Surfaces of general type with $K^{2}=2 \chi-1$

Caryn Werner

Abstract

We classify minimal algebraic surfaces of general type having $K^{2}=2 \chi-1$ and $\chi \geq 7$. Such surfaces are regular with canonical map of degree one or two. If $p_{g} \geq 13$, then the surface is a genus-two fibration; otherwise we use the canonical map to describe these surfaces as birational either to the canonical image or to a double cover of a rational surface.

1. Introduction

By Noether's inequality, minimal surfaces of general type satisfy $K^{2} \geq 2 \chi-6$. Horikawa (see [6]-[9]) classified surfaces with $2 \chi-6 \leq K^{2} \leq 2 \chi-4$; surfaces with $K^{2}=2 \chi-3$ have been studied in [11] while the case $K^{2}=2 \chi-2$ is classified in [12].

In this note we consider the case $K^{2}=2 \chi-1$. Murakami (see [14], [15]) has studied such surfaces with nontrivial torsion for the case in which $p_{g} \leq 5$. Here we will assume that $p_{g} \geq 6$; thus, our surfaces are torsion-free. Bombieri [4, Lemma 14] showed that a surface with $K^{2}=2 \chi-1$ is regular; thus we have $K^{2}=2 p_{g}+1$.

The main tool in the classification is the canonical map. The degree of the canonical map is either one or two; using these two cases we will show the following classification.

THEOREM 1.1

Let S be a minimal surface of general type over \mathbb{C} such that $K_{S}^{2}=2 \chi-1$ and $p_{g} \geq 6$. Then one of the following cases holds.
(a) The canonical map of S is birational, $p_{g} \leq 8$, and the canonical system has at most one isolated base point.
(b) S is a genus-two fibration and its canonical map factors through an involution with five isolated fixed points.
(c) The canonical map of S factors through an involution with three isolated fixed points and $p_{g} \leq 7$, and S is birational to a double cover of a weak del Pezzo surface or a Hirzebruch surface.
(d) The canonical map of S factors through an involution with one isolated fixed point and S can be realized as the minimal resolution of a double cover of a Hirzebruch surface; in this case, $p_{g} \leq 12$.

The paper is organized as follows. In Section 2 we show that the canonical map is either birational or of degree two. In the case of a degree-two canonical map the image is a rational surface and the canonical involution has 1,3 , or 5 isolated fixed points; an overview of the general properties of the canonical involution is given in Section 3. Sections 4-6 study the degree-two case according to the number of isolated fixed points of the involution.

When the underlying surface is understood, we will write $H^{i}(D)$ to denote the i th cohomology of the line bundle associated to the divisor D, and $h^{i}(D)$ for the corresponding dimension. The geometric genus is $p_{g}=h^{0}\left(K_{S}\right)$ and the irregularity is $q=h^{1}\left(\mathcal{O}_{S}\right)$; as our surfaces are regular, $q=0$ and the Euler characteristic is $\chi=p_{g}+1$.

We write \equiv to denote the linear equivalence of divisors and $|D|$ for the linear system associated to D. We will write Σ_{n} to denote the Hirzebruch surface $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$. We call a singularity of a curve infinitely near to include the singularity in the proper transform of the curve after blowing up. In particular, an infinitely near triple point is a triple point where all three tangent directions coincide, so that after blowing up the surface at the point, the proper transform of the curve has a triple point on the exceptional divisor.

2. The canonical map

Let S be a minimal surface of general type over \mathbb{C} with $K_{S}^{2}=2 \chi-1$ and $p_{g} \geq 6$. As noted above, S is regular; thus, $K_{S}^{2}=2 p_{g}+1$. Write $\varphi: S \rightarrow \mathbb{P}^{p_{g}-1}$ for the canonical map associated to the system $\left|K_{S}\right|$. Horikawa [8, Theorem 1.1] showed that the canonical system $\left|K_{S}\right|$ is not composed with a pencil; thus the image of φ is a surface $\Sigma \subset \mathbb{P}^{p_{g}-1}$. We can bound the degree of the canonical map φ as follows.

THEOREM 2.1

Let S be a regular surface with $K_{S}^{2}=2 p_{g}+1$ and $p_{g} \geq 6$. Then the degree of the canonical map is at most two.

Proof
We have that

$$
K_{S}^{2}=2 p_{g}+1 \geq \operatorname{deg} \varphi \operatorname{deg} \Sigma \geq \operatorname{deg} \varphi\left(p_{g}-2\right)
$$

thus φ must have degree at most three. Moreover, if the degree of φ is equal to three, then we have that $p_{g} \leq 7$.

Suppose we are in this case, that is, $\operatorname{suppose} \operatorname{deg} \varphi=3$ and $6 \leq p_{g} \leq 7$. If $p_{g}=6$, then Σ is a degree-four surface in \mathbb{P}^{5} and $\left|K_{S}\right|$ has a single base point; in the case $p_{g}=7$, the system is base point free and Σ is a surface of degree
five in \mathbb{P}^{6}. However, both of these cases contradict [13, Theorem 1.1]. Thus when $p_{g} \geq 6$, the canonical map is either birational or of degree two.

The surfaces with degree-two canonical map will be studied in the subsequent sections. In the case where the canonical map is birational we have that $K_{S}^{2} \geq$ $3 p_{g}-7$ (see [7]). Then $K_{S}^{2}=2 p_{g}+1$ implies that $p_{g} \leq 8$. Thus we have the three possibilities $p_{g}=6,7,8$ to consider.

First, when $p_{g}=6$ and $K_{S}^{2}=13, K_{S}^{2}=3 p_{g}-5$. In this case, $\left|K_{S}\right|$ has no fixed part and at most one base point by [12, Lemma 3.5].

If φ is birational and $p_{g}=7$, then $K_{S}^{2}=15$ and $K_{S}^{2}=3 p_{g}-6$. In this case Konno [10] has shown that $\left|K_{S}\right|$ is base point free.

The case in which $p_{g}=8$ and $K_{S}^{2}=17$, or $K_{S}^{2}=3 p_{g}-7$, is described in [1], where the system $\left|K_{S}\right|$ is also shown to be base point free. Thus we conclude the first statement of Theorem 1.1: when the canonical map is birational, $p_{g} \leq 8$ and the canonical system has at most one base point.

3. The canonical involution

We now turn to the case where the canonical map $\varphi: S \rightarrow \Sigma \subset \mathbb{P}^{p_{g}-1}$ has degree two. Let σ denote the involution induced by φ, and let $\pi: S \rightarrow S / \sigma$ be the quotient map.

The fixed locus of σ is the union of a smooth, possibly reducible, curve R and k isolated points P_{1}, \ldots, P_{k}. Let $Q_{i}=\pi\left(P_{i}\right)$ be the image of an isolated fixed point on the quotient surface. The k points Q_{i} are ordinary double points on S / σ.

Let $V \rightarrow S / \sigma$ be the resolution of these double points, and write N_{i} for the -2-curve over Q_{i} on V. Let $\epsilon: \tilde{S} \rightarrow S$ be the blowup of S at the k points P_{i}. Then σ induces an involution on \tilde{S} with fixed locus equal to the union of R_{0}, the inverse image of R, and the k exceptional divisors E_{i} over the P_{i} 's. We have the commutative diagram

$$
\begin{aligned}
& \tilde{S} \xrightarrow{\epsilon} S \\
& \tilde{\pi} \downarrow \\
& V \quad \downarrow \pi \\
& V \longrightarrow S / \sigma
\end{aligned}
$$

The map $\tilde{\pi}: \tilde{S} \rightarrow V$ is a double cover of V branched along $2 L=B+N_{1}+\cdots+N_{k}$, where $\tilde{\pi}^{*}(B)=R_{0}$. By standard double cover formulae (see, e.g., [2], [5]) we obtain the following.

LEMMA 3.1
Using the notation above, let k be the number of isolated fixed points of the involution σ. We have the following.
(a) $2\left(K_{V}+L\right)^{2}=K_{\tilde{S}}^{2}=K_{S}^{2}-k$.
(b) $\chi\left(\mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{S}\right)=2 \chi\left(\mathcal{O}_{V}\right)+\frac{1}{2}\left(L^{2}+L \cdot K_{V}\right)$.
(c) $H^{i}\left(2 K_{V}+L\right)=0$ for $i=1,2$.
(d) $2 K_{V}+B$ is nef and big and $2 K_{S}^{2}=\left(2 K_{V}+B\right)^{2}$.

By Beauville [3], the surface V is ruled and therefore rational, since S is regular. That the divisor $2 K_{V}+B$ is nef and big follows from $\tilde{\pi}^{*}\left(2 K_{V}+B\right)=\epsilon^{*}\left(2 K_{S}\right)$.

Combining the first three statements of the lemma we see that

$$
\begin{aligned}
k & =K_{S}^{2}-2\left(K_{V}+L\right)^{2} \\
& =K_{S}^{2}+6 \chi\left(\mathcal{O}_{V}\right)-2 \chi\left(\mathcal{O}_{S}\right)-2 h^{0}\left(2 K_{V}+L\right) \\
& =5-2 h^{0}\left(2 K_{V}+L\right) .
\end{aligned}
$$

Thus the number of isolated fixed points of the involution σ can be $k=1,3$, or 5 .
From the lemma we compute that

$$
\begin{equation*}
B^{2}=4 k+4 K_{V}^{2}+12 p_{g}-18 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{V} \cdot B=5-k-2 p_{g}-2 K_{V}^{2} . \tag{2}
\end{equation*}
$$

By the Riemann-Roch theorem and the above we have that

$$
h^{0}\left(2 K_{V}+L\right)=\frac{5-k}{2}
$$

Moreover, $h^{0}\left(3 K_{V}+B\right)=p_{g}+(9-k) / 2$; thus, $3 K_{V}+B$ is effective.
As in [5] and [12] we see that by possibly contracting some -1-curves we obtain a surface where the image of $3 K_{V}+B$ is numerically effective.

LEMMA 3.2 ([12, PROPOSITION 2.1])
There is a birational map $f: V \rightarrow Y$ from V onto a smooth rational surface Y with canonical divisor K_{Y} such that B maps to a divisor B_{Y} on Y with $3 K_{Y}+B_{Y}$ being nef.

Proof

If $3 K_{V}+B$ is not nef, then there exists a curve E with $E \cdot\left(3 K_{V}+B\right)<0$ and $E^{2}<0$. Since $2 K_{V}+B$ is nef and big and

$$
E \cdot\left(K_{V}+2 K_{V}+B\right)<0
$$

this implies that $E \cdot K_{V}<0$; thus, E is a - 1 -curve and $E \cdot B=2$.
We next show that E does not meet the -2 -curves N_{i}. Since $2 L=B+\sum N_{i}$ and $E \cdot B=2, E \cdot \sum N_{i}$ is even. For any N_{i} we have that $\left(E+N_{i}\right) \cdot\left(2 K_{V}+B\right)=0$; thus, $\left(E+N_{i}\right)^{2}=-3+2 E \cdot N_{i}<0$, which implies that $E \cdot N_{i} \leq 1$ for each i.

Thus E meets either two of the nodal curves or none. If E meets two of the nodal curves, say, N_{1} and N_{2}, then $\left(2 E+N_{1}+N_{2}\right)^{2}=0$ and $\left(2 E+N_{1}+N_{2}\right)$. $\left(2 K_{V}+B\right)=0$, a contradiction. Thus $E \cdot N_{i}=0$ for each i.

Let $f: V \rightarrow Y$ be the contraction of each such curve E. Since $E \cdot B=2$ the image B_{Y} of B has a double point at each contracted point.

Thus the surface V is obtained from Y by blowing up double points of the curve B_{Y}. As the nodal curves do not meet the exceptional locus, on Y the images of these k nodal curves are still -2 -curves. We will continue to write
N_{1}, \ldots, N_{k} for these curves and we have that $B_{Y}+\sum N_{i}$ is an even divisor defining the branch locus of a double cover. Also $f^{*}\left(2 K_{Y}+B_{Y}\right)=2 K_{V}+B$; thus, $2 K_{Y}+B_{Y}$ is still nef and big. In addition, the formulas (1) and (2) still hold when we replace B and K_{V} by B_{Y} and K_{Y}.

To classify the surfaces S with degree-two canonical map, we now consider each of the three cases for k, the number of isolated fixed points of the canonical involution.

4. The case $k=5$

We first consider the case where the canonical involution σ has five isolated fixed points. Then by Lemma 3.1, $H^{0}\left(2 K_{Y}+L\right)=0$. This implies that the bicanonical map of S factors through σ and is not birational. In this case S is a genus-two fibration (see [16, Proposition 3]).

Moreover, we see that the fibration of genus-two curves on S is unique. If $\left|M_{1}\right|$ and $\left|M_{2}\right|$ are distinct genus-two pencils, then by the index theorem $\left(M_{1}+M_{2}\right)^{2} K_{S}^{2} \leq\left(\left(M_{1}+M_{2}\right) \cdot K_{S}\right)^{2}$, which reduces to $\left(M_{1} \cdot M_{2}\right)^{2} K_{S}^{2} \leq 8$, since $M_{i} \cdot K_{S}=2$ and $M_{1}^{2}=M_{2}^{2}=0$. As $K_{S}^{2} \geq 13$ this implies that $M_{1} \cdot M_{2}=0$ a contradiction. Thus the fibration on S is unique.

Examples of these surfaces can be constructed as double covers of $\Sigma_{0}=$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

EXAMPLE 4.1

Let S be the minimal model of the double cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ branched along a curve B of bidegree $(6,2 d)$ for $d \geq 4$. Assume that B has five infinitely near triple points and n ordinary order-four points. Then S is a surface of general type with $K_{S}^{2}=2 p_{g}+1$ where $p_{g}=2 d-7-n$. The pencil of rulings $(0,1)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ corresponds to the genus-two pencil on S.

5. The case $k=3$

We will show that, when the canonical involution has three isolated fixed points, the surface S can be realized as either a double cover of a del Pezzo or a Hirzebruch surface. These two cases depend on the two possible values of K_{Y}^{2}.

LEMMA 5.1
Suppose the involution σ has $k=3$ isolated fixed points. Then $K_{Y}^{2}=p_{g}-4$ or $K_{Y}^{2}=p_{g}-3$.

Proof
When $k=3$, from Lemma 3.1 we have $K_{Y} \cdot B_{Y}=2-2 p_{g}-2 K_{Y}^{2}$ and $B_{Y}{ }^{2}=$ $12 p_{g}+4 K_{Y}^{2}-6$. Since $3 K_{Y}+B_{Y}$ is nef,

$$
\begin{aligned}
0 & \leq\left(2 K_{Y}+L\right) \cdot\left(3 K_{Y}+B_{Y}\right) \\
& =6 K_{Y}^{2}+7 K_{Y} \cdot L+B_{Y} \cdot L
\end{aligned}
$$

$$
\begin{aligned}
& =6 K_{Y}^{2}+7\left(1-p_{g}-K_{Y}^{2}\right)+6 p_{g}+2 K_{Y}^{2}-3 \\
& =K_{Y}^{2}-p_{g}+4
\end{aligned}
$$

thus $K_{Y}^{2} \geq p_{g}-4$.
By the index theorem, $K_{Y}^{2} B_{Y}{ }^{2} \leq\left(K_{Y} \cdot B_{Y}\right)^{2}$ and we have that

$$
K_{Y}^{2}\left(12 p_{g}+4 K_{Y}^{2}-6\right) \leq\left(2-2 p_{g}-2 K_{Y}^{2}\right)^{2}
$$

which reduces to

$$
K_{Y}^{2} \leq \frac{\left(p_{g}-1\right)^{2}}{p_{g}+1 / 2}
$$

This implies that $K_{Y}^{2} \leq p_{g}-3$. Thus we have two cases, $K_{Y}^{2}=p_{g}-4$ or $K_{Y}^{2}=$ $p_{g}-3$.

We now turn to the divisor $4 K_{Y}+B_{Y}$, which is effective but may not be nef. As in Lemma 3.2, by possibly contracting some curves we can map to a surface where the image of $4 K_{Y}+B_{Y}$ is numerically effective.

LEMMA 5.2
If $4 K_{Y}+B_{Y}$ is not nef, then there exists a sequence of blowdowns $\rho: Y \rightarrow Z$ such that $4 K_{Z}+B_{Z}$ is nef.

Proof

By the Riemann-Roch theorem and Lemma 3.1 we have that $h^{0}\left(4 K_{Y}+B_{Y}\right)>0$ when $k=3$; thus $4 K_{Y}+B_{Y}$ is effective. Suppose that $4 K_{Y}+B_{Y}$ is not nef. Then there exists a curve E with $E \cdot\left(4 K_{Y}+B\right)<0$. Since $3 K_{Y}+B_{Y}$ is nef, we have that

$$
E \cdot\left(3 K_{Y}+B_{Y}\right)+E \cdot K_{Y}<0
$$

implies that $E \cdot K_{Y}<0$ and E must be a -1-curve on Y. This implies $E \cdot B_{Y}=3$.
Let N_{1}, N_{2}, and N_{3} be the -2-curves on Y corresponding to the resolution of the nodes of S / σ. Since $B_{Y} \equiv 2 L-\sum_{1}^{3} N_{i}$ and $B_{Y} \cdot E=3$, we have that $E \cdot \sum_{1}^{3} N_{i}>0$ and odd.

For each i we have that $\left(E+N_{i}\right) \cdot\left(3 K_{Y}+B_{Y}\right)=0$, so that $\left(E+N_{i}\right)^{2}=$ $-3+2 E \cdot N_{i}<0$ and $E \cdot N_{i} \leq 1$. As $\left(E+\sum_{1}^{3} N_{i}\right) \cdot\left(3 K_{Y}+B_{Y}\right)=0,\left(E+\sum_{1}^{3} N_{i}\right)^{2}=$ $-7+2 E \cdot \sum_{1}^{3} N_{i}<0$ and $E \cdot \sum_{1}^{3} N_{i} \leq 3$. Thus E meets either exactly one of the N_{i} 's or all three. We now show that the latter cannot occur.

Suppose that $E \cdot \sum_{1}^{3} N_{i}=3$, and consider the divisor $2 E+N_{1}+N_{2}$. We have that $\left(2 E+N_{1}+N_{2}\right) \cdot\left(3 K_{Y}+B_{Y}\right)=0$ and $\left(2 E+N_{1}+N_{2}\right)^{2}=0$, a contradiction, since $3 K_{Y}+B_{Y}$ is nef. Thus E meets exactly one of the N_{i} 's.

When we contract E we obtain a triple point on the image of the branch curve B_{Y}, since $E \cdot B_{Y}=3$. The image of the nodal curve N_{i} that meets E will be a -1 -curve passing through this triple point; contracting this results in an infinitely near triple point on B_{Z}, the image of B_{Y}.

Next we show that, in the case $K_{Y}^{2}=p_{g}-4$, we will need to contract six such curves E to ensure that $4 K_{Z}+B_{Z}$ is nef. Suppose that ρ contracts l-curves. We have that

$$
\begin{aligned}
K_{Y} & \equiv \rho^{*}\left(K_{Z}\right)+\sum_{1}^{l} E_{i} \\
B_{Y} & \equiv \rho^{*}\left(B_{Z}\right)-3 \sum_{1}^{l} E_{i} ;
\end{aligned}
$$

thus

$$
0 \leq\left(2 K_{Z}+B_{Z}\right) \cdot\left(4 K_{Z}+B_{Z}\right)=6-l
$$

and $l \leq 6$.
When $K_{Y}^{2}=p_{g}-4$, we have that $\left(4 K_{Y}+B\right)^{2}=-6$; thus we must contract at least six curves to obtain a nef divisor. Therefore $l=6$. We can now classify the surfaces with $K_{Y}^{2}=p_{g}-4$.

THEOREM 5.3

Let $K_{Y}^{2}=p_{g}-4$. Then $p_{g} \leq 7$ and S is the minimal resolution of the double cover of a weak del Pezzo surface Z of degree $p_{g}+2$ branched over a curve in $\left|-4 K_{Z}\right|$ with three infinitely near triple points.

Proof

Let $\rho: Y \rightarrow Z$ be the contraction of six -1 -curves so that, on $Z, 4 K_{Z}+B_{Z}$ is nef. As we saw in Lemma 5.2, the map ρ contracts three curves E_{i}, each of which meets a corresponding N_{i}, so that the image of B_{Y} is the curve B_{Z} with three infinitely near triple points. We have that $K_{Z}^{2}=K_{Y}^{2}+6=p_{g}+2$ and

$$
\left(2 K_{Z}+B_{Z}\right) \cdot\left(4 K_{Z}+B_{Z}\right)=0
$$

Since $2 K_{Z}+B_{Z}$ is nef and big and $4 K_{Z}+B_{Z}$ is effective, we have that $2 K_{Z}+\frac{1}{2} B_{Z}$ is trivial and $-K_{Z} \equiv K_{Z}+\frac{1}{2} B_{Z}$. Thus Z is a weak del Pezzo surface of degree $p_{g}+2$ and $p_{g} \leq 7$.

For example, we can explicitly construct such surfaces as double covers of the plane.

EXAMPLE 5.4

Let B be a degree 12 plane curve with three infinitely near triple points and n ordinary order-four points, with $0 \leq n \leq 2$. The minimal resolution of the double cover of \mathbb{P}^{2} branched along B will have $p_{g}=7-n$ and $K_{S}^{2}=15-2 n=2 p_{g}+1$. The three -2 -curves correspond to the resolution of the three infinitely near triple points. For $n=1$ and 2 , the pencil of lines in \mathbb{P}^{2} through an order-four point of the branch curve corresponds to a genus-three pencil on S.

To complete the classification for $k=3$ isolated fixed points of the canonical involution of S, we now suppose that $K_{Y}^{2}=p_{g}-3$. In this case we can show that the system $\left|4 K_{Y}+B_{Y}\right|$ gives a rational pencil.

A computation similar to that for the previous case shows that there is a contraction $\rho: Y \rightarrow Z$ of two curves so that the divisor $4 K_{Z}+B_{Z}$ is nef. By Lemma 5.2 we can write one of these two curves as E while the other is one of the three nodal curves, say, N_{1}, where E is a -1-curve on Y with $B \cdot E=3$, $E \cdot N_{1}=1$, and $E \cdot N_{i}=0$ for $i=2,3$. Thus on Z, the image B_{Z} of the branch curve B has one infinitely near triple point.

By Lemma 3.1, $h^{0}\left(4 K_{Z}+B_{Z}\right)=2,\left(4 K_{Z}+B_{Z}\right) \cdot K_{Z}=-2$, and $\left(4 K_{Z}+\right.$ $\left.B_{Z}\right)^{2}=0$; thus the system $\left|4 K_{Z}+B_{Z}\right|$ is a rational pencil. Moreover, $\left(4 K_{Z}+\right.$ $\left.B_{Z}\right) \cdot B_{Z}=8$ and we see that S has a hyperelliptic pencil of genus three.

We also have $h^{0}\left(2 K_{Z}+L\right)=1$; as $N_{i} \cdot\left(2 K_{Z}+L\right)=-1$ for each nodal curve we can write $2 K_{Z}+L=A+N_{1}+N_{2}+N_{3}+E$, where A is a - 1 -curve with $A \cdot B=4, A \cdot N_{1}=A \cdot E=0$, and $A \cdot N_{2}=A \cdot N_{3}=1$.

Let $\rho_{1}: Z \rightarrow \Sigma_{n}$ where we contract $8-K_{Z}^{2}=9-p_{g}$ curves to obtain the Hirzebruch surface Σ_{n}. Let S_{0} represent the preimage on Z of the $-n$-section of Σ_{n}. Then

$$
0 \leq\left(2 K_{Z}+B_{Z}\right) \cdot S_{0}=\left(4 K_{Z}+B_{Z}\right) \cdot S_{0}-2 K_{Z} \cdot S_{0}=5-2 n
$$

since $K_{Z} \cdot S_{0}=n-2$; thus $n \leq 2$.
Writing ℓ for the preimage of the ruling on Σ_{n} and E_{i} for each curve contracted by ρ_{1}, we have that

$$
\begin{aligned}
K_{Z} & \equiv-2 S_{0}+(-2-n) \ell+\sum E_{i}, \\
B_{Z} & \equiv a S_{0}+b \ell-\sum n_{i} E_{i}, \\
4 K_{Z}+B_{Z} & \equiv(a-8) S_{0}+(b-8-4 n) \ell+\sum\left(4-n_{i}\right) E_{i} \equiv \ell .
\end{aligned}
$$

Thus $a=8, b=9+4 n$, and $n_{i}=4$ for each i. The branch curve of the double cover can be written as $B_{Z} \equiv 8 S_{0}+(9+4 n) \ell-\sum 4 E_{i}$; the contracted curves correspond to resolving order-four points of the branch curve.

We can choose to contract A and then N_{2} to obtain an infinitely near orderfour point on the image of B_{Z}. The fiber corresponding to N_{3} is then tangent at this point. As there are $8-K_{Z}^{2}=9-p_{g}$ singularities of order four we have $9-p_{g} \geq 2$; thus $p_{g} \leq 7$.

We have thus shown the following.

THEOREM 5.5

Let $K_{Y}^{2}=p_{g}-3$. Then $p_{g} \leq 7$ and S is the minimal resolution of the double cover of a Hirzebruch surface $\Sigma_{n}, n \leq 2$.

In summary, examples of these surfaces can be constructed as follows.

EXAMPLE 5.6

Let $D \equiv 8 S_{0}+(9+4 n) \ell$ on Σ_{n} with $0 \leq n \leq 2$. We impose one infinitely near triple point and one infinitely near order-four point on D; moreover we place the order-four point so that a fiber ℓ_{0} is tangent to D at that point. We also allow D to possibly have k additional order-four points. Then resolving these singularities and taking the double cover branched along B, the union of D and ℓ_{0}, we have that the minimal resolution is a surface S with $p_{g}=7-k$ and $K_{S}^{2}=15-2 k=2 p_{g}+1$. Note that the pencil $|4 K+B|$ corresponds to the ruling of Σ_{n}; as $\ell \cdot B=8$ we see that this lifts to a genus-three pencil on S.

6. The case $k=1$

Lastly we consider the case where the canonical involution has a single isolated fixed point. Let N denote the nodal curve on Y corresponding to the one isolated fixed point of σ; as before we work over Y so we may assume that $3 K_{Y}+B_{Y}$ is nef.

By the index theorem, $K_{Y}^{2} B_{Y}^{2} \leq\left(K_{Y} \cdot B_{Y}\right)^{2}$ and we obtain that $K_{Y}^{2} \leq p_{g}-4$. We have that

$$
0 \leq\left(2 K_{Y}+L\right) \cdot\left(3 K_{Y}+B\right)=K_{Y}^{2}-p_{g}+7 ;
$$

thus $K_{Y}^{2} \geq p_{g}-7$. By Lemma 3.1, $h^{0}\left(4 K_{Y}+B_{Y}\right)=8+K_{Y}^{2}-p_{g}$ and $h^{0}\left(2 K_{Y}+\right.$ $L)=2$. Since $\left(2 K_{Y}+L\right) \cdot N=-1, N$ is a fixed component of the pencil $\left|2 K_{Y}+L\right|$ and $h^{0}\left(2 K_{Y}+L-N\right)=2$ as well. As

$$
2(2 K+L-N)+N \equiv 4 K_{Y}+B
$$

$h^{0}\left(2 K_{Y}+L\right) \leq h^{0}\left(4 K_{Y}+B\right)$; thus $8+K_{Y}^{2}-p_{g} \geq 2$ and $K_{Y}^{2} \geq p_{g}-6$. Thus we have $p_{g}-6 \leq K_{Y}^{2} \leq p_{g}-4$; we will show, in fact, that $K_{Y}^{2}=p_{g}-6$ does not occur. To do so, we next consider the moving part $|M|$ of the system $\left|2 K_{Y}+L\right|$.

LEMMA 6.1

The moving part $|M|$ of $\left|2 K_{Y}+L\right|$ is a rational pencil.

Proof

The divisor $2 K_{Y}+B_{Y}$ is big and nef and $\left(2 K_{Y}+L\right) \cdot\left(2 K_{Y}+B_{Y}\right)=5$; thus by the index theorem $M^{2}=0$. We will next show that $M \cdot K_{Y}=-2$.

Since $3 K_{Y}+B_{Y}$ is nef, we have that

$$
0 \leq M \cdot\left(3 K_{Y}+B\right) \leq\left(2 K_{Y}+L\right) \cdot\left(3 K_{Y}+B\right)=K_{Y}^{2}-p_{g}+7 \leq 3 .
$$

This implies that $M \cdot K_{Y} \leq 1$. To see that $M \cdot K_{Y}<0$, suppose not. If $K_{Y}^{2}>0$, then $M \cdot K_{Y}=0$ gives a contradiction. As we have that $K_{Y}^{2} \geq p_{g}-6$, we have that $K_{Y}^{2}>0$ unless $p_{g}=6$. However, $p_{g}=6, K_{Y}^{2}=K_{Y} \cdot M=0$ implies that $M \cdot B_{Y}=$ $M \cdot N=1$, so that M would correspond to a rational pencil on S, a contradiction. Thus we have that $K_{Y}^{2}>0$ and $K_{Y} \cdot M=-2$. The system $|M|$ is a base point-free rational pencil on Y.

We next refine the bound for K_{Y}^{2}.
PROPOSITION 6.2
Suppose the involution σ has one isolated fixed point. Then $K_{Y}^{2}=p_{g}-5$ or $K_{Y}^{2}=$ $p_{g}-4$.

Proof

As we have shown above, $p_{g}-6 \leq K_{Y}^{2} \leq p_{g}-4$. To complete the proof we will show that $K_{Y}^{2}=p_{g}-6$ does not occur.

Suppose that $K_{Y}^{2}=p_{g}-6$. By Lemma 3.1, $h^{0}\left(4 K_{Y}+B_{Y}\right) \geq 8+K_{Y}^{2}-p_{g}$. Writing $2(2 K+L-N)+N \equiv 4 K_{Y}+B$, we see that $h^{0}(2 M) \leq h^{0}\left(4 K_{Y}+B\right)=2$. However, $|M|$ is a rational pencil; thus $h^{0}(2 M) \geq 3$ and we obtain a contradiction.

Thus we have two cases, $K_{Y}^{2}=p_{g}-4$ or $K_{Y}^{2}=p_{g}-5$.

PROPOSITION 6.3

In the case $K_{Y}^{2}=p_{g}-4,4 K_{Y}+B_{Y}$ is nef and $2 K_{Y}+L=M+N$.
Proof
An argument similar to that following Lemma 5.2 shows that if $K_{Y}^{2}=p_{g}-4$, then the effective divisor $4 K_{Y}+B_{Y}$ is numerically effective. We write $\left|2 K_{Y}+L\right|=$ $|M|+N+F$ where M is the moving part of the pencil and F is the (possibly empty) remaining fixed part. We will show that $F=0$ when $K_{Y}^{2}=p_{g}-4$.

As $\left(2 K_{Y}+L\right) \cdot\left(4 K_{Y}+B\right)=1, M \cdot\left(4 K_{Y}+B\right)=1$ and $M \cdot B=9$. Note that $2\left(2 K_{Y}+L\right)-N=4 K_{Y}+B_{Y}$; thus $2(M+F)+N=4 K_{Y}+B_{Y}$. Since $M^{2}=0$, we have that $2 M \cdot F+M \cdot N=1$; thus $M \cdot N=1$ and $M \cdot F=0$.

Writing $(M+F)^{2}=(2 K+L-N)^{2}=0$ we see that $F^{2}=0$; thus $M \cdot F=$ $F^{2}=0$ and F is empty.

Therefore $2 K_{Y}+L=M+N$; moreover, we have shown that the rational pencil M on Y lifts to a hyperelliptic pencil of genus four on S.

As Y contains the rational pencil $|M|$, there is a rational map $\rho: Y \rightarrow \Sigma_{n}$ which contracts $8-K_{Y}^{2}=12-p_{g}$ curves. Thus we have shown the following.

THEOREM 6.4

Suppose that $k=1$ and $K_{Y}^{2}=p_{g}-4$. Then $p_{g} \leq 12, Y$ is birational to the Hirzebruch surface Σ_{2}, and the rational pencil on Y lifts to a genus-four pencil on S.

Moreover, we can realize Y by considering the nodal curve N. As $N \cdot M=1$ the rational map $\rho: Y \rightarrow \Sigma_{n}$ does not contract N. Suppose N meets a -1-curve E. As $M \cdot E=0$, we compute $E \cdot N=1, E \cdot B_{Y}=5$, and there is a reducible fiber $A+E$ of the pencil $|M|$ where A is another -1-curve with $A \cdot E=1, A \cdot B_{Y}=4$, and $A \cdot N=0$. Thus we can choose to contract A, which results in an order-four point on the branch curve.

We can choose to contract curves that do not meet N. Therefore Y maps to Σ_{2} and N maps to the -2 -section on the Hirzeburch surface.

Write $B_{Y}=a S_{0}+b \ell-\sum n_{i} E_{i}$, where as before ℓ is the preimage of the ruling on Σ_{2} and S_{0} represents the -2-section, with $S_{0} \equiv N$. The E_{i} 's correspond to the exceptional curves contracted by ρ. Using $K_{Y}=-2 S_{0}-4 \ell+\sum E_{i}$ we can write

$$
4 K_{Y}+B_{Y} \equiv(a-8) S_{0}+(b-16) \ell+\sum\left(n_{i}-4\right) E_{i} \equiv 2 M+N
$$

thus $a=9, b=18$, and each $n_{i}=4$. Thus S can be constructed as the minimal model of the double cover of Σ_{2} branched along the union of S_{0} and a curve equivalent to $9 S_{0}+18 \ell$, with $12-p_{g}$ order-four points.

To complete the classification we turn to the case $K_{Y}^{2}=p_{g}-5$.

PROPOSITION 6.5

In the case $K_{Y}^{2}=p_{g}-5$, there is a rational map $\rho: Y \rightarrow Z$ contracting a -1curve E and the image of the nodal curve N so that $4 K_{Z}+B_{Z}$ is nef and $2 K_{Y}+L=M+N+E$.

Proof

A similar argument as before shows that contracting two -1 -curves results in a nef divisor $4 K_{Z}+B_{Z}$. Moreover, if one of these -1 -curves on Y is E, then $E \cdot N=1$, and if we contract E, then N results in the image B_{Z} of the branch curve B_{Y} having an infinitely near triple point.

As $N \cdot L=-1$ and $E \cdot\left(2 K_{Y}+L\right)=0$, we can write $2 K_{Y}+L=M+N+E+F$, where F is the remaining fixed part of the system. We will show that F is empty.

As $\left(2 K_{Y}+L-N-E\right) \cdot\left(4 K_{Y}+B\right)=0, M \cdot\left(4 K_{Y}+B\right)=0$ and $M \cdot B=8$. As before, $2\left(2 K_{Y}+L\right)-N=4 K_{Y}+B_{Y}$; thus, $2(M+E+F)+N=4 K_{Y}+B_{Y}$. Since $M^{2}=0$, we have that $2 M \cdot E+2 M \cdot F+M \cdot N=0$; thus $M \cdot N=0$, $M \cdot E=0$, and $M \cdot F=0$.

Writing $(M+F)^{2}=(2 K+L-N-E)^{2}=0$ we see that $F^{2}=0$; thus $M \cdot F=$ $F^{2}=0$ and F is empty.

Therefore $2 K_{Y}+L=M+E+N$ and the rational pencil $|M|$ corresponds to a hyperelliptic genus-three pencil on S.

THEOREM 6.6
In the case $k=1$ and $K_{Y}^{2}=p_{g}-5, p_{g} \leq 11$ and S is birational to the double cover of a Hirzebruch surface $\Sigma_{n}, n \leq 3$.

Proof

Let $\rho: Y \rightarrow \Sigma_{n}$ be the contraction of E, N, and m additional curves. As we contract $8-K_{Y}^{2}=13-p_{g} \geq 2$ curves we have $p_{g} \leq 11$.

As before, let S_{0} denote the preimage of the $-n$-section, and let ℓ denote that of the ruling on Σ_{n}. We can write $B_{Y}=a S_{0}+b \ell-3 N-6 E-\sum n_{i} E_{i}$ and
$K_{Y}=-2 S_{0}+(-2-n) \ell+N+2 E+\sum E_{i}$. Then
$4 K_{Y}+B_{Y} \equiv(a-8) S_{0}+(b-8-4 n) \ell+N+2 E+\sum\left(4-n_{i}\right) E_{i} \equiv 2 M+2 E+N ;$
thus $a=8, b=10+4 n$, and $n_{i}=4$ for each i. The branch curve of the double cover is a member of the system $\left|8 S_{0}+(10+4 n) \ell\right|$ with one infinitely near triple point and at most m order-four points, where $m=11-p_{g}$. The pencil M corresponds to the ruling ℓ; as $\ell \cdot\left(8 S_{0}+(10+4 n) \ell\right)=8$ this pencil lifts to a genus-three pencil on the double cover.

As in the proof of Theorem 5.5 we can compute

$$
0 \leq\left(2 K_{Z}+B_{Z}\right) \cdot S_{0}=\left(4 K_{Z}+B_{Z}\right) \cdot S_{0}-2 K_{Z} \cdot S_{0}=6-3 n
$$

since $K_{Z} \cdot S_{0}=n-2$ and $\left(4 K_{Z}+B_{Z}\right) \cdot S_{0}=2$; thus $n \leq 3$.

References

[1] T. Ashikaga and K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-7$, Tohoku Math. J. (2) 42 (1990), 517-536. MR 1076174.
DOI $10.2748 / \mathrm{tmj} / 1178227572$.
[2] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, Berlin, 1984. MR 0749574. DOI 10.1007/978-3-642-96754-2.
[3] A. Beauville, L'application canonique pour les surfaces de type général, Invent. Math. 55 (1979), 121-140. MR 0553705. DOI 10.1007/BF01390086.
[4] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171-219. MR 0318163.
[5] A. Calabri, C. Ciliberto, and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1605-1632. MR 2272143. DOI 10.1090/S0002-9947-06-04110-9.
[6] E. Horikawa, Algebraic surfaces of general type with small c_{1}^{2}, I, Ann. of Math. (2) $\mathbf{1 0 4}$ (1976), 357-387. MR 0424831.
[7] _ Algebraic surfaces of general type with small c_{1}^{2}, II, Invent. Math. 37 (1976), 121-155. MR 0460340.
[8] , Algebraic surfaces of general type with small c_{1}^{2}, III, Invent. Math. 47 (1978), 209-248. MR 0501370. DOI 10.1007/BF01579212.
[9] _ Algebraic surfaces of general type with small c_{1}^{2}, IV, Invent. Math. 50 (1978/79), 103-128. MR 0517773. DOI 10.1007/BF01390285.
[10] K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-6$, Math. Ann. 290 (1991), $77-107$. MR 1107664. DOI 10.1007/BF01459239.
[11] X. Liu, Algebraic surfaces of general type with $K^{2}=2 p_{g}-1, p_{g} \geq 5$, Acta Math. Sinica (N.S.) 12 (1996), 234-243. MR 1457591. DOI 10.1007/BF02106976.
[12] M. Martí Sánchez, Surfaces with $K^{2}=2 \chi-2$ and $p_{g} \geq 5$, Geom. Dedicata 150 (2011), 49-61. MR 2753697. DOI 10.1007/s10711-010-9493-8.
[13] M. Mendes Lopes and R. Pardini, Triple canonical surfaces of minimal degree, Int. J. Math. 11 (2000), 553-578. MR 1768173. DOI 10.1142/S0129167X00000271.
[14] M. Murakami, A bound for the orders of the torsion groups of surfaces with $c_{1}^{2}=2 \chi-1$, Math. Z. 253 (2006), 251-262. MR 2218699.
DOI 10.1007/s00209-005-0896-4.
[15] , Remarks on surfaces with $c_{1}^{2}=2 \chi-1$ having non-trivial 2-torsion, J. Math. Soc. Japan 65 (2013), 51-95. MR 3034399.
[16] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) $\mathbf{1 2 7}$ (1988), 309-316. MR 0932299. DOI 10.2307/2007055.

Department of Mathematics, Allegheny College, Meadville, Pennsylvania 16335, USA; cwerner@allegheny.edu

