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Abstract Thebehavior of orbits of theHamilton vector fieldHp of the principal symbol

p of a second-order hyperbolic differential operator is discussed. In our previous paper,

assuming that p is noneffectively hyperbolic on thedoubly characteristicmanifoldΣ of p,

we have proved that if H3
Sp = 0 on Σ with the Hamilton vector field HS of some spec-

ified S, then there exists a bicharacteristic landing on Σ tangentially. The aim of this

paper is to provide a much more simple proof of this result since the previous proof was

fairly long and rather complicated.

1. Introduction

Let

P (x,D) =−D2
0 +

∑
|α|≤2,α0<2

aα(x)D
α

be a second-order differential operator defined in a neighborhood of the origin of

Rn+1 with principal symbol p(x, ξ), where x= (x0, x
′) = (x0, x1, . . . , xn) is a sys-

tem of local coordinates near the origin of Rn+1 with ξ = (ξ0, ξ
′) = (ξ0, ξ1, . . . , ξn)

and Dα = (−i∂/∂x0)
α0 · · · (−i∂/∂xn)

αn , aα(x) ∈ C∞. We assume that p(x, ξ) is

hyperbolic with respect to the x0-direction so that p(x, ξ0, ξ
′) = 0 has only real

zeros for any real (x, ξ′) with x near the origin. On integral curves of the Hamilton

vector field Hp =
∑n

j=0(∂p/∂ξj ∂/∂xj −∂p/∂xj ∂/∂ξj) of p, that is, the solutions

of the Hamilton equations

(1.1)
dxj

ds
=

∂p

∂ξj
(x, ξ),

dξj
ds

=− ∂p

∂xj
(x, ξ)

in local coordinates, p is constant on such a curve. If p vanishes on the curve,

then the curve is called a bicharacteristic of p (e.g., see [3, p. 154]). Let ρ= (x̄, ξ̄)

be a double characteristic of p, that is, p vanishes at ρ of order 2. Since ρ is a

singular (stationary) point of the Hamilton equations (1.1), to take a closer look

at the behavior of bicharacteristics near ρ we linearize the Hamilton equations
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at ρ, which yields d(x, ξ)/ds= Fp(ρ)(x, ξ), where Fp(ρ) is given by

Fp(ρ) =

(
∂2p
∂x∂ξ (ρ)

∂2p
∂ξ ∂ξ (ρ)

− ∂2p
∂x∂x (ρ) − ∂2p

∂ξ ∂x (ρ)

)

in local coordinates and is called the Hamilton map (or the fundamental matrix)

of p at ρ (see [7], [2]). About the spectral properties of Fp(ρ) the following result

is well known.

LEMMA 1.1 ([7, P. 15], [2, LEMMA 1.4.4])

All eigenvalues of Fp(ρ) are pure imaginary except possibly for a pair of nonzero

real eigenvalues ±λ, λ > 0.

When Fp(ρ) has nonzero real eigenvalues, p is called effectively hyperbolic at ρ.

Otherwise p is called noneffectively hyperbolic at ρ.

We now assume that p is effectively hyperbolic at ρ and we consider bichar-

acteristics of p tending to ρ as s ↑+∞ or s ↓ −∞. Then we have the following.

THEOREM 1.1 ([8, THEOREM 2.1], [11, LEMMA 3.2], [9, THEOREM 1])

There are exactly four such bicharacteristics and there is a hypersurface contain-

ing the doubly characteristic set of p near ρ to which these four bicharacteristics

are transversal. Two of them are incoming toward ρ with respect to the param-

eter s, and the other two are outgoing. Each one of the incoming ( resp., outgo-

ing) bicharacteristics is naturally continued to the other one, and the resulting

two curves are regular, C∞, or analytic corresponding to the assumption on the

principal symbol.

Here we note that the tangents of the resulting two smooth curves at ρ are

parallel to the eigenvectors corresponding to the nonzero real eigenvalues ±λ of

Fp(ρ), respectively.

We turn to consider the case in which p is noneffectively hyperbolic. We

assume that the doubly characteristic set Σ of p is a C∞-manifold and

(1.2)

⎧⎪⎪⎨
⎪⎪⎩
p(x, ξ) vanishes exactly of order 2 on Σ,

Fp has no nonzero real eigenvalues on Σ,

rank(
∑n

j=0 dξj ∧ dxj |Σ) = constant on Σ.

According to the spectral structure of Fp, two different possible cases may arise:

KerF 2
p ∩ ImF 2

p = {0} on Σ,(1.3)

KerF 2
p ∩ ImF 2

p �= {0} on Σ.(1.4)

In the case (1.3) there is no bicharacteristic landing to Σ as s ↑+∞ or s ↓ −∞.

Indeed, we have the following result.
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PROPOSITION 1.1 ([6, PROPOSITION 0.3])

Assume (1.2) and (1.3). Then there are no bicharacteristics emanating from a

simple characteristic which has a limit point in Σ.

We give a sketch of the proof. Without restrictions we can assume that p(x, ξ)

can be written in the form p(x, ξ) =−ξ20 + q(x, ξ′), where q(x, ξ′)≥ 0. Under the

assumptions (1.2) and (1.3) one can find a real-valued symbol λ(x, ξ′) defined

near the origin and homogeneous of degree 1 such that in writing

p(x, ξ) =−(ξ0 + λ)(ξ0 − λ) +
(
q(x, ξ′)− λ2(x, ξ′)

)
we have

(1.5)

⎧⎪⎪⎨
⎪⎪⎩
Q(x, ξ′) = q(x, ξ′)− λ2(x, ξ′)≥ 0,

|{ξ0 − λ,Q}| ≤CQ,

|{ξ0 + λ, ξ0 − λ}| ≤C(
√
Q+ |λ|)

with some C > 0 near the origin (see [5] and also [13, Proposition 3.2.1]), where

{f, g} denotes the Poisson bracket

{f, g}=
n∑

j=0

(∂f/∂ξj ∂g/∂xj − ∂f/∂xj ∂g/∂ξj).

Let γ(s) be a bicharacteristic of p which lies outside Σ. Since dx0(s)/ds =

−2ξ0(γ(s)) and ξ20(γ(s)) = q(γ(s)) �= 0 outside Σ one can take x0 as a new param-

eter. Thanks to (1.5) we have with Λ = ξ0 − λ

(1.6)
∣∣∣ d

dx0
Λ
(
γ(x0)

)∣∣∣= ∣∣∣{p,Λ}(γ(s)) ds

dx0

∣∣∣≤C
∣∣Λ(γ(x0)

)∣∣.
From this we conclude that Λ(γ(x0)) = 0 for all x0 if γ(x0) touches Σ at some

point. This shows that Q(γ(x0)) = 0 for all x0. Since Q is nonnegative it follows

that {Q,M}(γ(x0)) = 0 with M = ξ0 + λ. This proves the same inequality (1.6)

for M and hence γ(x0) ∈ Σ for any x0 if γ(x0) ∈ Σ at some x0, which is a

contradiction.

In the case (1.4) the situation is completely different. Indeed, there could

exist bicharacteristics of p having a limit point in Σ. We give examples. Let

1≤ k ≤ n− 1 and qi, ri, i= 1,2, . . . , k, be positive constants. Consider

p(x, ξ) = −ξ20 +
k∑

i=1

qi(xi−1 − xi)
2ξ2n +

k∑
i=1

riξ
2
i +

k∑
i=1

εiξiξ
2
k

= −ξ20 + q(x, ξ′),

where
∑k

i=1 r
−1
i = 1, which is equivalent to the condition (1.4), and the double

characteristic manifold of p is given by Σ = {ξi = 0,0 ≤ i ≤ k,xi = xi+1,0≤ i ≤
k−1}. In [10] it is proved that, by choosing {εi} suitably, there exists a bicharac-

teristic (x(s), ξ(s)) of p such that ξn(s) = 1 and ξi(s)→ 0, xi(s)→ 0 for 0≤ i≤ k

as s → −∞. Note that |
∑k

i=1 εiξi(s)ξ
2
k(s)| <

∑k
i=1 riξ

2
i (s) for large |s| so that

q(x(s), ξ′(s))≥ 0.
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The spectral property (1.4) itself is not enough to determine completely the

behavior of bicharacteristics and we need to look at the third-order term of the

Taylor expansion of p around double characteristics to obtain a complete picture

of the behavior of bicharacteristics. Let S(x, ξ) be a smooth function vanishing

on Σ such that

(1.7) HS ∈KerF 2
p ∩ ImF 2

p , FpHS �= 0, on Σ.

Using such a Hamilton vector field HS of S one can characterize when there is a

bicharacteristic emanating from a simple characteristic which has a limit point

in Σ.

THEOREM 1.2 ([12, THEOREM 1.1])

Assume (1.2) and (1.4). Then the following assertions are equivalent.

(a) H3
Sp= 0 on Σ for any smooth S vanishing on Σ and satisfying (1.7).

(b) There is no bicharacteristic of p emanating from a simple characteristic

and having a limit point in Σ.

It is enough to check Theorem 1.2(a) for one S because of the following result.

LEMMA 1.2 ([1, PROPOSITION 2.3])

Let Si, i = 1,2, be smooth functions vanishing on Σ and verifying (1.7). Then

we have that

H3
S1
p|Σ = cH3

S2
p|Σ

with some nonvanishing function c.

The proof of Theorem 1.2 goes as follows. If H3
Sp = 0 on Σ for some such S,

then p admits a (microlocal) decomposition (1.5), which has been proved in [11]

under some restrictions and in [1] in full generality, removing these restrictions.

Then repeating the same arguments proving Proposition 1.1 we conclude that

(a) implies (b). Thus to prove Theorem 1.2 it suffices to show that there is a

bicharacteristic of p with a limit point in Σ if the condition (a) fails at some

point on Σ. Actually in the previous paper [12], assuming that the condition (a)

fails we look for a bicharacteristic (x(s), ξ(s)) such that

lim
s→∞

s2
(
x(s), ξ(s)

)
= v �= 0,

v ∈KerF 2
p ∩ ImF 2

p , 0 �= Fpv ∈KerFp ∩ ImF 3
p .

To put the above conditions in evidence, we have proved that one can choose a

system of local symplectic coordinates so that the line spanned by z(ρ) verifying

z(ρ) ∈KerF 2
p (ρ)∩ ImF 2

p (ρ), 0 �= Fp(ρ)z(ρ) ∈KerFp(ρ)∩ ImF 3
p (ρ)

(note that z(ρ) is unique up to a multiple factor and hence proportional to

v) is given by mj(x, ξ) = 0 on Σ and the representation of p, in these coor-

dinates, contains the sum of m2
j . Then our desired bicharacteristic (x(s), ξ(s))
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could be expected to satisfy mj(x(s), ξ(s)) = 0 approximately. We write down

our Hamilton equations supposing that the mj ’s were unknowns. We look for a

solution (x(s), ξ(s),m(s)) of the resulting “equations” such that ξ(s) =O(s−2),

x′(s) =O(s−3) (x= (x0, x
′)), and mj(x(s), ξ(s)) =O(s−4), that is, mj(s) goes to

zero faster than both x(s) and ξ′(s) as s→∞ or s→−∞.

This proof was fairly long and rather complicated. The aim of this paper is

to provide a much simpler proof without introducing such new unknowns mj .

2. Lemmas

From the assumption (1.2), for any ρ ∈Σ, one can find φj(x, ξ
′), j = 1, . . . , r such

that we have{
p=−ξ20 +

∑r
j=1 φ

2
j (x, ξ

′), Σ= {φj = 0, j = 0, . . . , r},
rank({φi, φj})0≤i,j≤r = constant on Σ

in a conic neighborhood of ρ with linearly independent {dφj(ρ)} where we have

set ξ0 = φ0.

In this section we write f =O(|φ|) in some open set U if f is a linear combi-

nation of φ1, . . . , φr in U . It is also understood that every open set has nonempty

intersection with Σ. To simplify notations we often denote by {φj}1≤j≤r some

other {φ̃j}1≤j≤r which is related to {φj} by a smooth orthogonal transformation

if which one {φj} means is clear in context.

DEFINITION 2.1

Let Ik, k = 1, . . . , t be subsets of a finite-index set Î which are mutually dis-

joint. We say that {φj}j∈Ik (k = 1, . . . , t) are symplectically independent in U if

{φi, φj}=O(|φ|) in U for any i ∈ Ip, j ∈ Iq , p �= q.

Let A= (aij) be an (m×m)-antisymmetric matrix of the special form

(2.1)

{
aij �= 0 if |i− j|= 1,

aij = 0 if |i− j| �= 1.

Then the next lemma is easily examined.

LEMMA 2.1

Let A be an (m×m)-antisymmetric matrix satisfying (2.1). Then detA �= 0 if m

is even while rankA=m− 1 if m is odd.

Let us consider

Q=

r∑
j=1

φ2
j ,

where it is assumed that φj(x, ξ) are defined in U and {dφj} are linearly inde-

pendent there. Then we have the following.
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LEMMA 2.2

Assume that there exist i, j ∈ Î = {1, . . . , r} and ρ ∈ U ∩Σ such that {φi, φj}(ρ) �= 0.

Then there are an open set V ⊂ U and {φi}i∈I , {φj}j∈J which are symplectically

independent, Î = I ∪ J , such that we can write

(2.2) Q=
∑
i∈I

φ2
i +

∑
j∈J

φ2
j

and

(2.3) det
(
{φi, φj}

)
i,j∈I

�= 0

in V .

Proof

We first prove that one can find an open set V ⊂ U and {φi}i∈I , {φj}j∈J which

are symplectically independent and satisfy (2.2) and

(2.4)

{
{φi, φj} �= 0 if |i− j|= 1, i, j ∈ I,

{φi, φj}=O(|φ|) if |i− j| �= 1, i, j ∈ I

in V . Without restrictions, we may assume that {φ1, φj}(ρ1) �= 0 with some j

and ρ1 ∈ U ∩Σ. Consider a smooth orthogonal transformation of {φ2, . . . , φr} to

{φ̃2, . . . , φ̃r};

φ̃i =

r∑
k=2

Oikφk, i= 2, . . . , r.

Noting {
φ1,

r∑
k=2

Oikφk

}
=

r∑
k=2

Oik{φ1, φk}+O
(
|φ|

)
we choose Oik so that

r∑
k=2

O2k{φ1, φk} �= 0,

r∑
k=2

Oik{φ1, φk}= 0, i= 3, . . . , r,

in some open set U1 ⊂ U . Switching the notation from {φ̃j}rj=2 to {φj}rj=2 we

may assume that Q=
∑

φ2
j and

{φ1, φ2} �= 0, {φ1, φj}=O
(
|φ|

)
, j = 3, . . . , r,

in U1. Consider {φ2, φj}, j ≥ 3. If {φ2, φj}= 0 in U1 ∩Σ for all j ≥ 3, then it is

enough to take

I = {1,2}, J = {3, . . . , r}.

If not, then there exist ρ2 ∈ U1 ∩Σ and j2 ≥ 3 such that {φ2, φj2}(ρ1) �= 0. Con-

tinuing this procedure we can conclude that there exist an open set V ⊂ U and

{φi}i∈I , {φj}j∈J which are symplectically independent and verify (2.2) and (2.4)

in V .
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We turn to the next step. Take ρ ∈ V ∩Σ. If |I| is even, then from Lemma 2.1

and (2.4) it follows that ({φi, φj}(ρ))i,j∈I is nonsingular and hence is near ρ. If |I|
is odd, then from Lemma 2.1 and (2.4) it follows that rank({φi, φj}(ρ))i,j∈I =

|I| − 1. Note that rank({φi, φj})i,j∈I ≤ |I| − 1 because ({φi, φj})i,j∈I is an anti-

symmetric matrix of odd order; then we have

(2.5) rank
(
{φi, φj}

)
i,j∈I

= |I| − 1

in some neighborhood V ′ of ρ. Let I = {i1, i2, . . . , i�}. From (2.5) we have

dimKer({φi, φj})i,j∈I = 1, and hence we can choose smooth ci(x, ξ), i ∈ I , such

that
∑

j∈I c
2
j = 1 and ∑

j∈I

{φi, φj}cj = 0, i ∈ I,

holds in V ′. Choosing a smooth orthogonal matrix (Oij)ij∈I such that Oi1j = cj
and considering

φ̃i =
∑
j∈I

Oijφj , i ∈ I,

we may assume that {φ̃j , φ̃i1} = O(|φ|) in V ′ for all j ∈ I . Since rank({φi,

φj})i,j∈I = rank({φ̃i, φ̃j})i,j∈I it follows from (2.5) that

det
(
{φ̃i, φ̃j}

)
i,j∈I′ �= 0,

where I ′ = I \ {i1}. Thus {φ̃i}i∈I′ and {φ̃j}j∈J ′ , J ′ = J ∪{i1}, verify the desired

assertion. �

LEMMA 2.3

There exist an open set V ⊂ U and {φi}i∈I , {φj}j∈K which are symplectically

independent, Î = I ∪K, such that we can write

Q=
∑
i∈I

φ2
i +

∑
j∈K

φ2
j ,

where det({φi, φj})i,j∈I �= 0 while we have

{φi, φj}=O
(
|φ|

)
for all i, j ∈K

in V .

Proof

From Lemma 2.2 there are an open set V1 ⊂ U and {φj}j∈I1 , {φj}j∈J1 , symplec-

tically independent in V1, which verify (2.2) and (2.3). If {φi, φj}= 0 in V1 ∩Σ

for all i, j ∈ J1, then it is enough to choose I = I1 and K = J1. Otherwise we

apply Lemma 2.2 to Q1 =
∑

j∈J1
φ2
j to find an open set V2 ⊂ V1 and {φj}j∈I2 ,

{φj}j∈J2 , J1 = I2 ∪ J2, which are symplectically independent in V2 and verify

Q1 =
∑
j∈I2

φ2
j +

∑
j∈J2

φ2
j , det

(
{φi, φj}

)
i,j∈I2

�= 0.



288 Tatsuo Nishitani

Repeating this argument at most [r/2] times we conclude that there are an

open set V ⊂ U and {φj}j∈Ik (k = 1, . . . , t), {φj}j∈K , which are symplectically

independent in V and satisfy Q=
∑t

i=1

∑
j∈Ii

φ2
j +

∑
j∈K φ2

j and

det
(
{φi, φj}

)
i,j∈Ip

�= 0, p= 1, . . . , t, {φi, φj}= 0, ∀i, j ∈K,

in V . Let us set I =
⋃t

i=1 Ii; then it is obvious that {φj}j∈I , {φj}j∈K are sym-

plectically independent in V . Note that ({φi, φj}(ρ))i,j∈I is the direct sum of

({φi, φj}(ρ))i,j∈Ik (k = 1, . . . , t) if ρ ∈ V ∩ Σ and hence det({φi, φj})i,j∈I �= 0 in

some open set, which proves the assertion. �

PROPOSITION 2.1

Assume (1.2) and (1.4). Let ρ ∈ Σ, and let U be any neighborhood of ρ. Then

there exist an open set V ⊂ U and {φj}j∈I0 , {φj}j∈I1 , {φj}j∈K which are sym-

plectically independent in V , where {0,1, . . . , r} = I0 ∪ I1 ∪ K,I0 = {0,1, . . . , l}
with even l (≥2), such that one can write

p=−(ξ0 + φ1)(ξ0 − φ1) +

l∑
k=2

φ2
j +

∑
j∈I1

φ2
j +

∑
j∈K

φ2
j

and we have in V ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ξ0 − φ1, φj}=O(|φ|), j = 0, . . . , r,

{φ1, φ2} �= 0 if l= 2,

rank({φi, φj})2≤i,j≤l = l− 2 if l≥ 4,

det({φi, φj})i,j∈I1 �= 0,

{φi, φj}=O(|φ|), ∀i, j ∈K.

Proof

As the first step we prove that one can write

(2.6) p=−ξ20 +

l∑
j=1

φ2
j +

∑
j∈I1

φ2
j +

∑
j∈K

φ2
j ,

where {φj}j∈I0 , {φj}j∈I1 , {φj}j∈K are symplectically independent, {0,1, . . . , r}=
I0 ∪ I1 ∪K, I0 = {0, . . . , l} with even l (≥ or equal to 2), and

(2.7)

⎧⎪⎪⎨
⎪⎪⎩
dimKer({φi, φj})0≤i,j≤l = 1,

det({φi, φj})i,j∈I1 �= 0,

{φi, φj}=O(|φ|), ∀i, j ∈K.

Recall that one can write

p=−ξ20 +

r∑
j=1

φ2
j

near ρ. Let us write φ0 = ξ0 as before. Suppose that {φ0, φj}(ρ) = 0 for all j. Then

with q =
∑r

j=1 φ
2
j we see easily that KerF 2

p (ρ)∩ImF 2
p (ρ) = KerF 2

q (ρ)∩ImF 2
q (ρ),
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which is {0} because q is nonnegative. This contradicts (1.4). Thus we have

{φ0, φj}(ρ) �= 0 with some j ≥ 1. Now repeating the same arguments employed

in the proof of Lemma 2.2 we conclude that there exist an open set V ⊂ U and

{φj}j∈{0,...,l}, {φj}j∈{l+1,...,r}, symplectically independent in V and satisfying

(2.2) and (2.4) with I = {0, . . . , l}, l≥ 1.

We now show that l is even by contradiction. Suppose that l is odd. Let us

denote by pρ the second-order term of the Taylor expansion of p at ρ, which is a

quadratic form in (x, ξ) of homogeneous of degree 2, called the localization of p

at ρ. Then we have

pρ(X) = σ
(
X,Fp(ρ)X

)
, X = (x, ξ) ∈R

2(n+1),

where σ =
∑n

j=0 dξj ∧ dxj is the symplectic 2-form and σ((x, ξ), (y, η)) = 〈ξ, y〉 −
〈x, η〉 in local coordinates and 〈x, y〉=

∑n
j=0 xjyj (see [4]). Let us consider ψ =∑

1≤2j+1≤l c2j+1φ2j+1 with c2j+1 ∈R. We note that (see, e.g., [13])

pρ(Hψ) = −{φ0, ψ}2(ρ) +
r∑

j=1

{φj , ψ}2(ρ)

= −{φ0, c1φ1}2(ρ) +
∑

2≤2i<l

{φ2i, ψ}2(ρ).

Since l is odd, thanks to (2.4) we can choose c2j+1 so that {φ2i, ψ}(ρ) = 0

for 2 ≤ 2i < l and c1 = 1. This implies that pρ(Hψ) = −{φ0, φ1}2(ρ) < 0 and

hence Fp(ρ) has nonzero real eigenvalues (see [2, Corollary 1.4.7]), which contra-

dicts the assumption (1.2). Thus we have proved that l is even. Since l is even

dimKer({φi, φj})0≤i,j≤l = 1 follows from (2.4) easily. If l = r, then the proof is

complete. Otherwise to end the proof it suffices to apply Lemma 2.3 to
∑r

l+1 φ
2
j .

We turn to the second step. Let us write p̄=−ξ20 +
∑l

j=1 φ
2
j , q̄ =

∑r
j=l+1 φ

2
j .

We remark that

(2.8) KerF 2
p̄ (ρ)∩ ImF 2

p̄ (ρ) �= {0}

for ρ ∈ Σ. Indeed, since {φj}0≤j≤l and {φj}l+1≤j≤r are symplectically indepen-

dent, Fp(ρ) = Fp̄(ρ)⊕Fq̄(ρ) (direct sum) in a suitable symplectic basis in R
2(n+1).

Since KerF 2
q̄ (ρ)∩ ImF 2

q̄ (ρ) = {0} we obtain the assertion by (1.4).

Since {φj}0≤j≤l satisfies (2.4), we see that ({φi, φj})1≤i,j≤l is nonsingular in

some open set from Lemma 2.1, and then there are smooth cj , j = 1, . . . , l, such

that

(2.9)
l∑

j=1

{φk, φj}cj = {φk, φ0}, k = 1, . . . , l.

Write cj =Cj(φ
′, θ), where θ = (θr+1, . . . , θ2n+2) is chosen so that (φ0, φ

′, θ), φ′ =

(φ1, . . . , φr) is a system of local coordinates, and define

c̄j =Cj(0, θ)

so that cj = c̄j(θ)+O(|φ|). Thus (1,−c̄1, . . . ,−c̄l) is in Ker({φi, φj})0≤i,j≤l mod-

ulo O(|φ|); then noting (2.7) we see that Ker({φi, φj}(ρ))0≤i,j≤l is spanned
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by (1,−c̄1(θ), . . . ,−c̄l(θ)) for ρ = (0, θ) ∈ Σ. From (2.8) there exists 0 �= X ∈
KerF 2

p̄ (ρ) ∩ ImF 2
p̄ (ρ) such that Fp̄(ρ)X ∈KerFp̄(ρ). Since X ∈ ImFp̄(ρ) we can

put

X =Hf (ρ), f =

l∑
j=0

ajφj

with some a= (a0, . . . , al) ∈R
l+1 and note that Fp̄(ρ)X ∈KerFp̄(ρ) implies that

(−{φ0, f}(ρ),{φ1, f}(ρ), . . . ,{φl, f}(ρ)) is proportional to (1,−c̄1(θ), . . . ,−c̄l(θ)).

With A= ({φi, φj}(ρ))0≤i,j≤l this shows that

Ata= kt
(
1, c̄1(θ), . . . , c̄l(θ)

)
with some k ∈R. Such a ∈R

l+1 exists if and only if

(2.10) tAv = 0, v = (v0, . . . , vl) ∈R
l+1 =⇒ v0 +

l∑
j=1

vj c̄j(θ) = 0.

Since tAv =−Av = 0, v is proportional to (1,−c̄1(θ), . . . ,−c̄l(θ)) if
tAv = 0. Thus

(2.10) gives

(2.11) 1−
l∑

j=1

c̄j(θ)
2 = 0.

Let us set

φ̃1(x, ξ
′) =

l∑
j=1

c̄j(x, ξ
′)φj(x, ξ

′), c̄j(x, ξ
′) = c̄j

(
θ(x, ξ′)

)
.

Noting (2.11) we take a smooth orthogonal matrix O = (Oij)1≤i,j≤l of which the

first row is (c̄1, . . . , c̄l) and put φ̃k =
∑l

j=1Okjφj so that we have

−ξ20 +
l∑

j=1

φ2
j =−(ξ0 + φ̃1)(ξ0 − φ̃1) +

l∑
j=2

φ̃2
j .

It is clear that

(2.12) {ξ0 − φ̃1, φ̃j}=O
(
|φ|

)
, j = 0, . . . , r,

because {
φk, φ0 −

l∑
j=1

c̄jφj

}
=O

(
|φ|

)
, k = 0, . . . , l,

which follows from (2.9), proves the assertion for j = 0, . . . , l, and the assertion

for j = l+1, . . . , r is obvious since {φj}0≤j≤l and {φj}l+1≤j≤r are symplectically

independent. With φ̃0 = ξ0 − φ̃1 it is clear that

rank
(
{φ̃i, φ̃j}

)
0≤i,j≤l

= rank
(
{φi, φj}

)
0≤i,j≤l

= l

and hence rank({φ̃i, φ̃j})1≤i,j≤l = l by (2.12). When l = 2 this shows that

{φ̃1, φ̃2} �= 0. Let l ≥ 4. Note that rank({φ̃i, φ̃j})2≤i,j≤l ≤ l − 2 since l − 1 is

odd. Suppose that rank({φ̃i, φ̃j}(ρ))2≤i,j≤l ≤ l− 3 at some ρ. Then it is easy to
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see that rank({φ̃i, φ̃j}(ρ))1≤i,j≤l ≤ l− 1 and a contradiction. Thus switching the

notation from φ̃j to φj (j = 1, . . . , l) we get the desired assertion. �

3. A simple proof of Theorem 1.2

Assume that

H3
Sp �= 0

in some open set U with some smooth S vanishing on Σ and satisfying (1.7).

We choose an open set V ⊂ U , V ∩Σ �= ∅, where Proposition 2.1 holds. We fix a

ρ̄ ∈ V ∩Σ and work near ρ̄. Since the case l= 2 is a little bit easier than the case

l ≥ 4 we assume l ≥ 4. Choose a system of symplectic coordinates (X,Ξ) such

that X0 = x0 and Ξ0 = ξ0 − φ1. Switching the notation from (X,Ξ) to (x, ξ) one

can write

p=−ξ20 − 2ξ0φ1 +
l∑

j=2

φ2
j +

�∑
j=l+1

φ2
j +

r∑
j=�+1

φ2
j .

Here we recall

(3.1) rank
(
{φi, φj}

)
0≤i,j≤l

= l, φ0 = ξ0,

near ρ̄. Since dimKer({φi, φj})2≤i,j≤l = 1 from Proposition 2.1 one can choose

a smooth c= (c2, . . . , cl) with
∑

c2j = 1 so that c spans Ker({φi, φj})2≤i,j≤l. We

make a smooth orthogonal transformation from {φj}2≤j≤l to {φ̃j}2≤j≤l such

that φ̃2 =
∑

cjφj and switching the notation from {φ̃j} to {φj} again we obtain

the following result.

PROPOSITION 3.1

By choosing a suitable system of symplectic coordinates, p can be written in the

form

p=−ξ20 − 2ξ0φ1 + φ2
2 +

�∑
j=3

φ2
j +

r∑
j=�+1

φ2
j

in some open set V , where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ξ0, φj}= 0, 0≤ j ≤ r,

{φ2, φj}= 0, j �= 1, {φ2, φ1} �= 0,

{φi, φj}= 0, 0≤ i≤ r, 
+ 1≤ j ≤ r,

det({φi, φj})3≤i,j≤� �= 0

holds in V ∩Σ.

Proof

The first assertion follows from (2.12). It is clear that {φ2, φj} = 0 in V ∩ Σ

for j = 2, . . . , l by the definition of φ2. The assertion {φ2, φj} = 0 for j = l +

1, . . . , r is clear because the original {φj}2≤j≤l and {φj}l+1≤j≤r are symplectically
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independent and the new φ2 is a linear combination of the original {φj}2≤j≤l. If

{φ2, φ1}(ρ) = 0, then it is obvious that rank({φi, φj}(ρ))0≤i,j≤l ≤ l−1, which is a

contradiction, and hence the second assertion follows. The third assertion is clear.

Since {φ0, φj} = 0, 0 ≤ j ≤ r, and {φ2, φj} = 0 unless j = 1 we see easily that

rank({φi, φj})0≤i,j≤l ≤ l − 1, which contradicts (3.1) if rank({φi, φj})3≤i,j≤l ≤
l− 3. This proves that det({φi, φj})3≤i,j≤l �= 0. Since ({φi, φj}(ρ))3≤i,j≤� is the

direct sum of ({φi, φj}(ρ))3≤i,j≤l and ({φi, φj}(ρ))l+1≤i,j≤� for ρ ∈ V ∩ Σ, we

have the last assertion. �

We proceed to the proof of Theorem 1.2. Let us take

ξ0, x0, φ1, . . . , φr, ψ1, . . . , ψk (r+ k = 2n)

to be a system of local coordinates around ρ̄. Note that we can assume that the

ψj ’s are independent of x0, taking ψj(0, x
′, ξ′) as the new ψj . Moreover, we can

assume that {φ2, ψj}= 0 and {φ1, ψj}= 0 on V ∩Σ, taking

ψj − {ψj , φ2}φ1/{φ1, φ2} − {ψj , φ1}φ2/{φ2, φ1}

as the new ψj . Thus it can be assumed that

{ξ0, ψj}= 0, {φ2, ψj}= 0, {φ1, ψj}= 0, 1≤ j ≤ k,

hold in V ∩Σ. Thanks to Jacobi’s identity one can assume that

(3.2)
{
φ2,{φj , ξ0}

}
= 0, j = 
+ 1, . . . , r,

in V ∩ Σ since we have {φj ,{ξ0, φ2}} = O(|φ|) and {ξ0,{φ2, φj}} = O(|φ|) for


+ 1≤ j ≤ r by Proposition 3.1.

Let γ(s) = (x(s), ξ(s)) be a solution to the Hamilton equations (1.1); then

d

ds
f
(
γ(s)

)
= {p, f}

(
γ(s)

)
.

Let us change the parameter from s to t:

t= s−1,

so that we have

d/ds=−tD, D = t(d/dt)

and hence

d

ds
(tpF ) =−tp+1(DF + pF ).

We now introduce new unknowns

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ0(s) = t4Ξ0(t), x0(s) = tX0(t),

φ1(γ(s)) = t2Φ1(t), φ2(γ(s)) = t3Φ2(t),

φj(γ(s)) = t4Φj(t), 3≤ j ≤ 
,

φj(γ(s)) = t3Φj , 
+ 1≤ j ≤ r,

ψj(γ(s)) = t2Ψj(t), 1≤ j ≤ k,
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and denote

w = (Ξ0,X0,Φ1, . . . ,Φr,Ψ1, . . . ,Ψk).

Let us put

{φj , ξ0}=
r∑

i=1

Cj
i φi, κj =Cj

1(ρ̄), δ = {φ1, φ2}(ρ̄);

then from (3.2) we get

(3.4) κj = 0, j = 
+ 1, . . . , r.

Thanks to Proposition 3.1 and (3.4) the Hamilton equations (1.1) are reduced to

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DΞ0 =−4Ξ0 − 2κ2Φ1Φ2 + tG(t,w),

DX0 =−X0 + 2Φ1 + tG(t,w),

DΦ1 =−2Φ1 + 2δΦ2 + tG(t,w),

DΦ2 =−3Φ2 − 2κ2Φ
2
1 + 2δΞ0 + tG(t,w),

tDΦj =−4tΦj − 2κjΦ
2
1

− 2
∑�

k=3{φk, φj}(ρ̄)Φk + tG(t,w), 3≤ j ≤ 
,

DΦj =−3Φj + tG(t,w), 
+ 1≤ j ≤ r,

DΨj =−2Ψj − 2
∑r

k=�+1{φk, ψj}(ρ̄)Φk + tG(t,w), 1≤ j ≤ k,

where G(t,w), which may change from line to line, denotes a smooth function in

(t,w) defined near (0,0) such that G(t,0) = 0.

LEMMA 3.1

We have

Hφ2(ρ̄) ∈KerF 2
p (ρ̄)∩ ImF 2

p (ρ̄), Fp(ρ̄)Hφ2(ρ̄) �= 0.

Proof

From Proposition 3.1 it is easy to check that Fp(ρ̄)Hφ2 = δHξ0 and Fp(ρ̄)Hξ0 = 0

so that F 2
p (ρ̄)Hφ2(ρ̄) = 0. Thanks to det({φi, φj}(ρ̄))3≤i,j≤l �= 0 we can choose

f = φ1 +
∑l

j=3 cjφj so that

Hp(ρ̄)Hf (ρ̄) =Hφ2(ρ̄),

which proves Hφ2(ρ̄) ∈ ImF 2
p (ρ̄) since ImFp(ρ̄) is spanned by {Hφj (ρ̄)}. �

From Lemma 3.1 we can take S = φ2, and hence

κ2 =C2
1 (ρ̄) =

{φ2,{φ2, ξ0}}(ρ̄)
{φ2, φ1}(ρ̄)

=
−H3

φ2
p(ρ̄)

2δ
�= 0.

Let us define some classes of formal power series in t and log t in which we look

for our formal solutions to the reduced Hamilton equations (3.5):
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E =
{ ∑
0≤j≤i

ti(log t)jwij

∣∣∣wij ∈C
N
}
,

E# =
{ ∑
1≤i,0≤j≤i

ti(log t)jwij

∣∣∣wij ∈C
N
}
.

LEMMA 3.2

Assume that w ∈ E satisfies (3.5) formally and Φ2(0) �= 0. Then necessarily

Φ2(0) =−1/κ2δ
2 and w(0) is uniquely determined. In particular X0(0) �= 0.

Proof

By taking det({φi, φj}(ρ̄))3≤i,j≤� �= 0 into account, the assertion follows from the

special form (3.5). �

Let w be the uniquely determined w(0) given by Lemma 3.2 and look for a formal

solution to (3.5) of the form w+w with w ∈ E#. To simplify notations we set{
wI = (X0,Φ2,Ξ0,Φ1), wII = (Φ3, . . . ,Φ�),

wIII = (Φ�+1, . . . ,Φr), wIV = (Ψ1, . . . ,Ψk);

then w = t(wI,wII,wIII,wIV) satisfies

(3.6) HDw =Aw+ tF +G(t,w), A=

⎡
⎢⎢⎣
AI O O O

BII AII O O

O O −3E O

O O BIV −2E

⎤
⎥⎥⎦

with H = E ⊕ O ⊕ E ⊕ E, where E is the identity matrix and O is the zero

matrix. Moreover F is a constant vector and

G(t,w) =
∑

2≤i,0≤j≤i

Gijt
i(log t)j , Gij =Gij(wpq | q ≤ p≤ i− 1).

Noting that

AI =

⎡
⎢⎢⎣
−1 0 0 2

0 −3 2δ −4κ2Φ̄1

0 −2κ2Φ̄1 −4 −2κ2Φ̄2

0 2δ 0 −2

⎤
⎥⎥⎦

and taking into account κ2δ
2Φ̄2 =−1, κ2δΦ̄1 =−1, which follows from (3.6), we

have the following.

LEMMA 3.3

The eigenvalues of AI are {−6,−4,−1,1} while AII is the antisymmetric nonsin-

gular matrix ({φi, φj}(ρ̄))3≤i,j≤� so that AII is diagonalizable with nonzero pure

imaginary eigenvalues.

Repeating the same proof of [12, Theorem 5.1], we get the following.
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PROPOSITION 3.2

There exists a formal solution w ∈ E to (3.5) with Φ2(0) �= 0, X0(0) �= 0.

Note that this formal solution is uniquely determined up to a term vt, v ∈
Ker(E−A). Since AII = ({φi, φj}(ρ̄))3≤i,j≤l is diagonalizable, choosing a nonsin-

gular constant matrix S one can assume that

S−1AIIS = iΛ,

where Λ is a diagonal matrix with nonzero real diagonal entries. Here we set

u= S−1wII, v = (wI,wIII,wIV); then (3.5) becomes

(3.7)

{
tDu= tK1u+ iΛu+Q1(v) + tG1(t, u, v),

Dv =K2v+Q2(v) + tG2(t, u, v),

where the Kj ’s are constant matrices, Qj(v) are quadratic forms in v, and

Gj(t, u, v) are smooth functions such that Gj(t,0,0) = 0. Let

(3.8) u=
∑

0≤j≤i

uijt
i(log 1/t)j , v =

∑
0≤j≤i

vijt
i(log 1/t)j

be a formal solution obtained in Proposition 3.2. Denote by uN , vN the sums

obtained from (3.8). By dropping the terms ti(log t)j with i ≥ N + 1, for any

givenm ∈N there is a N =N(m) such that uN , vN satisfy (3.7) modulo O(tm+1).

We look for a solution to (3.7) in the form (uN , vN )+tm(u, v). Then the equations

satisfied by (u, v) are (after dividing by tm)

(3.9)

{
(t2 d

dt − iΛ)u=−t(mI −K1)u+L1(t)v+ tR1(t, u, v) + tF1(t),

t d
dtv =−(mI −K2)v+L2(t)v+ tR2(t, u, v) + tF2(t),

where Rj(t, u, v) are C
1-functions defined near (0,0,0) ∈R×C

N1 ×C
N2 satisfying∣∣Rj(t, u, v)

∣∣≤Bj

(
|u|+ |v|

)
and Lj(t), Fj(t) ∈C1((0, T ]) with some T > 0 such that Lj(t), tL

′
j(t) and Fj(t),

tF ′
j(t) are bounded in (0, T ]. The equations in (3.9) comprise a coupled system

which has t= 0 as a singular point of the first and the second kind, respectively.

Repeating the same arguments proving [12, Theorem 6.1] we get the following.

PROPOSITION 3.3

If m ∈ N is sufficiently large, then (3.9) has a solution (u, v) with u(0) = 0,

v(0) = 0.

This proves that there exists w satisfying (3.5). Switching to the original coordi-

nates, we find that the Hamilton equations (1.1) have a solution (x(s), ξ(s)) such

that

lim
s→∞

(
x(s), ξ(s)

)
∈Σ.
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From (3.3) we have

dφj

dx0

∣∣∣
x0=0

=
(dφj

dt

/dx0

dt

)
x0=0

= 0

and hence the curve (x(s), ξ(s)) is actually tangent to Σ.
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