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Abstract LetG=Hr
2n+1 be the (2n+1)-dimensional reduced Heisenberg group, and

let H be an arbitrary connected Lie subgroup of G. Given any discontinuous subgroup

Γ ⊂ G for G/H, we show that resulting deformation space T (Γ,G,H) of the natural

action of Γ onG/H is endowed with a smooth manifold structure and is a disjoint union

of open smoothmanifolds. Unlike the setting of simply connectedHeisenberg groups, we

show that the stability property holds and that any discrete subgroup ofG is stable, fol-

lowing the notion of stability. On the other hand, a local (and hence global) rigidity the-

orem is obtained. That is, the related parameter space R(Γ,G,H) admits a rigid point

if and only if Γ is finite.

1. Introduction

This paper is a continuation of the papers [2], [4], and [5] where the concern was

to study the deformation space of a discontinuous group acting on a homogeneous

space G/H for a connected subgroup H of the connected and simply connected

Heisenberg group G = H2n+1. In the present study, the point is to remove the

assumption on G that it is simply connected. The attention here is therefore

focused on the reduced Heisenberg group Hr
2n+1, for which the universal covering

is H2n+1.

The problem of deformation consists in seeking how to deform Γ by means

of homomorphisms from Γ to G (thus to consider the set Hom(Γ,G) of all these

homomorphisms) in a way such that the deformed discrete subgroup acts prop-

erly on G/H . The problem of describing deformations was first advocated by T.

Kobayashi in [15] for the general non-Riemannian setting and precisely deter-

mines the set of deformation parameters that allow Γ to deform in a way to

guarantee the proper discontinuity on G/H . The parameter space

R(Γ,G,H) :=
{
ϕ ∈Hom(Γ,G)

∣∣ ϕ is injective, ϕ(Γ) discrete and acts

properly and fixed point freely on G/H
}(1.1)
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(endowed with the pointwise convergence topology), rather than Hom(Γ,G),

plays a crucial role in these problems. In order to be precise on parameters,

our main goal is to investigate the deformation space T (Γ,G,H) which is the

quotient space of the parameter space given above through the equivalence rela-

tion arising inner automorphisms.

Unlike the context of simply connected Heisenberg groups (see [2]), we show

in this paper that the deformation space T (Γ,G,H) is a Hausdorff space and

is even endowed with a smooth manifold structure for any arbitrary connected

subgroup H of G and any arbitrary discontinuous subgroup Γ for G/H . Indeed,

we will provide a disjoint decomposition of T (Γ,G,H) into open smooth man-

ifolds of a common dimension. On the other hand, we show that the stability

property holds for any deformation parameter, which means that in some small

neighborhood Vϕ of any element ϕ of the parameter space, the proper action of

the discrete subgroup ψ(Γ), ψ ∈ Vϕ, on G/H is preserved.

Concerning the rigidity, we will show that the related parameter space

R(Γ,G,H) admits a locally rigid deformation if and only if Γ is finite and that

the local rigidity is indeed equivalent to the rigidity. This naturally leads us to

ask the following question, which comes out from a question posed in [1].

QUESTION 1.1

Let G be a connected nilpotent Lie group, let H be a connected subgroup of G,

and let Γ be a nontrivial discontinuous subgroup for G/H . Then, the local rigidity

holds if and only if Γ is a finite group.

Let εΓ be the integer given by εΓ = 0 if Γ is torsion-free, and let εΓ = 1 otherwise.

Let also rΓ be the rank of Γ, which is the cardinality of a minimal generating

set. The nonnegative integer lΓ := rΓ − εΓ is called the length of the subgroup Γ.

One of the objectives of this paper is to give an affirmative answer to Ques-

tion 1.1 in our setting. More precisely, the following main result will be proved.

THEOREM 1.1

Let G :=Hr
2n+1 be the reduced Heisenberg Lie group, and let Γ be a discontinuous

subgroup of length lΓ for the homogeneous space G/H where H is a connected

closed subgroup of G. Then we have the following.

(1) The stability property holds. That is, any discrete subgroup of G is stable.

(2) The parameter space R(Γ,G,H) and the deformation space T (Γ,G,H)

are endowed with smooth manifold structures of dimensions (2n + 1)lΓ −
1
2 lΓ(lΓ − 1) and 2nlΓ − 1

2 lΓ(lΓ − 1), respectively.

(3) The G-orbits of R(Γ,G,H) have a common dimension equal to lΓ.

(4) The parameter space R(Γ,G,H) admits a locally rigid point if and only

if Γ is a finite group.

The outline of the paper is as follows. Section 2 is devoted to fixing some notation

and defining the necessary ingredients. In Section 3, we prove that any closed
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subgroup of a connected completely solvable Lie group G admits a unique synde-

tic hull, which contains the maximal compact subgroup of G (cf. Theorem 3.9).

Section 4 aims to study the structure of the set Hom(Γ,G) of homomorphisms

of Γ in G (see Proposition 4.4) and to prove that the set Homd
0(Γ,G) of injective

homomorphisms with discrete images is an open set of Hom(Γ,G) (cf. Proposi-

tion 4.6 and Corollary 4.8). Section 5 is devoted to characterization of the proper

action of a connected subgroup Γ acting on a arbitrary homogeneous space G/H

(see Proposition 5.2), to recalling the concept of stable subgroups of nilpotent

Lie groups, and to proving our main upshot (cf. Theorem 1.1).

2. Backgrounds

We begin this section with fixing some notation and terminology and recording

some basic facts about deformations. The readers could consult the references

[3], [11]–[13], [15], [16], [18], and some references therein for broader information

about the subject. Concerning the entire subject, we strongly recommend the

papers [11] and [16].

2.1. Proper and fixed point actions
Let M be a locally compact space, and let L be a locally compact topological

group. The continuous action of the group L on M is said to be

(1) proper if for each compact subset S ⊂ M , the set LS = {k ∈ L : k ·
S ∩ S �= ∅} is compact;

(2) fixed point free (or free) if for each m ∈ M , the isotropy group Lm =

{k ∈ L : k ·m=m} is trivial;

(3) properly discontinuous if L is discrete and the action of L on M is

proper and free. In the case where M =G/H is a homogeneous space and L is a

subgroup of G, then the action of L on M is proper if SHS−1∩L is compact for

any compact set S in G. Likewise the action of L on M is free if for every g ∈G,

L ∩ gHg−1 = {e}. In this context, the subgroup L is said to be a discontinuous

group for the homogeneous space M if L is a discrete subgroup of G and L acts

properly and freely on M .

The action of K on M (or the triple (G,H,K)) is of compact intersection

property, denoted by (CI) (introduced in [11]) if for each m ∈ M , the isotropy

group Km is compact.

As a first example, let Mg be a Riemann surface of genus g ≥ 2. Let G =

PSL2(R) and H = SO2. The fundamental group Γ = π1(Mg) of Mg , regarded

as a discrete subgroup of G, is a discontinuous group for G/H , and we have

Mg =Γ\G/H .

On the other hand, let M be a smooth manifold with a local structure

S (complex structure, affine structure, Lorentz structure, symplectic structure,

pseudo-Riemannian structure, etc.). Let M̃ be the universal covering of M , and

let

G=
{
ϕ ∈Diff(M̃), ϕ preserves the structure S

}
.
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If G is a Lie group acting transitively on M̃ and Γ is the fundamental group of

M , then M̃ = G/H , where H is the isotropy group of a point and M = Γ\M̃ .

Here, Γ is a discontinuous group for G/H .

2.2. Clifford–Klein forms
Let Γ be a discontinuous subgroup for the homogeneous space G/H . The quotient

space Γ\G/H is said to be a Clifford–Klein form for the homogeneous spaceG/H .

The following point was emphasized in [14]. Any Clifford–Klein form is endowed

with a smooth manifold structure for which the quotient canonical surjection

π : G/H → Γ\G/H turns out to be an open covering and particularly a local

diffeomorphism. On the other hand, any Clifford–Klein form Γ\G/H inherits

any G-invariant geometric structure (e.g., complex structure, pseudo-Riemanian

structure, conformal structure, symplectic structure, etc.) from the homogeneous

space G/H through the covering map π.

2.3. Parameter and deformation spaces
The material dealt with in this subsection is taken from the pioneering paper

[16] of T. Kobayashi. The reader could also consult the references [12] and [15]

for precise definitions. Suppose that Γ is a finitely generated subgroup of G. As

in the first introductory section, we designate by Hom(Γ,G) the set of group

homomorphisms from Γ to G endowed with the pointwise convergence topology.

The same topology is obtained by taking generators γ1, . . . , γk of Γ, then, using

the injective map

Hom(Γ,G)→G× · · · ×G, ϕ 	→
(
ϕ(γ1), . . . , ϕ(γk)

)
to equip Hom(Γ,G) with the relative topology induced from the direct product

G× · · · ×G. The parameter space R(Γ,G,H) defined as in (1.1), which is intro-

duced by T. Kobayashi [15] for general settings, stands for an interesting object

when the rigidity fails. Such a space plays a crucial role as we will see later.

For each ϕ ∈ R(Γ,G,H), the space ϕ(Γ)\G/H is a Clifford–Klein form which is

a Hausdorff topological space and even equipped with a structure of a smooth

manifold for which the quotient canonical map is an open covering. Let now

ϕ ∈ R(Γ,G,H) and g ∈G; we consider the element ϕg of Hom(Γ,G) defined by

ϕg(γ) = gϕ(γ)g−1, γ ∈ Γ. It is clear that the element ϕg ∈ R(Γ,G,H) and that

the map

ϕ(Γ)\G/H → ϕg(Γ)\G/H, ϕ(Γ)xH 	→ ϕg(Γ)gxH

is a natural diffeomorphism. T. Kobayashi [16] introduced the orbit space

T (Γ,G,H) = R(Γ,G,H)/G

instead of R(Γ,G,H) to avoid the unessential part of deformations from inner

automorphisms. We call the set T (Γ,G,H) the deformation space of the discon-

tinuous group Γ for the homogeneous space G/H .
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2.4. The concept of stability in the sense of Kobayashi and Nasrin
Let us come back to the general setting for a while. The homomorphism ϕ ∈
R(Γ,G,H) is said to be topologically stable or merely stable in the sense of

Kobayashi and Nasrin [17] if there is an open set in Hom(Γ,G) which contains

ϕ and is contained in R(Γ,G,H). When the set R(Γ,G,H) is an open subset

of Hom(Γ,G), then, obviously each of its elements is stable, which is the case

for any irreducible Riemannian symmetric space with the assumption that Γ is

a torsion-free uniform lattice of G (see [17] and [21]). Furthermore, we point out

in this setting that the concept of stability may be one fundamental concept to

understand the local structure of the deformation space.

2.5. The concept of rigidity
We keep the same notation and assumptions. Generalizing Weil’s notion of local

rigidity of discontinuous groups for Riemannian symmetric spaces, T. Kobayashi

introduced the notion of local rigidity and rigidity of discontinuous groups for

non-Riemannian homogeneous spaces (cf. [12]). Notably, he proved in [15] that

for the reductive case, the local rigidity may fail even for irreducible symmetric

space of high dimensions. We briefly recall here some details. For comprehen-

sible information, we refer the readers to references [10]–[13] and [15]–[17]. For

ϕ ∈ R(Γ,G,H), the discontinuous subgroup ϕ(Γ) for the homogeneous space

G/H is said to be locally rigid (resp., rigid ; see [12]) as a discontinuous group of

G/H if the orbit of ϕ under the inner conjugation is open in R(Γ,G,H) (resp., in

Hom(Γ,G)). This means equivalently that any point sufficiently close to ϕ should

be conjugate to ϕ under an inner automorphism of G. So, the homomorphisms

which are locally rigid are those which correspond to isolated points in the defor-

mation space T (Γ,G,H). When every point in R(Γ,G,H) is locally rigid, the

deformation space turns out to be discrete and the Clifford–Klein form Γ\G/H

does not admit continuous deformations. If a given ϕ ∈ R(Γ,G,H) is not locally

rigid, it admits continuous deformations and the related Clifford–Klein form is

continuously deformable.

3. On connected exponential Lie groups

Let us first recall the notion of the universal covering of a Lie group. Here, we

record some results which will be of interest in our study in this paper and prove

the existence of a unique syndetic hull for any closed subgroup of a completely

solvable Lie group. We first record the following results.

THEOREM 3.1 ([8, THEOREM XII.10])

Let G be a connected Lie group. Then there exists a connected simply connected

Lie group G̃ and a Lie group homomorphism π : G̃→G which is a covering. The

kernel of π is a discrete, normal subgroup and so is central in G̃. In addition, up

to isomorphism, G̃ is unique. The set is called the universal covering of G.



224 Baklouti, Ghaouar, and Khlif

THEOREM 3.2 ([9, PROPOSITION C.8])

Let G and H be two Lie groups associated to Lie algebras g and h, respectively.

Let F be a group homomorphism from G to H . Then, there exists an algebra

homomorphism f from g to h such that F ◦ expG = expH ◦f where expG : g→G

and expH : h→H are the exponential maps of G and H , respectively.

Throughout this section, g will denote a real exponential solvable Lie algebra

and G̃ its simply connected associated Lie group. This means that g is solvable

and the exponential map expG̃ : g → G̃ is a global C∞-diffeomorphism from g

onto G̃. Let logG̃ designate the inverse map of expG̃. That is, G̃ is connected and

simply connected, and it is the universal covering of a connected Lie group G,

for which the exponential mapping may fail to be injective. Besides, G and G̃

have the same Lie algebra, and G will also be called a connected exponential Lie

group. Furthermore, the following is true.

PROPOSITION 3.3

Let G be a connected exponential solvable Lie group, and let g be its Lie algebra.

Then, the exponential map expG : g→G is surjective.

Proof

Let G̃ be the universal covering of G, and let π : G̃→G be the associated covering

as in Theorem 3.1. We have that expG̃ : g→ G̃ is a diffeomorphism. Therefore,

according to Theorem 3.2, there exists a Lie algebra endomorphism f of g such

that π ◦ expG̃ = expG ◦f . As π ◦ expG̃ is surjective, then so is expG ◦f . Thus, the
map expG is surjective. �

DEFINITION 3.4

Let g be a Lie algebra such that dimg= n. When there exists a sequence of ideals

{0}= g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g, dimgj = j (0≤ j ≤ n),

we say that g is completely solvable. Any completely solvable Lie algebra is an

exponential solvable Lie algebra.

DEFINITION 3.5

Let G be a Lie group, and let H be a connected subgroup of G. Let g, h be the

Lie algebras of G and H , respectively. A basis {X1, . . . ,Xp}, p = dim(g/h), is

said to be coexponential to h in g if the map

ϕg,h :Rp ×H → G,(
(t1, . . . , tp), h

)
	→ exp tpXp · · · exp t1X1 · h

is a diffeomorphism.

The following theorem will be of interest in the remainder of the paper.
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THEOREM 3.6 ([19, PROPOSITION 2])

Let G be a connected, simply connected, and solvable Lie group. Then every

connected closed subgroup of G admits a coexponential basis.

DEFINITION 3.7

Let G be a Lie group, let Γ be a closed subgroup of G, and let Zc(G) be the

maximal compact subgroup of Z(G), the center of G. A syndetic hull of Γ is

any connected Lie subgroup L of G which contains Γ ·Zc(G) cocompactly. Then

obviously, L contains Γ cocompactly.

Let G be a connected completely solvable Lie group. When G is simply connected,

then Zc(G) is trivial and the following result is already known.

THEOREM 3.8 ([4], [20])

Let G be a connected, simply connected, completely solvable Lie group, and let Γ

be a closed subgroup of G. Then, Γ admits a unique syndetic hull.

The following result generalizes Theorem 3.8 and establishes the existence of

the syndetic hull of any closed subgroup of a connected completely solvable Lie

group. More precisely, we have the following.

THEOREM 3.9

Any closed subgroup of a connected completely solvable Lie group admits a unique

syndetic hull L, where L= expGl and l=R-span(logG̃ π−1(Γ)).

Proof

Let Γ be a closed subgroup of a completely solvable Lie group G. We show first

that there exists a connected Lie subgroup of G which contains Γ cocompactly.

Let G̃ be the universal covering of G, and let π be the associative covering

π : G̃ → G. We denote Λ = kerπ. As π is continuous, Γ̃ = π−1(Γ) is a closed

subgroup of G̃. Since G̃ is connected, simply connected, and completely solvable,

then according to Theorem 3.8, Γ̃ has unique syndetic hull, L̃, say. Let us prove

that L= π(L̃) is a connected Lie subgroup of G which contains Γ cocompactly.

We have Γ̃⊂ L̃, so, Γ⊂ π(π−1(Γ))⊂ L. In addition, we have L̃= C̃Γ̃, for some

compact set C̃ of G̃; then

π(L̃) = π(C̃)π(Γ̃) = π(C̃)Γ.

We must show that L is closed in G, which means that L̃Λ is closed in G̃. Let

logG̃Λ = Z-span(Z1, . . . ,Zd) for some d ∈ N, a = R-span(Z1, . . . ,Zd), and Ã =

expG̃ a. Then L̃Ã is closed in G̃ as L̃Ã is a connected subgroup in a simply

connected solvable Lie group G̃. Then by Theorem 3.6, there exits a coexponential

basis of L̃ in L̃Ã, which means that L̃Ã is diffeomorphic to L̃×Rs and conclusively

L̃Λ to L̃×Zs for some s� d. Therefore, L̃Λ is closed in G̃.
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Let Γ′ = ΓZc(G) which is a closed subgroup of G. Then Γ′ admits at least

one connected Lie subgroup L of G containing it cocompactly. We now show that

L is unique. Indeed, if L1 = expG l1 and L2 = expG l2 are two such Lie groups, we

claim that Li/(L1 ∩ L2), i= 1,2, are compact. To see that, consider for i= 1,2

the canonical surjection

si : Li → Li/(L1 ∩L2),

which factors through the canonical surjection ρi : Li → Li/Γ to a surjection

s̃i : Li/Γ → Li/(L1 ∩ L2) such that si = s̃i ◦ ρi. The map s̃i is surjective and

continuous, and thus its image Li/(L1 ∩L2) is compact. Moreover, it is obvious

that Li/(L1 ∩ L2) is homeomorphic to (Li/Z
c(G))/((L1 ∩ L2)/Z

c(G)), which

is homeomorphic to Rp for some p ∈ N. Indeed, G/Zc(G) turns out to be a

connected, simply connected, completely solvable Lie group, and the existence of

the coexponential basis of (L1 ∩ L2)/Z
c(G) in Li/Z

c(G) allows us to conclude.

Finally as this quotient is compact, we get conclusively that p= 0. Hence L1 ∩
L2 = L1 = L2, as was to be shown. �

Let as above G̃ be the universal covering of a connected Lie group G, and let

π : G̃→ G be the covering map. A pre-abelian subgroup Γ of G is a subgroup

such that Γ̃ = π−1(Γ) is abelian. When more generally G is exponential solvable

and connected, the following could also be seen.

PROPOSITION 3.10

Any pre-abelian closed subgroup of a connected exponential solvable Lie group

admits a unique syndetic hull.

Proof

Keep the same notation as in the proof of Theorem 3.9. In this situation Γ̃

is abelian and L̃ exists by [3, Proposition 3.2]. Then l = logG̃(L̃) is an abelian

Lie subalgebra of g. Finally, expG(l) is a syndetic hull of Γ, and the unicity is

immediate. �

4. On the set Hom(Γ,G) for a discrete subgroup of G

4.1. On the structure of reduced Heisenberg Lie groups
Let g := h2n+1 designate the Heisenberg Lie algebra of dimension 2n+1, and let

G̃ := H2n+1 be the corresponding Lie group; g can be defined as a real vector

space endowed with a skew-symmetric bilinear form b of rank 2n and a fixed

generator Z belonging to the kernel of b. The center z(g) of g is then the kernel

of b, and it is the one-dimensional subspace [g,g]. For any X,Y ∈ g, the Lie

bracket is given by

[X,Y ] = b(X,Y )Z.

We assume henceforth that G :=Hr
2n+1 is the reduced Heisenberg Lie group

which we can identify to R2n � T, where T is the group of complex numbers
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of modulus 1. Indeed, G is the quotient of G̃ by the central discrete subgroup

expG̃(ZZ). As the exponential mapping exp := expG is given by

exp(U + λZ) = (U,e2iπλ), U ∈R2n and λ ∈R,

G can be equipped with the following law:

(X,Y, e2iπt) ∗ (X ′, Y ′, e2iπs) = (X +X ′, Y + Y ′, e2iπ(t+s+ 1
2 (≺X′,Y�−≺X,Y ′�))),

where X,Y,X ′, Y ′ ∈ Rn, t, s ∈ R, and ≺,� denotes the usual Euclidian scalar

product. According to Proposition 3.3, the exponential map exp : g→G is sur-

jective. The Lie algebra g acts on itself by the adjoint representation ad; that

is,

adT (Y ) = [T,Y ], T, Y ∈ g.

The group G acts on g by the adjoint representation Ad, defined by

Adg = exp◦adT , g = expT ∈G.

Let Γ be a discrete subgroup of G. This subsection aims to describe to a

certain extent the set Hom(Γ,G) of homomorphisms from Γ to G. For
−→
w ∈R2n

and c ∈R, we adopt this notation:

exp(
−→
w + cZ) =

(
t−→w
e2iπc

)
.

We first prove the following structural result.

PROPOSITION 4.1

For a discrete subgroup Γ of G, there exist a unique nonnegative integer lΓ and

a linearly independent family of vectors {−→w 1, . . . ,
−→
w lΓ} of R2n such that

(1) if Γ is torsion-free, then

Γ=

{(
t−→w 1

e2iπc1

)n1

. . .

(
t−→w lΓ

e2iπclΓ

)nlΓ

;n1, . . . , nlΓ ∈ Z

}
,

for some c1, . . . , clΓ ∈R;
(2) otherwise, let q ∈N∗ be the order of Γ∩Z(G); then

Γ=

{(
t−→w 1

e2iπc1

)n1

. . .

(
t−→w lΓ

e2iπclΓ

)nlΓ
(

t
−→
0

e2iπ
1
q

)s

;n1, . . . , nlΓ , s ∈ Z

}
,

for some c1, . . . , clΓ ∈R.

Proof

We first consider the surjective projection

π1 :G → G/Z(G),(
t−→w
e2iπc

)
	−→ t−→w .
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Then, π1(Γ) is a discrete subgroup of R2n. This gives that there exist a

nonnegative integer lΓ and a family {−→w 1, . . . ,
−→
w lΓ} of linearly independent vectors

of R2n such that

π1(Γ) = {n1
t−→w 1 + · · ·+ nlΓ

t−→w lΓ ;n1, . . . , nlΓ ∈ Z}

is a discrete subgroup of R2n. As for all j ∈ {1, . . . , lΓ},
−→
w j ∈ π1(Γ), there exists

cj ∈R such that γj =
( t−→w j

e2iπcj

)
∈ Γ and π1(γj) =

t−→w j . Then

π1(Γ) =
{
n1π1|Γ(γ1) + · · ·+ nlΓπ1|Γ(γlΓ);n1, . . . , nlΓ ∈ Z

}
=
{
π1|Γ(γ

n1
1 ) + · · ·+ π1|Γ(γ

nlΓ

lΓ
);n1, . . . , nlΓ ∈ Z

}
=
{
π1|Γ(γ

n1
1 · · ·γnlΓ

lΓ
);n1, . . . , nlΓ ∈ Z

}
= π1|Γ

(
{γn1

1 · · ·γnlΓ

lΓ
;n1, . . . , nlΓ ∈ Z}

)
.

Hence,

Γ = {γn1
1 · · ·γnlΓ

lΓ
;n1, . . . , nlΓ ∈ Z} ·

(
Γ∩Z(G)

)
.

We now show that lΓ is unique. Indeed, if lΓ and l′Γ are two distinct such

integers with lΓ < l′Γ, say, there exist two linearly independent families of vectors

{−→w 1, . . . ,
−→
w lΓ} and {−→w ′

1, . . . ,
−→
w ′

l′Γ
} of R2n such that

Γ =

{(
t−→w 1

e2iπc1

)n1

. . .

(
t−→w lΓ

e2iπclΓ

)nlΓ

;n1, . . . , nlΓ ∈ Z

}
·
(
Γ∩Z(G)

)
=

{(
t−→w ′

1

e2iπc
′
1

)m1

. . .

(
t−→w ′

l′Γ

e
2iπc′

l′Γ

)ml′Γ

;m1, . . . ,ml′Γ
∈ Z

}
·
(
Γ∩Z(G)

)
for some c1, . . . , clΓ , c

′
1, . . . , c

′
l′Γ

∈ R. There exist then for all j ∈ {1, . . . , l′Γ} some

integers (nj
i )1�i�lΓ

1�j�l′Γ

∈ Z such that
−→
w ′

j =
∑lΓ

i=1 n
j
i

−→
w i. This is impossible given

lΓ < l′Γ. �

The following is an immediate consequence of Proposition 4.1.

COROLLARY 4.2

Any discrete subgroup of G is finitely generated.

REMARK 4.3

The integer lΓ is indeed the length of Γ.

4.2. A matrix-like writing of elements of Hom(Γ,G)

Let Mr,s(C) be the vector space of matrices of r rows and s columns. When

r = s, we adopt the notation Mr(C) instead of Mr,r(C). Let now {γ1, . . . , γk} be

a set of generators of Γ. Thanks to the injective map

Hom(Γ,G)→G× · · · ×G, ϕ 	→
(
ϕ(γ1), . . . , ϕ(γk)

)
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to equip Hom(Γ,G) with the relative topology induced from the direct product

G × · · · × G and the identification of G × · · · × G to the space M2n+1,k(C), it
appears clear that the map

(4.1) Ψ : Hom(Γ,G)→ M2n+1,k(C),

which associates to any element ϕ ∈Hom(Γ,G) its matrix

(4.2) Mϕ(A,B, z) =

⎛⎝ A

B

e2iπz

⎞⎠=

(
C

e2iπz

)
∈ M2n+1,k(C),

where C =
(
A
B

)
, A and B ∈ Mn,k(R), and z := (z1, . . . , zk) ∈Rk, with

e2iπz :=
(
e2iπz1 · · · e2iπzk

)
∈ M1,k(C)

is a homeomorphism on its range. Let us write C = �C1, . . . ,Ck�, where this

symbol merely designs the matrix constituted of the columns C1, . . . ,Ck. This

means indeed that

ϕ(γj) := exp(Cj + zjZ)

for any 1≤ j ≤ k. Let E denote the subset of M2n+1,k(C) consisting of the totality
of matrices as in (4.2) which is homeomorphic to the set M2n,k(R)×Tk. Through

the coming sections, Γ will serve as a discontinuous subgroup for a homogeneous

space G/H , we hence pose the following:

Hom0(Γ,G) =
{
ϕ ∈Hom(Γ,G) : ϕ is injective

}
and

Hom0
d(Γ,G) =

{
ϕ ∈Hom0(Γ,G) : ϕ(Γ) is discrete

}
.

The set Hom(Γ,G) is homeomorphically identified to a subset U of E , and

Hom0
d(Γ,G) is identified to a subset U 0

d of U . The group G acts on E through

the following law: For g = expX , with X ∈ g with coordinates t(α,β, γ), α,β ∈
M1,n(R), γ ∈R,

g �

(
C = �C1, . . . ,Ck�

e2iπz

)
=

(
�g ·C1 · g−1, . . . , g ·Ck · g−1�

e2iπ(z1+αC1
1−βC1

2 ) · · ·e2iπ(zk+αCk
1−βCk

2 )

)
,

where Ci =
(Ci

1

Ci
2

)
, Ci

1,C
i
2 ∈ Mn,1(R), i ∈ {1, . . . , k}. The map Ψ : Hom(Γ,G)→ E

given in equation (4.1) turns out to be G-equivariant.

For

M =M(A,B, z) =

⎛⎝ A

B

e2iπz

⎞⎠ ∈ M2n+1,k(C),

g �M = AdexpX ·M =

⎛⎝ A

B

e2iπ(z−βA+αB)

⎞⎠ .(4.3)
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For all j ∈ {1, . . . , l= lΓ}, we consider the notation

t−→w j =

(
t−→w 1

j
t−→w 2

j

)
∈R2n,

where
−→
w 1

j ,
−→
w 2

j ∈Rn. Let pij = 0 if Γ is torsion-free, and let

pij = q(≺−→
w 1

j ,
−→
w 2

i �−≺−→
w 1

i ,
−→
w 2

j �)

otherwise. Let also

P (Γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 p12 . . . . . . p1l

−p12
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . pl−1 l

−p1l . . . . . . −pl−1 l 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Ml(R),

A (l,R) the subspace of Ml(R) of skew-symmetric matrices and A (l,Z) the sub-
set of A (l,R) with entries in Z. We now prove the following.

PROPOSITION 4.4

We keep the same notation and hypotheses. Let M(A,B, z) be as in (4.2), where

A,B ∈ Mn,k(R). We have the following.

(1) If Γ is torsion-free, then k = l and

U =
{
M(A,B, z) ∈ E : tAB − tBA ∈ A (l,Z)

}
.

(2) Otherwise, k = l+ 1 and

U =
{
M(A,B, z) ∈ E

∣∣∣A= (A′ t
−→
0 ),B = (B′ t

−→
0 ),A

′,B′ ∈ Mn,l(R),

z =
(
z1, . . . , zl,

p

q

)
, p ∈ {0, . . . , q− 1}, z1, . . . , zl ∈R, and

tA′B′ − tB′A′ ∈ p

q
P (Γ) +A (l,Z)

}
.

Proof

It is sufficient to prove the proposition when Γ is not torsion-free. Indeed, other-

wise, P (Γ) = 0, and the same arguments work. For ϕ ∈Hom(Γ,G), Mϕ(A,B, z) ∈
U , and γl+1 =

( t
−→
0

e
2iπ 1

q

)
, we have ϕ(γl+1) = γp

l+1 for some p ∈ {0, . . . , q− 1}. Now,
let r, j ∈ {1, . . . , l}. Then

ϕ(γrγjγ
−1
r γ−1

j ) = ϕ(γr)ϕ(γj)ϕ(γr)
−1ϕ(γj)

−1 =

(
t
−→
0

e2iπ(
tAjBr−tBjAr)

)
.

On the other hand, we have

γrγjγ
−1
r γ−1

j =

(
t
−→
0

e2iπ(≺
−→
w 1

j ,
−→
w 2

r�−≺−→
w 1

r,
−→
w 2

j�)

)
=

(
t
−→
0

e2iπ
prj
q

)
= γ

prj

l+1.
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As ϕ ∈Hom(Γ,G), then,

ϕ(γrγjγ
−1
r γ−1

j ) =
(
ϕ(γl+1)

)prj
= γ

pprj

l+1 =

(
t
−→
0

e2iπ
pprj

q

)
.

This gives tAjBr − tBjAr ∈ p
q prj + Z for some p ∈ {0, . . . , q − 1}. Let now

M(A,B, z) = �g1, . . . , gl+1� ∈ E such that gj =
t(Cj , e2iπzj ) for j ∈ {1, . . . , l} and

gl+1 =
t(0, e2iπ

p
q ) for some p ∈ {0, . . . , q − 1} with the convention that gl+1 = e

if Γ is torsion-free, which satisfies the required conditions. Let ϕ be the map

defined by

ϕ : Γ→G, γn1
1 . . . γnl

l γ
nl+1

l+1 	→ gn1
1 . . . gnl

l g
nl+1

l+1 .

We need to show that ϕ ∈ Hom(Γ,G). Let γ = γn1
1 · · ·γnl

l γ
nl+1

l+1 and γ′ =

γm1
1 · · ·γml

l γ
ml+1

l+1 in Γ. Therefore,

ϕ(γγ′) = ϕ(γn1
1 · · ·γnl

l γ
nl+1

l+1 γm1
1 · · ·γml

l γ
ml+1

l+1 )

= ϕ(γn1+m1
1 · · ·γnl+ml

l γm
l+1),

where

m= nl+1 +ml+1 −
∑

1�j<i�l

nimjpij .

Then

ϕ(γγ′) = gn1+m1
1 · · ·gnl+ml

l gml+1

= gn1
1 · · ·gnl

l g
nl+1

l+1 gm1
1 · · ·gml

l g
ml+1

l+1

= ϕ(γn1
1 · · ·γnl

l γ
nl+1

l+1 )ϕ(γm1
1 · · ·γml

l γ
ml+1

l+1 ).

= ϕ(γ)ϕ(γ′).

This shows that �g1, . . . , gl+1� ∈ U , which is enough to conclude. �

Any information concerning the structures of the spaces Hom(Γ,G) and

R(Γ,G,H) may help to understand the properties and the structure of the

deformation space T (Γ,G,H). The sets Hom(Γ,G) and R(Γ,G,H) may have

some singularities, and there is no clear reason to say that the parameter space

R(Γ,G,H) is an analytic or algebraic or smooth manifold. For instance, when

the parameter space is a semialgebraic set, it has certainly a finite number of

connected components, which means in turn that the deformation space itself

enjoys this feature. Corollary 5.7 below will be set toward such a purpose. Up to

this step, let U and E be as in Section 4.2. We have the following.

COROLLARY 4.5

For a discrete subgroup Γ of G, the set Hom(Γ,G) is homeomorphic to a disjoint

union of open (and hence closed) algebraic sets in U . (Disjoint means here with

empty pairwise intersection).



232 Baklouti, Ghaouar, and Khlif

Proof

Recall that Hom(Γ,G) is homeomorphically identified to a subset U of E . It suf-

fices then to show that U splits to a disjoint union of open algebraic sets in U .

We only treat the case where Γ is torsion-free; the other case is handled similarly.

For D ∈ A (l,Z), let

UD =
{
M(A,B, z) ∈ E : tAB − tBA=D

}
.

We have

U =
∐

D∈A (l,Z)

UD.

Clearly the sets UD are algebraic in U and UD ∩UD′ �= ∅ for D �=D′ ∈ A (l,Z).
We only need to show that UD is open in U for all D ∈ A (l,Z). Let (Aj)j∈N,

(Bj)j∈N be some sequences of Mn,k(R), and let (zj)j∈N be a sequence in Rk such

that (M(Aj ,Bj , zj))j∈N is a sequence in cUD which converges to M(A,B, z)

in E . This means that there exists a sequence (Dj)j∈N ⊂ A (l,Z)\{D} such that
tAjBj − tBjAj =Dj for all j ∈ N and (tAjBj − tBjAj)j∈N converges to tAB −
tBA. Then (Dj)j∈N is stationary and M(A,B, z) ∈ cUD. �

We next show the following.

PROPOSITION 4.6

Let G be the reduced Heisenberg Lie group, and let Γ be a discrete subgroup of G.

(1) If Γ is torsion-free, then

U 0
d =
{
M(A,B, z) ∈ U : rk(C) = l

}
.

(2) Otherwise, if the symbol ∧ means the greatest common divisor, the set

U 0
d reads{
M(A,B, z) ∈ U

∣∣∣A= (A′ t
−→
0 ),B = (B′ t

−→
0 ),A

′,B′ ∈ Mn,l(R),

z =
(
z1, . . . , zl,

p

q

)
, p ∈ {1, . . . , q− 1}, p∧ q = 1, z1, . . . , zl ∈R, rk

(
A′

B′

)
= l

}
.

Proof

As in Proposition 4.4, it is sufficient to consider the case where Γ is not torsion-

free. Let us first recall the following well-known result.

LEMMA 4.7 ([7, COROLLARY TG VII.3])

Let (
−→
a i)1�i�p be a linearly independent family of p vectors of Rn, and let

−→
b =∑p

i=1 ti
−→
a i be a linear combination of real coefficients ti. Then, the subgroup of

Rn generated by {−→a 1, . . . ,
−→
a p,

−→
b } is discrete if and only if ti are rational.
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Let ϕ ∈Hom0
d(Γ,G) and Mϕ(A,B, z) ∈ U 0

d ; then ϕ(Γ∩Z(G)) = Γ∩Z(G). There-

fore

A= (A′ t
−→
0 ), B = (B′ t

−→
0 ), A′,B′ ∈ Mn,l(R),

z = (z1, . . . , zl,
p
q ), z1, . . . , zl ∈ R, p ∈ {1, . . . , q − 1}, and p ∧ q = 1. We now show

that rk
(
C ′ =

(
A′

B′

))
= l. As Γ is not torsion-free, then according to Proposi-

tion 4.1,

Γ =

{(
t−→w 1

e2iπc1

)n1

· · ·
(

t−→w l

e2iπcl

)nl
(

t
−→
0

e2iπ
1
q

)n

;n1, . . . , nl, n ∈ Z

}
,

where {−→w 1, . . . ,
−→
w l} is a linearly independent family of R2n and c1, . . . , cl ∈ R.

The columns of the matrix C ′ generate a discrete subgroup of R2n. According

to Lemma 4.7, if rk(C ′) = l′ < l, then the columns of C ′ are Q-linearly depen-

dent. We can and do assume that rk�C ′1, . . . ,C ′l′�= l′. We denote I = {1, . . . , l′}.
Let j0 ∈ {1, . . . , l}\I be such that C ′j0 =

∑
j∈I λjC

′j , where λj ∈ Q for j ∈ I .

We denote λj =
pj

qj
, Q =

∏
j∈I qj , Qj = Q

qj
, and γ = γQ1p1

1 · · ·γQl′pl′
l′ γ−Q

j0
. As

rk�t−→w 1, . . . ,
t−→w l′ ,

t−→w j0� = l′ + 1, we have γ �= e. Moreover, it is not hard to see

that

exp
(
Q
(
−
∑
j∈I

λjzj + zj0

)
Z
)
∈ ϕ(Γ)∩Z(G).

This gives −
∑

j∈I λjzj + zj0 ∈Q, which contradicts the fact that ϕ is injective.

Conversely, let ϕ ∈Hom(Γ,G) and Mϕ(A,B, z) ∈ U be such that

A= (A′ t
−→
0 ), B = (B′ t

−→
0 ), A′,B′ ∈ Mn,l(R), rk(C ′) = l,

z = (z1, . . . , zl,
p
q ), p ∈ {1, . . . , q − 1}, p ∧ q = 1, and z1, . . . , zl ∈ R. Let us show

that ϕ is injective. Let γ ∈ kerϕ; then γ ∈ Γ∩Z(G). Therefore γ = exp(p
′

q Z) for

some p′ ∈ Z. Hence,

kerϕ=
{
exp
(p′
q
Z
)
∈ Γ : exp

(pp′
q

Z
)
= e
}
= {e},

which entails that ϕ is injective. We now show that ϕ(Γ) is discrete. For A′ =

(aij)1�i�n
1�j�l

and B′ = (bij)1�i�n
1�j�l

, let (m1
j )j∈N, . . . , (m

l
j)j∈N and (mj)j∈N be some

integer sequences such that the sequence (uj)j∈N of ϕ(Γ) defined by

uj = exp
(
m1

j

( n∑
i=1

(ai1Xi + bi1Yi) + z1Z
))

· · · exp
(
ml

j

( n∑
i=1

(ailXi + bilYi) + zlZ
))

× exp
(
mj

p

q
Z
)

converges. Hence, the sequence

exp
( n∑
i=1

(m1
jai1 + · · ·+ml

jail)Xi + (m1
jbi1 + · · ·+ml

jbil)Yi

)
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converges, which implies that m1
jai1+ · · ·+ml

jail and m1
jbi1+ · · ·+ml

jbil converge

for all i ∈ {1, . . . , n}. As rk(C ′) = l, these sequences converge. Therefore (uj)j∈N

is stationary. �

Proposition 4.6 shows that U 0
d is open in U . So the following becomes clear.

COROLLARY 4.8

Let G be the reduced Heisenberg Lie group, and let Γ be a discrete subgroup of G.

Then the set Hom0
d(Γ,G) is open in Hom(Γ,G).

DEFINITION 4.9 ([6])

A subset V of Rn is called semialgebraic if it admits some representation of the

form

V =

s⋃
i=1

ri⋂
j=1

{
x ∈Rn : Pi,j(x) si,j 0

}
,

where for each i= 1, . . . , s and j = 1, . . . , ri, Pi,j are some polynomials on Rn and

sij ∈ {>,=,<}.

We now show the following result.

THEOREM 4.10

Let G be the reduced Heisenberg Lie group, and let Γ be a discrete subgroup of G

of length l. Then we have the following.

(1) Hom0
d(Γ,G) is homeomorphic to a disjoint union of semialgebraic and

open smooth manifolds in U 0
d of a common dimension equal to (2n + 1)l −

1
2 l(l− 1).

(2) Hom0
d(Γ,G) and Hom0

d(Γ,G)/G are endowed with smooth manifold

structures of dimensions (2n+ 1)l− 1
2 l(l− 1) and 2nl− 1

2 l(l− 1), respectively.

The following elementary result is proved in [2, Lemma 4.2].

LEMMA 4.11

Let M ∈ Mn,l(R) (l� n) of maximal rank. Then the map

ϕM : Mn,l(R)→ A (l,R),

H 	→ tMH − tHM

is surjective.

Proof

We only treat the case where Γ is torsion-free; the other case is handled similarly.

For D ∈ A (l,Z), let

U 0
d,D = U 0

d ∩
{
M(A,B, z) ∈ E : tAB − tBA=D

}
.
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We have

(4.4) U 0
d =

∐
D∈A (l,Z)

U 0
d,D.

Clearly, the sets U 0
d,D are semialgebraic and open in U 0

d , and we only need to

show that U 0
d,D is endowed with a smooth manifold structure for all D ∈ A (l,Z).

Let

ν =

{
M(A,B, z) ∈ E : rk

(
A

B

)
= l

}
,

and let ψL be the smooth map

ψD : ν → A (l,R),

M 	→ tAB − tBA−D.

Clearly, U 0
d,D = ψ−1

D ({0}). The goal now is to show that zero is a regular value

of the map ψD. The derivative of ψD at a point M =M(A,B, z) ∈ U 0
d,D, is given

by

d(ψD)M : E → A (l,R),

X =M(H,K,h) 	→ tHB − tBH + tAK − tKA.

So, clearly we have

d(ψD)M (X) =

t(
H

−K

)(
B

A

)
−

t(
B

A

)(
H

−K

)
,

which is enough to conclude thanks to Lemma 4.11. This shows the first point.

For the second point, the set U 0
d splits to a disjoint union of open smooth

manifolds of dimension (2n + 1)l − 1
2 l(l − 1) and therefore is endowed with a

smooth manifold structure. To conclude that Hom0
d(Γ,G) is endowed with a

smooth manifold structure, it is sufficient to make use of the following elemen-

tary result for which the proof is immediate: Let X and Y be two Hausdorff

topological spaces, and let h : X → Y be a homeomorphism. If one of these

spaces is endowed with a smooth manifold structure, then so is the second.

Now, we focus attention to the space Hom0
d(Γ,G)/G. For any X = t(α,β, γ) ∈

g and M(A,B, z) ∈ U 0
d , we have as in equation (4.3),

AdexpX ·M(A,B, z) =M(A,B, z − βA+ αB).

Here γ ∈R, α, and β are in Rn. For M(A,B, z) ∈ U d
0 , we can easily see that the

matrix through the canonical basis of R2n and Rl of the map ΦA,B :Rn ×Rn →
Rl, (α,β) 	→ βA−αB isM(ΦA,B) = (−tB tA ), which means that rk(M(ΦA,B)) =

l and that ΦA,B is surjective. Let Ũ 0
d = {M(A,B,0) ∈ U : rk(C) = l}, which, as

above, is endowed with a smooth manifold structure; then the mapping

π̃ : U 0
d /G→ Ũ 0

d ;
[
M(A,B, z)

]
	→M(A,B,0)
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is a continuous bijection. In addition, its inverse coincides with the restriction of

the canonical quotient surjection to Ũ 0
d regarded as a subset of U 0

d . This shows

that Hom0
d(Γ,G)/G is endowed with a smooth manifold structure. �

5. Proof of the main result

5.1. Proper action of connected subgroups on homogeneous spaces
The following result is proved in [5, Proposition 3.1] and provides a direct way

to construct a basis of g starting from a given subalgebra l of g and referred to

be adapted to l.

PROPOSITION 5.1

Let g be the Heisenberg Lie algebra, and let l be a Lie subalgebra of g. Then

there exists a basis B = {X1, . . . ,Xn, Y1, . . . , Yn,Z} of g with the Lie commutation

relations

[Xi, Yj ] = δi,jZ, i, j = 1, . . . , n,

and satisfying the following.

(1) If z(g)⊂ l, then there exist two integers p, q � 0 such that the family

{X1, . . . ,Xp+q, Y1, . . . , Yp,Z}

constitutes a basis of l.

(2) If z(g) � l, then dim l � n and l is generated by X1, . . . ,Xs, where s =

dim l. The symbol δi,j here designates the Kronecker symbol. The basis B is said

to be a symplectic basis of g adapted to l.

Let H = exph be a closed connected Lie subgroup of the reduced Heisenberg

group G, let Γ be a discrete subgroup, and let L be the syndetic hull of Γ. We

need to characterize the proper action of the closed connected subgroup L on the

homogeneous space G/H . As L contains the center of G, our goal is to prove the

following.

PROPOSITION 5.2

Let H = exph and L = exp l be closed connected subgroups of G such that L

contains the center of G. We have the following.

(1) The action of L on G/H is free if and only if l∩ h= {0}.
(2) If z(g)� h, then L acts properly on G/H if and only if l∩ h= z(g).

(3) If z(g) � h, then the action of L on G/H is proper if and only if the

action of L on G/H is free.

Proof

(1) We first prove that exp(l∩ h) = L∩H . Let t ∈ L∩H ; then there exist T1 ∈ l

and T2 ∈ h such that t= expT1 = expT2. This implies that T1 = T2 mod (z(g)).

As z(g)⊂ l, then T2 ∈ h∩ l, which implies that t ∈ exp(l∩h). Now suppose that L
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acts on G/H freely. As z(g)⊂ l, then z(g)� h, and therefore H is nilpotent and

simply connected. As exp(l∩ h) = L∩H = {e}, we get l∩ h= {0}. The converse

implication is trivial as exp(h∩ l) =H ∩L and Z(G)⊂ L.

(2) Suppose that L acts properly on G/H , which implies that the triplet

(L,G,H) is (CI). Then, h ∩ l � z(g), and therefore z(g) = h ∩ l. Conversely, let

us assume that L and H are not compact; otherwise our assertion is clear. We

consider the norm ‖g‖= inf{‖X‖, expX = g}, for g ∈G. Suppose that the action

of L on G/H is not proper; then, there exists a compact set S ⊂ G such that

SHS−1 ∩ L is not relatively compact. Hence, one can find sequences Vj ∈ h,

Wj ∈ l, Aj , and Bj ∈ g such that

(a) expAj ∈ S and expBj ∈ S,

(b) limj→+∞ ‖ expVj‖= limj→+∞ ‖ expWj‖=+∞,

(c) expWj = expAj expVj exp(−Bj).

Moreover, G is a two-step nilpotent Lie group; then the last equation gives

(5.1) Wj = Vj + (Aj −Bj) mod
(
z(g)
)
.

Let Wj =W ′
j mod (z(g)), Vj = V ′

j mod (z(g)), Aj = A′
j mod (z(g)), and Bj =

B′
j mod (z(g)).

Obviously assertion (b) gives

lim
j→+∞

‖V ′
j ‖= lim

j→+∞
‖W ′

j‖=+∞.

Then we can assume that

lim
j→+∞

V ′
j

‖V ′
j ‖

= V ′, lim
j→+∞

W ′
j

‖W ′
j‖

=W ′,

where V ′ ∈ h,W ′ ∈ l,‖V ′‖= ‖W ′‖= 1. Let α′
j =

‖V ′
j ‖

‖W ′
j‖
; then equation (5.1) gives

W ′
j

‖W ′
j‖

= αj

V ′
j

‖V ′
j ‖

+
A′

j −B′
j

‖W ′
j‖

.

Thus, (α′
j)j converges to α′ ∈R∗. Then, W ′ ∈ h∩ l= z(g), which is impossible as

W ′ /∈ z(g).

(3) As h does not contain the center of g, then H is simply connected. If

the action of L on G/H is proper, we have that for all g ∈ G, gLg−1 ∩ H is

a compact subgroup of H and therefore gLg−1 ∩H = {e}. Then, the action of

L on G/H is free. Conversely, we can and do assume that L and H are not

compact; otherwise our assertion is clear. Suppose that the action of L on G/H

is not proper; then, there exists a compact S ⊂G such that SHS−1 ∩ L is not

relatively compact. Hence, one can find sequences Vj ∈ h, Wj ∈ l, Aj , and Bj ∈ g

meeting conditions (a)–(c) of assertion (2). Moreover, if G is two-step nilpotent

Lie group, then equation (c) gives the equation (5.1). We have z(g) � h; then

according to Proposition 5.1, there exists a basis {X1, . . . ,Xn, Y1, . . . , Yn,Z} of g

satisfying [Xi, Yj ] = δijZ and h=R-span(X1, . . . ,Xs), where s= dimh. Let Wj =
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W ′
j mod (z(g)) where W ′

j ∈ l, Aj = A′
j mod (z(g)), and Bj = B′

j mod (z(g))

where A′
j ,B

′
j ∈ g. Hence, the same procedure as in the proof of assertion (2)

gives a contradiction. �

5.2. On the parameter space
Let G be the reduced Heisenberg Lie group, let H = exph be a closed connected

subgroup of G, and let Γ be a discontinuous subgroup for the homogeneous

space G/H . This section aims to study the parameter space defined as in (1.1)

and to study the stability property. For ϕ ∈Hom0
d(Γ,G), let Lϕ = expG lϕ be the

syndetic hull of ϕ(Γ). We first prove the following.

LEMMA 5.3

We keep the notation of Section 4. For any Mϕ(A,B, z) ∈ U 0
d , we have

lϕ =R- span(Z,C1, . . . ,Cl).

Proof

We still adopt the notation of the proof of Theorem 3.9. The closed subgroup

ϕ̃(Γ) coincides with the closed subgroup expG̃(Z(C
1 + z1Z)) · · · expG̃(Z(Cl +

zlZ)) expG̃(ZZ). It is then clear that the Lie algebra of the syndetic hull L̃ϕ

of ϕ̃(Γ) is the Lie subalgebra lϕ = R-span{C1, . . . ,Cl,Z}. As Lϕ = expG lϕ, we

are done. �

As a direct consequence of Proposition 5.2, we get the following description of

the parameter space R(Γ,G,H).

PROPOSITION 5.4

Let G be the reduced Heisenberg Lie group, let H = exph be a closed connected

subgroup of G, and let Γ be a discontinuous subgroup for the homogeneous

space G/H . Then

R(Γ,G,H) =
{
ϕ ∈Hom0

d(Γ,G) : h∩ lϕ ⊆ z(g)
}
.

More precisely:

(1) if z(g)� h, then R(Γ,G,H) = {ϕ ∈Hom0
d(Γ,G) : h∩ lϕ = {0}};

(2) otherwise, R(Γ,G,H) = {ϕ ∈Hom0
d(Γ,G) : h∩ lϕ = z(g)}.

Proof

Let ϕ ∈ R(Γ,G,H). We first show that the proper action of ϕ(Γ) on G/H

implies its free action. It is clear that the proper action implies that the triplet

(G,H,ϕ(Γ)) is (CI), which gives that for all g ∈ G, the subgroup K := ϕ(Γ) ∩
gHg−1 is central and then finite as ϕ(Γ) is discrete. As the map ϕ : Γ→ ϕ(Γ)

is a group isomorphism and K is finite and cyclic, we get that ϕ−1(K) = K.

Therefore, K ⊂ Γ ∩H = {e}. Thus the action of ϕ(Γ) on G/H is free. As Lϕ
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contains ϕ(Γ) cocompactly,

R(Γ,G,H) =
{
ϕ ∈Hom0

d(Γ,G) : Lϕ acts properly on G/H
}
.

Now, Proposition 5.2 allows us to conclude. �

5.3. Stability of discrete subgroups
Let G be a locally compact group, and let Γ be a discrete subgroup of G. In [13,

(5.2.1)], T. Kobayashi defines the set �(Γ :G) consisting of subsets H for which

SHS−1 ∩ Γ is compact for any compact set S in G. Let �gp(Γ :G) be the set of

all closed connected subgroups belonging to �(Γ :G). So H ∈ �gp(Γ :G) if and

only if Γ acts properly discontinuously on G/H . The following notion of stability

of discrete subgroups was defined in [1].

DEFINITION 5.5

(1) Let Γ be a discrete subgroup of G. We set Stab(Γ :G) as the set of all

subgroups H ∈ �gp(Γ :G) for which the parameter space R(Γ,G,H) is open in

Hom(Γ,G).

(2) A discrete subgroup Γ of G is said to be stable, if Stab(Γ : G) =

�gp(Γ :G). This means that the space R(Γ,G,H) is open for any H ∈ �gp(Γ :G).

REMARK 5.6

The notion of stability is defined for discrete subgroups. For a discrete subgroup

Γ⊂G, Γ becomes a discontinuous subgroup for G/H for any H ∈ �gp(Γ :G).

The question whether it is possible to characterize all stable discrete subgroups of

connected nilpotent Lie groups is also posed in [1]. Now, we are ready to answer

this question in our context and to prove our main theorem.

5.4. Proof of Theorem 1.1
(1) Let {T1, . . . , Tr} be a basis of h, and let lϕ = R-span{C1, . . . ,Cl,Z} be as in

Lemma 5.3. Thanks to Proposition 5.4, it is clear that R(Γ,G,H) is homeomor-

phic to the set{
Mϕ(A,B, z) ∈ U 0

d : rk�T1, . . . , Tr,C
1, . . . ,Cl,Z�= r+ l+ 1− dim(h∩ lϕ)

}
,

which is a Zariski-open set in U 0
d . This completes the proof as U 0

d is open in

U as in Corollary 4.8. This also entails that the parameter space is open in

Hom(Γ,G) and that any discrete subgroup of G is stable.

(2) The parameter and the deformation spaces are open in Hom(Γ,G) and

Hom0
d(Γ,G)/G, respectively; they are therefore endowed with a smooth manifold

structure with the mentioned dimensions thanks to Theorem 4.10.

(3) We immediately see that dimG � M(A,B, z) = l for any M(A,B, z) ∈
R(Γ,G,H).
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(4) Assume first that Γ is a finite group; then it is a central and cyclic group.

As such, we have the following:

T (Γ,G,H) = R(Γ,G,H) = Hom0(Γ,G) = Aut(Γ),

where the last means the automorphism group of Γ, which is a finite group. So

the global rigidity property holds on the parameter space.

Let now Γ be infinite. As R(Γ,G,H) is endowed with a smooth mani-

fold structure and dimG � M(A,B, z) � dimR(Γ,G,H) for any M(A,B, z) ∈
R(Γ,G,H), then the local rigidity fails to hold.

As a direct consequence of the decomposition (4.4) and the proof of Theo-

rem 1.1, we set the following.

COROLLARY 5.7

The parameter and the deformation spaces split into semialgebraic smooth man-

ifolds.

COROLLARY 5.8

Let G be the reduced Heisenberg Lie group, let H = exph be a closed connected

subgroup of G, and let Γ be a discontinuous subgroup for the homogeneous space

G/H of length lΓ. Then the deformation space T (Γ,G,H) splits into open smooth

manifolds of common dimension equal to 2nlΓ − 1
2 lΓ(lΓ − 1).
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