Endo-class and the
 Jacquet-Langlands correspondence

Kazutoshi Kariyama

Abstract

Let F be a non-archimedean local field. Recently, Broussous, Sécherre, and Stevens extended the notion of an endo-class, introduced by Bushnell and Henniart for $\mathrm{GL}_{N}(F)$ with $N \geq 1$, to an inner form of $\mathrm{GL}_{N}(F)$ over F, and conjectured that this endo-class for discrete series representations is preserved by the Jacquet-Langlands correspondence. Explicit realizations of the correspondence are given by Silberger and Zink for level-zero discrete series representations and by Bushnell and Henniart for totally ramified ones. In this paper, we show that these realizations confirm the conjecture.

Introduction

Let F be a non-archimedean local field of finite residue characteristic p, and let D be a central division F-algebra of dimension $d^{2}, d \geq 1$. Let \mathfrak{o}_{F} and \mathfrak{o}_{D} be the rings of integers in F and D, respectively. Let m be a positive integer. The product $N=m d$ being fixed, there exist bijective maps, referred to as the Jacquet-Langlands correspondence, between the sets of irreducible discrete series representations of $\mathrm{GL}_{m}(D)$ such that a character relation is preserved (see [1], [9], [12], [13]). There exist a series of works by Bushnell and Henniart (see [7], [8], [11]) and by Silberger and Zink (see [17], [18]) in which the Jacquet-Langlands correspondences were described explicitly in terms of types. The notion of an endo-class was introduced in [6], and it was proved in [5] and [8] that an endoclass is an invariant associated to an irreducible supercuspidal representation of $\mathrm{GL}_{N}(F)$, which is constructed as a compactly induced representation of a compact-mod-center subgroup of $\mathrm{GL}_{N}(F)$. Broussous, Sécherre, and Stevens [4] extended the notion of an endo-class over F for $\mathrm{GL}_{N}(F)$ to any group of the form $\mathrm{GL}_{m}(D)$, that is, we can associate an endo-class over F to any discrete series representation of $\mathrm{GL}_{m}(D)$, and it was conjectured that the Jacquet-Langlands correspondence preserves this endo-class over F. In this paper, we prove that the realizations of [6] and [17] confirm this conjecture.

More precisely, we give a description of the result obtained. The simple characters for $G=\mathrm{GL}_{m}(D)$ are parameterized by 4 -tuples $[\mathfrak{A}, n, 0, \beta]$, which are referred to as simple strata, consisting of a hereditary \mathfrak{o}_{F}-order \mathfrak{A} in A with
$\mathfrak{P}=\operatorname{rad}(\mathfrak{A})$, a positive integer n, and an element $\beta \in A$ which generates a field extension $F[\beta]$ over F, with the technical condition $k_{F}(\beta)<0$ and with $\beta \in \mathfrak{P}^{-n}$. By [14], associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A=\mathrm{M}_{m}(D)$, we have a compact open subgroup $H^{1}(\beta, \mathfrak{A})$ of G and a finite set $\mathscr{C}(\mathfrak{A}, 0, \beta)$ of simple characters of $H^{1}(\beta, \mathfrak{A})$.

From [15] and [16], it follows that every irreducible discrete series representation π of G contains a simple character $\theta \in \mathscr{C}(\mathfrak{A}, 0, \beta)$ attached to a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A. Neither the simple stratum nor the simple character is unique. The endo-class, denoted by $\boldsymbol{\Theta}$, for the pair ($[\mathfrak{A}, n, 0, \beta], \theta$) was defined by [6] and [4] so that this $\boldsymbol{\Theta}$ depends only on the representation π of G as follows. A potential simple character (ps-character for short) is an equivalence class, denoted by Θ, in the set of such pairs $([\mathfrak{A}, n, m, \beta], \theta)$ in A as above, where $[\mathfrak{A}, n, m, \beta]$ is a simple stratum in A and $\theta \in \mathscr{C}(\mathfrak{A}, m, \beta)$. Indeed, another pair ($\left[\mathfrak{A}^{\prime}, n^{\prime}, m^{\prime}, \beta\right], \theta^{\prime}$) in a central simple F-algebra A^{\prime} is referred to as equivalent to ($[\mathfrak{A}, n, m, \beta], \theta)$, denoted by

$$
([\mathfrak{A}, n, m, \beta], \theta) \sim\left(\left[\mathfrak{A}^{\prime}, n^{\prime}, m^{\prime}, \beta\right], \theta^{\prime}\right)
$$

if θ^{\prime} is the transfer of θ (see Definition 1.7). The pair $([\mathfrak{A}, n, m, \beta], \theta)$ is referred to as a realization of Θ. Two ps-characters Θ_{1} and Θ_{2} are referred to as endoequivalent if, in a central simple F-algebra A, they are defined by realizations ($\left.\left[\mathfrak{A}_{i}, n_{i}, m_{i}, \beta_{i}\right], \theta_{i}\right)$, for $i=1,2$, of the same degree and normalized level, and such that the simple characters θ_{1} and θ_{2} intertwine in A^{\times}(see Definition 1.9). Two simple characters contained in the irreducible discrete series representation π of G intertwine in G. Hence, the endo-class $\boldsymbol{\Theta}$ above depends only on the representation π. Write this $\boldsymbol{\Theta}$ as $\boldsymbol{\Theta}_{G}(\pi)$.

Let $D_{m d}$ be a central division F-algebra of dimension $m^{2} d^{2}$, and let JL be the Jacquet-Langlands correspondence between the sets of isomorphism classes of irreducible discrete series representations of $G=\mathrm{GL}_{m}(D)$ and $H=D_{m d}^{\times}$. Then, the equality

$$
\boldsymbol{\Theta}_{H} \circ \mathbf{J L}=\boldsymbol{\Theta}_{G}
$$

was conjectured by [4, Conjecture 9.5].
It was stated in [4, Introduction] that this conjecture can be seen as a generalization of the preservation of the level-zero representations through the JacquetLanglands correspondence, which was proved by [17]. This is explained as follows. From [10], every irreducible discrete series representation of $G=\mathrm{GL}_{m}(D)$ of level zero contains the trivial representation $\mathbf{1}_{U^{1}(\mathfrak{L l})}$ for some principal hereditary \mathfrak{o}_{F}-order \mathfrak{A} in $A=\mathrm{M}_{m}(D)$ with $\mathfrak{P}=\operatorname{rad}(\mathfrak{A})$, where $U^{1}(\mathfrak{A})=1+\mathfrak{P}$. We view $[\mathfrak{A}, 0,0,0]$ as a simple stratum in A, as in [19], and view $\left([\mathfrak{A}, 0,0,0], \mathbf{1}_{U^{1}(\mathfrak{A l})}\right)$ as the realization of the trivial ps-character Θ_{0}. Moreover, we have $H^{1}(0, \mathfrak{A})=U^{1}(\mathfrak{A})$ and

$$
\mathscr{C}(\mathfrak{A}, 0,0)=\left\{\mathbf{1}_{U^{1}(\mathfrak{A})}\right\} .
$$

Hence, by the definition of endo-class, that statement is explained.

Let F be a finite extension of \mathbb{Q}_{p} with $p \neq 2$. For a positive integer m, set $A=\mathrm{M}_{p^{m}}(F)$, and let D be a central division F-algebra of dimension $p^{2 m}$. Then, there exists the Jacquet-Langlands correspondence JL between the sets of isomorphism classes of irreducible discrete series representations of $G=A^{\times}=$ $\mathrm{GL}_{p^{m}}(F)$ and $H=D^{\times}$. Let $\mathcal{A}_{m}^{w r}(F)$ be the set of isomorphism classes of irreducible supercuspidal representations π of G which are totally ramified: this means that π is not isomorphic to the representation $\chi \pi: g \mapsto \chi(\operatorname{det}(g)) \pi(g)$ for any unramified quasicharacter $\chi \neq 1$ of F^{\times}. Set $\mathcal{A}_{0}^{w r}(D)=\mathbf{J L}\left(\mathcal{A}_{m}^{w r}(F)\right)$. Then, we obtain a canonical bijection, denoted again by JL,

$$
\mathrm{JL}: \mathcal{A}_{m}^{w r}(F) \simeq \mathcal{A}_{0}^{w r}(D) .
$$

In [6], the representations in $\mathcal{A}_{m}^{w r}(F)$ and $\mathcal{A}_{0}^{w r}(D)$ were explicitly constructed as induced representations of quasicharacters of compact-mod-center subgroups, and the correspondence $\mathbf{J L}$ was described.

Let π be an irreducible supercuspidal representation of $G=\mathrm{GL}_{p^{m}}(F)$ in $\mathcal{A}_{m}^{w r}(F)$. Then, from the construction of π, we can choose a pair $([\mathfrak{A}, n, 0, \beta], \theta)$, as above, such that π contains θ. Set $\pi^{\prime}=\mathbf{J L}(\pi)$. Then, from the realization of $\mathbf{J L}$, we can also choose a pair $\left(\left[\mathfrak{o}_{D}, n^{\prime}, 0, \iota \beta\right],{ }_{D} \theta\right)$ such that π^{\prime} contains ${ }_{D} \theta$, where $\iota: F[\beta] \rightarrow D$ denotes an F-embedding. For a finite unramified extension K / F of degree divisible by p^{m}, set $\mathfrak{A}_{K}=\mathfrak{A} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K}$ and ${ }_{D} \mathfrak{A}_{K}=\mathfrak{o}_{D} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K}$. Then, through the identification $A_{K}=A \otimes_{F} K=D \otimes_{F} K=D_{K}$, we can set $\mathfrak{A}_{K}={ }_{D} \mathfrak{A}_{K}$ and take an element $y_{0} \in \mathfrak{A}_{K}^{\times}$such that $\iota \beta=y_{0}^{-1} \beta y_{0}=\operatorname{Ad}\left(y_{0}^{-1}\right) \beta$, where we identify $\beta=\beta \otimes 1$ in A_{K}. Then, we can choose simple characters $\theta(K)$ and ${ }_{D} \theta(K)$ of $H^{1}\left(\beta, \mathfrak{A}_{K}\right)$ and $H^{1}\left(\iota \beta,{ }_{D} \mathfrak{A}_{K}\right)$, respectively, such that

$$
\theta=\theta(K)\left|H^{1}(\beta, \mathfrak{A}), \quad{ }_{D} \theta={ }_{D} \theta(K)\right| H^{1}\left(\iota \beta, \mathfrak{o}_{D}\right) .
$$

We prove that ${ }_{D} \theta(K)=\theta(K) \circ \operatorname{Ad}\left(y_{0}\right)$ and that ${ }_{D} \theta(K)$ is the transfer of $\theta(K)$. Thus, by [14, Theorem 3.53] for transfers, $D_{D} \theta$ is the transfer of θ, that is,

$$
([\mathfrak{A}, n, 0, \beta], \theta) \sim\left(\left[\mathfrak{o}_{D}, n^{\prime}, 0, \iota \beta\right],{ }_{D} \theta\right)
$$

which implies $\boldsymbol{\Theta}_{H}\left(\pi^{\prime}\right)=\boldsymbol{\Theta}_{G}(\pi)$.
The remainder of the present paper is organized as follows. In Section 1, we recall the notation of ps-character and endo-class defined in [5] and [4]. In Section 2, we recall the conjecture on the preservation of the endo-class of the Jacquet-Langlands correspondence given in [4]. In Section 3, we prove that the realizations of [5] and [17] confirm this conjecture.

1. Endo-class of ps-characters

We recall the definition of endo-class and ps-character for an inner form of $\mathrm{GL}_{N}(F)$ in [4], which is a generalization of the F-split $\mathrm{GL}_{N}(F)$ defined in [5].

1.1. Simple character

Let F be a non-archimedean local field. Let K be a commutative or noncommutative finite extension of F, let \mathfrak{o}_{K} be the ring of integers in K, and let \mathfrak{p}_{K} be the maximal ideal of \mathfrak{o}_{K}.

Let A be a simple central F-algebra of finite dimension, and let V be a simple left A-module. Write $D=\operatorname{End}_{A}(V)^{\text {op }}$. Then, D is a central division F-algebra, and V can be viewed as a right D-vector space. There exists a canonical isomor$\operatorname{phism} A \simeq \operatorname{End}_{D}(V)$.

DEFINITION 1.1

A nonempty set of right \mathfrak{o}_{D}-lattices $\mathcal{L}=\left\{L_{i}: i \in \mathbb{Z}\right\}$ in V is referred to as an \mathfrak{o}_{D}-lattice chain in V if the following conditions are satisfied: (1) $L_{i} \supsetneq L_{i+1}$ for all $i \in \mathbb{Z}$, and (2) there exists a positive integer e satisfying $L_{i+e}=L_{i} \mathfrak{p}_{D}$ for all $i \in \mathbb{Z}$. This integer e is referred to as the \mathfrak{o}_{D}-period of \mathcal{L} and is denoted by $e_{D}(\mathcal{L})$.

For $k \in \mathbb{Z}$, set

$$
\mathfrak{P}_{k}(\mathcal{L})=\left\{a \in A: a L_{i} \subset L_{i+k}, i \in \mathbb{Z}\right\} .
$$

Then, $\mathfrak{A}=\mathfrak{A}(\mathcal{L})=\mathfrak{P}_{0}(\mathcal{L})$ is a hereditary \mathfrak{o}_{F}-order in A. All such orders are obtained in this way from an \mathfrak{o}_{D}-lattice chain \mathcal{L} in V. The set $\mathfrak{P}=\mathfrak{P}(\mathcal{L})=\mathfrak{P}_{1}(\mathcal{L})$ is the Jacobson radical of \mathfrak{A}, and we have $\mathfrak{P}_{k}(\mathcal{L})=\mathfrak{P}^{k}$ for all $k \in \mathbb{Z}, k \geq 0$. Thus, we have compact open subgroups of G defined by

$$
U(\mathfrak{A})=U^{0}(\mathfrak{A})=\mathfrak{A}^{\times}, \quad U^{k}(\mathfrak{A})=1+\mathfrak{P}^{k}, \quad k \in \mathbb{Z}, k>0 .
$$

The G-centralizer $\mathfrak{K}(\mathfrak{A})$ of \mathfrak{A} is defined by

$$
\mathfrak{K}(\mathfrak{A})=\left\{g \in G: g \mathfrak{A} g^{-1}=\mathfrak{A}\right\} .
$$

Then, for $\mathfrak{A}=\mathfrak{A}(\mathcal{L}), g \in \mathfrak{K}(\mathfrak{A})$ if and only if there exists a unique $n=\nu(g) \in \mathbb{Z}$ such that $g L_{i}=L_{i+n}$ for all $i \in \mathbb{Z}$. We define a function $\nu_{\mathfrak{A}}: \mathfrak{K}(\mathfrak{A}) \rightarrow \mathbb{Z}$ by $\nu_{\mathfrak{A}}(g)=\nu(g)$ for $g \in \mathfrak{K}(\mathfrak{A})$. Then, we have $\operatorname{Ker} \nu_{\mathfrak{A}}=U(\mathfrak{A})$.

DEFINITION 1.2

(a) A stratum in A is a 4 -tuple $[\mathfrak{A}, n, m, \beta]$ made of a hereditary \mathfrak{o}_{F}-order \mathfrak{A} in $A, m, n \in \mathbb{Z}$ with $0 \leq m \leq n$ and $\beta \in \mathfrak{P}^{-n}$.
(b) Two strata $\left[\mathfrak{A}, n, m, \beta_{i}\right], i=1,2$, are referred to as equivalent if $\beta_{2}-\beta_{1} \in$ \mathfrak{P}^{-m}.

Here, $[\mathfrak{A}, 0,0,0]$ is referred to as the null stratum as is defined in [19].
DEFINITION 1.3
A stratum $[\mathfrak{A}, n, m, \beta]$ in A is referred to as pure if it satisfies the following conditions:
(a) the sub- F-algebra $F[\beta]$ generated by β is a field, say, $E=F[\beta]$;
(b) \mathfrak{A} is E-pure, that is, $E^{\times} \subset \mathfrak{K}(\mathfrak{A})$;
(c) $\nu_{\mathfrak{A}}(\beta)=-n$.

Let $[\mathfrak{A}, n, m, \beta]$ be a pure stratum in A. Let B be the A-centralizer of β, and write $B=C_{A}(\beta)$. For each $k \in \mathbb{Z}$, we set $\mathfrak{n}_{k}(\beta, \mathfrak{A})=\left\{x \in \mathfrak{A}: \beta x-x \beta \in \mathfrak{P}^{k}\right\}$ and define the quantity $k_{0}(\beta, \mathfrak{A})$ by

$$
\min \left\{k \in \mathbb{Z}: k \geq \nu_{\mathfrak{A}}(\beta) \text { and } \mathfrak{n}_{k+1}(\beta, \mathfrak{A}) \subset \mathfrak{A} \cap B+\mathfrak{P}\right\} .
$$

DEFINITION 1.4

A stratum $[\mathfrak{A}, n, m, \beta]$ in A is referred to as simple if it is pure and if $m \leq$ $-k_{0}(\beta, \mathfrak{A})-1$.

It is convenient to view the null stratum $[\mathfrak{A}, 0,0,0]$ in A as a simple stratum, as in [19]. Hereafter, we do so.

A simple stratum $[\mathfrak{A}, n, m, \beta]$ in A gives rise to a pair

$$
\mathfrak{H}(\beta, \mathfrak{A}) \subset \mathfrak{J}(\beta, \mathfrak{A}) \subset \mathfrak{A}
$$

of \mathfrak{o}_{F}-orders in A (see [14]). If $\beta=0$, then we set

$$
\mathfrak{H}(0, \mathfrak{A})=\mathfrak{J}(0, \mathfrak{A})=\mathfrak{A} .
$$

We take the standard filtration subgroups of the unit groups

$$
\begin{aligned}
H^{k}(\beta, \mathfrak{A}) & =\mathfrak{H}(\beta, \mathfrak{A}) \cap U^{k}(\mathfrak{A}), \\
J^{k}(\beta, \mathfrak{A}) & =\mathfrak{J}(\beta, \mathfrak{A}) \cap U^{k}(\mathfrak{A}),
\end{aligned}
$$

for $k \in \mathbb{Z}, k \geq 0$.
We fix a level-one additive character $\psi=\psi_{F}$ of F; that is, $\mathfrak{p}_{F} \subset \operatorname{Ker} \psi$ and $\psi \mid \mathfrak{o}_{F} \neq 1$. Through this character $\psi=\psi_{F}$, a finite set of characters, referred to as simple characters, of the compact group $H^{m+1}(\beta, \mathfrak{A})$, say, $\mathscr{C}(\mathfrak{A}, m, \beta)=$ $\mathscr{C}(\mathfrak{A}, m, \beta, \psi)$, was defined in [14].

Associated with the null simple stratum $[\mathfrak{A}, 0,0,0]$ in A, we view $\mathscr{C}(\mathfrak{A}, 0,0)$ as the set consisting of the single trivial character $\mathbf{1}_{U^{1}(\mathfrak{A l})}$ of the group $H^{1}(0, \mathfrak{A})=$ $U^{1}(\mathfrak{A})$, that is (see [15, Remark 4.4]),

$$
\begin{equation*}
\mathscr{C}(\mathfrak{A}, 0,0)=\left\{\mathbf{1}_{U^{1}(\mathfrak{R})}\right\} . \tag{1.1}
\end{equation*}
$$

1.2. Ps-character and endo-class

Let β be a nonzero element in a finite subextension of F in A, and set $E=F[\beta]$. We denote by ν_{E} the normalized valuation on E. The set $\left\{\mathfrak{p}_{E}^{i}: i \in \mathbb{Z}\right\}$ is an E-pure \mathfrak{o}_{F}-lattice chain on the F-space E, unique up to translation. We set $A(E)=\operatorname{End}_{F}(E)$ and (see $\left.[8,(1.1 .2)]\right)$

$$
\mathfrak{A}(E)=\operatorname{End}_{\mathfrak{o}_{F}}^{0}\left(\left\{\mathfrak{p}_{E}^{i}: i \in \mathbb{Z}\right\}\right) .
$$

Then, $\mathfrak{A}(E)$ is a hereditary \mathfrak{o}_{F}-order in $A(E)$. Set

$$
k_{F}(\beta)=k_{0}(\beta, \mathfrak{A}(E)) .
$$

Then, unless $\beta \in F$, we have $k_{F}(\beta) \geq \nu_{E}(\beta)$.

DEFINITION 1.5 ([5, DEFINITION 1.5])
A simple pair over F is a pair (k, β) consisting of a nonzero element β in some finite extension of F and an integer $0 \leq k \leq-k_{F}(\beta)-1$.

If (k, β) is a simple pair over F, then $\left[\mathfrak{A}(E),-\nu_{E}(\beta), k, \beta\right]$ is a simple stratum in $A(E)$. Thus, we have a set of quasisimple characters of $H^{k+1}(\beta, \mathfrak{A}(E)$) (see [14, Section 3.3.3])

$$
\mathscr{C}_{F}(k, \beta)=\mathscr{C}(\mathfrak{A}(E), k, \beta)=\mathscr{C}\left(\mathfrak{A}(E), k, \beta, \psi_{F}\right) .
$$

We also view the pair $(0,0)$ as a simple pair over F. It is referred to as the null simple pair. By definition, we have $\mathscr{C}_{F}(0,0)=\left\{\mathbf{1}_{U^{1}\left(\mathfrak{o}_{E}\right)}\right\}$, where $U^{1}\left(\mathfrak{o}_{E}\right)=1+\mathfrak{p}_{F}$.

Let A be a central simple F-algebra, and let V be a simple left A-module. Let $D=\operatorname{End}_{A}(V)^{\mathrm{op}}$. For a real number r, denote by $\lfloor r\rfloor$ the greatest integer that is less than or equal to r.

DEFINITION 1.6 (SEE [4])

A realization of a nonnull simple pair (k, β) in A is a stratum in A of the form $[\mathfrak{A}, n, m, \varphi(\beta)]$ made of:
(a) a homomorphism φ of F-algebras from $F[\beta]$ to A;
(b) a $\varphi(F[\beta])$-pure hereditary \mathfrak{o}_{F}-order \mathfrak{A} in A;
(c) an integer m such that $k=\left\lfloor m / e_{F[\varphi(\beta)]}(\mathfrak{A})\right\rfloor$.

It is convenient to view the null stratum $[\mathfrak{A}, 0,0,0]$ in A as the realization of the null simple pair $(0,0)$ in A.

From [14, Proposition 2.5], the realization $[\mathfrak{A}, n, m, \varphi(\beta)]$ in Definition 1.6 is a simple stratum in A. Thus, we have a set

$$
\mathscr{C}(\mathfrak{A}, m, \varphi(\beta))=\mathscr{C}\left(\mathfrak{A}, m, \varphi(\beta), \psi_{F}\right)
$$

of simple characters of $H^{m+1}(\varphi(\beta), \mathfrak{A})$. For a realization $[\mathfrak{A}, n, m, \varphi(\beta)]$ in A of a nonnull simple pair (k, β) over F, it follows from [14, Section 3.3.3] that there exists a canonical bijective map (cf. [16, Definition 2.11])

$$
\tau_{\mathfrak{A}, m, \varphi(\beta)}: \mathscr{C}_{F}(k, \beta) \rightarrow \mathscr{C}(\mathfrak{A}, m, \varphi(\beta))
$$

This map is referred to as a transfer map. If $(k, \beta)=(0,0)$, then it is the trivial map by definition. We denote by $\tau_{\mathfrak{A}, 0,0}$ the transfer map $\mathscr{C}_{F}(0,0) \rightarrow \mathscr{C}(\mathfrak{A}, 0,0)$.

Given a simple pair (k, β) over F, we consider a pair

$$
([\mathfrak{A}, n, m, \varphi(\beta)], \theta)
$$

made of a realization $[\mathfrak{A}, n, m, \varphi(\beta)]$ in A and a simple character $\theta \in \mathscr{C}(\mathfrak{A}, m$, $\varphi(\beta))$.

DEFINITION 1.7 (SEE [4, SECTION 1.2])

Let $\left[\mathfrak{A}^{\prime}, n^{\prime}, m^{\prime}, \varphi^{\prime}(\beta)\right]$ be another realization of the simple pair (k, β) in some simple central F-algebra A^{\prime}, and let θ^{\prime} be a simple character in $\mathscr{C}\left(\mathfrak{A}^{\prime}, m^{\prime}, \varphi^{\prime}(\beta)\right)$.

We say that $([\mathfrak{A}, n, m, \varphi(\beta)], \theta)$ and $\left(\left[\mathfrak{A}^{\prime}, n^{\prime}, m^{\prime}, \varphi^{\prime}(\beta)\right], \theta^{\prime}\right)$ are equivalent, denoted by

$$
([\mathfrak{A}, n, m, \varphi(\beta)], \theta) \sim\left(\left[\mathfrak{A}^{\prime}, n^{\prime}, m^{\prime}, \varphi^{\prime}(\beta)\right], \theta^{\prime}\right)
$$

if the equality $\theta^{\prime}=\tau_{\mathfrak{A}^{\prime}, m^{\prime}, \varphi^{\prime}(\beta)} \circ \tau_{\mathfrak{A}, m, \varphi(\beta)}^{-1}(\theta)$ is satisfied.
It is easy to see that, given a simple pair (k, β) over F, it is an equivalence relation on the set of such pairs $([\mathfrak{A}, n, m, \varphi(\beta)], \theta)$, which is denoted by $\mathscr{C}_{(k, \beta)}$.

DEFINITION 1.8 (SEE [4, DEFINITION 1.5])
A potential simple character over F (or ps-character) is a triple (Θ, k, β) made of a simple pair (k, β) over F and an equivalence class Θ in $\mathscr{C}_{(k, \beta)}$.

If a pair $([\mathfrak{A}, n, m, \varphi(\beta)], \theta)$ belongs to an equivalence class Θ, we write

$$
\Theta(\mathfrak{A}, m, \varphi(\beta))=\theta .
$$

DEFINITION 1.9 (SEE [4, DEFINITION 1.10])
For $i=1,2$, let $\left(\Theta_{i}, k_{i}, \beta_{i}\right)$ be a ps-character over F. We say that these pscharacters are endo-equivalent, denoted by

$$
\Theta_{1} \approx \Theta_{2}
$$

if these ps-characters satisfy the following conditions:
(a) $k_{1}=k_{2}$;
(b) $\left[F\left[\beta_{1}\right]: F\right]=\left[F\left[\beta_{2}\right]: F\right]$;
(c) there exists a central simple F-algebra A together with realizations $\left(\left[\mathfrak{A}, n_{i}, m_{i}, \varphi_{i}\left(\beta_{i}\right)\right]\right.$ of $\left(k_{i}, \beta_{i}\right), i=1,2$, in A such that $\Theta_{1}\left(\mathfrak{A}, m_{1}, \varphi_{1}\left(\beta_{1}\right)\right)$ and $\Theta_{2}(\mathfrak{A}$, $\left.m_{2}, \varphi_{2}\left(\beta_{2}\right)\right)$ intertwine in A^{\times}.

2. The Jacquet-Langlands correspondence and endo-classes

We recall from [4, Conjecture 9.5] that an endo-class over F is invariant under the Jacquet-Langlands correspondence.

2.1. Simple type

Let D be a central division F-algebra of dimension d^{2} over $F, d \geq 1$, and let V be a right D-vector space of dimension $m \geq 1$. Set $A=\operatorname{End}_{D}(V)$. Through a D-basis of V, we identify $A=M_{m}(D)$ and set $G=A^{\times}=\mathrm{GL}_{m}(D)$.

Associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, we have the compact open subgroups $J(\beta, \mathfrak{A}) \supset J^{1}(\beta, \mathfrak{A})=J(\beta, \mathfrak{A}) \cap U^{1}(\mathfrak{A})$, as defined in Section 1.1. Let $E=F[\beta]$, let $B=C_{A}(E)$, and let $\mathfrak{B}=\mathfrak{A} \cap B$. Then, there exists a canonical isomorphism

$$
J(\beta, \mathfrak{A}) / J^{1}(\beta, \mathfrak{A}) \simeq U(\mathfrak{B}) / U^{1}(\mathfrak{B}),
$$

and there exist a central E-algebra D_{E} of dimension d_{E}^{2} and a positive integer m_{E} such that $B \simeq \mathrm{M}_{m_{E}}\left(D_{E}\right)$.

DEFINITION 2.1 ([10, SECTION 0.6], [15, 2.5.1])
A simple type of level zero in G is a pair (U, τ), where
(a) $U=U(\mathfrak{A})$ for a principal hereditary \mathfrak{o}_{F}-order in A with $r=e_{F}(\mathfrak{A})$;
(b) τ is an irreducible representation of $U=U(\mathfrak{A})$, trivial on $U^{1}(\mathfrak{A})$ and inflated from a representation $\bar{\sigma}_{0}^{\otimes r}$ of the quotient group $U(\mathfrak{A}) / U^{1}(\mathfrak{A}) \simeq \mathrm{GL}_{s}\left(k_{D}\right)^{r}$, where $\bar{\sigma}_{0}$ is an irreducible cuspidal representation of $\mathrm{GL}_{s}\left(k_{D}\right)$ and r, s are positive integers satisfying $r s=m$.

We say that a simple type $(U, \tau)=(U(\mathfrak{A}), \tau)$ of level zero in G is attached to the null simple stratum $[\mathfrak{A}, 0,0,0]$ in A (see [15, Remark 4.1]).

DEFINITION 2.2
A simple type of positive level in G is a pair (J, λ), attached to a nonnull simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, given as follows:
(a) there exists a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A such that $J=J^{0}(\beta, \mathfrak{A})$ and that if $E=F[\beta], B=C_{A}(E)$ and $\mathfrak{B}=\mathfrak{A} \cap B, \mathfrak{B}$ is a principal hereditary \mathfrak{o}_{E}-order in B with $r=e_{E}(\mathfrak{B})$;
(b) there exist a simple character $\theta \in \mathscr{C}\left(\mathfrak{A}, 0, \beta, \psi_{F}\right)$ and a simple type $(U(\mathfrak{B}), \tau)$ of level zero in B^{\times}such that λ is a representation of J of the form

$$
\lambda=\kappa \otimes \sigma,
$$

where
(1) κ is a β-extension of η_{θ};
(2) σ is the representation of J, trivial on J^{1}, deduced from τ via the isomorphism $J / J^{1} \simeq U(\mathfrak{B}) / U^{1}(\mathfrak{B})$ and τ is an irreducible representation of $U=U(\mathfrak{B})$, trivial on $U^{1}(\mathfrak{B})$ and inflated from a representation $\bar{\sigma}_{0}^{\otimes r}$ of the quotient group $U(\mathfrak{B}) / U^{1}(\mathfrak{B}) \simeq \mathrm{GL}_{m_{E} / r}\left(k_{D_{E}}\right)^{r}$, where $\bar{\sigma}_{0}$ is an irreducible cuspidal representation of $\mathrm{GL}_{m_{E} / r}\left(k_{D_{E}}\right)$.

2.2. Conjecture about preservation of the endo-class

Let $A=\mathrm{M}_{m}(D)$, and let $G=A^{\times}$be as defined in Section 2.1. Let $\operatorname{Nrd}_{A}: A \rightarrow F$ be the reduced norm.

An irreducible smooth representation π of G is referred to as essentially square-integrable (or discrete series) if there exists an unramified character χ of F^{\times}such that $\left(\chi \circ \operatorname{Nrd}_{A}\right) \otimes \pi$ is square-integrable modulo F^{\times}. Let $\mathcal{A}^{2}(G)$ be the set of isomorphism classes of irreducible essentially square-integrable representations of G, and let $\mathcal{E}(F)$ be the set of endo-classes of ps-characters over F (see [4, Section 9.3]).

THEOREM 2.3

For each $\pi \in \mathcal{A}^{2}(G)$, there exist a simple type (J, λ) in G attached to a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A such that $\pi \mid J$ contains λ.

Proof
This follows from [2] and [16].

From Theorem 2.3, for each $\pi \in \mathcal{A}^{2}(G)$, a pair $([\mathfrak{A}, n, 0, \beta], \theta)$ is given such that the character θ occurs in $\pi \mid H^{1}(\beta, \mathfrak{A})$. Let $(\Theta, 0, \beta)$ be the ps-character defined by the pair $([\mathfrak{A}, n, 0, \beta], \theta)$ and denote by $\boldsymbol{\Theta}$ its endo-class. This endo-class $\boldsymbol{\Theta}$ depends only on the representation π, as in the Introduction. Thus, we write this endo-class $\boldsymbol{\Theta}$ as $\boldsymbol{\Theta}_{G}(\pi)$. Hence, we get a map

$$
\boldsymbol{\Theta}_{G}: \mathcal{A}^{2}(G) \rightarrow \mathcal{E}(F)
$$

For $\pi \in \mathcal{A}^{2}(G)$, we denote by χ_{π} the character function of π.

THEOREM 2.4 ([1], [9], [12], [13])
Let D^{\prime} be another central simple F-algebra of dimension $d^{\prime 2}, d^{\prime} \geq 1$, and let $G^{\prime}=\mathrm{GL}_{m^{\prime}}\left(D^{\prime}\right)$ for a positive integer m^{\prime} with $m^{\prime} d^{\prime}=m$. Then, there exists a canonical bijection, referred to as the Jacquet-Langlands correspondence,

$$
\begin{equation*}
\mathbf{J L}: \mathcal{A}^{2}(G) \rightarrow \mathcal{A}^{2}\left(G^{\prime}\right) \tag{2.1}
\end{equation*}
$$

such that, if $\pi^{\prime}=\mathbf{J L}(\pi)$ for $\pi \in \mathcal{A}^{2}(G)$, then we have that

$$
(-1)^{m} \chi_{\pi}(g)=(-1)^{m^{\prime}} \chi_{\pi^{\prime}}\left(g^{\prime}\right)
$$

where g and g^{\prime} are regular elliptic elements of G and G^{\prime}, respectively, whose characteristic polynomials over F are the same.

In $[4,9.3]$, the following conjecture is given:

$$
\begin{equation*}
\boldsymbol{\Theta}_{G^{\prime}}(\mathbf{J L}(\pi))=\boldsymbol{\Theta}_{G}(\pi) \tag{2.2}
\end{equation*}
$$

for any $\pi \in \mathcal{A}^{2}(G)$.

REMARK 2.5

Moreover, it is probable that there exists a single simple pair $(0, \beta)$ over F such that, as representatives, $\boldsymbol{\Theta}_{G^{\prime}}(\mathbf{J L}(\pi))$ and $\boldsymbol{\Theta}_{G}(\pi)$ have ps-characters over $F\left(\Theta^{\prime}, 0, \beta\right)$ and $(\Theta, 0, \beta)$, respectively.

3. Some examples for the conjecture

We shall see that the Jacquet-Langlands correspondences given by Bushnell and Henniart [6] and Silberger and Zink [17] satisfy the equality (2.2).

3.1. An example for level-zero representations

Let $A=\mathrm{M}_{m}(D)$, and let $G=A^{\times}=\mathrm{GL}_{m}(D)$ be as above.

DEFINITION 3.1 ([10, SECTION 0.6])
An irreducible smooth representation π of G is referred to as level zero if there exists a principal hereditary \mathfrak{o}_{F}-order \mathfrak{A} in A such that its representation space \mathcal{V} has a nonzero $U^{1}(\mathfrak{A})$-fixed vector.

Let $\mathcal{A}_{0}^{2}(G)$ be the subset of level-zero representations in $\mathcal{A}^{2}(G)$. If a smooth representation π of G belongs to $\mathcal{A}_{0}^{2}(G)$, then, from [10, Theorem 5.5(i)], it contains a simple type $(J, \lambda)=(U(\mathfrak{A}), \tau)$ of level zero in G. Thus, we obtain a ps-character $(\Theta, 0,0)$ with $\left([\mathfrak{A}, 0,0,0], \mathbf{1}_{U^{1}(\mathfrak{A l})}\right) \in \Theta$, that is,

$$
\Theta(\mathfrak{A}, 0,0)=\mathbf{1}_{U^{1}(\mathfrak{A})} \in \mathscr{C}(\mathfrak{A}, 0,0),
$$

and consequently the endo-class, denoted by $\boldsymbol{\Theta}_{G}(\pi)$, of this $(\Theta, 0,0)$.
We now let D^{\prime} be a central division F-algebra of dimension $m^{2} d^{2}$, and let $G^{\prime}=\mathrm{GL}_{1}\left(D^{\prime}\right)$. Then, from Theorem 2.4, we have the Jacquet-Langlands correspondence JL: $\mathcal{A}^{2}\left(G^{\prime}\right) \rightarrow \mathcal{A}^{2}(G)$.

PROPOSITION 3.2 ([17, PROPOSITION 3.2])
The Jacquet-Langlands correspondence $\mathbf{J L}$ induces a canonical bijection $\mathcal{A}_{0}^{2}\left(G^{\prime}\right) \rightarrow$ $\mathcal{A}_{0}^{2}(G)$.

We again denote by

$$
\text { JL : } \mathcal{A}_{0}^{2}\left(G^{\prime}\right) \rightarrow \mathcal{A}_{0}^{2}(G)
$$

the bijection of Proposition 3.2.

THEOREM 3.3

Let JL be the correspondence defined above. Then, for $\pi \in \mathcal{A}_{0}^{2}\left(G^{\prime}\right)$, we have

$$
\boldsymbol{\Theta}_{G}(\mathbf{J L}(\pi))=\boldsymbol{\Theta}_{G^{\prime}}(\pi) .
$$

Proof
Suppose that a class Θ^{\prime} belongs to the endo-class $\boldsymbol{\Theta}_{G^{\prime}}(\pi)$ and that a class Θ belongs to the endo-class $\boldsymbol{\Theta}_{G}(\mathbf{J L}(\pi))$. Then, we have the realizations ($\left[\mathfrak{A}^{\prime}, 0,0,0\right]$, $\left.\mathbf{1}_{U^{1}\left(\mathfrak{A}^{\prime}\right)}\right) \in \Theta^{\prime}$ and $\left([\mathfrak{A}, 0,0,0], \mathbf{1}_{U^{1}(\mathfrak{A})}\right) \in \Theta$. Since, by definition, we have $\mathscr{C}\left(\mathfrak{A}^{\prime}, 0\right.$, $0)=\left\{\mathbf{1}_{U^{1}\left(\mathfrak{A}^{\prime}\right)}\right\}$ and $\mathscr{C}(\mathfrak{A}, 0,0)=\left\{\mathbf{1}_{U^{1}(\mathfrak{A l})}\right\}$, we obtain

$$
\mathbf{1}_{U^{1}(\mathfrak{R l})}=\tau_{\mathfrak{A l}, 0,0} \circ \tau_{\mathfrak{A}^{\prime}, 0,0}^{-1}\left(\mathbf{1}_{U^{1}\left(\mathfrak{R}^{\prime}\right)}\right),
$$

where, for example, $\tau_{\mathfrak{R}, 0,0}$ is the transfer $\mathscr{C}_{F}(0,0) \rightarrow \mathscr{C}(\mathfrak{A}, 0,0)$ defined in Section 1.2. Hence, by Definition 1.7, we have

$$
\left([\mathfrak{A}, 0,0,0], \mathbf{1}_{U^{1}(\mathfrak{A l})}\right) \sim\left(\left[\mathfrak{A}^{\prime}, 0,0,0\right], \mathbf{1}_{U^{1}\left(\mathfrak{A}^{\prime}\right)}\right)
$$

and so $\Theta=\Theta^{\prime}$. This shows the equality of this theorem and the proof is complete.

3.2. An example for totally ramified representations

In this section, we shall show that the explicit Jacquet-Langlands correspondence realized by Bushnell and Henniart [6] also satisfies the conjecture (2.2). This is never trivial. We first recall the realization of the correspondence.

Let F be a finite extension of \mathbb{Q}_{p} with $p \neq 2$, and let D be a central division F-algebra of dimension $p^{m}, m \geq 1$. Set $G=\mathrm{GL}_{p^{m}}(F)$ and $G^{\prime}=\mathrm{GL}_{1}(D)=D^{\times}$.

Let π be an irreducible smooth representation of an inner form of G. Denote by $t(\pi)$ the cardinality of the unramified characters χ of F^{\times}such that $(\chi \circ \mathrm{Nrd}) \otimes$ $\pi \simeq \pi$, where Nrd denotes the reduced norm. This is referred to as the inertial degree of π. The representation π is referred to as totally ramified if $t(\pi)=1$ is satisfied.

From Theorem 2.4, there exists the Jacquet-Langlands correspondence

$$
\text { JL }: \mathcal{A}^{2}(G) \rightarrow \mathcal{A}^{2}\left(G^{\prime}\right)
$$

Denote by $\mathcal{A}_{m}^{w r}(F)$ the set of isomorphism classes of irreducible totally ramified supercuspidal representations of $G=\mathrm{GL}_{p^{m}}(F)$, as in [6]. Then, this is a subset of $\mathcal{A}^{2}(G)$. We can define a subset $\mathcal{A}_{0}^{w r}(D)$ of $\mathcal{A}^{2}\left(G^{\prime}\right)$ by

$$
\mathcal{A}_{0}^{w r}(D)=\mathbf{J L}\left(\mathcal{A}_{m}^{w r}(F)\right) .
$$

Thus, we get a canonical bijection, denoted again by JL,

$$
\mathbf{J L}: \mathcal{A}_{m}^{w r}(F) \rightarrow \mathcal{A}_{0}^{w r}(D)
$$

In [6], this correspondence is explicitly described. From [7, (1.4.4)], we have $t(\mathbf{J L}(\pi))=t(\pi)$, for $\pi \in \mathcal{A}^{2}(G)$. Thus, every $\pi \in \mathcal{A}_{0}^{w r}(D)$ is totally ramified.

We prepare notation to describe JL. Set $A=\mathrm{M}_{p^{m}}(F)$. Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_{F}-order in A, and denote by $\mathscr{S}^{w r}(\mathfrak{A})$ the set of elements α of $\mathfrak{K}(\mathfrak{A})$ satisfying the following conditions (see [6, Section 1.1]):
(1) $[\mathfrak{A}, n, 0, \alpha]$ is a simple stratum in A, where $n=-\nu_{\mathfrak{A}}(\alpha)$;
(2) the field extension $F[\alpha] / F$ is of degree p^{m}.

Then, since \mathfrak{A} is minimal, the extension $F[\alpha] / F$ is totally ramified.
We fix a level-one character ψ_{F} of F^{\times}as before. Let $\beta \in \mathscr{S}^{w r}(\mathfrak{A})$. Then, associated with the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A, we have compact open subgroups of $G=A^{\times}$

$$
H^{1}(\beta, \mathfrak{A}) \subset J^{1}(\beta, \mathfrak{A})
$$

as in Section 1.1. In order to indicate the base field, we write them as follows:

$$
H_{F}^{1}(\beta, \mathfrak{A}) \subset J_{F}^{1}(\beta, \mathfrak{A}) .
$$

We have a certain open subgroup $I_{F}^{1}(\beta, \mathfrak{A})$ of G that is normalized by $F[\beta]^{\times}$and satisfies

$$
H_{F}^{1}(\beta, \mathfrak{A}) \subset I_{F}^{1}(\beta, \mathfrak{A}) \subset J_{F}^{1}(\beta, \mathfrak{A}) .
$$

See [6, Section 6.4] for the definition. This group depends only on the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A. We can define the subgroup $I_{F}(\beta, \mathfrak{A})$ of G by

$$
I_{F}(\beta, \mathfrak{A})=F[\beta]^{\times} I_{F}^{1}(\beta, \mathfrak{A}) .
$$

We denote by

$$
\mathscr{D}\left(\mathfrak{A}, \beta, \psi_{F}\right)=\mathscr{D}_{F}\left(\beta, \psi_{F}\right)
$$

the group of certain quasicharacters of the group $I_{F}(\beta, \mathfrak{A})$ defined in [6, Section 8.4]. To simplify, we will write $I_{F}(\beta, \mathfrak{A})$ as $I_{F}(\beta)$.

We define the subset $\mathscr{S}^{w r}\left(\mathfrak{o}_{D}\right)$ of $G^{\prime}=D^{\times}$like $\mathscr{S}^{w r}(\mathfrak{A}) \subset G=\mathrm{GL}_{p^{m}}(F)$. Let $\alpha \in \mathscr{S}^{w r}\left(\mathfrak{o}_{D}\right)$. Then, associated with the simple stratum $\left[\mathfrak{o}_{D},-\nu_{D}(\alpha), 0, \alpha\right]$ in D, we similarly have the compact open subgroups $H^{1}\left(\alpha, \mathfrak{o}_{D}\right) \subset J^{1}\left(\alpha, \mathfrak{o}_{D}\right)$ (see [3], [14]) and the group ${ }_{D} I^{1}\left(\alpha, \mathfrak{o}_{D}\right)$, defined in [6, Section 6.4], that is normalized by $F[\alpha]^{\times}$and satisfies

$$
H^{1}\left(\alpha, \mathfrak{o}_{D}\right) \subset{ }_{D} I^{1}\left(\alpha, \mathfrak{o}_{D}\right) \subset J^{1}\left(\alpha, \mathfrak{o}_{D}\right) .
$$

We define the open subgroup ${ }_{D} I\left(\alpha, \mathfrak{o}_{D}\right)$ of $G^{\prime}=D^{\times}$by

$$
{ }_{D} I\left(\alpha, \mathfrak{o}_{D}\right)=F[\alpha]^{\times}{ }_{D} I^{1}\left(\alpha, \mathfrak{o}_{D}\right) .
$$

We also write

$$
{ }_{D} H_{F}^{1}(\alpha)=H^{1}\left(\alpha, \mathfrak{o}_{D}\right), \quad{ }_{D} J_{F}^{1}(\alpha)=J^{1}\left(\alpha, \mathfrak{o}_{D}\right), \quad{ }_{D} I_{F}^{1}(\alpha)={ }_{D} I^{1}\left(\alpha, \mathfrak{o}_{D}\right) .
$$

We denote by

$$
\mathscr{D}\left(\mathfrak{o}_{D}, \alpha, \psi_{F}\right)={ }_{D} \mathscr{D}_{F}\left(\alpha, \psi_{F}\right)
$$

the group of certain quasicharacters of the group ${ }_{D} I_{F}(\alpha)={ }_{D} I\left(\alpha, \mathfrak{o}_{D}\right)$ (see [6, Comment 8.4]).

Write $G_{F}=G=\mathrm{GL}_{p^{m}}(F)$ and $G_{F}^{\prime}=G^{\prime}=D^{\times}$to indicate the base field. Now we can describe the Jacquet-Langlands correspondence $\mathbf{J L}$ as follows.

THEOREM 3.4 ([6, COROLLARIES 2-4 TO THEOREM 3.1])
For $\pi \in \mathcal{A}_{m}^{w r}(F)$, there exist $\beta \in \mathscr{S}^{w r}(\mathfrak{A})$ and $\lambda \in \mathscr{D}_{F}\left(\beta, \psi_{F}\right)$ such that

$$
\pi \simeq \operatorname{c-Ind}_{I_{F}(\beta)}^{G_{F}} \lambda,
$$

and there exist $\iota \beta \in D^{\times}$and ${ }_{D} \lambda \in_{D} \mathscr{D}_{F}\left(\iota \beta, \psi_{F}\right)$ such that

$$
\mathbf{J L}(\pi) \simeq \operatorname{Ind}_{D I_{F}(\iota \beta) D}^{G_{F}^{\prime}} \lambda
$$

Here, the element $\iota \beta \in \mathfrak{o}_{D}$ is conjugate to $\beta=\beta \otimes 1$ in $A \otimes_{F} K=D \otimes_{F} K$ for some finite unramified extension K / F (see below).

In Theorem 3.4, we write

3.3. Realizations for the endo-classes

Assume that a smooth representation π of $G=\mathrm{GL}_{p^{m}}(F)$ belongs to $\mathcal{A}_{m}^{w r}(F)$. From Theorem 3.4, we have $\pi \simeq \pi_{F}(\lambda)$ for some $\lambda \in \mathscr{D}_{F}\left(\beta, \psi_{F}\right)$. We may identify $\pi=\pi_{F}(\lambda)$. Since $H_{F}^{1}(\beta) \subset I_{F}^{1}(\beta)$, by the definition of the quasicharacter λ in $[6$, Section 8.4], we get that

$$
\theta=\lambda \mid H_{F}^{1}(\beta) \in \mathscr{C}\left(\mathfrak{A}, 0, \beta, \psi_{F}\right)
$$

Thus, $\pi=\pi_{F}(\lambda)$ contains the simple character θ. Hence, we can associate π with a pair $([\mathfrak{A}, n, 0, \beta], \theta)$, where $n=-\nu_{\mathfrak{A}}(\beta)$. Let $(\Theta, 0, \beta)$ be the ps-character over F defined by the pair $([\mathfrak{A}, n, 0, \beta], \theta)$. Hence, we can associate π with the endo-class of $(\Theta, 0, \beta)$. We denote this endo-class as $\boldsymbol{\Theta}_{G}(\pi)$.

Set $\pi^{\prime}=\mathbf{J L}(\pi) \in \mathcal{A}_{0}^{w r}(D)$. Then, again from Theorem 3.4, we have $\pi^{\prime} \simeq$ $\pi_{D}\left({ }_{D} \lambda\right)$ for some ${ }_{D} \lambda \in{ }_{D} \mathscr{D}_{F}\left(\iota \beta, \psi_{F}\right)$. We also identify $\pi^{\prime}=\pi_{D}\left({ }_{D} \lambda\right)$. Then, we obtain

$$
\begin{equation*}
{ }_{D} \theta={ }_{D} \lambda \mid{ }_{D} H_{F}^{1}(\iota \beta) \in \mathscr{C}\left(\mathfrak{o}_{D}, 0, \iota \beta, \psi_{F}\right) \tag{3.1}
\end{equation*}
$$

and consequently a pair $\left(\left[\mathfrak{o}_{D}, n^{\prime}, 0, \iota \beta\right],{ }_{D} \theta\right)$, where $n^{\prime}=-\nu_{D}(\iota \beta)$. Let $\left({ }_{D} \Theta, 0, \iota \beta\right)$ be the ps-character over F defined by the pair ($\left[\mathfrak{o}_{D}, n^{\prime}, 0, \iota \beta\right],{ }_{D} \theta$). Thus, we can associate π^{\prime} with the endo-class of $\left({ }_{D} \Theta, 0, \iota \beta\right)$. We denote this endo-class as $\boldsymbol{\Theta}_{G^{\prime}}\left(\pi^{\prime}\right)$.

In order to show the conjecture (2.2) that $\boldsymbol{\Theta}_{G^{\prime}}\left(\pi^{\prime}\right)=\boldsymbol{\Theta}_{G}(\pi)$, we shall show that

$$
\begin{equation*}
([\mathfrak{A}, n, 0, \beta], \theta) \sim\left(\left[\mathfrak{o}_{D}, n^{\prime}, 0, \iota \beta\right],{ }_{D} \theta\right) \tag{3.2}
\end{equation*}
$$

in the sense of Definition 1.7.

3.4. Relationship between the quasicharacters

We retain the notation and assumptions of Section 3.2. We observe the relationship between the quasicharacters λ and ${ }_{D} \lambda$ in Theorem 3.4.

Assume that K is a finite unramified extension of F of degree divisible by p^{m}. Set $A_{K}=A \otimes_{F} K$ and $D_{K}=D \otimes_{F} K$. For the hereditary \mathfrak{o}_{F}-orders \mathfrak{A} and \mathfrak{o}_{D} in $A=\mathrm{M}_{p^{m}}(F)$ and D, respectively, we also set

$$
\mathfrak{A}_{K}=\mathfrak{A} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K}, \quad D \mathfrak{A}_{K}=\mathfrak{o}_{D} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K} .
$$

Then, from [6, Lemma 2.5], there exists an isomorphism of K-algebras $\iota: A_{K} \rightarrow$ D_{K} such that

$$
\iota \beta \in \mathscr{S}^{w r}\left(\mathfrak{o}_{D}\right), \quad \iota\left(\mathfrak{A}_{K}\right)={ }_{D} \mathfrak{A}_{K} .
$$

We remark that $\iota \beta \in G^{\prime}=D^{\times}$. For the simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A=\mathrm{M}_{p^{m}}(F)$, from [6, Proposition 5.1], the stratum $\left[\mathfrak{A}_{K}, n, 0, \beta \otimes 1\right]$ in $A_{K}=\mathrm{M}_{p^{m}}(K)$ is simple. We identify $\beta=\beta \otimes 1$. The open subgroup of $G_{K}=A_{K}^{\times}$

$$
I_{K}(\beta)=K[\beta]^{\times} I_{K}^{1}(\beta)
$$

is defined in the same way as that of $I_{F}(\beta)$. Here, since the extension K / F is unramified and the extension $F[\beta] / F$ is totally ramified, $K[\beta]=K \cdot F[\beta]$ is a
totally ramified extension field of K of degree p^{m}. Let ζ be a level-one additive character of K such that $\zeta \mid F=\psi_{F}$. Then, we denote by $\mathscr{D}\left(\mathfrak{A}_{K}, \beta, \zeta\right)=\mathscr{D}_{K}(\beta, \zeta)$ the set of certain quasicharacters of $I_{K}(\beta)$ with respect to ζ, as above.

We obtain $I_{K}(\beta) \cap A^{\times}=I_{K}(\beta)$ from [6, Proposition 1.5].
Let $F_{n r} / F$ be a maximal unramified extension, and let \tilde{F} be the completion of $F_{n r}$ with respect to the discrete valuation ν. Hereafter, we fix a level-one character Ψ of \tilde{F} such that $\Psi \mid F=\psi_{F}$. For K / F finite and contained in $F_{n r}$, we set $\Psi^{K}=$ $\Psi \mid K$. From this character Ψ^{K}, we obtain the sets of quasicharacters $\mathscr{D}_{K}\left(\beta, \Psi^{K}\right)$ and ${ }_{D} \mathscr{D}_{K}\left(\iota \beta, \Psi^{K}\right)$. Then, it follows from [6, Section 1.3.2] that, through the K-isomorphism ι above, the map $\mu \mapsto \mu \circ \iota$ induces a bijection

$$
\mathscr{D}_{K}\left(\beta, \Psi^{K}\right) \simeq{ }_{D} \mathscr{D}_{K}\left(\iota \beta, \Psi^{K}\right),
$$

denoted again by ι.

PROPOSITION 3.5 ([6, SECTION 2.5])
Let $\lambda \in \mathscr{D}_{F}\left(\beta, \psi_{F}\right)$ and ${ }_{D} \lambda \in_{D} \mathscr{D}_{F}\left(\iota \beta, \psi_{F}\right)$ be the quasicharacters in Theorem 3.4. Then, there exists a quasicharacter $\lambda(K) \in \mathscr{D}_{K}\left(\beta, \Psi^{K}\right)$ such that

$$
\lambda(K)\left|I_{F}(\beta)=\lambda, \quad D_{D} \lambda=\lambda(K) \circ \iota^{-1}\right|{ }_{D} I_{F}(\iota \beta) .
$$

Proof
The quasicharacters $\lambda(K)$ and ${ }_{D} \lambda$ are replaced by $\tilde{\lambda}^{K}$ satisfying $\tilde{\lambda}^{K} \mid I_{F}(\beta)=$ λ and $\tilde{\lambda}^{K} \circ \iota^{-1} \mid{ }_{D} I_{F}(\iota \beta)=\iota\left(\tilde{\lambda}^{K}\right)^{F}$ in [6, Section 2.5], respectively. Thus, the equalities of this proposition follow and the proof is complete.

In the proof of Proposition 3.5, we remark that the representation $\pi_{D}\left({ }_{D} \lambda\right)$ defined in Section 3.2 is replaced by ${ }_{D} \pi(\lambda)$ in [6, Section 2.5]. By the proof of $[6$, Section 3.3 Lemma 2], we can identify

$$
D_{K}=A_{K}, \quad D^{\mathfrak{A}_{K}=\mathfrak{A}_{K}}
$$

and find a K-automorphism ι of $D_{K}=A_{K}$ satisfying the conditions: (1) $\iota\left(\mathfrak{A}_{K}\right)=$ \mathfrak{A}_{K} and (2) $\iota(F[\beta]) \subset D$. Thus, we have $\iota=\operatorname{Ad}\left(y_{0}\right)$ for some $y_{0} \in U\left(\mathfrak{A}_{K}\right)=\mathfrak{A}_{K}^{\times}$.

PROPOSITION 3.6

The group ${ }_{D} I_{F}(\iota \beta)$ and the quasicharacter ${ }_{D} \lambda$ in Proposition 3.5 may be replaced by

$$
{ }_{D} I_{F}\left(y_{0}^{-1} \beta y_{0}\right)=y_{0}^{-1} I_{K}(\beta) y_{0} \cap D^{\times}, \quad \lambda(K) \circ \operatorname{Ad}\left(y_{0}\right) \mid{ }_{D} I_{F}\left(y_{0}^{-1} \beta y_{0}\right) .
$$

Proof
This follows from the proof of [6, Section 3.3 Lemma 2]. The proof is complete.
Since we have $y_{0} \in \mathfrak{A}_{K}^{\times}$, we obtain

$$
I_{K}(\iota \beta)=I_{K}\left(y_{0}^{-1} \beta y_{0}\right)=y_{0}^{-1} I_{K}(\beta) y_{0} .
$$

3.5. Simple and quasisimple characters

Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_{F}-order in $A=\mathrm{M}_{p^{m}}(F)$, and let $\beta \in \mathscr{S}^{w r}(\mathfrak{A})$. Then, the pair $(0, \beta)$ is a simple pair over F. Set $E=F[\beta]$. Then, the field E is a totally ramified extension of F of degree p^{m}. Let $A(E)$ and $\mathfrak{A}(E)$ be the objects defined in Section 1.2. Then, through a basis of E as an F-vector space, we identify

$$
A(E)=\mathrm{M}_{p^{m}}(F)=A .
$$

Then, we may set $\mathfrak{A}(E)=\mathfrak{A}$. Thus, in $A=A(E)$, we identify

$$
[\mathfrak{A}(E), n, 0, \beta]=[\mathfrak{A}, n, 0, \beta],
$$

and

$$
\begin{equation*}
\mathscr{C}_{F}(0, \beta)=\mathscr{C}\left(\mathfrak{A}(E), 0, \beta, \psi_{F}\right)=\mathscr{C}\left(\mathfrak{A}, 0, \beta, \psi_{F}\right), \tag{3.3}
\end{equation*}
$$

with respect to the fixed level-one additive character ψ_{F} of F.
Let K / F be an unramified extension of degree divisible by p^{m}, and let Ψ^{K} be a character of K as before such that $\Psi^{K} \mid F=\psi_{F}$. Set $A_{K}=A \otimes_{F} K, \mathfrak{A}_{K}=$ $\mathfrak{A} \otimes_{\mathfrak{o}_{F}} \mathfrak{o}_{K}$, and $\tilde{E}=E \otimes_{F} K$. Then, we have $\tilde{E}=E \cdot K=K[\beta]$ and this is a totally ramified extension of K of degree p^{m}, as seen in Section 3.3. Thus, we can identify

$$
A_{K}(\tilde{E})=\operatorname{End}_{K}(\tilde{E})=A_{K}, \quad \mathfrak{A}_{K}(\tilde{E})=\operatorname{End}_{\mathfrak{o}_{K}}^{0}\left(\left\{\mathfrak{p}_{\tilde{E}}^{i}: i \in \mathbb{Z}\right\}\right)=\mathfrak{A}_{K}
$$

Hence, we have $\left[\mathfrak{A}_{K}(\tilde{E}), n, 0, \beta\right]=\left[\mathfrak{A}_{K}, n, 0, \beta\right]$ and

$$
\begin{equation*}
\mathscr{C}_{K}(0, \beta)=\mathscr{C}\left(\mathfrak{A}_{K}(\tilde{E}), 0, \beta, \Psi^{K}\right)=\mathscr{C}\left(\mathfrak{A}_{K}, 0, \beta, \Psi^{K}\right) \tag{3.4}
\end{equation*}
$$

3.6. Descent of transfers

We come back to Section 3.4 and investigate the representation $\pi_{D}\left({ }_{D} \lambda\right)$ of $G^{\prime}=$ D^{\times}. From Proposition 3.5, we can set

$$
\theta(K)=\lambda(K) \mid H_{K}^{1}(\beta) \in \mathscr{C}\left(\mathfrak{A}_{K}, 0, \beta, \Psi^{K}\right)
$$

as in Section 3.3. Then, we have $\theta(K) \mid H_{F}^{1}(\beta)=\theta$. Hereafter, set $\iota \beta=y_{0}^{-1} \beta y_{0}$. We can also set

$$
{ }_{D} \theta(K)=\lambda(K) \circ \operatorname{Ad}\left(y_{0}\right) \mid{ }_{D} H_{K}^{1}(\iota \beta) \in \mathscr{C}\left({ }_{D} \mathfrak{A}_{K}, 0, \iota \beta, \Psi^{K}\right) .
$$

Since ${ }_{D} \mathfrak{A}_{K}=\mathfrak{A}_{K}$, we have

$$
H_{K}^{1}(\iota \beta)=H^{1}\left(\iota \beta, \mathfrak{A}_{K}\right)=H^{1}\left(\iota \beta,{ }_{D} \mathfrak{A}_{K}\right)={ }_{D} H_{K}^{1}(\iota \beta)
$$

and

$$
{ }_{D} H_{K}^{1}(\iota \beta) \cap D^{\times}={ }_{D} H_{F}^{1}(\iota \beta)=H^{1}\left(\iota \beta, \mathfrak{o}_{D}\right) .
$$

Hence, from the equality (3.1), we obtain

$$
{ }_{D} \theta={ }_{D} \theta(K) \mid{ }_{D} H_{F}^{1}(\iota \beta) \in \mathscr{C}\left(\mathfrak{o}_{D}, 0, \iota \beta, \psi_{F}\right) .
$$

To prove the equivalence (3.2), it is enough to prove the following condition.

Condition C1. ${ }_{D} \theta$ is the transfer of θ.
From (3.3), (3.4), and the definition [14, Section 3.3], there exist canonical bijections, referred to as the transfers,

$$
\tau_{F}=\tau_{\mathfrak{A}, 0, \beta}: \mathscr{C}_{F}(0, \beta)=\mathscr{C}\left(\mathfrak{A}, 0, \beta, \psi_{F}\right) \rightarrow \mathscr{C}\left(\mathfrak{o}_{D}, 0, \iota \beta, \psi_{F}\right)
$$

and

$$
\tau_{K}=\tau_{\mathfrak{A}_{K}, 0, \beta}: \mathscr{C}_{K}(0, \beta)=\mathscr{C}\left(\mathfrak{A}_{K}, 0, \beta, \Psi^{K}\right) \rightarrow \mathscr{C}\left({ }_{D} \mathfrak{A}_{K}, 0, \iota \beta, \Psi^{K}\right)
$$

From [14, Theorem 3.53], we get the following commutative diagram:

where the vertical maps are the restrictions. Hence, to prove Condition C1, it is enough to prove the following condition.

Condition C2. $\tau_{K}\left(\theta^{\prime}\right)=\theta^{\prime} \circ \operatorname{Ad}\left(y_{0}\right)$, for $\theta^{\prime} \in \mathscr{C}\left(\mathfrak{A}_{K}, 0, \beta, \Psi^{K}\right)$.
In fact, if Condition C2 is satisfied, then by setting $\theta^{\prime}=\theta(K)$, we obtain that

$$
\tau_{K}(\theta(K))=\theta(K) \circ \operatorname{Ad}\left(y_{0}\right)={ }_{D} \theta(K) .
$$

Thus, by the commutative diagram above, we obtain that

$$
\tau_{F}(\theta)=\tau_{F}(\operatorname{res}(\theta(K)))=\operatorname{res}\left(\tau_{K}(\theta(K))\right)=\operatorname{res}\left({ }_{D} \theta(K)\right)={ }_{D} \theta
$$

which means Condition C1 holds.
Since $\left[\mathfrak{A}_{K}, n, 0, \beta\right]$ is a simple stratum in $A_{K}=\mathrm{M}_{p^{m}}(K)$ and $K[\beta] / K$ is a totally ramified extension of degree p^{m}, we have

$$
\beta=\beta \otimes 1 \in \mathscr{S}^{w r}\left(\mathfrak{A}_{K}\right)
$$

Moreover, we have $\iota \beta=y_{0}^{-1} \beta y_{0}$ for the element $y_{0} \in \mathfrak{A}_{K}^{\times}$defined above.
Finally, in order to prove Condition C 2 , by replacing the base field K of Condition C 2 by the field F, it is enough to prove the following.

PROPOSITION 3.7

Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_{F}-order in $A=\mathrm{M}_{p^{m}}(F)$ and let $\beta \in \mathscr{S}^{\text {wr }}(\mathfrak{A})$. Let y_{0} be an element of \mathfrak{A}^{\times}and let $\iota: F[\beta] \rightarrow A$ be an F-embedding defined by $\iota \beta=y_{0}^{-1} \beta y_{0}$. Then, the transfer

$$
\tau_{F}=\tau_{\mathfrak{A}, 0, \beta}: \mathscr{C}_{F}(0, \beta)=\mathscr{C}\left(\mathfrak{A}, 0, \beta, \psi_{F}\right) \rightarrow \mathscr{C}\left(\mathfrak{A}, 0, \iota \beta, \psi_{F}\right)
$$

satisfies

$$
\tau_{F}(\theta)=\theta \circ \operatorname{Ad}\left(y_{0}\right), \quad \theta \in \mathscr{C}\left(\mathfrak{A}, 0, \beta, \psi_{F}\right)
$$

We devote the next section to a proof of this proposition.

3.7. A proof of the auxiliary proposition

Hereafter, let V be an F-vector space of dimension $p^{m}, m \geq 1$, let $A=\operatorname{End}_{F}(V)$, and let $G=A^{\times}$. If necessary, through an F-basis of V, we identify $A=\mathrm{M}_{p^{m}}(F)$ and $G=\mathrm{GL}_{p^{m}}(F)$.

Let \mathfrak{A} be the minimal hereditary \mathfrak{o}_{F}-order in A, and let $\beta \in \mathscr{S}^{w r}(\mathfrak{A})$. Set $E=F[\beta]$. Then, E is a totally ramified extension of F of degree p^{m}, and \mathfrak{A} is E-pure. Thus, V is a one-dimensional E-vector space. Identifying $V=E$, we have $A=\operatorname{End}_{F}(V)=\operatorname{End}_{F}(E)=A(E)$ and $\mathfrak{A}=\operatorname{End}_{\mathfrak{o}_{F}}^{0}\left(\left\{\mathfrak{p}_{E}^{i}: i \in \mathbb{Z}\right\}\right)=\mathfrak{A}(E)$, as in Section 3.5. We set $\mathcal{L}=\left\{\mathfrak{p}_{E}^{i}: i \in \mathbb{Z}\right\}$ and write $\mathfrak{A}=\mathfrak{A}(\mathcal{L})$. We remark that the element $y_{0} \in \mathfrak{A}(\mathcal{L})^{\times}$satisfies

$$
y_{0}^{-1} \mathfrak{A}(\mathcal{L}) y_{0}=\mathfrak{A}(\mathcal{L}) .
$$

We prove Proposition 3.7 by the method of [8, (3.6.14)]. Set $B=C_{A}(E)$ and $\mathfrak{B}=B \cap \mathfrak{A}$. Then, we may identify $B=E$ and $\mathfrak{B}=\mathfrak{o}_{E}$. Set

$$
\tilde{V}=V \oplus V=E \oplus E .
$$

Then, \tilde{V} is a $2 p^{m}$-dimensional F-vector space, and it can be viewed as a twodimensional E-vector space. Set

$$
\tilde{A}=\operatorname{End}_{F}(\tilde{V}) .
$$

We distinguish the factors V of \tilde{V} as follows: $\tilde{V}=V \oplus V=V_{1} \oplus V_{2}$. Set $A_{i}=$ $\operatorname{End}_{F}\left(V_{i}\right), i=1,2$. We view \mathfrak{A} as the \mathfrak{o}_{F}-order in A_{1}. Then, the elements β and y_{0} belong to A_{1}, and \mathcal{L} is the \mathfrak{o}_{F}-lattice chain in $V_{1}=V$. This \mathcal{L} can be also viewed as the \mathfrak{o}_{F}-lattice chain in $V_{2}=V$. In the F-space V_{1}, we set

$$
\mathcal{L}_{1}=y_{0}^{-1} \mathcal{L}=\left\{y_{0}^{-1} \mathfrak{p}_{E}^{i}: i \in \mathbb{Z}\right\} .
$$

Since $y_{0} \in \mathfrak{A}(\mathcal{L})^{\times}=\operatorname{Ker} \nu_{\mathfrak{A}}$, we have $\mathcal{L}_{1}=\mathcal{L}$ and so

$$
\begin{equation*}
y_{0}^{-1} \mathfrak{P}(\mathcal{L})^{k} y_{0}=\mathfrak{P}(\mathcal{L})^{k}, \quad k \geq 0 . \tag{3.5}
\end{equation*}
$$

For $i=1,2$, we set

$$
L_{j}^{i}=\mathfrak{p}_{E}^{j}, \quad j \in \mathbb{Z}
$$

and $\mathcal{L}_{i}=\left\{L_{j}^{i}: j \in \mathbb{Z}\right\}=\mathcal{L}$.
We define \mathfrak{o}_{F}-lattices in $\tilde{V}=V_{1} \oplus V_{2}$ by

$$
M_{j}=L_{j}^{1} \oplus L_{j}^{2}, \quad j \in \mathbb{Z},
$$

and set $\mathcal{M}=\left\{M_{j}: j \in \mathbb{Z}\right\}$. Then, \mathcal{M} is an \mathfrak{o}_{F}-lattice chain in \tilde{V} of \mathfrak{o}_{F}-period p^{m}, and also an \mathfrak{o}_{E}-lattice chain in \tilde{V} of \mathfrak{o}_{E}-period one. Set

$$
\tilde{\mathfrak{A}}=\mathfrak{A}(\mathcal{M})=\left\{x \in \tilde{A}: x M_{j} \subset M_{j}, j \in \mathbb{Z}\right\}
$$

and $\tilde{\mathfrak{P}}=\mathfrak{P}(\mathcal{M})$. Then, $\tilde{\mathfrak{A}}$ is a hereditary \mathfrak{o}_{F}-order in \tilde{A}, and $\tilde{\mathfrak{P}}$ is the Jacobson radical of $\tilde{\mathfrak{A}}$. For $i=1,2$, let \boldsymbol{e}_{i} be the canonical projection $\tilde{V}=V_{1} \oplus V_{2} \rightarrow V_{i}$. Then, we have

$$
\tilde{A}=\coprod_{i, j} e_{i} \tilde{A} e_{j} .
$$

In particular, we identify $A_{i}=\operatorname{End}_{F}\left(V_{i}\right)=\boldsymbol{e}_{i} \tilde{A} \boldsymbol{e}_{i}, i=1,2$. Then, there exists a canonical embedding $A_{1} \times A_{2} \hookrightarrow \tilde{A}$. For $\beta \in A$, set

$$
\varphi(\beta)=(\iota \beta, \beta)=\left(y_{0}^{-1} \beta y_{0}, \beta\right) \in A_{1} \times A_{2} \subset \tilde{A}
$$

Then, the map $\beta \mapsto \varphi(\beta)$ defines an F-embedding $E=F[\beta] \rightarrow \tilde{A}$, denoted again by φ. We identify $E=F[\beta]=F[\varphi(\beta)]=\varphi(E) \subset \tilde{A}$. Thus, we can view $\tilde{V}=$ $V_{1} \oplus V_{2}$ as an E-vector space. By the definition of $\tilde{\mathfrak{A}}$, we have $E^{\times} \subset \mathfrak{K}(\tilde{\mathfrak{A}})$. Let $\tilde{B}=C_{\tilde{A}}(\varphi(\beta))$, let $B_{1}=C_{A_{1}}(\iota \beta)$, and let $B_{2}=C_{A_{2}}(\beta)$. Then, through the identification $A_{1}=A_{2}=A$, we have $B_{1}=y_{0}^{-1} B y_{0}$ and $B_{2}=B$. In $A_{i}=\operatorname{End}_{F}\left(V_{i}\right)$, set

$$
\mathfrak{A}_{i}=\mathfrak{A}\left(\mathcal{L}_{i}\right)=\mathfrak{A}(\mathcal{L}),
$$

for $i=1,2$. We have

$$
E^{\times} \simeq \boldsymbol{e}_{i} E^{\times} \boldsymbol{e}_{i} \subset \mathfrak{K}\left(\mathfrak{A}_{i}\right)
$$

Set $\tilde{\mathfrak{B}}=\tilde{\mathfrak{A}} \cap \tilde{B}$ and $\mathfrak{B}_{i}=\mathfrak{A}_{i} \cap B_{i}$, for $i=1,2$. From (3.5), we obtain that

$$
\mathfrak{B}_{1}=\mathfrak{A}_{1} \cap B_{1}=y_{0}^{-1} \mathfrak{A}(\mathcal{L}) y_{0} \cap y_{0}^{-1} B y_{0}=y_{0}^{-1} \mathfrak{B} y_{0}
$$

and $\mathfrak{B}_{2}=\mathfrak{B}$. Since $\mathfrak{H}^{k}(\varphi(\beta), \tilde{\mathfrak{A}})$ is a $(\tilde{\mathfrak{B}}, \tilde{\mathfrak{B}})$-bimodule, by [8, (3.6.15)], we obtain

$$
\mathfrak{H}^{k}(\varphi(\beta), \tilde{\mathfrak{A}}) \cap A_{i}=\boldsymbol{e}_{i} \mathfrak{H}^{k}(\varphi(\beta), \tilde{\mathfrak{A}}) \boldsymbol{e}_{i}, \quad k \geq 0,
$$

for $i=1,2$. In fact, for $k \geq 0$, we prove that

$$
\left\{\begin{array}{l}
\mathfrak{H}^{k}(\varphi(\beta), \tilde{\mathfrak{A}}) \cap A_{1}=\mathfrak{H}^{k}(\iota \beta, \mathfrak{A}(\mathcal{L}))=y_{0}^{-1} \mathfrak{H}^{k}(\beta, \mathfrak{A}(\mathcal{L})) y_{0}, \tag{3.6}\\
\mathfrak{H}^{k}(\varphi(\beta), \tilde{\mathfrak{A}}) \cap A_{2}=\mathfrak{H}^{k}(\beta, \mathfrak{A}(\mathcal{L})) .
\end{array}\right.
$$

It is enough to prove this for the case $k=0$. We proceed by induction along β. Assume that β is minimal over F. Then, we have $\mathfrak{H}(\varphi(\beta), \tilde{\mathfrak{A}})=\tilde{\mathfrak{B}}+\tilde{\mathfrak{P}}^{\lfloor-\nu / 2\rfloor+1}$, where $\nu=\nu_{E}(\beta)$. From [8, (3.6.15)], we obtain that

$$
\mathfrak{H}(\varphi(\beta), \tilde{\mathfrak{A}}) \cap A_{i}=\boldsymbol{e}_{i} \tilde{\mathfrak{B}} \boldsymbol{e}_{i}+\boldsymbol{e}_{i} \tilde{\mathfrak{P}}^{\lfloor-\nu / 2\rfloor+1} \boldsymbol{e}_{i}=\mathfrak{B}_{i}+\mathfrak{P}_{i}^{\lfloor-\nu / 2\rfloor+1}
$$

Moreover, we have that

$$
\mathfrak{B}_{1}+\mathfrak{P}_{1}^{\lfloor-\nu / 2\rfloor+1}=y_{0}^{-1} \mathfrak{B} y_{0}+y_{0}^{-1} \mathfrak{P}^{\lfloor-\nu / 2\rfloor+1} y_{0}=y_{0}^{-1} \mathfrak{H}(\beta, \mathfrak{A}(\mathcal{L})) y_{0}
$$

and $\mathfrak{B}_{2}+\mathfrak{P}_{2}^{\lfloor-\nu / 2\rfloor+1}=\mathfrak{B}+\mathfrak{P}^{\lfloor-\nu / 2\rfloor+1}=\mathfrak{H}(\beta, \mathfrak{A}(\mathcal{L}))$. Thus, (3.6) is proved.
In the general case, let

$$
r_{0}=-k_{0}(\beta, \mathfrak{A}(\mathcal{L}))=-k_{0}(\iota \beta, \mathfrak{A}(\mathcal{L}))=-k_{0}(\beta, \mathfrak{A}(E)) .
$$

Then, there exists a simple stratum $\left[\mathfrak{A}(E),-\nu, r_{0}, \gamma\right]$ in $A(E)$ that is equivalent to $\left[\mathfrak{A}(E),-\nu, r_{0}, \beta\right]$. Since γ belongs to $A(E)=A$, we can define an F-embedding $\varphi: F[\gamma] \rightarrow \tilde{A}$ by

$$
\varphi(\gamma)=(\iota \gamma, \gamma)=\left(y_{0}^{-1} \gamma y_{0}, \gamma\right) .
$$

The stratum $\left[\mathfrak{A}_{1},-\nu, r_{0}, \iota \gamma\right]$ is simple in $A_{1}=A=A(E)$ and is equivalent to $\left[\mathfrak{A}_{1},-\nu, r_{0}, \iota \beta\right]$. Similarly, the stratum $\left[\mathfrak{A}_{2},-\nu, r_{0}, \gamma\right]$ is simple in $A_{2}=A=A(E)$
and is equivalent to $\left[\mathfrak{A}_{2},-\nu, r_{0}, \beta\right]$. Thus, we obtain

$$
\mathfrak{H}(\varphi(\beta), \tilde{\mathfrak{A}})=\tilde{\mathfrak{B}}+\mathfrak{H}^{\left\lfloor r_{0} / 2\right\rfloor+1}(\varphi(\gamma), \tilde{\mathfrak{A}}) .
$$

Moreover, by induction, we obtain

$$
\begin{aligned}
\mathfrak{H}(\varphi(\beta), \tilde{\mathfrak{A}}) \cap A_{1} & =\mathfrak{B}_{1}+\mathfrak{H}^{\left\lfloor r_{0} / 2\right\rfloor+1}\left(\iota \gamma, \mathfrak{A}_{1}\right) \\
& =y_{0}^{-1} \mathfrak{B} y_{0}+y_{0}^{-1} \mathfrak{H}^{\left\lfloor r_{0} / 2\right\rfloor+1}(\gamma, \mathfrak{A}(\mathcal{L})) y_{0} \\
& =y_{0}^{-1} \mathfrak{H}(\beta, \mathfrak{A}(\mathcal{L})) y_{0},
\end{aligned}
$$

and similarly $\mathfrak{H}(\varphi(\beta), \tilde{\mathfrak{A}}) \cap A_{2}=\mathfrak{H}(\beta, \mathfrak{A}(\mathcal{L}))$. Hence, the proof of (3.5) is finished and we have

$$
y_{0}^{-1} H^{k}(\beta, \mathfrak{A}(\mathcal{L})) y_{0} \times H^{k}(\beta, \mathfrak{A}(\mathcal{L})) \subset H^{k}(\varphi(\beta), \tilde{\mathfrak{A}}),
$$

for $k \geq 0$. Given $\theta \in \mathscr{C}\left(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_{F}\right)$, we set

$$
\theta_{1}=\theta\left|H^{1}(\iota \beta, \mathfrak{A}(\mathcal{L})), \quad \theta_{2}=\theta\right| H^{1}(\beta, \mathfrak{A}(\mathcal{L}))
$$

We shall prove

$$
\begin{equation*}
\theta_{1}=\theta_{2} \circ \operatorname{Ad}\left(y_{0}\right) . \tag{3.7}
\end{equation*}
$$

We again proceed by induction along β. For the fixed additive character ψ_{F} of F, we set

$$
\psi=\psi_{\tilde{A}}=\psi_{F} \circ \operatorname{tr}_{\tilde{A} / F}, \quad \psi_{i}=\psi_{A_{i}}=\psi_{F} \circ \operatorname{tr}_{A_{i} / F}, \quad i=1,2 .
$$

Then, we have

$$
\psi \mid A_{i}=\psi_{i}, \quad i=1,2 .
$$

For $a \in \tilde{A}$, define the character ψ_{a} of \tilde{A} by $\psi_{a}(x)=\psi(a(x-1)), x \in \tilde{A}$. If $a=$ $\left(a_{1}, a_{2}\right), a_{i} \in A_{i}$, then we have $\psi_{a} \mid A_{i}=\psi_{i, a_{i}}, i=1,2$. We identify

$$
\beta=\varphi(\beta)=(\iota \beta, \beta)=\left(y_{0}^{-1} \beta y_{0}, \beta\right) \in A_{1} \oplus A_{2} \subset \tilde{A} .
$$

Assume that β is minimal over F. Let χ_{0} be a unique character of $U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{o}_{E}\right)$ such that

$$
\psi_{\beta} \mid U^{\lfloor-\nu / 2\rfloor+1}(\tilde{\mathfrak{B}})=\chi_{0} \circ \operatorname{det}_{\tilde{B}} .
$$

Then, we also have

$$
\left\{\begin{array}{l}
\psi_{1, \iota \beta} \mid U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{1}\right)=\chi_{0} \circ \operatorname{det}_{B_{1}} \\
\psi_{2, \beta} \mid U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{2}\right)=\chi_{0} \circ \operatorname{det}_{B_{2}}
\end{array}\right.
$$

For $\mathfrak{B}=\mathfrak{A}(\mathcal{L}) \cap B$ in $A=A(E)$ as before, we can identify

$$
\mathfrak{B}_{1}=y_{0}^{-1} \mathfrak{B} y_{0}=y_{0}^{-1} \mathfrak{B}_{2} y_{0} .
$$

Thus, we have

$$
U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{1}\right)=y_{0}^{-1} U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{2}\right) y_{0}
$$

and so

$$
\begin{equation*}
\psi_{1, \iota \beta}\left|U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{1}\right)=\psi_{2, \beta} \circ \operatorname{Ad}\left(y_{0}\right)\right| U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{1}\right) . \tag{3.8}
\end{equation*}
$$

In fact, for $z \in U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{B}_{1}\right)$, we obtain

$$
\begin{aligned}
\psi_{1, \iota \beta}(z) & =\psi_{F} \circ \operatorname{tr}_{A_{1}}(\iota \beta(z-1))=\psi_{F} \circ \operatorname{tr}_{A_{1}}\left(y_{0}^{-1} \beta y_{0}(z-1)\right) \\
& =\psi_{F} \circ \operatorname{tr}_{A_{1}}\left(\beta\left(y_{0} z y_{0}^{-1}-1\right)\right)=\psi_{2, \beta}\left(y_{0} z y_{0}^{-1}\right)
\end{aligned}
$$

and hence obtain (3.8). Take $\theta \in \mathscr{C}\left(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_{F}\right)$. When $0 \geq\lfloor-\nu / 2\rfloor$, we have $\theta=\psi_{\varphi(\beta)}$ and so

$$
\theta_{1}=\psi_{1, \iota \beta}, \quad \theta_{2}=\psi_{2, \beta}
$$

Moreover, we have $\theta_{1} \in \mathscr{C}\left(\mathfrak{A}(\mathcal{L}), 0, \iota \beta, \psi_{F}\right), \theta_{2} \in \mathscr{C}\left(\mathfrak{A}(\mathcal{L}), 0, \beta, \psi_{F}\right)$, and the map $\theta \mapsto \theta_{i}$ is bijective. Since (3.8) implies (3.7), we obtain the bijection

$$
\theta_{2} \mapsto \theta_{1}=\theta_{2} \circ \operatorname{Ad}\left(y_{0}\right)
$$

from $\mathscr{C}\left(\mathfrak{A}(\mathcal{L}), 0, \beta, \psi_{F}\right)$ to $\mathscr{C}\left(\mathfrak{A}(\mathcal{L}), 0, \iota \beta, \psi_{F}\right)$. When $\lfloor-\nu / 2\rfloor>0$, we can choose a character χ_{θ} of $U^{1}\left(\mathfrak{o}_{E}\right)$ such that

$$
\theta \mid U^{1}(\tilde{\mathfrak{B}})=\chi_{\theta} \circ \operatorname{det}_{\tilde{B} / E}
$$

Then, as in the proof of $[8,(3.6 .1)]$, we obtain the bijection $\theta \mapsto \chi_{\theta}$ from $\mathscr{C}(\tilde{\mathfrak{A}}, 0$, $\left.\varphi(\beta), \psi_{F}\right)$ to the set of characters χ of $U^{1}\left(\mathfrak{o}_{E}\right)$ such that $\chi \mid U^{\lfloor-\nu / 2\rfloor+1}\left(\mathfrak{o}_{E}\right)=\chi_{\theta}$. Since $\theta_{i} \mid U^{1}\left(\mathfrak{B}_{i}\right)=\chi_{\theta} \circ \operatorname{det}_{B_{i}}$, we thus obtain the bijection $\theta \mapsto \theta_{i}, i=1,2$. From the equality

$$
\operatorname{det}_{B}(x)=\operatorname{det}_{B_{1}}\left(y_{0}^{-1} x y_{0}\right), \quad x \in B
$$

together with (3.8), we obtain (3.7) by [8, (3.2.1)], and hence obtain the bijection $\theta_{2} \mapsto \theta_{1}=\theta_{2} \circ \operatorname{Ad}\left(y_{0}\right)$ as above.

In the general case, we set $r_{0}=-k_{0}(\iota \beta, \mathfrak{A}(\mathcal{L}))=-k_{0}(\beta, \mathfrak{A}(\mathcal{L}))$ and take an element $\gamma \in A=A_{1}=A_{2}$ and an F-embedding $\varphi: F[\gamma] \rightarrow \tilde{A}$, as before. Set

$$
c=\varphi(\beta)-\varphi(\gamma)=(\iota \beta, \beta)-(\iota \gamma, \gamma)=\left(y_{0}^{-1}(\beta-\gamma) y_{0}, \beta-\gamma\right) .
$$

Suppose that $0 \geq\left\lfloor r_{0} / 2\right\rfloor$. Take $\theta \in \mathscr{C}\left(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_{F}\right)$. Then, this character can be written in the form $\theta=\theta_{0} \cdot \psi_{c}, \theta_{0} \in \mathscr{C}\left(\tilde{\mathfrak{A}}, 0, \varphi(\beta), \psi_{F}\right)$, and we have

$$
\left\{\begin{array}{l}
\theta_{1}=\left(\theta_{0} \mid H^{1}(\iota \beta, \mathfrak{A}(\mathcal{L}))\right) \cdot \psi_{1, \iota \beta-\iota \gamma}, \\
\theta_{2}=\left(\theta_{0} \mid H^{1}(\gamma, \mathfrak{A}(\mathcal{L}))\right) \cdot \psi_{2, \beta-\gamma}
\end{array}\right.
$$

In this case, by induction and by $[8,(3.3 .18)]$, we see that $\theta \mapsto \theta_{i}$ is bijective. We also obtain

$$
\begin{aligned}
\theta_{1} & =\left(\theta_{0} \mid H^{1}(\iota \gamma, \mathfrak{A}(\mathcal{L}))\right) \cdot \psi_{1, \iota \beta-\iota \beta} \\
& =\left[\left(\theta_{0} \mid H^{1}(\gamma, \mathfrak{A}(\mathcal{L}))\right) \circ \operatorname{Ad}\left(y_{0}\right)\right] \cdot\left[\psi_{2, \beta-\gamma} \circ \operatorname{Ad}\left(y_{0}\right)\right] \\
& =\theta_{2} \circ \operatorname{Ad}\left(y_{0}\right) .
\end{aligned}
$$

Hence, $\theta_{2} \mapsto \theta_{1}=\theta_{2} \circ \operatorname{Ad}\left(y_{0}\right)$ is the bijection from $\mathscr{C}\left(\mathfrak{A}(\mathcal{L}), 0, \beta, \psi_{F}\right)$ to $\mathscr{C}(\mathfrak{A}(\mathcal{L}), 0$, $\left.\iota \beta, \psi_{F}\right)$. The case $\left\lfloor r_{0} / 2\right\rfloor>0$ follows in a way quite similar to that of the proof in the case where β is minimal over F. The assertion of Proposition 3.7 follows from the uniqueness of the transfer τ_{F} by [14, Theorem 3.53]. The proof is complete. Finally, Proposition 3.7 confirms the conjecture of Remark 2.5.

References

[1] A. I. Badulescu, Correspondence de Jacquet-Langlands pour les corps locaux de caractéristique non nulle, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 695-747. MR 1951441. DOI 10.1016/S0012-9593(02)01106-0.
[2] A. I. Badulescu, G. Henniart, B. Lemaire, and V. Sécherre, Sur le dual unitaire de $\mathrm{GL}_{r}(D)$, Amer. J. Math. 132 (2010), 1365-1396. MR 2732351. DOI 10.1353/ajm.2010.0009.
[3] P. Broussous, Extension du formalisme de Bushnell et Kutzko au cas d'une algèbre à division, Proc. Lond. Math. Soc. (3) 77 (1988), 292-326. MR 1635145. DOI 10.1112/S0024611598000471.
[4] P. Broussous, V. Sécherre, and S. Stevens, Smooth representations of GL $m_{m}(D)$, V: Endo-classes, Doc. Math. 17 (2012), 23-77. MR 2889743.
[5] C. J. Bushnell and G. Henniart, Local tame lifting for GL(N), I: Simple characters, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 105-233. MR 1423022.
[6] _, Local tame lifting for GL(n), III: Explicit base change and Jacquet-Langlands correspondence, J. Reine Angew. Math. 580 (2005), 39-100. MR 2130587. DOI 10.1515/crll.2005.2005.580.39.
[7] , The essentially tame Jacquet-Langlands correspondence for inner forms of GL(n), Pure Appl. Math. Q. 7 (2011), 469-538. MR 2848585. DOI 10.4310/PAMQ.2011.v7.n3.a2.
[8] C. J. Bushnell and P. C. Kutzko, The Admissible Dual of GL(N) via Compact Open Subgroups, Ann. Math. Stud. 129, Princeton Univ. Press, Princeton, 1993. MR 1204652.
[9] P. Deligne, D. Kazhdan, and M.-F. Vignéras, "Représentations des algèbres centrales simples p-adiques" in Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, 33-117. MR 0771672.
[10] M. Grabitz, A. J. Silberger, and E.-W. Zink, Level zero types and Hecke algebras for local central simple algebras, J. Number Theory 91 (2001), 92-125. MR 1869321. DOI 10.1006/jnth.2001.2684.
[11] G. Henniart, "Correspondance de Jacquet-Langlands explicite, I: Le cas modéré de degré premier" in Séminaire de Théorie des Nombres, Paris, 1990-91, Progr. Math. 108, Birkhäuser, Boston, 1993, 85-114. MR 1263525.
[12] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin, 1970. MR 0401654.
[13] J. D. Rogawski, Representations of GL(n) and division algebras over a p-adic field, Duke Math. J. 50 (1983), 161-196. MR 0700135.
[14] V. Sécherre, Représentations lisses de GL (m, D), I: Caractères simples, Bull. Soc. Math. France 132 (2004), 327-396. MR 2081220.
[15] , Représentations lisses de $\mathrm{GL}(m, D)$, III: Types simples, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 951-977. MR 2216835.
DOI 10.1016/j.ansens.2005.10.003.
[16] V. Sécherre and S. Stevens, Représentations lisse de GL $(m, D), I V$: Représentations supercuspidals, J. Inst. Math. Jussieu 7 (2008), 527-574. MR 2427423. DOI 10.1017/S1474748008000078.
[17] A. J. Silberger and E.-W. Zink, Weak explicit matching for level zero discrete series of unit groups of p-adic simple algebras, Canad. J. Math. 55 (2003), 353-378. MR 1969796. DOI 10.4153/CJM-2003-016-4.
[18] _ An explicit matching theorem for level zero discrete series of unit groups of p-adic simple algebras, J. Reine Angew. Math. 585 (2005), 173-235. MR 2164626. DOI 10.1515/crll.2005.2005.585.173.
[19] S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), 123-173. MR 2126498. DOI 10.1215/S0012-7094-04-12714-9.

Department of Economics, Management, and Information Science, Onomichi City University, Hiroshima 722-8506, Japan; kariyama@onomichi-u.ac.jp

