
On the gauge action of
a Leavitt path algebra

María Guadalupe Corrales García, Dolores Martín Barquero,
and Cándido Martín González

Abstract We introduce a revised notion of gauge action in relation toLeavitt path alge-

bras. This notion is based on the Laurent polynomial algebra and captures the full infor-

mation of the grading on the algebra as it is the case of the gauge action of the graph

C∗-algebra.

1. Notations and preliminaries

The Laurent polynomial algebra is playing an increasingly important role in

the theory of Leavitt path algebras. For instance it arises in the description of

the prime spectrum of LK(E) (see [5]) and recently in the study of the graded

Grothendieck group Kgr
0 of a Leavitt path algebra, where K0 is seen as a module

over K[x,x−1] (see [8]). In the present work, the Laurent polynomial algebra

helps us to understand the canonical Z-grading, which seems to have its origin

in the fact that K[x,x−1] is the representing Hopf algebra of the diagonalizable

group Diag(Z). In any case, this work has the same flavor as those mentioned

above in what concerns the ubiquity of K[x,x−1] in the theory of Leavitt path

algebras.

For a directed graph E denote by C∗(E) the graph C∗-algebra (see for

instance [11]), and given any commutative unitary ring K, denote by LK(E)

the Leavitt path algebra associated to E (see [12, Definition 2.5] or [1, p. 90]

for the case of a ground field of scalars). For a graph E we will denote by E0

the set of vertices and E1 the set of edges of E. The notation path(E) will be

reserved for the set of all paths in the graph. As usual, given edges f1, . . . , fn ∈E1

and the path λ = f1 . . . fn, we will denote by s(λ) = s(f1) the source of f1 and

by r(λ) = r(fn) the range of fn. Also recall that a vertex v ∈ E0 is said to be

regular when s−1(v) is a nonempty finite set. The set of all regular vertices of

E will be denoted by Reg(E). In [3, Corollary 1.5.11], a basis is constructed for
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jointly by the Junta de Andalućıa and FEDER through projects FQM-336 and FQM-7156.

http://dx.doi.org/10.1215/21562261-2871740
http://www.ams.org/msc/


244 Corrales García, Martín Barquero, and Martín González

LK(E) when K is a field. As in [3], the basis can be described by taking, for each

v ∈Reg(E), an enumeration of s−1(v) in the form {ev1, . . . , evnv
}. Then, the basis

is given by
{
λμ∗ : λ,μ ∈ path(E), r(λ) = r(μ)

}
\
{
λevnv

(evnv
)∗ν∗ : r(λ) = r(ν) = v ∈Reg(E)

}
.

Observe that the vertices belong to this basis. As the reader can check, this set

is also a basis of LK(E) in the general case, that is, for any commutative unitary

ring K. In this way the Leavitt path algebra LK(E) is always a free K-module.

Now, some easy observations are convenient for further quotation.

REMARK 1

Let K be a commutative unitary ring, and let U , V be modules over K.

(a) If U is a free K-module and u ∈ U is an element of some basis of U , then

for any k ∈K we have that ku= 0 implies k = 0.

(b) If U and V are free K-modules, then U ⊗K V is also a free K-module.

In particular, if u and v are basic elements of U and V , respectively, and r ∈K,

then the equality ru⊗ v = 0 in U ⊗K V implies r = 0.

(c) If E and F are graphs and (u, v) ∈E0×F 0, r ∈K, then when ru⊗v = 0

in LK(E)⊗LK(F ) we have r = 0.

As usual for any ring K we will denote by K× the group of invertible elements

of K. Also denote by T := S1 the unit circle in R2. In this work we shall have

the occasion to deal with Z-graded algebras.

The notion of a Z-graded algebra A (in a purely algebraic context) is clear:

the algebra A splits as a direct sum A=
⊕

n∈Z
An of submodules An verifying

AnAm ⊂An+m for any n,m ∈ Z. However, a Z-grading on a C∗-algebra A must

be understood as defined in [7, Definition 3.1]: A is the closure of a direct sum⊕
n∈Z

An of closed (linear) subspaces An of A such that A∗
n =A−n and AnAm ⊂

An+m for any n,m ∈ Z. We will denote this fact by writing A=
⊕

n∈Z
An.

When we speak of the canonical Z-grading on C∗(E), we will mean the Z-

grading (in the C∗-sense) such that the component of degree n is formed by those

elements x satisfying ρ(z)(x) = znx for any z (see below). Roughly speaking, this

means that the vertices “are of degree 0” and the element f1 · · ·fng∗1 · · ·g∗m “is

homogeneous of degree n−m” (for any collection of edges fi and gj). On the

other hand the canonical Z-grading on LK(E) is the one for which the vertices are

of degree 0 and the element f1 · · ·fng∗1 · · ·g∗m is homogeneous of degree n−m (for

any collection of edges fi and gj). Now let A= LK(E), and consider the canonical

Z-grading on A. Then for any n we consider the canonical epimorphism p : Z→
Zn and the grading on A whose component of degree i is the sum

⊕
p(n)=iAn.

This is a coarsening of the canonical Z-grading, and since it is a Zn-grading, we

call it the canonical Zn-grading on A.
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2. Drawbacks of the conventional definition

The gauge action of the C∗-algebra A := C∗(E) of a graph E is defined as the

group homomorphism ρ : T→ aut(A) such that ρ(z)(pu) = pu for each vertex u

of the graph and ρ(z)(sf ) = zsf , ρ(z)(s
∗
f ) = z−1s∗f for any arrow f and any z ∈ T

(see [11, Proposition 2.1]). With this definition of the gauge action we can recover

the homogeneous components of the canonical Z-grading on A easily, since for

any integer n we have that An is just the set of all a ∈ A such that for any

z ∈ T we have ρ(z)(a) = zna. Thus, when we are given the gauge action on A,

we reconstruct immediately the canonical Z-grading. Since the gauge action of

A codifies all the information of the graded algebra A, all the notions related

to this graded structure can be defined in terms of the action. The gauge action

is omnipresent in the theory of graph C∗-algebras for the same reason that the

canonical grading on Leavitt path algebras appears in many of the contributions

on the subject. Most of the research works on graph C∗-algebras involve their

gauge action. By contrast, most works on Leavitt path algebras miss the gauge

action in the terms in which it has been defined in the literature.

Let us think about the “official” definition of the gauge action of a Leavitt

path algebra B := LK(E) over the commutative (and unitary) ring K (see [2]).

This is nothing but the group homomorphism τ : K× → aut(B) such that

τ(z)(u) = u, τ(z)(f) = zf , and τ(z)(f∗) = z−1f∗ for any vertex u, any edge f ,

and any z ∈K×. Though, in the original definition, K is a field, we have allowed

K to be a unital commutative ring so as to cover the general notion of a Leavitt

path algebra. Thus K× in the above definition must be understood as the group

of invertible elements of the ring K.

REMARK 2

Let τ : K× → aut(A) be any representation of the group K× by automorphisms

on the K-algebra A. The action of τ on an element t ∈K× will be denoted by

τ(t) or τt depending on the typographical convenience.

Let us analyze now some peculiarities of the definition above.

DRAWBACK 1

The gauge action τ does not capture all the information of the graded algebra

LK(E).

In fact in some extreme cases τ contains no information at all simply because τ

is trivial. For instance take K = F2 to be the field of two elements. Then K× is

the trivial group K× = {1} and τ is the trivial group homomorphism, so in this

case τ gives no information at all of the grading on B = LK(E). There are also

examples of other rings and even fields for which the gauge action does not allow

the recovery of the canonical Z-grading of LK(E).
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DRAWBACK 2

For the gauge action ρ of A= C∗(E) the notion of graded ideal is equivalent to

that of ρ-invariant ideal. This is not the case for the gauge action τ of B = LK(E).

Indeed, if the ring of scalars K has a trivial group of invertibles (as in the case

K = F2), then the gauge action ρ is trivial and so any ideal is ρ-invariant. Since

not every ideal is graded in general we conclude that the equivalence between

gauge invariant ideals and graded ideals does not hold for Leavitt path algebras.

DRAWBACK 3

Consider two graph C∗-algebras Ai (i = 1,2) with associated gauge actions ρi.

Define a homomorphism f : A1 →A2 to be a gauge homomorphism when for any

z ∈ T the following square is commutative

A1
f

ρ1(z)

A2

ρ2(z)

A1
f

A2

In a similar fashion we can define the notion of a gauge homomorphism of Leavitt

path algebras. However, while the notion of gauge homomorphism is equivalent

to that of graded homomorphism in the setting of graph C∗-algebras, it is not

the case that for Leavitt path algebras both notions agree.

Of course this drawback and the previous one do not exist for Leavitt path

algebras over infinite fields but we would like to give a notion of gauge action

which overcomes these difficulties and does not depend so much on the ground

ring of scalars.

DRAWBACK 4

The gauge-invariant uniqueness theorem is stated in [11] in the following terms.

THEOREM 1 ([11, THEOREM 2.2, P. 16])

Let E be a row-finite graph, and suppose that {T,Q} is a Cuntz–Krieger E-family

in a C∗-algebra B with each Qv �= 0. If there is a continuous action β : T →
aut(B) such that β(z)(Te) = zTe for every e ∈ E1 and β(z)(Qv) =Qv for every

v ∈E0, then πT,Q is an isomorphism onto C∗(T,Q).

As far as we know the best version of the previous theorem for Leavitt path

algebras is given in [2, Theorem 1.8, p. 6] and it claims the following.

THEOREM 2 (THE ALGEBRAIC GAUGE-INVARIANT UNIQUENESS THEOREM)

Let E be a row-finite graph, K an infinite field, and A a K-algebra. Denote by
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τE the gauge action of LK(E). Suppose that

φ : LK(E)→A

is a K-algebra homomorphism such that φ(v) �= 0 for every v ∈E0. If there exists

a group action σ : K× → AutK(A) such that φ ◦ τEt = σt ◦ φ for every t ∈K×,

then φ is injective.

The hypothesis on the infiniteness of the ground field cannot be removed as

the following example shows: take K = Z2 and A = LK(E)/I where I is an

ideal which does not contain any vertex. For instance E could be the one-petal

rose (where E0 and E1 have cardinal 1). Then LK(E)∼=K[T,T−1], the Laurent

polynomial algebra on the indeterminate T , and the ideal I generated by the non-

invertible element 1+T does not contain any vertex. So with these ingredients the

canonical epimorphism p : LK(E)→A satisfies p(v) �= 0 for (the unique) v ∈E0

and it is not injective. Furthermore the gauge action of LK(E) is trivial (since

K× = {1}) and we can consider the trivial group action σ : K× → aut(A) and

the requirement p ◦ τEt = σt ◦ p is trivially satisfied.

As we shall see, the hypothesis on the infiniteness of K in Theorem 2 is not

necessary if we use the new version of the gauge action.

DRAWBACK 5

The natural translation of the crossed product of C∗-algebras to a purely alge-

braic setting must be made carefully.

We recall the definition of the crossed product of C∗-algebras. Assume that A and

B are C∗-algebras, and assume that G is a compact abelian group with actions

μ : G→ aut(A) and ν : G→ aut(B). Consider next the action λ : G→ aut(A⊗B)

defined by λ(g)(a ⊗ b) = μ(g)(a) ⊗ ν(g−1)(b). Define now the crossed product

A⊗GB as the fixed-point algebra under the action λ.

The gauge action of a graph C∗-algebra has been successfully applied to

certain interesting constructions in [6] and [10]. Take two row-finite graphs E

and F and define their product E×F := (E0×F 0,E1×F 1, r, s) where s(f, g) =

(s(f), s(g)) and r(f, g) = (r(f), r(g)) for any (f, g) ∈E1×F 1. Though this is not

the usual definition of the product of two graphs, this notion is interesting for

us since it allows the description of the crossed product of graph C∗-algebras.

Indeed, it is proved in [6, Proposition 4.1, p. 62] that if E and F are row-finite

graphs with no sinks, then there is an isomorphism

(1) C∗(E × F )∼=C∗(E)⊗TC
∗(F ),

where the crossed product on the right-hand side is the one induced by the gauge

actions T→ aut(C∗(E)) and T→ aut(C∗(F )). We can try to mimic this definition

of crossed product in a purely algebraic context. So assume that G is an abelian

group action by automorphisms in the K-algebras A and B. Let μ : G→ aut(A)

and τ : G→ aut(B) be two representations of G in A and B, respectively, and

we define λ : G→ aut(A⊗B) as above. Then the fixed-point algebra under the
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action λ will be denoted by A⊗GB. Thus, A⊗GB is a subalgebra of the usual

tensor product algebra A⊗K B. Observe that when the group G is trivial we get

A⊗GB =A⊗K B.

If we use this naive interpretation of the crossed product of algebras, then

a similar property to (1) for Leavitt path algebras does not hold. For instance,

consider LK(E) for a ring such that K× is trivial. Then LK(E)⊗K× LK(E) =

LK(E)⊗K LK(F ) and we would have LK(E×F )∼= LK(E)⊗K LK(F ). But there

are two ways to see that this is not true:

(1) Apply the results in [4] in which the impossibility of this isomorphism is

studied. More concretely assume that E is the one-petal rose (|E0| = |E1| = 1)

and F is the two-petal rose (|F 0| = 1, |F 1| = 2). Then E × F ∼= F (a graph

isomorphism), and applying [4, Theorem 5.1, p. 2635] for n = 2, E1 = E2 = E,

m= 1, F1 = F , we conclude that LK(E)⊗LK(F ) is not isomorphic to LK(F ).

(2) A simple example also proves the impossibility of the isomorphism

LK(E × F )∼= LK(E)⊗K LK(F ). Consider the graph E on the left-hand side of

E: E2:

Then E2 :=E ×E is the graph on the right-hand side of the above figure. Thus

LK(E)∼=M2(K) and LK(E2) =K⊕K⊕M2(K), which has dimension 6. How-

ever, LK(E)⊗LK(E) has dimension 16. Hence the cross product of the Leavitt

path algebras does not agree with the Leavitt path algebra of E2.

Now that we have realized some handicaps of the gauge action of Leavitt

path algebras, we propose a different approach.

3. Redefining the gauge action

In this section our goal is to define a new notion of the gauge action of a Leavitt

path algebra which overcomes the difficulties that we have mentioned in previous

sections.

DEFINITION 1

For a Leavitt path algebra A= LK(E) over a ring K define the gauge action as a

representation of the groupK[x,x−1]× on LK(E)K[x,x−1] := LK(E)⊗K K[x,x−1]

by automorphisms given by ρ : K[x,x−1]× → aut(LK(E)K[x,x−1]) where, for any

z ∈K[x,x−1]× and any u ∈ LK(E) of degree n, we have ρ(z)(u⊗ 1) = u⊗ zn.

REMARK 3

Since K× is a subgroup of K[x,x−1] we can consider the restriction

ρ : K× → aut(AK[x,x−1]),
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where A = LK(E). Thus, if z ∈ K×, then the automorphism ρ(z) satisfies

ρ(z)(A⊗ 1)⊂A⊗ 1; hence (after identifying LK(E)⊗K K with LK(E)) we may

consider ρ(z)|LK(E) ∈ aut(LK(E)). So the restriction ρ : K× → aut(LK(E)) such

that z 
→ ρ(z)|LK(E) agrees with the official gauge action of LK(E). In this way

we recover the “official” definition from this new one. For some rings, pass-

ing from ρ : K[x,x−1]× → aut(AK[x,x−1]) to ρ : K× → aut(A) implies a loss of

information as we have seen before. By what we have discussed previously, in

the particular case of an infinite field K both representations encode the same

information; furthermore if we are given ρ : K× → aut(A), then we recover the

canonical Z-grading on A by An = {a ∈ A : ρ(z)(a) = zna,∀z ∈K×} and define

ρ : K[x,x−1]× → aut(AK[x,x−1]) such that ρ(λxt)(an ⊗ 1) := ρ(λ)(an) ⊗ xtn for

any λ ∈K×, t, n ∈ Z, and an ∈An.

REMARK 4

The reader familiar with the representation theory of diagonalizable groups

schemes may recognize here a representation σ : Diag(Z)→ aut(LK(E)) whose

particularization to K[x,x−1] (the group K-algebra of Z) is precisely the gauge

action ρ introduced in Definition 1. Here Diag(Z) is the diagonalizable affine

group scheme whose representing Hopf algebra is K[x,x−1] = KZ while

aut(LK(E)) is the K-group functor of automorphisms of LK(E).

It is a standard result in the aforementioned theory that the representation

σ is fully determined by its particularization to the group K-algebra of Z. In an

early version of this work we introduced the gauge action by using σ rather that

ρ; however, given that both objects contain exactly the same information, it

seemed convenient to adhere to the referee’s suggestion of introducing the new

gauge action as in Definition 1.

REMARK 5

We can define such an action for any K-algebra A endowed with a Z-grading A=⊕
n∈Z

An: just define the map ρ : K[x,x−1]× → aut(AK[x,x−1]) given by ρ(z)(an⊗
1) := an ⊗ zn for any n ∈ Z and an ∈An.

Reciprocally, if we have a representation ρ : K[x,x−1]→ aut(A), where A is

a K-algebra, then one can induce a Z-grading on A such that for each integer n

we have

(2) An =
{
a ∈A : ρ(z)(a⊗ 1) = a⊗ zn for all z ∈K[x,x−1]×

}
.

The fastest way to see this is to define σ : Diag(Z)→ aut(A) by σR(f)(a⊗ 1) =

(1⊗f)ρ(x)(a⊗1) for any a ∈A, f ∈ hom(K[x,x−1],R), and R any commutative,

associative unital K-algebra. Then apply [9, Paragraph 2.11, Formulas (2) and

(3), p. 35]. However in the next theorem we will not need such a general result.

THEOREM 3

The gauge action in the new sense encloses all the information of the canonical
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Z-grading on A := LK(E). We can recover the homogeneous components from the

proposed gauge action. So Drawback 1 no longer holds with this new definition.

Proof

We know that the group of invertibles of the Laurent polynomial algebra

K[x,x−1]× contains the set of elements {xk : k ∈ Z} (which is infinite indepen-

dently of the nature of the ring K). Then the representation ρ : K[x,x−1]× →
aut(A⊗K[x,x−1]) suffices to describe the homogeneous components An (n ∈ Z).

Indeed, we are proving that

An =
{
a ∈A : ρ(z)(a⊗ 1) = a⊗ zn, z ∈

(
K[x,x−1]

)×}
.

If a ∈ A is homogeneous of degree n, then it is immediate that ρ(z)(a ⊗ 1) =

a⊗ zn for any z ∈K[x,x−1]×. Reciprocally take a ∈ A such that ρ(z)(a⊗ 1) =

a⊗ zn for any invertible z ∈K[x,x−1]. Decompose a=
∑

aq with aq ∈Aq ; then∑
q ρ(x

k)(aq ⊗ 1) =
∑

q aq ⊗ xkq . So
∑

q aq ⊗ xkq =
∑

q aq ⊗ xkn and given the

linear independence of the powers of x in the K-module K[x,x−1] we conclude

that aq = 0 for any q �= n. Thus a ∈An. �

Let us go now to the notion of ρ-invariant ideal of A := LK(E). So we assume

given ρ : K[x,x−1]× → aut(AK[x,x−1]) the gauge action that we propose.

DEFINITION 2

An ideal I of A is said to be ρ-invariant when for any z ∈K[x,x−1]× we have

ρ(z)(I ⊗ 1)⊂ I ⊗K[x,x−1].

Clearly, if I is a graded ideal of A, then I is ρ-invariant: indeed take any

z ∈ R× and a ∈ I ; then a =
∑

an where each an ∈ I ∩ An. Thus ρ(z)(a ⊗ 1) =∑
n ρ(z)(an ⊗ 1) =

∑
n an ⊗ zn ∈ I ⊗K[x,x−1]. Consequently graded ideals of A

are ρ-invariant. But the reciprocal is also true.

THEOREM 4

An ideal I of A= LK(E) is graded if and only if it is ρ-invariant. Thus Draw-

back 2 no longer holds.

Proof

Let R :=K[x,x−1] be the Laurent polynomial algebra in the indeterminate x over

the commutative unitary ring K. Then {xn : n ∈ Z} is a linearly independent set.

Define theK-modules homomorphism fn : R→K by fn(T
m) = δnm (Kronecker’s

delta). Consider the K-bilinear map A×R→A such that (a, r) 
→ fn(r)a and the

K-modules homomorphism Φn : A⊗R→ A such that Φn(a⊗ r) = fn(r)a. If I

is an ideal in A, then Φn(I ⊗R)⊂ I . Consider now ρ : R× → aut(A) the gauge

action, take a ∈ I , and decompose it as a =
∑

m am, where am ∈ Am. Assume

that I is ρ-invariant. Then ρ(x)(a⊗ 1) =
∑

m am ⊗ xm ∈ I ⊗R. So Φn(
∑

m am ⊗
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xm) ∈ I , but then I  Φn(
∑

m am ⊗ xm) =
∑

m fn(x
m)am = an for any n. Thus

I is graded. �

Let us deal with Drawback 3 now. Consider two Leavitt path K-algebras A1

and A2 with their respective gauge actions ρi : R
× → aut(Ai), i= 1,2, and R=

K[x,x−1], then we can define the following.

DEFINITION 3

A homomorphism f : A1 → A2 is said to be a gauge homomorphism if the fol-

lowing square is commutative

A1 ⊗R
f⊗1

ρ1(z)

A2 ⊗R

ρ2(z)

A1 ⊗R
f⊗1

A2 ⊗R

for any z ∈R×.

It is easy to prove that, when f : A1 → A2 is a graded homomorphism, it is a

gauge homomorphism: take a ∈A1 homogeneous of degree, say, n. Then ρ2(z)(f⊗
1)(a⊗ 1) = ρ2(z)(f(a)⊗ 1), and since f(a) is a homogeneous element of A2 of

degree n, ρ2(z)(f ⊗ 1)(a⊗ 1) = f(a)⊗ zn = (f ⊗ 1)(a⊗ zn) = (f ⊗ 1)ρ1(z)(a⊗ 1).

Thus f is a gauge homomorphism. But we have also the reciprocal.

THEOREM 5

The homomorphism f : A1 →A2 is graded if and only if it is a gauge-homomor-

phism. Thus Drawback 3 disappears.

Proof

Assume that f is a gauge homomorphism and take a in the homogeneous compo-

nent of degree n of A1. Recall that such a component agrees with the submodule

of all the elements a ∈A1 such that ρ1(z)(a⊗1) = a⊗ zn for any z ∈K[x,x−1]×.

Consequently we must prove that ρ2(z)(f(a)⊗1) = a⊗zn for any z as before. But

this is a direct corollary of the commutativity of the square in Definition 3. �

REMARK 6

Theorem 5 can be generalized in the following sense. Let Ai (i = 1,2) be

K-algebras endowed with representations ρi : K[x,x−1]× → aut(Ai) (i = 1,2).

Consider now the Z-grading induced by ρi in Ai as in Remark 5: the homoge-

neous component of degree n is just the K-submodule of those elements a ∈Ai

such that ρi(z)(a⊗ 1) = a⊗ zn for any z ∈K[x,x−1]×. Take then a K-algebra

homomorphism f : A1 → A2. With the same proof as above, we have that f is

graded if and only if it is a gauge homomorphism in the sense that the squares

in Definition 3 are commutative.
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Concerning the statement of the algebraic gauge-invariant uniqueness theorem

for Leavitt path algebras, by using the definition we propose, we can restate it

in the following form.

THEOREM 6 (THE NEW ALGEBRAIC GAUGE-INVARIANT UNIQUENESS THEOREM)

Let E be a graph, let K be any commutative unitary ring, and let A be any

K-algebra. Denote by ρ : K[x,x−1]× → aut(LK(E)) the gauge action of LK(E).

Assume that

φ : LK(E)→A

is a K-algebra homomorphism such that φ(rv) �= 0 for every v ∈ E0 and r ∈
K \{0}. If there exists an action σ : K[x,x−1]× → aut(A) such that (φ⊗1)ρ(z) =

σ(z)(φ⊗ 1) for any z ∈R×, then φ is injective.

The proof is straightforward since by Remark 6 the homomorphism φ is graded

relative to the grading induced by σ in A. Then we can apply [12, Theorem 5.3,

p. 476].

When K is a field, we have the following.

COROLLARY 1

Let E be a graph, let K be any field, and let A be any K-algebra. Denote by

ρ : K[x,x−1]× → aut(LK(E)) the gauge action of LK(E). Assume that

φ : LK(E)→A

is a K-algebra homomorphism such that φ(v) �= 0 for every v ∈E0. If there exists

an action σ : K[x,x−1] → aut(A) such that (φ ⊗ 1)ρ(z) = σ(z)(φ ⊗ 1) for any

z ∈R×, then φ is injective.

Also by using the gauge action in the sense that we propose, the hypothesis on

the infiniteness of the ground field K in [2, Proposition 1.6] can be dropped.

Since the notions of graded ideal and of gauge-invariant ideal agree when we use

the new version of gauge action, such exceptionalities as the ones observed in [2,

Proposition 1.7] are no longer present.

3.1. Cross product of Leavitt path algebras by their gauge actions
Let K be a commutative unitary ring, let R :=K[x,x−1] be the Laurent polyno-

mial algebra over K, and let A be a K-algebra with an action ρ : R× → aut(A).

DEFINITION 4

The fixed subalgebra Aρ of A under ρ is the one whose elements are the elements

a ∈A such that ρ(z)(a⊗ 1) = a⊗ 1 for any z ∈R×.

If A and B are K-algebras provided with actions ρ : R× → aut(A) and σ : R× →
aut(B), then there is an action ρ⊗σ : R× → aut(A⊗B) such that for any z ∈R×
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we have (ρ⊗ σ)(z) given by the composition

(A⊗B)R =

(ρ⊗σ)(z)

A⊗B ⊗R
1⊗δ

A⊗B ⊗R⊗R
θ

AR ⊗BR

ρ(z)⊗σ(z−1)

(A⊗B)R =A⊗B ⊗R A⊗B ⊗R⊗R
1⊗μ

AR ⊗BR
θ−1

where

• δ : R→R⊗R is given by δ(z) = z ⊗ 1,

• θ is the isomorphism a⊗ b⊗ r⊗ r′ 
→ a⊗ r⊗ b⊗ r′, and

• μ : R⊗R→R is the multiplication μ(r⊗ r′) = rr′.

In summary,

(ρ⊗ σ)(z) = (1⊗ μ)θ−1
(
ρ(z)⊗ σ(z−1)

)
θ(1⊗ δ).

Now a direct (but not short) computation reveals that

(ρ⊗ σ)(zz′) = (ρ⊗ σ)(z)(ρ⊗ σ)(z′)

for any z and z′. So any (ρ⊗ σ)(z) is invertible with inverse (ρ⊗ σ)(z−1). More-

over, since (ρ⊗σ)(z) is a composition of R-algebra homomorphisms, (ρ⊗σ)(z) ∈
aut((A⊗B)R).

DEFINITION 5

The action ρ⊗ σ : R× → aut(A⊗B) will be called the tensor product action of

ρ and σ. The fixed-point subalgebra (A⊗B)ρ⊗σ of A⊗B under ρ⊗ σ will be

denoted A ρ⊗σ B and called the cross product of A and B by the actions ρ and σ.

If there is no ambiguity with respect to the actions involved we could shorten

the notation to A⊗R× B.

Consider now two Leavitt path algebras LK(E) and LK(F ) of the graphs E

and F , respectively. We assume the gauge action of each algebra and ask about

the cross product algebra LK(E)⊗R× LK(F ). With not much effort one can prove

that it consists of the elements of the form
∑

n∈Z
an⊗bn, where an ∈ LK(E) with

deg(a) = n while bn ∈ LK(F ) also has degree n. Of course we can define on this

algebra also an action τ : R× → aut(LK(E)⊗R× LK(F )) by declaring for each

z ∈R× that τ(z)(an ⊗ r⊗ bn ⊗ s) = an ⊗ znr⊗ bn ⊗ s. By Remark 5, this action

induces a grading on LK(E)⊗R× LK(F ) in which the homogeneous component

of degree n is the K-submodule generated by the elements of the form a ⊗ b

where a and b are homogeneous of degree n.

Our next goal is to prove the following.

THEOREM 7

If E and F are row-finite graphs with no sinks, then there is an isomorphism

LK(E)⊗R× LK(F ) ∼= LK(E × F ), where the product of the graph is the one

described in Section 2.
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Proof

For a graph E denote by Ê the extended graph of E: the vertices of Ê are those

of E and the arrows of Ê1 are those of E1 plus a family {f∗ : f ∈ E1} of new

edges such that s(f∗) = r(f) and r(f∗) = s(f) for any f ∈E1. The path algebra

KE is the associative K-algebra with basis the set of all paths of E (so it is free

as a K-module). There is a well-known relation LK(E)∼=KÊ/I , where I is the

ideal of KÊ generated by the Cuntz–Krieger relations.

We consider the path algebra K(Ê × F ); then there is a canonical homomor-

phism of K-algebras K(Ê × F )→ LK(E)⊗R× LK(F ) such that for any (u, v) ∈
E0 × F 0 and (f, g) ∈E1 × F 1 we have

(u, v) 
→ u⊗ v, (f, g) 
→ f ⊗ g, (f∗, g∗) 
→ f∗ ⊗ g∗.

This homomorphism induces one φ : LK(E×F )→ LK(E)⊗R× LK(F ) such that

φ(r(u, v)) = ru⊗ v �= 0 for each (u, v) ∈E0×F 0 and r ∈K \ {0} (see Remark 1).

Furthermore if we take the action τ : R× → aut(LK(E)⊗R× LK(F )) defined

above, we see that (φ ⊗ 1)ρ(z) = τ(z)(φ ⊗ 1), where ρ is the gauge action of

LK(E × F ). Thus applying Theorem 6 we conclude that φ is a monomorphism.

To see that it is also an epimorphism we need the hypothesis that the graphs

have no sinks. Since LK(E)⊗R× LK(F ) is generated by elements of the form a⊗b

where deg(a) = deg(b) it suffices to show that these elements are in the image

of φ. First we prove that if μ and τ are paths of the same length (say, n) and u

is a vertex, then μτ∗ ⊗ u is in the image of φ. Indeed, μτ∗ ⊗ u= μτ∗ ⊗
∑

i gig
∗
i

(since F is row-finite and has no sink). If μ= fμ′, where f ∈E1 and μ′ is a path,

then μτ∗ ⊗ u=
∑

i(f ⊗ gi)(μ
′τ∗ ⊗ g∗i ), and if τ = hτ ′ with h ∈E1 and τ ′ a path,

then μτ∗ ⊗ u =
∑

i(f ⊗ gi)(μ
′τ ′∗h∗ ⊗ g∗i ) =

∑
i(f ⊗ gi)(μ

′τ ′∗ ⊗ r(gi))(h
∗ ⊗ g∗i ).

By applying a suitable induction hypothesis this proves that μτ∗ ⊗ u is in the

image of φ. Symmetrically it can be proved that the image of φ contains the

elements of the form v ⊗ σδ∗ with v ∈ E0 and σ, δ being paths of F of the

same degree. Now any generator of LK(E)⊗R× LK(F ), say, μτ∗⊗σδ∗, such that

deg(μ)−deg(τ) = deg(σ)−deg(δ) can be written as a product of elements which

obey some of the followings patterns:

• f ⊗ g with f ∈E1 and g ∈ F 1,

• f∗ ⊗ g∗ with f ∈E1 and g ∈ F 1,

• μτ∗ ⊗ u with u ∈ F 0 and μ and τ being paths of E of the same length,

• v⊗ σδ∗ with v ∈E0 and σ and δ being paths of F of the same length.

Since any of these elements is in the image of φ, this proves that φ is an epimor-

phism. �

REMARK 7

The hypothesis on the absence of sinks in the graphs of Theorem 7 cannot be

removed. To show this, take K to be a field, and consider the graphs E and F

below:
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E: F :

Then E × F is the graph

E × F :

which is isomorphic to M3(K), the algebra of 3× 3 matrices with entries in K.

However, the cross product algebra LK(E⊗RE) is easily shown to be infinite-

dimensional; hence no isomorphism between LK(E × F ) and LK(E)⊗RLK(F )

can be expected in this case.
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