoted again

by ϕ. We identify E = F [β] = F [ϕ(β)] = ϕ(E) ⊂ Ã. Thus, we can view Ṽ =

V1 ⊕ V2 as an E-vector space. By the definition of Ã, we have E× ⊂ K(Ã). Let

B̃ =CÃ(ϕ(β)), let B1 =CA1(ιβ), and let B2 =CA2(β). Then, through the iden-

tification A1 = A2 = A, we have B1 = y−1
0 By0 and B2 = B. In Ai = EndF (Vi),

set

Ai =A(Li) =A(L),

for i= 1,2. We have

E× 	 eiE
×ei ⊂ K(Ai).

Set B̃= Ã∩ B̃ and Bi =Ai ∩Bi, for i= 1,2. From (3.5), we obtain that

B1 =A1 ∩B1 = y−1
0 A(L)y0 ∩ y−1

0 By0 = y−1
0 By0

and B2 =B. Since Hk(ϕ(β), Ã) is a (B̃, B̃)-bimodule, by [8, (3.6.15)], we obtain

Hk
(
ϕ(β), Ã

)
∩Ai = eiH

k
(
ϕ(β), Ã

)
ei, k ≥ 0,

for i= 1,2. In fact, for k ≥ 0, we prove that

(3.6)

{
Hk(ϕ(β), Ã)∩A1 =Hk(ιβ,A(L)) = y−1

0 Hk(β,A(L))y0,
Hk(ϕ(β), Ã)∩A2 =Hk(β,A(L)).

It is enough to prove this for the case k = 0. We proceed by induction along β.

Assume that β is minimal over F . Then, we have H(ϕ(β), Ã) = B̃+ P̃�−ν/2�+1,

where ν = νE(β). From [8, (3.6.15)], we obtain that

H
(
ϕ(β), Ã

)
∩Ai = eiB̃ei + eiP̃

�−ν/2�+1ei =Bi +P
�−ν/2�+1
i .

Moreover, we have that

B1 +P
�−ν/2�+1
1 = y−1

0 By0 + y−1
0 P�−ν/2�+1y0 = y−1

0 H
(
β,A(L)

)
y0

and B2 +P
�−ν/2�+1
2 =B+P�−ν/2�+1 =H(β,A(L)). Thus, (3.6) is proved.

In the general case, let

r0 =−k0
(
β,A(L)

)
=−k0

(
ιβ,A(L)

)
=−k0

(
β,A(E)

)
.

Then, there exists a simple stratum [A(E),−ν, r0, γ] in A(E) that is equivalent

to [A(E),−ν, r0, β]. Since γ belongs to A(E) =A, we can define an F -embedding

ϕ : F [γ]→ Ã by

ϕ(γ) = (ιγ, γ) = (y−1
0 γy0, γ).

The stratum [A1,−ν, r0, ιγ] is simple in A1 = A = A(E) and is equivalent to

[A1,−ν, r0, ιβ]. Similarly, the stratum [A2,−ν, r0, γ] is simple in A2 =A=A(E)
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and is equivalent to [A2,−ν, r0, β]. Thus, we obtain

H
(
ϕ(β), Ã

)
= B̃+H�r0/2�+1

(
ϕ(γ), Ã

)
.

Moreover, by induction, we obtain

H
(
ϕ(β), Ã

)
∩A1 =B1 +H�r0/2�+1(ιγ,A1)

= y−1
0 By0 + y−1

0 H�r0/2�+1
(
γ,A(L)

)
y0

= y−1
0 H

(
β,A(L)

)
y0,

and similarly H(ϕ(β), Ã)∩A2 =H(β,A(L)). Hence, the proof of (3.5) is finished

and we have

y−1
0 Hk

(
β,A(L)

)
y0 ×Hk

(
β,A(L)

)
⊂Hk

(
ϕ(β), Ã

)
,

for k ≥ 0. Given θ ∈ C (Ã,0, ϕ(β), ψF ), we set

θ1 = θ |H1
(
ιβ,A(L)

)
, θ2 = θ |H1

(
β,A(L)

)
.

We shall prove

(3.7) θ1 = θ2 ◦Ad(y0).

We again proceed by induction along β. For the fixed additive character ψF of

F , we set

ψ = ψÃ = ψF ◦ trÃ/F , ψi = ψAi = ψF ◦ trAi/F , i= 1,2.

Then, we have

ψ |Ai = ψi, i= 1,2.

For a ∈ Ã, define the character ψa of Ã by ψa(x) = ψ(a(x− 1)), x ∈ Ã. If a =

(a1, a2), ai ∈Ai, then we have ψa |Ai = ψi,ai , i= 1,2. We identify

β = ϕ(β) = (ιβ, β) = (y−1
0 βy0, β) ∈A1 ⊕A2 ⊂ Ã.

Assume that β is minimal over F . Let χ0 be a unique character of U�−ν/2�+1(oE)

such that

ψβ | U�−ν/2�+1(B̃) = χ0 ◦ detB̃ .

Then, we also have {
ψ1,ιβ | U�−ν/2�+1(B1) = χ0 ◦ detB1 ,

ψ2,β | U�−ν/2�+1(B2) = χ0 ◦ detB2 .

For B=A(L)∩B in A=A(E) as before, we can identify

B1 = y−1
0 By0 = y−1

0 B2y0.

Thus, we have

U�−ν/2�+1(B1) = y−1
0 U�−ν/2�+1(B2)y0

and so

(3.8) ψ1,ιβ | U�−ν/2�+1(B1) = ψ2,β ◦Ad(y0) | U�−ν/2�+1(B1).



318 Kazutoshi Kariyama

In fact, for z ∈ U�−ν/2�+1(B1), we obtain

ψ1,ιβ(z) = ψF ◦ trA1

(
ιβ(z − 1)

)
= ψF ◦ trA1

(
y−1
0 βy0(z − 1)

)
= ψF ◦ trA1

(
β(y0zy

−1
0 − 1)

)
= ψ2,β(y0zy

−1
0 )

and hence obtain (3.8). Take θ ∈ C (Ã,0, ϕ(β), ψF ). When 0≥ �−ν/2�, we have

θ = ψϕ(β) and so

θ1 = ψ1,ιβ , θ2 = ψ2,β .

Moreover, we have θ1 ∈ C (A(L),0, ιβ,ψF ), θ2 ∈ C (A(L),0, β,ψF ), and the map

θ �→ θi is bijective. Since (3.8) implies (3.7), we obtain the bijection

θ2 �→ θ1 = θ2 ◦Ad(y0)

from C (A(L),0, β,ψF ) to C (A(L),0, ιβ,ψF ). When �−ν/2� > 0, we can choose

a character χθ of U1(oE) such that

θ | U1(B̃) = χθ ◦ detB̃/E .

Then, as in the proof of [8, (3.6.1)], we obtain the bijection θ �→ χθ from C (Ã,0,

ϕ(β), ψF ) to the set of characters χ of U1(oE) such that χ | U�−ν/2�+1(oE) = χθ.

Since θi | U1(Bi) = χθ ◦detBi , we thus obtain the bijection θ �→ θi, i= 1,2. From

the equality

detB(x) = detB1(y
−1
0 xy0), x ∈B

together with (3.8), we obtain (3.7) by [8, (3.2.1)], and hence obtain the bijection

θ2 �→ θ1 = θ2 ◦Ad(y0) as above.

In the general case, we set r0 = −k0(ιβ,A(L)) = −k0(β,A(L)) and take an

element γ ∈A=A1 =A2 and an F -embedding ϕ : F [γ]→ Ã, as before. Set

c= ϕ(β)− ϕ(γ) = (ιβ, β)− (ιγ, γ) =
(
y−1
0 (β − γ)y0, β − γ

)
.

Suppose that 0≥ �r0/2�. Take θ ∈ C (Ã,0, ϕ(β), ψF ). Then, this character can be

written in the form θ = θ0 · ψc, θ0 ∈ C (Ã,0, ϕ(β), ψF ), and we have{
θ1 = (θ0 |H1(ιβ,A(L))) · ψ1,ιβ−ιγ ,

θ2 = (θ0 |H1(γ,A(L))) · ψ2,β−γ .

In this case, by induction and by [8, (3.3.18)], we see that θ �→ θi is bijective. We

also obtain

θ1 =
(
θ0 |H1

(
ιγ,A(L)

))
·ψ1,ιβ−ιβ

=
[(
θ0 |H1

(
γ,A(L)

))
◦Ad(y0)

]
·
[
ψ2,β−γ ◦Ad(y0)

]
= θ2 ◦Ad(y0).

Hence, θ2 �→ θ1 = θ2 ◦Ad(y0) is the bijection from C (A(L),0, β,ψF ) to C (A(L),0,
ιβ,ψF ). The case �r0/2�> 0 follows in a way quite similar to that of the proof in

the case where β is minimal over F . The assertion of Proposition 3.7 follows from

the uniqueness of the transfer τF by [14, Theorem 3.53]. The proof is complete.

Finally, Proposition 3.7 confirms the conjecture of Remark 2.5.
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1990–91, Progr. Math. 108, Birkhäuser, Boston, 1993, 85–114. MR 1263525.

[12] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes

in Math. 114, Springer, Berlin, 1970. MR 0401654.

[13] J. D. Rogawski, Representations of GL(n) and division algebras over a p-adic

field, Duke Math. J. 50 (1983), 161–196. MR 0700135.
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