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Abstract Let Γ be a finite group, and let Λ be any Artin algebra. It is shown that the

group algebra ΛΓ is virtually Gorenstein if and only if ΛΓ′ is virtually Gorenstein, for

all elementary abelian subgroups Γ′ of Γ. We also extend this result to cover the more

general context. Precisely, assume that Γ is a group in Kropholler’s hierarchyHF, Γ′ is a

subgroup of Γ of finite index, andR is any ring with identity. It is proved that, in certain

circumstances, that RΓ is virtually Gorenstein if and only if RΓ′ is so.

1. Introduction

Let Λ be an Artin algebra. The algebra Λ is called left (resp., right) Gorenstein

if Λ viewed as a left (resp., right) module has finite injective dimension. Note

that it is an open problem whether or not a left Gorenstein algebra is right

Gorenstein. Λ is called Gorenstein if it is both left and right Gorenstein. The

problem of understanding the Gorenstein left–right symmetry, which is referred

as the Gorenstein symmetry conjecture (see [7, Conjecture 13]), provided a moti-

vation for studying the class of virtually Gorenstein algebras which has been

introduced in [13]. We recall from [12] that an algebra Λ is said to be virtually

Gorenstein if for every Λ-module X , the functor ExtiΛ(X,−) vanishes for all i > 0

on all Gorenstein injective Λ-modules if and only if ExtiΛ(−,X) vanishes for all

i > 0 on all Gorenstein projective Λ-modules. It is known that if Λ is virtually

Gorenstein, then the Gorenstein symmetry conjecture is true for Λ (see [11, The-

orem 11.4]). Virtually Gorenstein algebras provide a natural enlargement of the

class of Gorenstein algebras giving at the same time a homological generaliza-

tion of algebras of finite representation type and more generally of algebras of

finite Cohen–Macaulay type. We would like to stress that all Artin algebras are

“locally,” that is, at the finitely generated level, virtually Gorenstein (see [11]).

However, in [12] an example of an Artin algebra which is not virtually Gorenstein

is presented. The main result of [12] provides a remarkable characterization of

virtually Gorenstein algebras in terms of finitely generated modules. Precisely, it

is shown in [12, Theorem 1] that Λ being virtually Gorenstein is equivalent to say-

ing that Thick(projΛ∪ injΛ), the smallest thick subcategory of modΛ contain-

ing projΛ∪ injΛ, is functorially finite (i.e., both contravariantly and covariantly
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finite). Here, modΛ denotes the class of all finitely generated (left) Λ-modules,

projΛ (resp., injΛ) denotes the full subcategory of modΛ which consists of all

projective (resp., injective) Λ-modules. As a corollary of this result, one imme-

diately deduces that virtual Gorensteinness is left–right symmetric (see also [11,

Theorem 8.7]).

Elementary abelian subgroup induction plays a crucial role in cohomology

and representation theory of finite groups (see [2], [14], [16], [17], [26]). Roughly

speaking, the results say that important cohomological properties hold for a

group ring RΓ, Γ finite, and R an arbitrary ring with identity, if and only if

they hold for RΓ′ where Γ′ runs over all elementary abelian subgroups of Γ. It

is shown in [17] that if M is any module over RΓ, then it is weakly projective

(projective) if and only if it is weakly projective (projective) over all subrings

RΓ′ where Γ′ is an elementary abelian subgroup of Γ. Moreover, it is known that

if M is an arbitrary RΓ-module, Γ is finite and R is an arbitrary ring, then a

given element x of the cohomology ring Ext∗RΓ(M,M) (with Yoneda’s product)

is nilpotent if and only if its restriction to Ext∗RΓ′(M,M) is nilpotent where Γ′

runs over all elementary abelian subgroups of Γ (see [16], [25]). These important

results exhibit the role of the elementary abelian subgroups. In this direction,

we investigate virtual Gorensteinness over group algebras. Indeed, it is shown

that virtual Gorensteinness over Γ can be determined by its elementary abelian

subgroups. Precisely, our main result in this context is as follows.

THEOREM 1.1

Let Γ be a finite group, and let Λ be any Artin algebra. Then ΛΓ is a virtually

Gorenstein algebra if and only if ΛΓ′ is virtually Gorenstein for every elementary

abelian subgroup Γ′ of Γ.

Our second task in this paper is to generalize Theorem 1.1 to infinite groups.

Let R be an associative ring with identity. Inspired by the definition of virtu-

ally Gorenstein algebra, we say that R is a virtually Gorenstein ring, provided

GP(R)⊥ = ⊥GI(R), where GP(R) and GI(R) denote the subcategories of Goren-

stein projective and Gorenstein injective modules, respectively, and the symbol ⊥

refers to the Ext1R-orthogonal classes. We study the descent and ascent of virtual

Gorensteinness between Γ and its subgroups of finite index.

Actually, we establish the following result.

THEOREM 1.2

Let Γ be an HF-group, let Γ′ be its subgroup of finite index, and let R be any ring

with identity. Assume that the triple (Γ,Γ′,R) satisfies Moore’s condition; that

is, for all x ∈ (Γ− Γ′), at least one of the following holds:

(1) there is an integer n such that 1 �= xn ∈ Γ′;

(2) ord(x) is finite and invertible in R.
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Moreover, assume that any Gorenstein projective (resp., Gorenstein injective)

RΓ-module is also Gorenstein projective (resp., Gorenstein injective) over R.

Then, RΓ is a virtually Gorenstein ring if and only if so is RΓ′.

Restricting the above theorem to finite groups yields the following.

COROLLARY 1.3

Let Γ be a finite group, let Γ′ be its subgroup, and let Λ be any Artin algebra.

Assume that the triple (Γ,Γ′,Λ) satisfies Moore’s condition. Then, ΛΓ is a vir-

tually Gorenstein algebra if and only if so is ΛΓ′.

Throughout the paper, Γ is a group, R is an associative ring with identity, and

RΓ is the group algebra (of Γ over R); in fact, RΓ is the ring R ⊗Z ZΓ. We

also fix that Λ is an Artin algebra. If Γ is assumed to be finite, then ΛΓ will be

an Artin algebra. All modules are supposed to be left modules unless otherwise

stated. Also, pdRΓM stands for the projective dimension of a module M over a

group ring RΓ.

2. Preliminaries

In this section, we recall basic definitions and fundamental facts for later use.

2.1. Orthogonal classes
Let X be a class of objects in ModRΓ, the category of all left RΓ-modules. The

left orthogonal of X in ModRΓ, denoted by ⊥X , is defined by

⊥X =
{
M ∈ModRΓ

∣∣ ExtiRΓ(M,X) = 0, for all X ∈ X and all i > 0
}
.

The right orthogonal of X in ModRΓ is defined similarly.

2.2.
Let Γ be an arbitrary group, and let Γ′ be a subgroup of Γ. Since RΓ is a free

RΓ′-module, any projective RΓ-module is also projective over RΓ′. Consequently,

for any RΓ-module M , one has the inequality pdRΓ′ M ≤ pdRΓM . Moreover,

analogous to [15, Proposition VIII.2.4(a)], one may show that the equality holds

if pdRΓM <∞ and Γ′ is of finite index in Γ.

2.3.
Let Γ be a group, and let Γ′ be a subgroup of Γ of finite index. Let M be a left

RΓ′-module. Then a verbatim pursuit of the proof of [15, Proposition III.5.9],

gives rise to an isomorphism RΓ⊗RΓ′ M ∼=HomRΓ′(RΓ,M), as left RΓ-modules.

One should note that the left-hand side is a left RΓ-module, since RΓ is an

RΓ-RΓ′-bimodule. However, the case for the right-hand side follows from the

RΓ′-RΓ-bimodule structure of RΓ.
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2.4. Gorenstein modules
An RΓ-module M is said to be Gorenstein projective if it is a syzygy of some

exact sequence of projective RΓ-modules

T• : · · · −→ T2 −→ T1 −→ T0 −→ T−1 −→ · · · ,

which remains exact after applying the functor HomRΓ(−, P ), for any projec-

tive RΓ-module P . The exact sequence T• is called a totally acyclic complex

of projectives. Gorenstein injective modules are defined dually. The class of all

Gorenstein projective and Gorenstein injective RΓ-modules will be denoted by

GP(RΓ) and GI(RΓ), respectively. The reader is advised to look at [21] for the

basic properties of these modules.

REMARK 2.5

Gorenstein projective modules, which are a refinement of projective modules,

were defined by Enochs and Jenda [20]. This concept even goes back to Aus-

lander and Bridger [5], who introduced the G-dimension of a finitely generated

module M over a two-sided Noetherian ring; then Avramov, Martisinkovsky, and

Reiten proved that M is Goreinstein projective if and only if the G-dimension

of M is zero (see also the remark following [18, Theorem 4.2.6] for the historical

information).

EXAMPLE 2.6

The following are examples of Gorenstein projective and injective modules.

(i) Every projective (resp., injective) RΓ-module is Gorenstein projective

(resp., Gorenstein injective).

(ii) Let Γ′ be a subgroup of Γ, and let M be a Gorenstein projective (resp.,

Gorenstein injective) RΓ′-module. Then RΓ⊗RΓ′ M (resp., HomRΓ′(RΓ,M)) is

a Gorenstein projective (resp., Gorenstein injective) RΓ-module.

(iii) Let Γ be a finite group, and let M be an RΓ-module. Then M is Goren-

stein projective (resp., Gorenstein injective) if and only if it is Gorenstein projec-

tive (resp., Gorenstein injective) as an R-module. In particular, R is a Gorenstein

projective RΓ-module.

Proof

(i) The result follows from the definition.

(ii) To prove the assertion for Gorenstein projective module, one only needs

to apply the same arguments which have been used in [8, Example 2.1(c)]. The

case for Gorenstein injective modules can be obtained dually.

(iii) This is a direct consequence of [9, Theorem 2.9]. �

REMARK 2.7

Let Γ be a group, and let Γ′ be an arbitrary subgroup of Γ. Then by using the

adjointness of Hom and ⊗ in conjunction with Example 2.6(ii), one may deduce

that GP(RΓ)⊥ ⊆GP(RΓ′)⊥ and ⊥GI(RΓ)⊆ ⊥GI(RΓ′).
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3. Results and proofs

We begin this section by the following result, which says that virtual Gorenstein-

ness descends from a group Γ to its subgroups of finite index.

PROPOSITION 3.1

Let Γ be a group, and let Γ′ be a subgroup of Γ of finite index. If RΓ is a virtually

Gorenstein ring, then so is RΓ′.

Proof

We only show the inclusion GP(RΓ′)⊥ ⊆ ⊥GI(RΓ′), since the reverse inclusion is

proved similarly. Assume that M is an RΓ′-module which belongs to GP(RΓ′)⊥.

It should be noted that, by virtue of [15, Section III 3.6], we infer that the func-

tor HomRΓ′(RΓ,−) is right adjoint to the restriction functor, and according to

the isomorphism given in Section 2.3, it takes projective RΓ′-modules to pro-

jective RΓ-modules. These facts indeed yield that every Gorenstein projective

RΓ-module is also Gorenstein projective over RΓ′. Now take an arbitrary Goren-

stein projective RΓ-module X . Using the adjoitness of Hom and ⊗ together with

Section 2.3 gives rise to the following isomorphisms:

ExtiRΓ(X,RΓ⊗RΓ′ M)∼=ExtiRΓ′(RΓ⊗RΓ X,M)∼=ExtiRΓ′(X,M),

implying that RΓ⊗RΓ′ M ∈ GP(RΓ)⊥. Hence, another use of the isomorphism

presented in Section 2.3, combining with the hypothesis made on RΓ, induces

that HomRΓ′(RΓ,M) ∈ ⊥GI(RΓ). Consequently, by virtue of Remark 2.7, we

deduce that this module belongs to ⊥GI(RΓ′) as well. This, in turn, implies that

M ∈ ⊥GI(RΓ′), since M is an RΓ′-direct summand of HomRΓ′(RΓ,M) (see [15,

Section III 3.7]). The proof then is complete. �

LEMMA 3.2

Let Γ be a group, and let Γ′ be its subgroup of finite index such that the index

of Γ′ in Γ is invertible in R. Then RΓ is virtually Gorenstein if and only if RΓ′

is so.

Proof

According to Proposition 3.1, we only need to show the “if” part. Assuming

M ∈GP(RΓ)⊥, Remark 2.7 yields that it also belongs to GP(RΓ′)⊥. Hence, by

the assumption, M ∈ ⊥GI(RΓ′), and so HomRΓ′(RΓ,M) ∈ ⊥GI(RΓ). In addi-

tion, since the index of Γ′ in Γ is invertible in R, we infer that M is an RΓ-direct

summand of HomRΓ′(RΓ,M) ensuring that M ∈ ⊥GI(RΓ), as needed. The inclu-

sion ⊥GI(RΓ)⊆GP(RΓ)⊥ can be proved similarly. So we are done. �

REMARK 3.3

Let Γ be a finite group, and let Λ be a Gorenstein Artin algebra. Since the

functor HomΛ(ΛΓ,−) carries left (resp., right) injective Λ-modules to right (resp.,

left) injective ΛΓ-modules, applying this functor to an injective resolution of Λ
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and using ΛΓ-isomorphisms HomΛ(ΛΓ,Λ)∼=ΛΓ⊗Λ Λ∼=ΛΓ yields that the Artin

algebra ΛΓ is Gorenstein as well. However, we do not know whether the same

statement is true if one replaces Gorensteinness with virtual Gorensteinness. It

follows from Lemma 3.2 that this is the case whenever the order of Γ is invertible

in Λ.

Let Γ be a finite group, and let p be a prime integer dividing the order of Γ. Recall

that a Sylow p-subgroup of Γ is a maximal p-subgroup of Γ. It is known that such

subgroups exist for every prime divisor of the order of Γ, and in general, they are

not unique (but any two such are conjugate). However, when Γ is abelian, the

Sylow p-subgroup is unique. By a Sylow subgroup we mean a Sylow p-subgroup,

for some prime integer p dividing the order of Γ.

THEOREM 3.4

Let Γ be a finite group, and let Λ be any Artin algebra. The following statements

are equivalent.

(1) ΛΓ is a virtually Gorenstein algebra.

(2) ΛΓ′ is virtually Gorenstein for all Sylow subgroups Γ′ of Γ.

Proof

(1⇒ 2). This follows from Proposition 3.1.

(2 ⇒ 1). Suppose that M ∈ ⊥GI(ΛΓ) and X is an arbitrary Gorenstein

projective ΛΓ-module. We must show that ExtiΛΓ(X,M) = 0 for all i > 0. Our

assumption combining with Proposition 3.1, induces that ExtiΛ(X,M) = 0 for all

i > 0 and hence, by [17, Lemma 3.1], ExtiΛΓ(X,M)∼=Hi(Γ,HomΛ(X,M)). On the

other hand, assuming that Γ′ is an arbitrary Sylow subgroup of Γ, the hypoth-

esis enforces ExtiΛΓ′(X,M) = 0 for all i > 0, since we know that X and M also

belong to GP(ΛΓ′) and ⊥GI(ΛΓ′), respectively. So, Hi(Γ′,HomΛ(X,M)) = 0,

for all i > 0. Hence, we may invoke [28, Corollary 9.90(iii)] and conclude that

Hi(Γ,HomΛ(X,M)) = 0, implying ExtiΛΓ(X,M) = 0 for all i > 0, as required.

Likewise, one can show the inclusion GP(ΛΓ)⊥ ⊆ ⊥GI(ΛΓ). So the proof is com-

plete. �

Let Γ be a finite group. Recall that a ZΓ-module M is said to be cohomologically

trivial provided Ĥi(Γ′,M) = 0, for all i ∈ Z and all subgroups Γ′ of Γ, where

Ĥi(Γ′,−) denotes the doubly infinite Tate cohomology of Γ′. We refer the reader

to [15] and also [27] for a detailed discussion on cohomologically trivial modules.

We are now in a position to present the proof of Theorem 1.1, which is stated

in the introduction.

Proof of Theorem 1.1

We only need to prove the “if” part; the “only if” part follows from Proposi-

tion 3.1. According to Theorem 3.4, we may assume that Γ is a p-group, for
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some prime integer p. Suppose that M ∈ ⊥GI(ΛΓ) and X is an arbitrary Goren-

stein projective ΛΓ-module. We would like to show that ExtiΛΓ(X,M) = 0, for all

i > 0. Let Γ′ be an elementary abelian subgroup of Γ. As we have seen previously,

M ∈ ⊥GI(ΛΓ′) and X ∈GP(ΛΓ′). So, by the hypothesis, ExtiΛΓ′(X,M) = 0 for

all i > 0. Consequently, in view of Proposition 3.1, one has ExtiΛ(X,M) = 0 for all

i > 0. Now, by invoking [17, Lemma 3.1] one may conclude that ExtiΛΓ′(X,M)∼=
Hi(Γ′,HomΛ(X,M)) = 0, for all i > 0. In particular, Ĥi(Γ′,HomΛ(X,M)) = 0 for

all i > 0. Hence, bymaking use of [15, TheoremVI.8.7], we infer that HomΛ(X,M),

with diagonal action, is a cohomologically trivial ZΓ′-module. Thus, [15, Theo-

rem VI.8.12] implies that pd
ZΓ′(HomΛ(X,M)) ≤ 1, for all elementary abelian

subgroups Γ′ of Γ. Now apply [17, Corollary 1.1] in order to conclude that

pd
ZΓ(HomΛ(X,M)) < ∞. Especially, Ĥi(Γ,HomΛ(X,M)) ∼= ExtiΛΓ(X,M) = 0

for all i > 0, as needed. Similarly, one can verify that GP(ΛΓ)⊥ ⊆ ⊥GI(ΛΓ).

Hence, ΛΓ is virtually Gorenstein, as required. �

As an immediate consequence of Theorem 1.1 in conjunction with [15, Proposi-

tion VI.9.5], we include the following result.

COROLLARY 3.5

Let Γ be a finite group such that every Sylow subgroup of Γ is a cyclic or gen-

eralized quaternion group. Then ΛΓ is virtually Gorenstein if and only if ΛZp is

virtually Gorenstein for all prime integers p dividing the order of Γ.

The class HF was defined by Kropholler in [24] as the smallest class of groups

which contains the class of finite groups, and whenever a group Γ admits a finite-

dimensional contractible Γ-CW-complex with stabilizers in HF, then Γ is in HF.

It is worth pointing out that HF is a very large class which is extension closed

and contains all countable linear and countable soluble groups.

3.6.
Let Γ be a group, let Γ′ be a subgroup of Γ, and let M be a Gorenstein projective

RΓ-module. It is worth noting that, unlike the projectivity, we do not know

whether or not M is Gorenstein projective as an RΓ′-module. However, as we

have seen in the proof of Proposition 3.1, M is Gorenstein projective as an RΓ′-

module, provided Γ′ is of finite index in Γ. In the next result, we impose mild

assumptions on M and Γ′ ensuring the Gorenstein projectivity of M over RΓ′.

We also point out that the same statement for Gorenstein injective modules can

be obtained dually; hence we skip it.

PROPOSITION 3.7

Let Γ be a group, and let M be a Gorenstein projective RΓ-module. Addition-

ally, let M be Gorenstein projective as an R-module. Then M is a Gorenstein

projective RΓ′-module, for every HF-subgroup Γ′ of Γ.



136 Abdolnaser Bahlekeh and Shokrollah Salarian

Proof

First one should observe that, according to Example 2.6(iii), M is a Gorenstein

projective RΓ′-module whenever Γ′ is a finite group. Now, the proof actually

follows from the same lines as the proof of [8, Lemma 4.4]. �

Our next result provides an example of a virtually Gorenstein ring.

PROPOSITION 3.8

Let R be a virtually Gorenstein ring and Γ be an infinite cyclic group. Let every

Gorenstein projective (resp., Gorenstein injective) RΓ-module be also Gorenstein

projective (resp., Gorenstein injective) over R. Then RΓ is a virtually Gorenstein

ring.

Proof

Assume that M ∈ ⊥GI(RΓ) and that X is an arbitrary Gorenstein projec-

tive RΓ-module. We must show that ExtiRΓ(X,M) = 0, for all i > 0. For this

purpose, one should note that, according to Remark 2.7, M ∈ ⊥GI(R). So,

in view of the hypothesis, ExtiR(X,M) = 0, for all i > 0. Consequently, [17,

Lemma 3.1] gives rise to an isomorphism ExtiRΓ(X,M) ∼= Hi(Γ,HomR(X,M))

implying ExtiRΓ(X,M) = 0 for all i ≥ 2, since pd
ZΓZ = 1. Hence, it remains to

show that Ext1RΓ(X,M) = 0. To do this, take a short exact sequence of RΓ-

modules 0 −→ X −→ P −→ X ′ −→ 0, where P is projective and X ′ is Goren-

stein projective, and consequently, ExtiRΓ(X
′,M) = 0 for all i ≥ 2. Hence, by

applying the functor HomRΓ(−,M) to this sequence, one obtains the isomor-

phism Ext1RΓ(X,M) ∼= Ext2RΓ(X
′,M) implying that Ext1RΓ(X,M) = 0. There-

fore, ⊥GI(RΓ)⊆GP(RΓ)⊥. The inverse inclusion can be obtained similarly. So,

the proof is complete. �

REMARK 3.9

Let Γ be any group, and let Γ′ be its subgroup of finite index. Following Aljadeff

[1], we say that the triple (Γ,Γ′,R) satisfies Moore’s condition if for all x ∈ (Γ−Γ′)

at least one of the following holds:

(1) there is an integer n, such that 1 �= xn ∈ Γ′;

(2) ord(x) is finite and invertible in R.

In 1976, J. Moore posed the following conjecture which concerns a criterion for

modules over group rings to be projective.

Moore’s conjecture (see [17]). Let Γ be a group, let Γ′ be a subgroup of Γ of

finite index, and let R be any ring with identity. Assume that Moore’s condition

holds for the triple (Γ,Γ′,R). Then every RΓ-module M which is projective over

RΓ′ is projective over RΓ as well.

This conjecture then has been the subject of several expositions. Recently, it

is shown by Aljadeff and Meir that Moore’s conjecture is valid for groups which

belong to Kropholler’s hierarchy LHF (see [3]).
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Proof of Theorem 1.2

In view of Proposition 3.1, we only need to show the if part. For this purpose,

we proceed by induction on the ordinal number α such that the group Γ belongs

to HαF. If α= 0, then Γ is a finite group. Since RΓ′ is virtually Gorenstein, R is

also virtually Gorenstein. Let p be a prime integer, and let Γ′′ be an elementary

abelian p-subgroup of Γ. If p is invertible in R, then it follows from Lemma 3.2

that RΓ′′ is virtually Gorenstein. Moreover, if p is not invertible in R, then

the hypothesis implies that Γ′′ is contained in Γ′ and hence RΓ′′ is virtually

Gorenstein, thanks to Proposition 3.1. Now Theorem 1.1 implies that RΓ is

virtually Gorenstein. Next assume that the result is true for Γ ∈ HβF, for all

β < α, and let Γ ∈HαF. Suppose that M ∈ ⊥GI(RΓ) and that X is a Gorenstein

projective RΓ-module. We would like to show that ExtiRΓ(X,M) = 0, for all

i > 0. Since Γ ∈HαF, by the definition, there is a finite-dimensional contractible

Γ-CW-complex X such that each cell stabilizer belongs to HβF for some β < α.

Tensoring the cellular chain complex X by R, we obtain an exact sequence of

RΓ-modules

0−→Cr −→ · · · −→C0 −→R−→ 0,

whereas for any 0≤ t≤ r, Ct is a direct sum of modules of the form R[Γ/H] for

H ∈ HβF with β < α (see the proof of [19, Theorem C]). Applying the functor

HomR(−,M) to this sequence gives the following exact sequence of RΓ-modules;

0−→M −→HomR(C0,M)−→ · · · −→HomR(Cr,M)−→ 0.

So, assuming that Ct =
⊕

R[Γ/Hjt ] for any t, one has the following RΓ-isomor-

phisms;

HomR(Ct,M)∼=HomR

(
⊕R[Γ/Hjt ],M

)∼=
∏

HomR

(
R[Γ/Hjt ],M

)

∼=
∏

HomR(RΓ⊗RHjt
R,M)∼=

∏
HomRHjt

(
RΓ,HomR(R,M)

)

∼=
∏

HomRHjt
(RΓ,M).

By invoking induction hypothesis in conjunction with Proposition 3.7 and Re-

mark 2.7, one may obtain that for any i > 0,

ExtiRΓ

(
X,

∏
HomRHjt

(RΓ,M)
)
∼=
∏

ExtiRHjt
(X,M) = 0,

implying ExtiRΓ(X,M) = 0, for all i > r. Now, take the exact sequence of RΓ-

modules,

0−→X −→ P0 −→ · · · −→ Pr −→X ′ −→ 0,

where for each j, Pj is projective and X ′ is Gorenstein projective. Applying the

functor HomRΓ(−,M) to this sequence gives rise to an isomorphism ExtiRΓ(X,

M)∼=Exti+r
RΓ (X ′,M), for all i > 0. In addition, as we have seen earlier, ExtiRΓ(X

′,

M) = 0, for all i > r implying that ExtiRΓ(X,M) = 0, for all i > 0. The inclusion

GP(RΓ)⊥ ⊆ ⊥GI(RΓ) holds true in a similar way. Then the proof is completed.

�
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As a direct consequence of Theorem 1.2, we include the following result, which

is stated as Corollary 1.3 in the introduction.

COROLLARY 3.10

Let Γ be a finite group, let Γ′ be its subgroup, and let Λ be any Artin algebra.

Assume that the triple (Γ,Γ′,Λ) satisfies Moore’s condition. Then, ΛΓ is a vir-

tually Gorenstein algebra if and only if so is ΛΓ′.

Recall from [12] that a subcategory X of modΛΓ is contravariantly finite if every

finitely generated ΛΓ-module C has a right X -approximation X −→ C; that is,

X ∈ X and the induced map HomΛΓ(X
′,X)−→HomΛΓ(X

′,C) is surjective for

every X ′ ∈ X . Covariantly finite subcategories are defined dually.

Combining Corollary 3.10 and [12, Theorem 1] yields the following result.

COROLLARY 3.11

Let Γ be a finite group, and let Γ′ be a subgroup of Γ. Assume that Thick(projΛΓ′ ∪
injΛΓ′) is contravariantly finite. Then Thick(projΛΓ∪ injΛΓ) is also contravari-

antly finite provided the triple (Γ,Γ′,Λ) satisfies Moore’s condition.

REMARK 3.12

As we have mentioned in the introduction, virtually Gorenstein algebras are

common generalizations of algebras of finite representation type and of finite

Cohen–Macaulay type (see [11, Example 8.4]). Assuming that Γ is a finite group

and Γ′ is its subgroup, [7, Lemma VI 3.1] implies that finite representation type

and finite Cohen–Macaulay type ascends and descends between ΛΓ and ΛΓ′, if

the index of Γ′ in Γ is invertible in Λ. However, Corollary 3.10 provides a weaker

criterion that guarantees ascent and descent of virtual Gorensteinness between

ΛΓ and ΛΓ′.

3.7. Finitistic dimension
For a ring R, the little finitistic dimension, findimR, is defined as the supremum

of the projective dimensions attained on the category of all finitely generated

left R-modules having finite projective dimension. The big finitistic dimension,

FindimR, is defined correspondingly on the category of arbitrary left R-modules

of finite projective dimension. It is well known that these dimensions may be

infinite. Moreover, they do not coincide in general (see [4]). It is important to

mention that there is a tie connection between the Gorensteiness of Artinian

algebra Λ and the finiteness of findimΛ. Precisely, a left Gorenstein algebra Λ

is right Gorenstein if and only if findimΛ is finite (see [6]). We end this paper

by exploring whether finiteness of finitistic dimensions carries over from RΓ′ to

RΓ, and vice versa, whenever Γ′ is a subgroup of finite index. We should remark

that, although this result seems to be rather isolated from the main theme of

the paper, we include it because of the fact that the techniques which have been

used in this paper yield interesting results in this context.
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PROPOSITION 3.13

Let R be any ring, let Γ be a group, and let Γ′ be a subgroup of finite index. Then,

one has the equalities FindimRΓ′ =FindimRΓ and findimRΓ′ = findimRΓ.

Proof

We only prove the first equality. The proof of the second one follows the same

lines. To do this, we first show that FindimRΓ′ ≤ FindimRΓ. If FindimRΓ=∞,

there is nothing to prove. So assume that FindimRΓ is finite, say, t. Take an

arbitrary RΓ′-module M with finite projective dimension. According to the RΓ-

isomorphism RΓ⊗RΓ′ RΓ′ ∼=RΓ, we conclude that RΓ⊗RΓ′ M has finite projec-

tive dimension as anRΓ-module. Hence, our assumption yields that pdRΓ(RΓ⊗RΓ′

M) ≤ t, and so Section 2.2 induces pdRΓ′(RΓ ⊗RΓ′ M) ≤ t. Now M being an

RΓ′-direct summand of RΓ⊗RΓ′ M implies that pdRΓ′ M ≤ t and consequently,

FindimRΓ′ ≤ t. Next we would like to show that FindimRΓ≤ FindimRΓ′. To

that end, we may assume that FindimRΓ′ is finite. In view of Section 2.2, we

have that for any RΓ-module M of finite projective dimension, the equality

pdRΓ′ M = pdRΓM holds true. This, in turn, deduces the claim. �

REMARK 3.14

Let Λ be an Artin algebra. In [10] Bass posed two dimension conjectures: the

first one asserts that the little and big finitistic dimension of Λ are equal, that is,

FindimΛ= findimΛ, and the second one, which is called the finitistic dimension

conjecture, says that findimΛ is finite. Because of [29], the first conjecture does

not hold in general. However, the finitistic dimension conjecture is still open.

Some of the known cases in which the finitistic dimension conjecture holds are the

radical cubed zero case (see [22]), algebras of representation dimension at most

three (see [23]), and algebras in which the category of modules of finite projective

dimension is contravariantly finite in modΛ (see [6]). It is worth pointing out that,

according to Proposition 3.13, the validity of the finitistic dimension conjecture

ascends and descends between Λ and ΛΓ, provided Γ is a finite group. More

generally, the finiteness of finitistic dimension carries over from a finite group Γ

to its subgroups, and vice versa. In conclusion, if FindimΛ= findimΛ, then the

same is true for ΛΓ. Precisely, the validity of the first conjecture stated above

carries over from Λ to ΛΓ.
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