Endo-class and the Jacquet–Langlands correspondence

Kazutoshi Kariyama

Abstract Let F be a non-archimedean local field. Recently, Broussous, Sécherre, and Stevens extended the notion of an endo-class, introduced by Bushnell and Henniart for $\operatorname{GL}_N(F)$ with $N \geq 1$, to an inner form of $\operatorname{GL}_N(F)$ over F, and conjectured that this endo-class for discrete series representations is preserved by the Jacquet–Langlands correspondence. Explicit realizations of the correspondence are given by Silberger and Zink for level-zero discrete series representations and by Bushnell and Henniart for totally ramified ones. In this paper, we show that these realizations confirm the conjecture.

Introduction

Let F be a non-archimedean local field of finite residue characteristic p, and let D be a central division F-algebra of dimension d^2 , $d \ge 1$. Let \mathfrak{o}_F and \mathfrak{o}_D be the rings of integers in F and D, respectively. Let m be a positive integer. The product N = md being fixed, there exist bijective maps, referred to as the Jacquet-Langlands correspondence, between the sets of irreducible discrete series representations of $\operatorname{GL}_m(D)$ such that a character relation is preserved (see [1], [9], [12], [13]). There exist a series of works by Bushnell and Henniart (see [7], [8], [11]) and by Silberger and Zink (see [17], [18]) in which the Jacquet–Langlands correspondences were described explicitly in terms of types. The notion of an endo-class was introduced in [6], and it was proved in [5] and [8] that an endoclass is an invariant associated to an irreducible supercuspidal representation of $\operatorname{GL}_N(F)$, which is constructed as a compactly induced representation of a compact-mod-center subgroup of $\operatorname{GL}_N(F)$. Broussous, Sécherre, and Stevens [4] extended the notion of an endo-class over F for $GL_N(F)$ to any group of the form $\operatorname{GL}_m(D)$, that is, we can associate an endo-class over F to any discrete series representation of $\operatorname{GL}_m(D)$, and it was conjectured that the Jacquet-Langlands correspondence preserves this endo-class over F. In this paper, we prove that the realizations of [6] and [17] confirm this conjecture.

More precisely, we give a description of the result obtained. The simple characters for $G = \operatorname{GL}_m(D)$ are parameterized by 4-tuples $[\mathfrak{A}, n, 0, \beta]$, which are referred to as simple strata, consisting of a hereditary \mathfrak{o}_F -order \mathfrak{A} in A with

Kyoto Journal of Mathematics, Vol. 55, No. 2 (2015), 299-320

DOI 10.1215/21562261-2871767, © 2015 by Kyoto University

Received November 29, 2013. Accepted March 5, 2014. 2010 Mathematics Subject Classification: 22E50.

 $\mathfrak{P} = \operatorname{rad}(\mathfrak{A})$, a positive integer n, and an element $\beta \in A$ which generates a field extension $F[\beta]$ over F, with the technical condition $k_F(\beta) < 0$ and with $\beta \in \mathfrak{P}^{-n}$. By [14], associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A = M_m(D)$, we have a compact open subgroup $H^1(\beta, \mathfrak{A})$ of G and a finite set $\mathscr{C}(\mathfrak{A}, 0, \beta)$ of simple characters of $H^1(\beta, \mathfrak{A})$.

From [15] and [16], it follows that every irreducible discrete series representation π of G contains a simple character $\theta \in \mathscr{C}(\mathfrak{A}, 0, \beta)$ attached to a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A. Neither the simple stratum nor the simple character is unique. The endo-class, denoted by Θ , for the pair $([\mathfrak{A}, n, 0, \beta], \theta)$ was defined by [6] and [4] so that this Θ depends only on the representation π of G as follows. A potential simple character (ps-character for short) is an equivalence class, denoted by Θ , in the set of such pairs ($[\mathfrak{A}, n, m, \beta], \theta$) in A as above, where $[\mathfrak{A}, n, m, \beta]$ is a simple stratum in A and $\theta \in \mathscr{C}(\mathfrak{A}, m, \beta)$. Indeed, another pair ($[\mathfrak{A}', n', m', \beta], \theta'$) in a central simple F-algebra A' is referred to as equivalent to ($[\mathfrak{A}, n, m, \beta], \theta$), denoted by

$$([\mathfrak{A}, n, m, \beta], \theta) \sim ([\mathfrak{A}', n', m', \beta], \theta'),$$

if θ' is the transfer of θ (see Definition 1.7). The pair ($[\mathfrak{A}, n, m, \beta], \theta$) is referred to as a realization of Θ . Two ps-characters Θ_1 and Θ_2 are referred to as endoequivalent if, in a central simple *F*-algebra *A*, they are defined by realizations ($[\mathfrak{A}_i, n_i, m_i, \beta_i], \theta_i$), for i = 1, 2, of the same degree and normalized level, and such that the simple characters θ_1 and θ_2 intertwine in A^{\times} (see Definition 1.9). Two simple characters contained in the irreducible discrete series representation π of *G* intertwine in *G*. Hence, the endo-class Θ above depends only on the representation π . Write this Θ as $\Theta_G(\pi)$.

Let D_{md} be a central division *F*-algebra of dimension m^2d^2 , and let **JL** be the Jacquet–Langlands correspondence between the sets of isomorphism classes of irreducible discrete series representations of $G = \operatorname{GL}_m(D)$ and $H = D_{md}^{\times}$. Then, the equality

$$\Theta_H \circ \mathbf{JL} = \Theta_G$$

was conjectured by [4, Conjecture 9.5].

It was stated in [4, Introduction] that this conjecture can be seen as a generalization of the preservation of the level-zero representations through the Jacquet– Langlands correspondence, which was proved by [17]. This is explained as follows. From [10], every irreducible discrete series representation of $G = \operatorname{GL}_m(D)$ of level zero contains the trivial representation $\mathbf{1}_{U^1(\mathfrak{A})}$ for some principal hereditary \mathfrak{o}_F -order \mathfrak{A} in $A = \operatorname{M}_m(D)$ with $\mathfrak{P} = \operatorname{rad}(\mathfrak{A})$, where $U^1(\mathfrak{A}) = 1 + \mathfrak{P}$. We view $[\mathfrak{A}, 0, 0, 0]$ as a simple stratum in A, as in [19], and view $([\mathfrak{A}, 0, 0, 0], \mathbf{1}_{U^1(\mathfrak{A})})$ as the realization of the trivial ps-character Θ_0 . Moreover, we have $H^1(0, \mathfrak{A}) = U^1(\mathfrak{A})$ and

$$\mathscr{C}(\mathfrak{A},0,0) = \{\mathbf{1}_{U^1(\mathfrak{A})}\}.$$

Hence, by the definition of endo-class, that statement is explained.

Let F be a finite extension of \mathbb{Q}_p with $p \neq 2$. For a positive integer m, set $A = M_{p^m}(F)$, and let D be a central division F-algebra of dimension p^{2m} . Then, there exists the Jacquet–Langlands correspondence **JL** between the sets of isomorphism classes of irreducible discrete series representations of $G = A^{\times} =$ $\operatorname{GL}_{p^m}(F)$ and $H = D^{\times}$. Let $\mathcal{A}_m^{wr}(F)$ be the set of isomorphism classes of irreducible supercuspidal representations π of G which are *totally ramified*: this means that π is not isomorphic to the representation $\chi \pi : g \mapsto \chi(\operatorname{det}(g))\pi(g)$ for any unramified quasicharacter $\chi \neq 1$ of F^{\times} . Set $\mathcal{A}_0^{wr}(D) = \operatorname{JL}(\mathcal{A}_m^{wr}(F))$. Then, we obtain a canonical bijection, denoted again by **JL**,

$$\mathbf{JL}: \mathcal{A}_m^{wr}(F) \simeq \mathcal{A}_0^{wr}(D).$$

In [6], the representations in $\mathcal{A}_m^{wr}(F)$ and $\mathcal{A}_0^{wr}(D)$ were explicitly constructed as induced representations of quasicharacters of compact-mod-center subgroups, and the correspondence **JL** was described.

Let π be an irreducible supercuspidal representation of $G = \operatorname{GL}_{p^m}(F)$ in $\mathcal{A}_m^{wr}(F)$. Then, from the construction of π , we can choose a pair ($[\mathfrak{A}, n, 0, \beta], \theta$), as above, such that π contains θ . Set $\pi' = \operatorname{JL}(\pi)$. Then, from the realization of JL , we can also choose a pair ($[\mathfrak{o}_D, n', 0, \iota\beta], D\theta$) such that π' contains $D\theta$, where $\iota: F[\beta] \to D$ denotes an F-embedding. For a finite unramified extension K/F of degree divisible by p^m , set $\mathfrak{A}_K = \mathfrak{A} \otimes_{\mathfrak{o}_F} \mathfrak{o}_K$ and $D\mathfrak{A}_K = \mathfrak{o}_D \otimes_{\mathfrak{o}_F} \mathfrak{o}_K$. Then, through the identification $A_K = A \otimes_F K = D \otimes_F K = D_K$, we can set $\mathfrak{A}_K = D\mathfrak{A}_K$ and take an element $y_0 \in \mathfrak{A}_K^{\times}$ such that $\iota\beta = y_0^{-1}\beta y_0 = \operatorname{Ad}(y_0^{-1})\beta$, where we identify $\beta = \beta \otimes 1$ in A_K . Then, we can choose simple characters $\theta(K)$ and $D\theta(K)$ of $H^1(\beta, \mathfrak{A}_K)$ and $H^1(\iota\beta, D\mathfrak{A}_K)$, respectively, such that

$$\theta = \theta(K) \mid H^1(\beta, \mathfrak{A}), \qquad D\theta = D\theta(K) \mid H^1(\iota\beta, \mathfrak{o}_D)$$

We prove that $_D\theta(K) = \theta(K) \circ \operatorname{Ad}(y_0)$ and that $_D\theta(K)$ is the transfer of $\theta(K)$. Thus, by [14, Theorem 3.53] for transfers, $_D\theta$ is the transfer of θ , that is,

$$([\mathfrak{A}, n, 0, eta], heta) \sim ([\mathfrak{o}_D, n', 0, \iotaeta], _D heta),$$

which implies $\Theta_H(\pi') = \Theta_G(\pi)$.

The remainder of the present paper is organized as follows. In Section 1, we recall the notation of ps-character and endo-class defined in [5] and [4]. In Section 2, we recall the conjecture on the preservation of the endo-class of the Jacquet–Langlands correspondence given in [4]. In Section 3, we prove that the realizations of [5] and [17] confirm this conjecture.

1. Endo-class of ps-characters

We recall the definition of endo-class and ps-character for an inner form of $\operatorname{GL}_N(F)$ in [4], which is a generalization of the *F*-split $\operatorname{GL}_N(F)$ defined in [5].

1.1. Simple character

Let F be a non-archimedean local field. Let K be a commutative or noncommutative finite extension of F, let \mathfrak{o}_K be the ring of integers in K, and let \mathfrak{p}_K be the maximal ideal of \mathfrak{o}_K .

Let A be a simple central F-algebra of finite dimension, and let V be a simple left A-module. Write $D = \operatorname{End}_A(V)^{\operatorname{op}}$. Then, D is a central division F-algebra, and V can be viewed as a right D-vector space. There exists a canonical isomorphism $A \simeq \operatorname{End}_D(V)$.

DEFINITION 1.1

A nonempty set of right \mathfrak{o}_D -lattices $\mathcal{L} = \{L_i : i \in \mathbb{Z}\}$ in V is referred to as an \mathfrak{o}_D -lattice chain in V if the following conditions are satisfied: (1) $L_i \supseteq L_{i+1}$ for all $i \in \mathbb{Z}$, and (2) there exists a positive integer e satisfying $L_{i+e} = L_i \mathfrak{p}_D$ for all $i \in \mathbb{Z}$. This integer e is referred to as the \mathfrak{o}_D -period of \mathcal{L} and is denoted by $e_D(\mathcal{L})$.

For $k \in \mathbb{Z}$, set

$$\mathfrak{P}_k(\mathcal{L}) = \{ a \in A : aL_i \subset L_{i+k}, i \in \mathbb{Z} \}.$$

Then, $\mathfrak{A} = \mathfrak{A}(\mathcal{L}) = \mathfrak{P}_0(\mathcal{L})$ is a hereditary \mathfrak{o}_F -order in A. All such orders are obtained in this way from an \mathfrak{o}_D -lattice chain \mathcal{L} in V. The set $\mathfrak{P} = \mathfrak{P}(\mathcal{L}) = \mathfrak{P}_1(\mathcal{L})$ is the Jacobson radical of \mathfrak{A} , and we have $\mathfrak{P}_k(\mathcal{L}) = \mathfrak{P}^k$ for all $k \in \mathbb{Z}, k \geq 0$. Thus, we have compact open subgroups of G defined by

$$U(\mathfrak{A}) = U^0(\mathfrak{A}) = \mathfrak{A}^{\times}, \qquad U^k(\mathfrak{A}) = 1 + \mathfrak{P}^k, \quad k \in \mathbb{Z}, k > 0.$$

The G-centralizer $\mathfrak{K}(\mathfrak{A})$ of \mathfrak{A} is defined by

$$\mathfrak{K}(\mathfrak{A}) = \{g \in G : g\mathfrak{A}g^{-1} = \mathfrak{A}\}.$$

Then, for $\mathfrak{A} = \mathfrak{A}(\mathcal{L}), g \in \mathfrak{K}(\mathfrak{A})$ if and only if there exists a unique $n = \nu(g) \in \mathbb{Z}$ such that $gL_i = L_{i+n}$ for all $i \in \mathbb{Z}$. We define a function $\nu_{\mathfrak{A}} : \mathfrak{K}(\mathfrak{A}) \to \mathbb{Z}$ by $\nu_{\mathfrak{A}}(g) = \nu(g)$ for $g \in \mathfrak{K}(\mathfrak{A})$. Then, we have Ker $\nu_{\mathfrak{A}} = U(\mathfrak{A})$.

DEFINITION 1.2

(a) A stratum in A is a 4-tuple $[\mathfrak{A}, n, m, \beta]$ made of a hereditary \mathfrak{o}_F -order \mathfrak{A} in $A, m, n \in \mathbb{Z}$ with $0 \le m \le n$ and $\beta \in \mathfrak{P}^{-n}$.

(b) Two strata $[\mathfrak{A}, n, m, \beta_i], i = 1, 2$, are referred to as *equivalent* if $\beta_2 - \beta_1 \in \mathfrak{P}^{-m}$.

Here, $[\mathfrak{A}, 0, 0, 0]$ is referred to as the *null stratum* as is defined in [19].

DEFINITION 1.3

A stratum $[\mathfrak{A}, n, m, \beta]$ in A is referred to as *pure* if it satisfies the following conditions:

- (a) the sub-*F*-algebra $F[\beta]$ generated by β is a field, say, $E = F[\beta]$;
- (b) \mathfrak{A} is *E*-pure, that is, $E^{\times} \subset \mathfrak{K}(\mathfrak{A})$;
- (c) $\nu_{\mathfrak{A}}(\beta) = -n.$

Let $[\mathfrak{A}, n, m, \beta]$ be a pure stratum in A. Let B be the A-centralizer of β , and write $B = C_A(\beta)$. For each $k \in \mathbb{Z}$, we set $\mathfrak{n}_k(\beta, \mathfrak{A}) = \{x \in \mathfrak{A} : \beta x - x\beta \in \mathfrak{P}^k\}$ and define the quantity $k_0(\beta, \mathfrak{A})$ by

$$\min\{k \in \mathbb{Z} : k \ge \nu_{\mathfrak{A}}(\beta) \text{ and } \mathfrak{n}_{k+1}(\beta, \mathfrak{A}) \subset \mathfrak{A} \cap B + \mathfrak{P}\}.$$

DEFINITION 1.4

A stratum $[\mathfrak{A}, n, m, \beta]$ in A is referred to as *simple* if it is pure and if $m \leq -k_0(\beta, \mathfrak{A}) - 1$.

It is convenient to view the null stratum $[\mathfrak{A}, 0, 0, 0]$ in A as a simple stratum, as in [19]. Hereafter, we do so.

A simple stratum $[\mathfrak{A}, n, m, \beta]$ in A gives rise to a pair

 $\mathfrak{H}(\beta,\mathfrak{A})\subset\mathfrak{J}(\beta,\mathfrak{A})\subset\mathfrak{A}$

of \mathfrak{o}_F -orders in A (see [14]). If $\beta = 0$, then we set

$$\mathfrak{H}(0,\mathfrak{A}) = \mathfrak{J}(0,\mathfrak{A}) = \mathfrak{A}.$$

We take the standard filtration subgroups of the unit groups

$$\begin{split} H^{k}(\beta,\mathfrak{A}) &= \mathfrak{H}(\beta,\mathfrak{A}) \cap U^{k}(\mathfrak{A}), \\ J^{k}(\beta,\mathfrak{A}) &= \mathfrak{J}(\beta,\mathfrak{A}) \cap U^{k}(\mathfrak{A}), \end{split}$$

for $k \in \mathbb{Z}, k \geq 0$.

We fix a level-one additive character $\psi = \psi_F$ of F; that is, $\mathfrak{p}_F \subset \operatorname{Ker} \psi$ and $\psi \mid \mathfrak{o}_F \neq 1$. Through this character $\psi = \psi_F$, a finite set of characters, referred to as *simple characters*, of the compact group $H^{m+1}(\beta, \mathfrak{A})$, say, $\mathscr{C}(\mathfrak{A}, m, \beta) = \mathscr{C}(\mathfrak{A}, m, \beta, \psi)$, was defined in [14].

Associated with the null simple stratum $[\mathfrak{A}, 0, 0, 0]$ in A, we view $\mathscr{C}(\mathfrak{A}, 0, 0)$ as the set consisting of the single trivial character $\mathbf{1}_{U^1(\mathfrak{A})}$ of the group $H^1(0, \mathfrak{A}) = U^1(\mathfrak{A})$, that is (see [15, Remark 4.4]),

(1.1)
$$\mathscr{C}(\mathfrak{A},0,0) = \{\mathbf{1}_{U^1(\mathfrak{A})}\}.$$

1.2. Ps-character and endo-class

Let β be a nonzero element in a finite subextension of F in A, and set $E = F[\beta]$. We denote by ν_E the normalized valuation on E. The set $\{\mathfrak{p}_E^i : i \in \mathbb{Z}\}$ is an E-pure \mathfrak{o}_F -lattice chain on the F-space E, unique up to translation. We set $A(E) = \operatorname{End}_F(E)$ and (see [8, (1.1.2)])

$$\mathfrak{A}(E) = \operatorname{End}_{\mathfrak{o}_{F}}^{0} \left(\left\{ \mathfrak{p}_{E}^{i} : i \in \mathbb{Z} \right\} \right).$$

Then, $\mathfrak{A}(E)$ is a hereditary \mathfrak{o}_F -order in A(E). Set

$$k_F(\beta) = k_0(\beta, \mathfrak{A}(E)).$$

Then, unless $\beta \in F$, we have $k_F(\beta) \ge \nu_E(\beta)$.

DEFINITION 1.5 ([5, DEFINITION 1.5])

A simple pair over F is a pair (k,β) consisting of a nonzero element β in some finite extension of F and an integer $0 \le k \le -k_F(\beta) - 1$.

If (k,β) is a simple pair over F, then $[\mathfrak{A}(E), -\nu_E(\beta), k, \beta]$ is a simple stratum in A(E). Thus, we have a set of quasisimple characters of $H^{k+1}(\beta, \mathfrak{A}(E))$ (see [14, Section 3.3.3])

$$\mathscr{C}_F(k,\beta) = \mathscr{C}(\mathfrak{A}(E),k,\beta) = \mathscr{C}(\mathfrak{A}(E),k,\beta,\psi_F).$$

We also view the pair (0,0) as a simple pair over F. It is referred to as the *null* simple pair. By definition, we have $\mathscr{C}_F(0,0) = \{\mathbf{1}_{U^1(\mathfrak{o}_E)}\}$, where $U^1(\mathfrak{o}_E) = 1 + \mathfrak{p}_F$.

Let A be a central simple F-algebra, and let V be a simple left A-module. Let $D = \operatorname{End}_A(V)^{\operatorname{op}}$. For a real number r, denote by $\lfloor r \rfloor$ the greatest integer that is less than or equal to r.

DEFINITION 1.6 (SEE [4])

A realization of a nonnull simple pair (k,β) in A is a stratum in A of the form $[\mathfrak{A}, n, m, \varphi(\beta)]$ made of:

- (a) a homomorphism φ of *F*-algebras from $F[\beta]$ to *A*;
- (b) a $\varphi(F[\beta])$ -pure hereditary \mathfrak{o}_F -order \mathfrak{A} in A;
- (c) an integer m such that $k = \lfloor m/e_{F[\varphi(\beta)]}(\mathfrak{A}) \rfloor$.

It is convenient to view the null stratum $[\mathfrak{A}, 0, 0, 0]$ in A as the realization of the null simple pair (0,0) in A.

From [14, Proposition 2.5], the realization $[\mathfrak{A}, n, m, \varphi(\beta)]$ in Definition 1.6 is a simple stratum in A. Thus, we have a set

$$\mathscr{C}(\mathfrak{A}, m, \varphi(\beta)) = \mathscr{C}(\mathfrak{A}, m, \varphi(\beta), \psi_F)$$

of simple characters of $H^{m+1}(\varphi(\beta), \mathfrak{A})$. For a realization $[\mathfrak{A}, n, m, \varphi(\beta)]$ in A of a nonnull simple pair (k, β) over F, it follows from [14, Section 3.3.3] that there exists a canonical bijective map (cf. [16, Definition 2.11])

$$\tau_{\mathfrak{A},m,\varphi(\beta)}: \mathscr{C}_F(k,\beta) \to \mathscr{C}(\mathfrak{A},m,\varphi(\beta)).$$

This map is referred to as a *transfer map*. If $(k,\beta) = (0,0)$, then it is the trivial map by definition. We denote by $\tau_{\mathfrak{A},0,0}$ the transfer map $\mathscr{C}_F(0,0) \to \mathscr{C}(\mathfrak{A},0,0)$.

Given a simple pair (k,β) over F, we consider a pair

$$\left(\left\lfloor \mathfrak{A}, n, m, \varphi(\beta) \right\rfloor, \theta \right)$$

made of a realization $[\mathfrak{A}, n, m, \varphi(\beta)]$ in A and a simple character $\theta \in \mathscr{C}(\mathfrak{A}, m, \varphi(\beta))$.

DEFINITION 1.7 (SEE [4, SECTION 1.2])

Let $[\mathfrak{A}', n', m', \varphi'(\beta)]$ be another realization of the simple pair (k, β) in some simple central *F*-algebra *A'*, and let θ' be a simple character in $\mathscr{C}(\mathfrak{A}', m', \varphi'(\beta))$.

We say that $([\mathfrak{A}, n, m, \varphi(\beta)], \theta)$ and $([\mathfrak{A}', n', m', \varphi'(\beta)], \theta')$ are *equivalent*, denoted by

$$\left(\left[\mathfrak{A}, n, m, \varphi(\beta) \right], \theta \right) \sim \left(\left[\mathfrak{A}', n', m', \varphi'(\beta) \right], \theta' \right),$$

if the equality $\theta' = \tau_{\mathfrak{A}',m',\varphi'(\beta)} \circ \tau_{\mathfrak{A},m,\varphi(\beta)}^{-1}(\theta)$ is satisfied.

It is easy to see that, given a simple pair (k,β) over F, it is an equivalence relation on the set of such pairs $([\mathfrak{A}, n, m, \varphi(\beta)], \theta)$, which is denoted by $\mathscr{C}_{(k,\beta)}$.

DEFINITION 1.8 (SEE [4, DEFINITION 1.5])

A potential simple character over F (or *ps*-character) is a triple (Θ, k, β) made of a simple pair (k, β) over F and an equivalence class Θ in $\mathscr{C}_{(k,\beta)}$.

If a pair $([\mathfrak{A}, n, m, \varphi(\beta)], \theta)$ belongs to an equivalence class Θ , we write

$$\Theta(\mathfrak{A}, m, \varphi(\beta)) = \theta.$$

DEFINITION 1.9 (SEE [4, DEFINITION 1.10])

For i = 1, 2, let (Θ_i, k_i, β_i) be a ps-character over F. We say that these pscharacters are *endo-equivalent*, denoted by

$$\Theta_1 \approx \Theta_2,$$

if these ps-characters satisfy the following conditions:

- (a) $k_1 = k_2;$
- (b) $[F[\beta_1]:F] = [F[\beta_2]:F];$

(c) there exists a central simple *F*-algebra *A* together with realizations $([\mathfrak{A}, n_i, m_i, \varphi_i(\beta_i)] \text{ of } (k_i, \beta_i), i = 1, 2, \text{ in } A \text{ such that } \Theta_1(\mathfrak{A}, m_1, \varphi_1(\beta_1)) \text{ and } \Theta_2(\mathfrak{A}, m_2, \varphi_2(\beta_2)) \text{ intertwine in } A^{\times}.$

2. The Jacquet–Langlands correspondence and endo-classes

We recall from [4, Conjecture 9.5] that an endo-class over F is invariant under the Jacquet–Langlands correspondence.

2.1. Simple type

Let D be a central division F-algebra of dimension d^2 over F, $d \ge 1$, and let V be a right D-vector space of dimension $m \ge 1$. Set $A = \operatorname{End}_D(V)$. Through a D-basis of V, we identify $A = M_m(D)$ and set $G = A^{\times} = \operatorname{GL}_m(D)$.

Associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, we have the compact open subgroups $J(\beta, \mathfrak{A}) \supset J^1(\beta, \mathfrak{A}) = J(\beta, \mathfrak{A}) \cap U^1(\mathfrak{A})$, as defined in Section 1.1. Let $E = F[\beta]$, let $B = C_A(E)$, and let $\mathfrak{B} = \mathfrak{A} \cap B$. Then, there exists a canonical isomorphism

$$J(\beta,\mathfrak{A})/J^1(\beta,\mathfrak{A}) \simeq U(\mathfrak{B})/U^1(\mathfrak{B}),$$

and there exist a central *E*-algebra D_E of dimension d_E^2 and a positive integer m_E such that $B \simeq M_{m_E}(D_E)$.

DEFINITION 2.1 ([10, SECTION 0.6], [15, 2.5.1])

A simple type of *level zero* in G is a pair (U, τ) , where

(a) $U = U(\mathfrak{A})$ for a principal hereditary \mathfrak{o}_F -order in A with $r = e_F(\mathfrak{A})$;

(b) τ is an irreducible representation of $U = U(\mathfrak{A})$, trivial on $U^1(\mathfrak{A})$ and inflated from a representation $\overline{\sigma}_0^{\otimes r}$ of the quotient group $U(\mathfrak{A})/U^1(\mathfrak{A}) \simeq \mathrm{GL}_s(k_D)^r$, where $\overline{\sigma}_0$ is an irreducible cuspidal representation of $\mathrm{GL}_s(k_D)$ and r, s are positive integers satisfying rs = m.

We say that a simple type $(U, \tau) = (U(\mathfrak{A}), \tau)$ of level zero in G is attached to the null simple stratum $[\mathfrak{A}, 0, 0, 0]$ in A (see [15, Remark 4.1]).

DEFINITION 2.2

A simple type of *positive level* in G is a pair (J, λ) , attached to a nonnull simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, given as follows:

(a) there exists a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A such that $J = J^0(\beta, \mathfrak{A})$ and that if $E = F[\beta], B = C_A(E)$ and $\mathfrak{B} = \mathfrak{A} \cap B, \mathfrak{B}$ is a principal hereditary \mathfrak{o}_E -order in B with $r = e_E(\mathfrak{B})$;

(b) there exist a simple character $\theta \in \mathscr{C}(\mathfrak{A}, 0, \beta, \psi_F)$ and a simple type $(U(\mathfrak{B}), \tau)$ of level zero in B^{\times} such that λ is a representation of J of the form

$$\lambda = \kappa \otimes \sigma_{i}$$

where

(1) κ is a β -extension of η_{θ} ;

(2) σ is the representation of J, trivial on J^1 , deduced from τ via the isomorphism $J/J^1 \simeq U(\mathfrak{B})/U^1(\mathfrak{B})$ and τ is an irreducible representation of $U = U(\mathfrak{B})$, trivial on $U^1(\mathfrak{B})$ and inflated from a representation $\overline{\sigma}_0^{\otimes r}$ of the quotient group $U(\mathfrak{B})/U^1(\mathfrak{B}) \simeq \operatorname{GL}_{m_E/r}(k_{D_E})^r$, where $\overline{\sigma}_0$ is an irreducible cuspidal representation of $\operatorname{GL}_{m_E/r}(k_{D_E})$.

2.2. Conjecture about preservation of the endo-class

Let $A = M_m(D)$, and let $G = A^{\times}$ be as defined in Section 2.1. Let $Nrd_A : A \to F$ be the reduced norm.

An irreducible smooth representation π of G is referred to as essentially square-integrable (or discrete series) if there exists an unramified character χ of F^{\times} such that $(\chi \circ \operatorname{Nrd}_A) \otimes \pi$ is square-integrable modulo F^{\times} . Let $\mathcal{A}^2(G)$ be the set of isomorphism classes of irreducible essentially square-integrable representations of G, and let $\mathcal{E}(F)$ be the set of endo-classes of ps-characters over F (see [4, Section 9.3]).

THEOREM 2.3

For each $\pi \in \mathcal{A}^2(G)$, there exist a simple type (J,λ) in G attached to a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A such that $\pi \mid J$ contains λ .

Proof

This follows from [2] and [16].

From Theorem 2.3, for each $\pi \in \mathcal{A}^2(G)$, a pair $([\mathfrak{A}, n, 0, \beta], \theta)$ is given such that the character θ occurs in $\pi \mid H^1(\beta, \mathfrak{A})$. Let $(\Theta, 0, \beta)$ be the ps-character defined by the pair $([\mathfrak{A}, n, 0, \beta], \theta)$ and denote by Θ its endo-class. This endo-class Θ depends only on the representation π , as in the Introduction. Thus, we write this endo-class Θ as $\Theta_G(\pi)$. Hence, we get a map

$$\Theta_G: \mathcal{A}^2(G) \to \mathcal{E}(F).$$

For $\pi \in \mathcal{A}^2(G)$, we denote by χ_{π} the character function of π .

THEOREM 2.4 ([1], [9], [12], [13])

Let D' be another central simple F-algebra of dimension d^{2} , $d' \geq 1$, and let $G' = \operatorname{GL}_{m'}(D')$ for a positive integer m' with m'd' = md. Then, there exists a canonical bijection, referred to as the Jacquet–Langlands correspondence,

(2.1) $\mathbf{JL}: \mathcal{A}^2(G) \to \mathcal{A}^2(G')$

such that, if $\pi' = \mathbf{JL}(\pi)$ for $\pi \in \mathcal{A}^2(G)$, then we have that

$$(-1)^m \chi_\pi(g) = (-1)^{m'} \chi_{\pi'}(g'),$$

where g and g' are regular elliptic elements of G and G', respectively, whose characteristic polynomials over F are the same.

In [4, 9.3], the following conjecture is given:

(2.2)
$$\boldsymbol{\Theta}_{G'} \big(\mathbf{J} \mathbf{L}(\pi) \big) = \boldsymbol{\Theta}_{G}(\pi),$$

for any $\pi \in \mathcal{A}^2(G)$.

REMARK 2.5

Moreover, it is probable that there exists a single simple pair $(0,\beta)$ over F such that, as representatives, $\Theta_{G'}(\mathbf{JL}(\pi))$ and $\Theta_G(\pi)$ have ps-characters over $F(\Theta',0,\beta)$ and $(\Theta,0,\beta)$, respectively.

3. Some examples for the conjecture

We shall see that the Jacquet–Langlands correspondences given by Bushnell and Henniart [6] and Silberger and Zink [17] satisfy the equality (2.2).

3.1. An example for level-zero representations

Let $A = M_m(D)$, and let $G = A^{\times} = GL_m(D)$ be as above.

DEFINITION 3.1 ([10, SECTION 0.6])

An irreducible smooth representation π of G is referred to as *level zero* if there exists a principal hereditary \mathfrak{o}_F -order \mathfrak{A} in A such that its representation space \mathcal{V} has a nonzero $U^1(\mathfrak{A})$ -fixed vector.

Let $\mathcal{A}_0^2(G)$ be the subset of level-zero representations in $\mathcal{A}^2(G)$. If a smooth representation π of G belongs to $\mathcal{A}_0^2(G)$, then, from [10, Theorem 5.5(i)], it contains a simple type $(J,\lambda) = (U(\mathfrak{A}), \tau)$ of level zero in G. Thus, we obtain a ps-character $(\Theta, 0, 0)$ with $([\mathfrak{A}, 0, 0, 0], \mathbf{1}_{U^1(\mathfrak{A})}) \in \Theta$, that is,

$$\Theta(\mathfrak{A},0,0) = \mathbf{1}_{U^1(\mathfrak{A})} \in \mathscr{C}(\mathfrak{A},0,0),$$

and consequently the endo-class, denoted by $\Theta_G(\pi)$, of this $(\Theta, 0, 0)$.

We now let D' be a central division F-algebra of dimension m^2d^2 , and let $G' = \operatorname{GL}_1(D')$. Then, from Theorem 2.4, we have the Jacquet–Langlands correspondence **JL**: $\mathcal{A}^2(G') \to \mathcal{A}^2(G)$.

PROPOSITION 3.2 ([17, PROPOSITION 3.2])

The Jacquet–Langlands correspondence **JL** induces a canonical bijection $\mathcal{A}_0^2(G') \to \mathcal{A}_0^2(G)$.

We again denote by

$$\mathbf{JL}: \mathcal{A}^2_0(G') \to \mathcal{A}^2_0(G)$$

the bijection of Proposition 3.2.

THEOREM 3.3

Let **JL** be the correspondence defined above. Then, for $\pi \in \mathcal{A}_0^2(G')$, we have

$$\Theta_G(\mathbf{JL}(\pi)) = \Theta_{G'}(\pi).$$

Proof

Suppose that a class Θ' belongs to the endo-class $\Theta_{G'}(\pi)$ and that a class Θ belongs to the endo-class $\Theta_G(\mathbf{JL}(\pi))$. Then, we have the realizations $([\mathfrak{A}', 0, 0, 0], \mathbf{1}_{U^1(\mathfrak{A}')}) \in \Theta'$ and $([\mathfrak{A}, 0, 0, 0], \mathbf{1}_{U^1(\mathfrak{A})}) \in \Theta$. Since, by definition, we have $\mathscr{C}(\mathfrak{A}', 0, 0) = \{\mathbf{1}_{U^1(\mathfrak{A}')}\}$ and $\mathscr{C}(\mathfrak{A}, 0, 0) = \{\mathbf{1}_{U^1(\mathfrak{A})}\}$, we obtain

$$\mathbf{1}_{U^{1}(\mathfrak{A})} = \tau_{\mathfrak{A},0,0} \circ \tau_{\mathfrak{A}',0,0}^{-1}(\mathbf{1}_{U^{1}(\mathfrak{A}')}),$$

where, for example, $\tau_{\mathfrak{A},0,0}$ is the transfer $\mathscr{C}_F(0,0) \to \mathscr{C}(\mathfrak{A},0,0)$ defined in Section 1.2. Hence, by Definition 1.7, we have

$$\left([\mathfrak{A}, 0, 0, 0], \mathbf{1}_{U^1(\mathfrak{A})} \right) \sim \left([\mathfrak{A}', 0, 0, 0], \mathbf{1}_{U^1(\mathfrak{A}')} \right)$$

and so $\Theta = \Theta'$. This shows the equality of this theorem and the proof is complete.

3.2. An example for totally ramified representations

In this section, we shall show that the explicit Jacquet–Langlands correspondence realized by Bushnell and Henniart [6] also satisfies the conjecture (2.2). This is never trivial. We first recall the realization of the correspondence.

Let F be a finite extension of \mathbb{Q}_p with $p \neq 2$, and let D be a central division F-algebra of dimension p^m , $m \geq 1$. Set $G = \operatorname{GL}_{p^m}(F)$ and $G' = \operatorname{GL}_1(D) = D^{\times}$.

Let π be an irreducible smooth representation of an inner form of G. Denote by $t(\pi)$ the cardinality of the unramified characters χ of F^{\times} such that $(\chi \circ \operatorname{Nrd}) \otimes \pi \simeq \pi$, where Nrd denotes the reduced norm. This is referred to as the *inertial* degree of π . The representation π is referred to as *totally ramified* if $t(\pi) = 1$ is satisfied.

From Theorem 2.4, there exists the Jacquet–Langlands correspondence

$$\mathbf{JL}: \mathcal{A}^2(G) \to \mathcal{A}^2(G').$$

Denote by $\mathcal{A}_m^{wr}(F)$ the set of isomorphism classes of irreducible totally ramified supercuspidal representations of $G = \operatorname{GL}_{p^m}(F)$, as in [6]. Then, this is a subset of $\mathcal{A}^2(G)$. We can define a subset $\mathcal{A}_0^{wr}(D)$ of $\mathcal{A}^2(G')$ by

$$\mathcal{A}_0^{wr}(D) = \mathbf{JL}\big(\mathcal{A}_m^{wr}(F)\big).$$

Thus, we get a canonical bijection, denoted again by **JL**,

$$\mathbf{JL}: \mathcal{A}_m^{wr}(F) \to \mathcal{A}_0^{wr}(D).$$

In [6], this correspondence is explicitly described. From [7, (1.4.4)], we have $t(\mathbf{JL}(\pi)) = t(\pi)$, for $\pi \in \mathcal{A}^2(G)$. Thus, every $\pi \in \mathcal{A}^{wr}_0(D)$ is totally ramified.

We prepare notation to describe **JL**. Set $A = M_{p^m}(F)$. Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_F -order in A, and denote by $\mathscr{S}^{wr}(\mathfrak{A})$ the set of elements α of $\mathfrak{K}(\mathfrak{A})$ satisfying the following conditions (see [6, Section 1.1]):

- (1) $[\mathfrak{A}, n, 0, \alpha]$ is a simple stratum in A, where $n = -\nu_{\mathfrak{A}}(\alpha)$;
- (2) the field extension $F[\alpha]/F$ is of degree p^m .

Then, since \mathfrak{A} is minimal, the extension $F[\alpha]/F$ is totally ramified.

We fix a level-one character ψ_F of F^{\times} as before. Let $\beta \in \mathscr{S}^{wr}(\mathfrak{A})$. Then, associated with the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, we have compact open subgroups of $G = A^{\times}$

$$H^1(\beta,\mathfrak{A}) \subset J^1(\beta,\mathfrak{A})$$

as in Section 1.1. In order to indicate the base field, we write them as follows:

$$H^1_F(\beta, \mathfrak{A}) \subset J^1_F(\beta, \mathfrak{A}).$$

We have a certain open subgroup $I_F^1(\beta, \mathfrak{A})$ of G that is normalized by $F[\beta]^{\times}$ and satisfies

$$H^1_F(\beta,\mathfrak{A}) \subset I^1_F(\beta,\mathfrak{A}) \subset J^1_F(\beta,\mathfrak{A}).$$

See [6, Section 6.4] for the definition. This group depends only on the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A. We can define the subgroup $I_F(\beta, \mathfrak{A})$ of G by

$$I_F(\beta, \mathfrak{A}) = F[\beta]^{\times} I_F^1(\beta, \mathfrak{A}).$$

We denote by

$$\mathscr{D}(\mathfrak{A},\beta,\psi_F) = \mathscr{D}_F(\beta,\psi_F)$$

the group of certain quasicharacters of the group $I_F(\beta, \mathfrak{A})$ defined in [6, Section 8.4]. To simplify, we will write $I_F(\beta, \mathfrak{A})$ as $I_F(\beta)$.

We define the subset $\mathscr{S}^{wr}(\mathfrak{o}_D)$ of $G' = D^{\times}$ like $\mathscr{S}^{wr}(\mathfrak{A}) \subset G = \operatorname{GL}_{p^m}(F)$. Let $\alpha \in \mathscr{S}^{wr}(\mathfrak{o}_D)$. Then, associated with the simple stratum $[\mathfrak{o}_D, -\nu_D(\alpha), 0, \alpha]$ in D, we similarly have the compact open subgroups $H^1(\alpha, \mathfrak{o}_D) \subset J^1(\alpha, \mathfrak{o}_D)$ (see [3], [14]) and the group $_DI^1(\alpha, \mathfrak{o}_D)$, defined in [6, Section 6.4], that is normalized by $F[\alpha]^{\times}$ and satisfies

$$H^1(\alpha, \mathfrak{o}_D) \subset {}_D I^1(\alpha, \mathfrak{o}_D) \subset J^1(\alpha, \mathfrak{o}_D).$$

We define the open subgroup ${}_DI(\alpha, \mathfrak{o}_D)$ of $G' = D^{\times}$ by

$${}_DI(\alpha, \mathfrak{o}_D) = F[\alpha]^{\times} {}_DI^1(\alpha, \mathfrak{o}_D).$$

We also write

$${}_DH^1_F(\alpha) = H^1(\alpha, \mathfrak{o}_D), \qquad {}_DJ^1_F(\alpha) = J^1(\alpha, \mathfrak{o}_D), \qquad {}_DI^1_F(\alpha) = {}_DI^1(\alpha, \mathfrak{o}_D).$$

We denote by

$$\mathscr{D}(\mathfrak{o}_D, \alpha, \psi_F) = {}_D \mathscr{D}_F(\alpha, \psi_F)$$

the group of certain quasicharacters of the group ${}_DI_F(\alpha) = {}_DI(\alpha, \mathfrak{o}_D)$ (see [6, Comment 8.4]).

Write $G_F = G = \operatorname{GL}_{p^m}(F)$ and $G'_F = G' = D^{\times}$ to indicate the base field. Now we can describe the Jacquet–Langlands correspondence **JL** as follows.

THEOREM 3.4 ([6, COROLLARIES 2-4 TO THEOREM 3.1])

For $\pi \in \mathcal{A}_m^{wr}(F)$, there exist $\beta \in \mathscr{S}^{wr}(\mathfrak{A})$ and $\lambda \in \mathscr{D}_F(\beta, \psi_F)$ such that

$$\pi \simeq \operatorname{c-Ind}_{I_F(\beta)}^{G_F} \lambda,$$

and there exist $\iota\beta \in D^{\times}$ and $_D\lambda \in _D\mathscr{D}_F(\iota\beta,\psi_F)$ such that

$$\mathbf{JL}(\pi) \simeq \operatorname{Ind}_{DI_F(\iota\beta)}^{G'_F} D\lambda.$$

Here, the element $\iota\beta \in \mathfrak{o}_D$ is conjugate to $\beta = \beta \otimes 1$ in $A \otimes_F K = D \otimes_F K$ for some finite unramified extension K/F (see below).

In Theorem 3.4, we write

$$\pi_F(\lambda) = \operatorname{c-Ind}_{I_F(\beta)}^{G_F} \lambda, \qquad \pi_D(D\lambda) = \operatorname{Ind}_{DI_F(\iota\beta)}^{G'_F} D\lambda.$$

3.3. Realizations for the endo-classes

Assume that a smooth representation π of $G = \operatorname{GL}_{p^m}(F)$ belongs to $\mathcal{A}_m^{wr}(F)$. From Theorem 3.4, we have $\pi \simeq \pi_F(\lambda)$ for some $\lambda \in \mathscr{D}_F(\beta, \psi_F)$. We may identify $\pi = \pi_F(\lambda)$. Since $H_F^1(\beta) \subset I_F^1(\beta)$, by the definition of the quasicharacter λ in [6, Section 8.4], we get that

$$\theta = \lambda \mid H_F^1(\beta) \in \mathscr{C}(\mathfrak{A}, 0, \beta, \psi_F).$$

Thus, $\pi = \pi_F(\lambda)$ contains the simple character θ . Hence, we can associate π with a pair ($[\mathfrak{A}, n, 0, \beta], \theta$), where $n = -\nu_{\mathfrak{A}}(\beta)$. Let $(\Theta, 0, \beta)$ be the ps-character over Fdefined by the pair ($[\mathfrak{A}, n, 0, \beta], \theta$). Hence, we can associate π with the endo-class of $(\Theta, 0, \beta)$. We denote this endo-class as $\Theta_G(\pi)$.

Set $\pi' = \mathbf{JL}(\pi) \in \mathcal{A}_0^{wr}(D)$. Then, again from Theorem 3.4, we have $\pi' \simeq \pi_D(D\lambda)$ for some $D\lambda \in D\mathscr{D}_F(\iota\beta,\psi_F)$. We also identify $\pi' = \pi_D(D\lambda)$. Then, we obtain

(3.1)
$$D\theta = D\lambda \mid DH_F^1(\iota\beta) \in \mathscr{C}(\mathfrak{o}_D, 0, \iota\beta, \psi_F)$$

and consequently a pair $([\mathfrak{o}_D, n', 0, \iota\beta], D\theta)$, where $n' = -\nu_D(\iota\beta)$. Let $(D\Theta, 0, \iota\beta)$ be the ps-character over F defined by the pair $([\mathfrak{o}_D, n', 0, \iota\beta], D\theta)$. Thus, we can associate π' with the endo-class of $(D\Theta, 0, \iota\beta)$. We denote this endo-class as $\Theta_{G'}(\pi')$.

In order to show the conjecture (2.2) that $\Theta_{G'}(\pi') = \Theta_G(\pi)$, we shall show that

(3.2)
$$([\mathfrak{A}, n, 0, \beta], \theta) \sim ([\mathfrak{o}_D, n', 0, \iota\beta], _D\theta)$$

in the sense of Definition 1.7.

3.4. Relationship between the quasicharacters

We retain the notation and assumptions of Section 3.2. We observe the relationship between the quasicharacters λ and $_D\lambda$ in Theorem 3.4.

Assume that K is a finite unramified extension of F of degree divisible by p^m . Set $A_K = A \otimes_F K$ and $D_K = D \otimes_F K$. For the hereditary \mathfrak{o}_F -orders \mathfrak{A} and \mathfrak{o}_D in $A = M_{p^m}(F)$ and D, respectively, we also set

$$\mathfrak{A}_K = \mathfrak{A} \otimes_{\mathfrak{o}_F} \mathfrak{o}_K, \qquad {}_D\mathfrak{A}_K = \mathfrak{o}_D \otimes_{\mathfrak{o}_F} \mathfrak{o}_K.$$

Then, from [6, Lemma 2.5], there exists an isomorphism of K-algebras $\iota: A_K \to D_K$ such that

$$\iota\beta \in \mathscr{S}^{wr}(\mathfrak{o}_D), \qquad \iota(\mathfrak{A}_K) = {}_D\mathfrak{A}_K.$$

We remark that $\iota\beta \in G' = D^{\times}$. For the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A = M_{p^m}(F)$, from [6, Proposition 5.1], the stratum $[\mathfrak{A}_K, n, 0, \beta \otimes 1]$ in $A_K = M_{p^m}(K)$ is simple. We identify $\beta = \beta \otimes 1$. The open subgroup of $G_K = A_K^{\times}$

$$I_K(\beta) = K[\beta]^{\times} I_K^1(\beta)$$

is defined in the same way as that of $I_F(\beta)$. Here, since the extension K/F is unramified and the extension $F[\beta]/F$ is totally ramified, $K[\beta] = K \cdot F[\beta]$ is a totally ramified extension field of K of degree p^m . Let ζ be a level-one additive character of K such that $\zeta \mid F = \psi_F$. Then, we denote by $\mathscr{D}(\mathfrak{A}_K, \beta, \zeta) = \mathscr{D}_K(\beta, \zeta)$ the set of certain quasicharacters of $I_K(\beta)$ with respect to ζ , as above.

We obtain $I_K(\beta) \cap A^{\times} = I_K(\beta)$ from [6, Proposition 1.5].

Let F_{nr}/F be a maximal unramified extension, and let \tilde{F} be the completion of F_{nr} with respect to the discrete valuation ν . Hereafter, we fix a level-one character Ψ of \tilde{F} such that $\Psi \mid F = \psi_F$. For K/F finite and contained in F_{nr} , we set $\Psi^K = \Psi \mid K$. From this character Ψ^K , we obtain the sets of quasicharacters $\mathscr{D}_K(\beta, \Psi^K)$ and ${}_D\mathscr{D}_K(\iota\beta, \Psi^K)$. Then, it follows from [6, Section 1.3.2] that, through the K-isomorphism ι above, the map $\mu \mapsto \mu \circ \iota$ induces a bijection

$$\mathscr{D}_K(\beta, \Psi^K) \simeq {}_D \mathscr{D}_K(\iota\beta, \Psi^K),$$

denoted again by ι .

PROPOSITION 3.5 ([6, SECTION 2.5])

Let $\lambda \in \mathscr{D}_F(\beta, \psi_F)$ and $_D\lambda \in _D\mathscr{D}_F(\iota\beta, \psi_F)$ be the quasicharacters in Theorem 3.4. Then, there exists a quasicharacter $\lambda(K) \in \mathscr{D}_K(\beta, \Psi^K)$ such that

$$\lambda(K) \mid I_F(\beta) = \lambda, \qquad {}_D\lambda = \lambda(K) \circ \iota^{-1} \mid {}_DI_F(\iota\beta).$$

Proof

The quasicharacters $\lambda(K)$ and $_D\lambda$ are replaced by $\tilde{\lambda}^K$ satisfying $\tilde{\lambda}^K | I_F(\beta) = \lambda$ and $\tilde{\lambda}^K \circ \iota^{-1} | _D I_F(\iota\beta) = \iota(\tilde{\lambda}^K)^F$ in [6, Section 2.5], respectively. Thus, the equalities of this proposition follow and the proof is complete.

In the proof of Proposition 3.5, we remark that the representation $\pi_D(D\lambda)$ defined in Section 3.2 is replaced by $D\pi(\lambda)$ in [6, Section 2.5]. By the proof of [6, Section 3.3 Lemma 2], we can identify

$$D_K = A_K, \qquad {}_D\mathfrak{A}_K = \mathfrak{A}_K$$

and find a K-automorphism ι of $D_K = A_K$ satisfying the conditions: (1) $\iota(\mathfrak{A}_K) = \mathfrak{A}_K$ and (2) $\iota(F[\beta]) \subset D$. Thus, we have $\iota = \operatorname{Ad}(y_0)$ for some $y_0 \in U(\mathfrak{A}_K) = \mathfrak{A}_K^{\times}$.

PROPOSITION 3.6

The group ${}_{D}I_{F}(\iota\beta)$ and the quasicharacter ${}_{D}\lambda$ in Proposition 3.5 may be replaced by

$${}_{D}I_{F}(y_{0}^{-1}\beta y_{0}) = y_{0}^{-1}I_{K}(\beta)y_{0} \cap D^{\times}, \qquad \lambda(K) \circ \operatorname{Ad}(y_{0}) \mid {}_{D}I_{F}(y_{0}^{-1}\beta y_{0}).$$

Proof

This follows from the proof of [6, Section 3.3 Lemma 2]. The proof is complete. \Box

Since we have $y_0 \in \mathfrak{A}_K^{\times}$, we obtain

$$I_K(\iota\beta) = I_K(y_0^{-1}\beta y_0) = y_0^{-1}I_K(\beta)y_0.$$

3.5. Simple and quasisimple characters

Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_F -order in $A = \mathcal{M}_{p^m}(F)$, and let $\beta \in \mathscr{S}^{wr}(\mathfrak{A})$. Then, the pair $(0,\beta)$ is a simple pair over F. Set $E = F[\beta]$. Then, the field E is a totally ramified extension of F of degree p^m . Let A(E) and $\mathfrak{A}(E)$ be the objects defined in Section 1.2. Then, through a basis of E as an F-vector space, we identify

$$A(E) = \mathcal{M}_{p^m}(F) = A.$$

Then, we may set $\mathfrak{A}(E) = \mathfrak{A}$. Thus, in A = A(E), we identify

$$|\mathfrak{A}(E), n, 0, \beta| = [\mathfrak{A}, n, 0, \beta],$$

and

(3.3)
$$\mathscr{C}_F(0,\beta) = \mathscr{C}(\mathfrak{A}(E),0,\beta,\psi_F) = \mathscr{C}(\mathfrak{A},0,\beta,\psi_F),$$

with respect to the fixed level-one additive character ψ_F of F.

Let K/F be an unramified extension of degree divisible by p^m , and let Ψ^K be a character of K as before such that $\Psi^K | F = \psi_F$. Set $A_K = A \otimes_F K, \mathfrak{A}_K = \mathfrak{A} \otimes_{\mathfrak{o}_F} \mathfrak{o}_K$, and $\tilde{E} = E \otimes_F K$. Then, we have $\tilde{E} = E \cdot K = K[\beta]$ and this is a totally ramified extension of K of degree p^m , as seen in Section 3.3. Thus, we can identify

$$A_K(\tilde{E}) = \operatorname{End}_K(\tilde{E}) = A_K, \qquad \mathfrak{A}_K(\tilde{E}) = \operatorname{End}_{\mathfrak{o}_K}^0(\{\mathfrak{p}_{\tilde{E}}^i : i \in \mathbb{Z}\}) = \mathfrak{A}_K.$$

Hence, we have $[\mathfrak{A}_K(\tilde{E}), n, 0, \beta] = [\mathfrak{A}_K, n, 0, \beta]$ and

(3.4)
$$\mathscr{C}_{K}(0,\beta) = \mathscr{C}(\mathfrak{A}_{K}(\tilde{E}),0,\beta,\Psi^{K}) = \mathscr{C}(\mathfrak{A}_{K},0,\beta,\Psi^{K}).$$

3.6. Descent of transfers

We come back to Section 3.4 and investigate the representation $\pi_D(D\lambda)$ of $G' = D^{\times}$. From Proposition 3.5, we can set

$$\theta(K) = \lambda(K) \mid H^1_K(\beta) \in \mathscr{C}(\mathfrak{A}_K, 0, \beta, \Psi^K)$$

as in Section 3.3. Then, we have $\theta(K) \mid H_F^1(\beta) = \theta$. Hereafter, set $\iota\beta = y_0^{-1}\beta y_0$. We can also set

$$_{D}\theta(K) = \lambda(K) \circ \operatorname{Ad}(y_{0}) \mid _{D}H^{1}_{K}(\iota\beta) \in \mathscr{C}(_{D}\mathfrak{A}_{K}, 0, \iota\beta, \Psi^{K}).$$

Since ${}_D\mathfrak{A}_K = \mathfrak{A}_K$, we have

$$H^1_K(\iota\beta) = H^1(\iota\beta, \mathfrak{A}_K) = H^1(\iota\beta, D\mathfrak{A}_K) = {}_DH^1_K(\iota\beta)$$

and

$$_DH^1_K(\iota\beta) \cap D^{\times} = _DH^1_F(\iota\beta) = H^1(\iota\beta, \mathfrak{o}_D).$$

Hence, from the equality (3.1), we obtain

$$_{D}\theta = _{D}\theta(K) \mid _{D}H^{1}_{F}(\iota\beta) \in \mathscr{C}(\mathfrak{o}_{D}, 0, \iota\beta, \psi_{F}).$$

To prove the equivalence (3.2), it is enough to prove the following condition.

Condition C1. $_{D}\theta$ is the transfer of θ .

From (3.3), (3.4), and the definition [14, Section 3.3], there exist canonical bijections, referred to as the *transfers*,

$$\tau_F = \tau_{\mathfrak{A},0,\beta} : \mathscr{C}_F(0,\beta) = \mathscr{C}(\mathfrak{A},0,\beta,\psi_F) \to \mathscr{C}(\mathfrak{o}_D,0,\iota\beta,\psi_F)$$

and

$$\tau_K = \tau_{\mathfrak{A}_K,0,\beta} : \mathscr{C}_K(0,\beta) = \mathscr{C}(\mathfrak{A}_K,0,\beta,\Psi^K) \to \mathscr{C}({}_D\mathfrak{A}_K,0,\iota\beta,\Psi^K).$$

From [14, Theorem 3.53], we get the following commutative diagram:

$$\begin{array}{ccc} \mathscr{C}(\mathfrak{A}_{K},0,\beta,\Psi^{K}) & \xrightarrow{\tau_{K}} & \mathscr{C}({}_{D}\mathfrak{A}_{K},0,\iota\beta,\Psi^{K}) \\ & & & & \downarrow^{\mathrm{res}} \\ & & & & \downarrow^{\mathrm{res}} \\ & & & \mathscr{C}(\mathfrak{A},0,\beta,\psi_{F}) & \xrightarrow{\tau_{F}} & \mathscr{C}(\mathfrak{o}_{D},0,\iota\beta,\psi_{F}), \end{array}$$

where the vertical maps are the restrictions. Hence, to prove Condition C1, it is enough to prove the following condition.

Condition C2. $\tau_K(\theta') = \theta' \circ \operatorname{Ad}(y_0)$, for $\theta' \in \mathscr{C}(\mathfrak{A}_K, 0, \beta, \Psi^K)$. In fact, if Condition C2 is satisfied, then by setting $\theta' = \theta(K)$, we obtain that

$$\tau_K(\theta(K)) = \theta(K) \circ \operatorname{Ad}(y_0) = {}_D\theta(K).$$

Thus, by the commutative diagram above, we obtain that

$$\tau_F(\theta) = \tau_F\left(\operatorname{res}(\theta(K))\right) = \operatorname{res}(\tau_K(\theta(K))) = \operatorname{res}(_D\theta(K)) = _D\theta,$$

which means Condition C1 holds.

Since $[\mathfrak{A}_K, n, 0, \beta]$ is a simple stratum in $A_K = M_{p^m}(K)$ and $K[\beta]/K$ is a totally ramified extension of degree p^m , we have

$$\beta = \beta \otimes 1 \in \mathscr{S}^{wr}(\mathfrak{A}_K).$$

Moreover, we have $\iota\beta = y_0^{-1}\beta y_0$ for the element $y_0 \in \mathfrak{A}_K^{\times}$ defined above.

Finally, in order to prove Condition C2, by replacing the base field K of Condition C2 by the field F, it is enough to prove the following.

PROPOSITION 3.7

Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_F -order in $A = M_{p^m}(F)$ and let $\beta \in \mathscr{S}^{wr}(\mathfrak{A})$. Let y_0 be an element of \mathfrak{A}^{\times} and let $\iota: F[\beta] \to A$ be an F-embedding defined by $\iota\beta = y_0^{-1}\beta y_0$. Then, the transfer

$$\tau_F = \tau_{\mathfrak{A},0,\beta} : \mathscr{C}_F(0,\beta) = \mathscr{C}(\mathfrak{A},0,\beta,\psi_F) \to \mathscr{C}(\mathfrak{A},0,\iota\beta,\psi_F)$$

satisfies

$$\tau_F(\theta) = \theta \circ \operatorname{Ad}(y_0), \quad \theta \in \mathscr{C}(\mathfrak{A}, 0, \beta, \psi_F).$$

We devote the next section to a proof of this proposition.

3.7. A proof of the auxiliary proposition

Hereafter, let V be an F-vector space of dimension p^m , $m \ge 1$, let $A = \operatorname{End}_F(V)$, and let $G = A^{\times}$. If necessary, through an F-basis of V, we identify $A = \operatorname{M}_{p^m}(F)$ and $G = \operatorname{GL}_{p^m}(F)$.

Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_F -order in A, and let $\beta \in \mathscr{S}^{wr}(\mathfrak{A})$. Set $E = F[\beta]$. Then, E is a totally ramified extension of F of degree p^m , and \mathfrak{A} is E-pure. Thus, V is a one-dimensional E-vector space. Identifying V = E, we have $A = \operatorname{End}_F(V) = \operatorname{End}_F(E) = A(E)$ and $\mathfrak{A} = \operatorname{End}_{\mathfrak{o}_F}^0(\{\mathfrak{p}_E^i : i \in \mathbb{Z}\}) = \mathfrak{A}(E)$, as in Section 3.5. We set $\mathcal{L} = \{\mathfrak{p}_E^i : i \in \mathbb{Z}\}$ and write $\mathfrak{A} = \mathfrak{A}(\mathcal{L})$. We remark that the element $y_0 \in \mathfrak{A}(\mathcal{L})^{\times}$ satisfies

$$y_0^{-1}\mathfrak{A}(\mathcal{L})y_0 = \mathfrak{A}(\mathcal{L}).$$

We prove Proposition 3.7 by the method of [8, (3.6.14)]. Set $B = C_A(E)$ and $\mathfrak{B} = B \cap \mathfrak{A}$. Then, we may identify B = E and $\mathfrak{B} = \mathfrak{o}_E$. Set

$$\tilde{V} = V \oplus V = E \oplus E.$$

Then, \tilde{V} is a $2p^m$ -dimensional F-vector space, and it can be viewed as a twodimensional E-vector space. Set

$$\tilde{A} = \operatorname{End}_F(\tilde{V}).$$

We distinguish the factors V of \tilde{V} as follows: $\tilde{V} = V \oplus V = V_1 \oplus V_2$. Set $A_i = \text{End}_F(V_i)$, i = 1, 2. We view \mathfrak{A} as the \mathfrak{o}_F -order in A_1 . Then, the elements β and y_0 belong to A_1 , and \mathcal{L} is the \mathfrak{o}_F -lattice chain in $V_1 = V$. This \mathcal{L} can be also viewed as the \mathfrak{o}_F -lattice chain in $V_2 = V$. In the F-space V_1 , we set

$$\mathcal{L}_1 = y_0^{-1} \mathcal{L} = \{ y_0^{-1} \mathfrak{p}_E^i : i \in \mathbb{Z} \}.$$

Since $y_0 \in \mathfrak{A}(\mathcal{L})^{\times} = \operatorname{Ker} \nu_{\mathfrak{A}}$, we have $\mathcal{L}_1 = \mathcal{L}$ and so

(3.5)
$$y_0^{-1}\mathfrak{P}(\mathcal{L})^k y_0 = \mathfrak{P}(\mathcal{L})^k, \quad k \ge 0.$$

For i = 1, 2, we set

 $L_j^i = \mathfrak{p}_E^j, \quad j \in \mathbb{Z},$

and $\mathcal{L}_i = \{L_j^i : j \in \mathbb{Z}\} = \mathcal{L}.$

We define \mathfrak{o}_F -lattices in $\tilde{V} = V_1 \oplus V_2$ by

$$M_j = L^1_i \oplus L^2_j, \quad j \in \mathbb{Z},$$

and set $\mathcal{M} = \{M_j : j \in \mathbb{Z}\}$. Then, \mathcal{M} is an \mathfrak{o}_F -lattice chain in \tilde{V} of \mathfrak{o}_F -period p^m , and also an \mathfrak{o}_E -lattice chain in \tilde{V} of \mathfrak{o}_E -period one. Set

$$\mathfrak{A} = \mathfrak{A}(\mathcal{M}) = \{ x \in A : xM_j \subset M_j, j \in \mathbb{Z} \}$$

and $\hat{\mathfrak{P}} = \mathfrak{P}(\mathcal{M})$. Then, $\hat{\mathfrak{A}}$ is a hereditary \mathfrak{o}_F -order in \hat{A} , and $\hat{\mathfrak{P}}$ is the Jacobson radical of $\tilde{\mathfrak{A}}$. For i = 1, 2, let e_i be the canonical projection $\tilde{V} = V_1 \oplus V_2 \to V_i$. Then, we have

$$\tilde{A} = \coprod_{i,j} \boldsymbol{e}_i \tilde{A} \boldsymbol{e}_j$$

In particular, we identify $A_i = \operatorname{End}_F(V_i) = e_i \tilde{A} e_i$, i = 1, 2. Then, there exists a canonical embedding $A_1 \times A_2 \hookrightarrow \tilde{A}$. For $\beta \in A$, set

$$\varphi(\beta) = (\iota\beta, \beta) = (y_0^{-1}\beta y_0, \beta) \in A_1 \times A_2 \subset \tilde{A}.$$

Then, the map $\beta \mapsto \varphi(\beta)$ defines an *F*-embedding $E = F[\beta] \to \tilde{A}$, denoted again by φ . We identify $E = F[\beta] = F[\varphi(\beta)] = \varphi(E) \subset \tilde{A}$. Thus, we can view $\tilde{V} = V_1 \oplus V_2$ as an *E*-vector space. By the definition of $\tilde{\mathfrak{A}}$, we have $E^{\times} \subset \mathfrak{K}(\tilde{\mathfrak{A}})$. Let $\tilde{B} = C_{\tilde{A}}(\varphi(\beta))$, let $B_1 = C_{A_1}(\iota\beta)$, and let $B_2 = C_{A_2}(\beta)$. Then, through the identification $A_1 = A_2 = A$, we have $B_1 = y_0^{-1}By_0$ and $B_2 = B$. In $A_i = \operatorname{End}_F(V_i)$, set

$$\mathfrak{A}_i = \mathfrak{A}(\mathcal{L}_i) = \mathfrak{A}(\mathcal{L}),$$

for i = 1, 2. We have

$$E^{\times} \simeq \boldsymbol{e}_i E^{\times} \boldsymbol{e}_i \subset \mathfrak{K}(\mathfrak{A}_i).$$

Set $\tilde{\mathfrak{B}} = \tilde{\mathfrak{A}} \cap \tilde{B}$ and $\mathfrak{B}_i = \mathfrak{A}_i \cap B_i$, for i = 1, 2. From (3.5), we obtain that

$$\mathfrak{B}_1 = \mathfrak{A}_1 \cap B_1 = y_0^{-1} \mathfrak{A}(\mathcal{L}) y_0 \cap y_0^{-1} B y_0 = y_0^{-1} \mathfrak{B} y_0$$

and $\mathfrak{B}_2 = \mathfrak{B}$. Since $\mathfrak{H}^k(\varphi(\beta), \tilde{\mathfrak{A}})$ is a $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}})$ -bimodule, by [8, (3.6.15)], we obtain

 $\mathfrak{H}^k\big(\varphi(\beta),\tilde{\mathfrak{A}}\big)\cap A_i=\boldsymbol{e}_i\mathfrak{H}^k\big(\varphi(\beta),\tilde{\mathfrak{A}}\big)\boldsymbol{e}_i,\quad k\ge 0,$

for i = 1, 2. In fact, for $k \ge 0$, we prove that

(3.6)
$$\begin{cases} \mathfrak{H}^k(\varphi(\beta),\tilde{\mathfrak{A}}) \cap A_1 = \mathfrak{H}^k(\iota\beta,\mathfrak{A}(\mathcal{L})) = y_0^{-1}\mathfrak{H}^k(\beta,\mathfrak{A}(\mathcal{L}))y_0, \\ \mathfrak{H}^k(\varphi(\beta),\tilde{\mathfrak{A}}) \cap A_2 = \mathfrak{H}^k(\beta,\mathfrak{A}(\mathcal{L})). \end{cases}$$

It is enough to prove this for the case k = 0. We proceed by induction along β . Assume that β is minimal over F. Then, we have $\mathfrak{H}(\varphi(\beta), \mathfrak{A}) = \mathfrak{B} + \mathfrak{P}^{\lfloor -\nu/2 \rfloor + 1}$, where $\nu = \nu_E(\beta)$. From [8, (3.6.15)], we obtain that

$$\mathfrak{H}\big(\varphi(\beta),\tilde{\mathfrak{A}}\big) \cap A_i = e_i \tilde{\mathfrak{B}} e_i + e_i \tilde{\mathfrak{P}}^{\lfloor -\nu/2 \rfloor + 1} e_i = \mathfrak{B}_i + \mathfrak{P}_i^{\lfloor -\nu/2 \rfloor + 1}.$$

Moreover, we have that

$$\mathfrak{B}_1 + \mathfrak{P}_1^{\lfloor -\nu/2 \rfloor + 1} = y_0^{-1} \mathfrak{B} y_0 + y_0^{-1} \mathfrak{P}^{\lfloor -\nu/2 \rfloor + 1} y_0 = y_0^{-1} \mathfrak{H} \big(\beta, \mathfrak{A}(\mathcal{L})\big) y_0$$

and $\mathfrak{B}_2 + \mathfrak{P}_2^{\lfloor -\nu/2 \rfloor + 1} = \mathfrak{B} + \mathfrak{P}^{\lfloor -\nu/2 \rfloor + 1} = \mathfrak{H}(\beta, \mathfrak{A}(\mathcal{L}))$. Thus, (3.6) is proved. In the general case, let

$$r_0 = -k_0(\beta, \mathfrak{A}(\mathcal{L})) = -k_0(\iota\beta, \mathfrak{A}(\mathcal{L})) = -k_0(\beta, \mathfrak{A}(E)).$$

Then, there exists a simple stratum $[\mathfrak{A}(E), -\nu, r_0, \gamma]$ in A(E) that is equivalent to $[\mathfrak{A}(E), -\nu, r_0, \beta]$. Since γ belongs to A(E) = A, we can define an *F*-embedding $\varphi: F[\gamma] \to \tilde{A}$ by

$$\varphi(\gamma) = (\iota\gamma, \gamma) = (y_0^{-1}\gamma y_0, \gamma).$$

The stratum $[\mathfrak{A}_1, -\nu, r_0, \iota\gamma]$ is simple in $A_1 = A = A(E)$ and is equivalent to $[\mathfrak{A}_1, -\nu, r_0, \iota\beta]$. Similarly, the stratum $[\mathfrak{A}_2, -\nu, r_0, \gamma]$ is simple in $A_2 = A = A(E)$

and is equivalent to $[\mathfrak{A}_2, -\nu, r_0, \beta]$. Thus, we obtain

$$\mathfrak{H}\big(\varphi(\beta),\tilde{\mathfrak{A}}\big) = \tilde{\mathfrak{B}} + \mathfrak{H}^{\lfloor r_0/2 \rfloor + 1}\big(\varphi(\gamma),\tilde{\mathfrak{A}}\big)$$

Moreover, by induction, we obtain

$$\begin{split} \mathfrak{H}\big(\varphi(\beta),\tilde{\mathfrak{A}}\big) \cap A_1 &= \mathfrak{B}_1 + \mathfrak{H}^{\lfloor r_0/2 \rfloor + 1}(\iota\gamma,\mathfrak{A}_1) \\ &= y_0^{-1}\mathfrak{B}y_0 + y_0^{-1}\mathfrak{H}^{\lfloor r_0/2 \rfloor + 1}\big(\gamma,\mathfrak{A}(\mathcal{L})\big)y_0 \\ &= y_0^{-1}\mathfrak{H}\big(\beta,\mathfrak{A}(\mathcal{L})\big)y_0, \end{split}$$

and similarly $\mathfrak{H}(\varphi(\beta), \mathfrak{A}) \cap A_2 = \mathfrak{H}(\beta, \mathfrak{A}(\mathcal{L}))$. Hence, the proof of (3.5) is finished and we have

$$y_0^{-1}H^k(\beta,\mathfrak{A}(\mathcal{L}))y_0 imes H^k(\beta,\mathfrak{A}(\mathcal{L})) \subset H^k(\varphi(\beta),\tilde{\mathfrak{A}}),$$

for $k \geq 0$. Given $\theta \in \mathscr{C}(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_F)$, we set

$$\theta_1 = \theta \mid H^1(\iota\beta, \mathfrak{A}(\mathcal{L})), \qquad \theta_2 = \theta \mid H^1(\beta, \mathfrak{A}(\mathcal{L})).$$

We shall prove

(3.7)
$$\theta_1 = \theta_2 \circ \operatorname{Ad}(y_0).$$

We again proceed by induction along β . For the fixed additive character ψ_F of F, we set

$$\psi = \psi_{\tilde{A}} = \psi_F \circ \operatorname{tr}_{\tilde{A}/F}, \qquad \psi_i = \psi_{A_i} = \psi_F \circ \operatorname{tr}_{A_i/F}, \quad i = 1, 2.$$

Then, we have

$$\psi \mid A_i = \psi_i, \quad i = 1, 2.$$

For $a \in \tilde{A}$, define the character ψ_a of \tilde{A} by $\psi_a(x) = \psi(a(x-1))$, $x \in \tilde{A}$. If $a = (a_1, a_2)$, $a_i \in A_i$, then we have $\psi_a \mid A_i = \psi_{i,a_i}$, i = 1, 2. We identify

$$\beta = \varphi(\beta) = (\iota\beta, \beta) = (y_0^{-1}\beta y_0, \beta) \in A_1 \oplus A_2 \subset \tilde{A}$$

Assume that β is minimal over F. Let χ_0 be a unique character of $U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{o}_E)$ such that

$$\psi_{\beta} \mid U^{\lfloor -\nu/2 \rfloor + 1}(\tilde{\mathfrak{B}}) = \chi_0 \circ \det_{\tilde{B}}.$$

Then, we also have

$$\begin{cases} \psi_{1,\iota\beta} \mid U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{B}_1) = \chi_0 \circ \det_{B_1}, \\ \psi_{2,\beta} \mid U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{B}_2) = \chi_0 \circ \det_{B_2}. \end{cases}$$

For $\mathfrak{B} = \mathfrak{A}(\mathcal{L}) \cap B$ in A = A(E) as before, we can identify

$$\mathfrak{B}_1 = y_0^{-1}\mathfrak{B}y_0 = y_0^{-1}\mathfrak{B}_2y_0.$$

Thus, we have

$$U^{\lfloor -\nu/2 \rfloor +1}(\mathfrak{B}_1) = y_0^{-1} U^{\lfloor -\nu/2 \rfloor +1}(\mathfrak{B}_2) y_0$$

and so

(3.8)
$$\psi_{1,\iota\beta} \mid U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{B}_1) = \psi_{2,\beta} \circ \operatorname{Ad}(y_0) \mid U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{B}_1).$$

In fact, for $z \in U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{B}_1)$, we obtain

$$\psi_{1,\iota\beta}(z) = \psi_F \circ \operatorname{tr}_{A_1}\left(\iota\beta(z-1)\right) = \psi_F \circ \operatorname{tr}_{A_1}\left(y_0^{-1}\beta y_0(z-1)\right)$$
$$= \psi_F \circ \operatorname{tr}_{A_1}\left(\beta(y_0 z y_0^{-1} - 1)\right) = \psi_{2,\beta}(y_0 z y_0^{-1})$$

and hence obtain (3.8). Take $\theta \in \mathscr{C}(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_F)$. When $0 \ge \lfloor -\nu/2 \rfloor$, we have $\theta = \psi_{\varphi(\beta)}$ and so

$$\theta_1 = \psi_{1,\iota\beta}, \qquad \theta_2 = \psi_{2,\beta}.$$

Moreover, we have $\theta_1 \in \mathscr{C}(\mathfrak{A}(\mathcal{L}), 0, \iota\beta, \psi_F), \ \theta_2 \in \mathscr{C}(\mathfrak{A}(\mathcal{L}), 0, \beta, \psi_F)$, and the map $\theta \mapsto \theta_i$ is bijective. Since (3.8) implies (3.7), we obtain the bijection

$$\theta_2 \mapsto \theta_1 = \theta_2 \circ \operatorname{Ad}(y_0)$$

from $\mathscr{C}(\mathfrak{A}(\mathcal{L}), 0, \beta, \psi_F)$ to $\mathscr{C}(\mathfrak{A}(\mathcal{L}), 0, \iota\beta, \psi_F)$. When $\lfloor -\nu/2 \rfloor > 0$, we can choose a character χ_{θ} of $U^1(\mathfrak{o}_E)$ such that

$$\theta \mid U^1(\mathfrak{B}) = \chi_\theta \circ \det_{\tilde{B}/E}$$

Then, as in the proof of [8, (3.6.1)], we obtain the bijection $\theta \mapsto \chi_{\theta}$ from $\mathscr{C}(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_F)$ to the set of characters χ of $U^1(\mathfrak{o}_E)$ such that $\chi \mid U^{\lfloor -\nu/2 \rfloor + 1}(\mathfrak{o}_E) = \chi_{\theta}$. Since $\theta_i \mid U^1(\mathfrak{B}_i) = \chi_{\theta} \circ \det_{B_i}$, we thus obtain the bijection $\theta \mapsto \theta_i$, i = 1, 2. From the equality

$$\det_B(x) = \det_{B_1}(y_0^{-1}xy_0), \quad x \in B$$

together with (3.8), we obtain (3.7) by [8, (3.2.1)], and hence obtain the bijection $\theta_2 \mapsto \theta_1 = \theta_2 \circ \operatorname{Ad}(y_0)$ as above.

In the general case, we set $r_0 = -k_0(\iota\beta, \mathfrak{A}(\mathcal{L})) = -k_0(\beta, \mathfrak{A}(\mathcal{L}))$ and take an element $\gamma \in A = A_1 = A_2$ and an *F*-embedding $\varphi : F[\gamma] \to \tilde{A}$, as before. Set

$$c = \varphi(\beta) - \varphi(\gamma) = (\iota\beta, \beta) - (\iota\gamma, \gamma) = (y_0^{-1}(\beta - \gamma)y_0, \beta - \gamma).$$

Suppose that $0 \ge \lfloor r_0/2 \rfloor$. Take $\theta \in \mathscr{C}(\mathfrak{A}, 0, \varphi(\beta), \psi_F)$. Then, this character can be written in the form $\theta = \theta_0 \cdot \psi_c, \theta_0 \in \mathscr{C}(\mathfrak{A}, 0, \varphi(\beta), \psi_F)$, and we have

$$\begin{cases} \theta_1 = (\theta_0 \mid H^1(\iota\beta, \mathfrak{A}(\mathcal{L}))) \cdot \psi_{1,\iota\beta-\iota\gamma}, \\ \theta_2 = (\theta_0 \mid H^1(\gamma, \mathfrak{A}(\mathcal{L}))) \cdot \psi_{2,\beta-\gamma}. \end{cases}$$

In this case, by induction and by [8, (3.3.18)], we see that $\theta \mapsto \theta_i$ is bijective. We also obtain

$$\begin{aligned} \theta_1 &= \left(\theta_0 \mid H^1(\iota\gamma, \mathfrak{A}(\mathcal{L}))\right) \cdot \psi_{1,\iota\beta-\iota\beta} \\ &= \left[\left(\theta_0 \mid H^1(\gamma, \mathfrak{A}(\mathcal{L}))\right) \circ \operatorname{Ad}(y_0) \right] \cdot \left[\psi_{2,\beta-\gamma} \circ \operatorname{Ad}(y_0) \right] \\ &= \theta_2 \circ \operatorname{Ad}(y_0). \end{aligned}$$

Hence, $\theta_2 \mapsto \theta_1 = \theta_2 \circ \operatorname{Ad}(y_0)$ is the bijection from $\mathscr{C}(\mathfrak{A}(\mathcal{L}), 0, \beta, \psi_F)$ to $\mathscr{C}(\mathfrak{A}(\mathcal{L}), 0, \iota\beta, \psi_F)$. The case $\lfloor r_0/2 \rfloor > 0$ follows in a way quite similar to that of the proof in the case where β is minimal over F. The assertion of Proposition 3.7 follows from the uniqueness of the transfer τ_F by [14, Theorem 3.53]. The proof is complete.

Finally, Proposition 3.7 confirms the conjecture of Remark 2.5.

References

- A. I. Badulescu, Correspondence de Jacquet-Langlands pour les corps locaux de caractéristique non nulle, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 695–747. MR 1951441. DOI 10.1016/S0012-9593(02)01106-0.
- [2] A. I. Badulescu, G. Henniart, B. Lemaire, and V. Sécherre, Sur le dual unitaire de GL_r(D), Amer. J. Math. **132** (2010), 1365–1396. MR 2732351.
 DOI 10.1353/ajm.2010.0009.
- P. Broussous, Extension du formalisme de Bushnell et Kutzko au cas d'une algèbre à division, Proc. Lond. Math. Soc. (3) 77 (1988), 292–326.
 MR 1635145. DOI 10.1112/S0024611598000471.
- [4] P. Broussous, V. Sécherre, and S. Stevens, Smooth representations of $GL_m(D)$, V: Endo-classes, Doc. Math. 17 (2012), 23–77. MR 2889743.
- C. J. Bushnell and G. Henniart, Local tame lifting for GL(N), I: Simple characters, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 105–233.
 MR 1423022.
- [6] _____, Local tame lifting for GL(n), III: Explicit base change and Jacquet-Langlands correspondence, J. Reine Angew. Math. 580 (2005), 39–100. MR 2130587. DOI 10.1515/crll.2005.2005.580.39.
- [7] _____, The essentially tame Jacquet-Langlands correspondence for inner forms of GL(n), Pure Appl. Math. Q. 7 (2011), 469–538. MR 2848585.
 DOI 10.4310/PAMQ.2011.v7.n3.a2.
- [8] C. J. Bushnell and P. C. Kutzko, The Admissible Dual of GL(N) via Compact Open Subgroups, Ann. Math. Stud. 129, Princeton Univ. Press, Princeton, 1993. MR 1204652.
- [9] P. Deligne, D. Kazhdan, and M.-F. Vignéras, "Représentations des algèbres centrales simples *p*-adiques" in *Representations of Reductive Groups over a Local Field*, Travaux en Cours, Hermann, Paris, 1984, 33–117. MR 0771672.
- M. Grabitz, A. J. Silberger, and E.-W. Zink, Level zero types and Hecke algebras for local central simple algebras, J. Number Theory 91 (2001), 92–125.
 MR 1869321. DOI 10.1006/jnth.2001.2684.
- [11] G. Henniart, "Correspondance de Jacquet-Langlands explicite, I: Le cas modéré de degré premier" in Séminaire de Théorie des Nombres, Paris, 1990-91, Progr. Math. 108, Birkhäuser, Boston, 1993, 85-114. MR 1263525.
- [12] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin, 1970. MR 0401654.
- [13] J. D. Rogawski, Representations of GL(n) and division algebras over a p-adic field, Duke Math. J. 50 (1983), 161–196. MR 0700135.
- V. Sécherre, Représentations lisses de GL(m, D), I: Caractères simples, Bull.
 Soc. Math. France 132 (2004), 327–396. MR 2081220.
- [15] _____, Représentations lisses de GL(m, D), III: Types simples, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 951–977. MR 2216835.
 DOI 10.1016/j.ansens.2005.10.003.

- [16] V. Sécherre and S. Stevens, *Représentations lisse de* GL(m, D), *IV: Représentations supercuspidals*, J. Inst. Math. Jussieu 7 (2008), 527–574.
 MR 2427423. DOI 10.1017/S1474748008000078.
- [17] A. J. Silberger and E.-W. Zink, Weak explicit matching for level zero discrete series of unit groups of p-adic simple algebras, Canad. J. Math. 55 (2003), 353–378. MR 1969796. DOI 10.4153/CJM-2003-016-4.
- [18] _____, An explicit matching theorem for level zero discrete series of unit groups of p-adic simple algebras, J. Reine Angew. Math. 585 (2005), 173–235. MR 2164626. DOI 10.1515/crll.2005.2005.585.173.
- S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), 123–173. MR 2126498. DOI 10.1215/S0012-7094-04-12714-9.

Department of Economics, Management, and Information Science, Onomichi City University, Hiroshima 722-8506, Japan; kariyama@onomichi-u.ac.jp

320