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Abstract Arakelov–Green functionsdefinedonmetrizedgraphshavean important role

in relating arithmetical problems on algebraic curves to graph-theoretical problems. In

this paper, we clarify the combinatorial interpretation of certain Arakelov–Green func-

tions by using electric circuit theory. The formulas we give clearly show that such func-

tions are piecewisely defined, and each piece is a linear or quadratic function on each pair

of edges of metrized graphs. These formulas lead to an efficient algorithm for explicit

computation of Arakelov–Green functions.

1. Introduction

Algebraic geometers have powerful tools due to intersection theory over complex

numbers to study curves and varieties in general. Given the success of algebraic

geometers, it is the desire of number theorists and arithmetic geometers to uti-

lize intersection theory for studying arithmetic properties of algebraic curves.

However, if one works over fields other than complex numbers, many difficul-

ties arise, because various nice properties of complex numbers are no longer in

use. Additional new tools should be used to overcome these difficulties. This is

what Arakelov [1] did over archimedean fields in his studies, which we now know

as Arakelov theory. Arakelov introduced an intersection pairing on arithmetic

surfaces. The key part was to consider the contribution to the intersection num-

ber that comes from the infinite places. This contribution is defined by using

Arakelov–Green functions for the Riemann surfaces associated to the arithmetic

surfaces. He used analysis and studied the Laplace operator on those associated

Riemann surfaces to derive global results on arithmetic surfaces. We note that

the use of admissible metrized line bundles, metrized line bundles satisfying cer-

tain analytic criteria, on arithmetic surfaces is another important tool considered

in Arakelov theory. Faltings’s arithmetic analogues of the Riemann–Roch theo-

rem and adjunction formula from classical intersection theory on surfaces are
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two striking examples of the successes of Arakelov theory. These kinds of suc-

cesses enabled Faltings [11] to prove the Mordell conjecture among other results

in arithmetic geometry.

We have a similar story for nonarchimedean fields. In this case, we have

metrized graphs as nonarchimedean analogues of Riemann surfaces. Again we

have Arakelov–Green functions and Laplacian operators on metrized graphs.

Reduction graphs, the dual graphs associated to the special fiber curve, are

examples of metrized graphs. Rumely [12], who introduced metrized graphs to

study arithmetic properties of algebraic curves and developed capacity theory,

contributed to the development of local intersection theory for algebraic curves

defined over nonarchimedean fields. Metrized graphs were further developed by

Chinburg and Rumely [4] and by Zhang [13]. Chinburg and Rumely[4] intro-

duced “capacity pairing” and used metrized graphs in their work. Later, Zhang

[13] introduced another intersection pairing as a nonarchimedean analogue of

Arakelov’s pairing on a Riemann surface, and he showed that the analogous

Riemann–Roch theorem and adjunction formula hold for this admissible pair-

ing. Baker and Rumely [3] used harmonic analysis on metrized graphs to study

Arakelov–Green functions and related continuous Laplacian operators. Various

arithmetic results have been obtained after these studies, for example, the proof

of the effective Bogomolov conjecture over function fields of characteristic zero

(see [9], [14]).

Metrized graphs and Arakelov–Green functions on metrized graphs have

important roles in the articles [3], [4], [9], [12], [13], and [14]. The basic interest in

Arakelov–Green functions is to find their values on any given points of metrized

graphs. Our aim in this article is to address this issue by giving formulas that

explain how Arakelov–Green functions behave on any pairs of edges of metrized

graphs. This leads to an efficient algorithm that can be used for both symbolic

and numerical computations of Arakelov–Green functions. We think that the

formulas we give for Arakelov–Green functions can be used to study spectral

properties of the Laplacian operator given in [3].

In Section 2, we give a short description of metrized graphs and their discrete

Laplacian matrix. In Section 3, we first review basic facts about the resistance

function r(x, y) on a metrized graph Γ. Then we obtain formulas that express

r(x, y) in terms of the endpoints of the edges that contain x and y (see Lemma 3.1,

Lemma 3.2, and Theorem 3.3). This means that one needs basically the effective

resistance values between any two vertices in Γ to obtain the values of r(x, y).

In Section 4, we first describe Arakelov–Green functions on a metrized

graph Γ. Baker and Rumely showed that the Arakelov–Green function gμcan(x, y)

can be expressed in terms of the tau constant τ(Γ) of the metrized graph Γ and

the resistance function r(x, y) (see Theorem 4.2). Combining this fact and our

results from Section 3 about the resistance function, we obtain our main result in

Theorem 4.3. In this way, we show that gμcan(x, y) on Γ is a piecewisely defined

quadratic or linear function in both x and y by explicitly giving the coefficients of

each piece in terms of the effective resistance values between the related vertices
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of Γ. If x (or y) belongs to an edge whose removal disconnects Γ, then gμcan(x, y)

is linear in x (or y). Otherwise it will be quadratic. We suggest that a matrix Z

of size e× e can be used to describe gμcan(x, y), where e is the number of edges

in Γ.

In Section 6, we give several examples of computations of gμcan(x, y) by find-

ing the matrix Z, which we call the value matrix. We know that the tau constant

can be computed symbolically and numerically by using either theoretical work

in various cases (see [8] and [7]) or computer algorithms in all cases (see [6]).

Therefore, we conclude the same things for computation of gμcan(x, y) by both

using the results of Section 4 and our previous results on the tau constant.

2. Metrized graphs

In this section, we give a brief review of metrized graphs and their discrete

Laplacian matrix.

A metrized graph Γ is a finite connected graph equipped with a distinguished

parameterization of each of its edges. A metrized graph Γ can have multiple edges

and self-loops. For any given p ∈ Γ, the number υ(p) of directions emanating from

p will be called the valence of p. By definition, there can be only finitely many

p ∈ Γ with υ(p) �= 2.

For a metrized graph Γ, we will denote a vertex set for Γ by V (Γ). We require

that V (Γ) be finite and nonempty and that p ∈ V (Γ) for each p ∈ Γ if υ(p) �= 2.

For a given metrized graph Γ, it is possible to enlarge the vertex set V (Γ) by

considering additional valence 2 points as vertices.

For a given metrized graph Γ with vertex set V (Γ), the set of edges of Γ is

the set of closed line segments with endpoints in V (Γ). The endpoints of an edge

can possibly be identical, in which case the edge is a self-loop. We will denote

the set of edges of Γ by E(Γ). However, if ei is an edge, then by Γ− ei we mean

the graph obtained by deleting the interior of ei.

We denote the length of an edge ei ∈E(Γ) by Li, which represents a positive

real number. The total length of Γ, which is denoted by �(Γ), is given by �(Γ) =∑e
i=1Li. Here, e denotes the number of edges in E(Γ).

To have a well-defined discrete Laplacian matrix L for a metrized graph Γ,

we first choose a vertex set V (Γ) for Γ in such a way that there are no self-

loops, and no multiple edges connecting any two vertices. This can be done by

enlarging the vertex set by considering additional valence 2 points as vertices

whenever needed. We call such a vertex set V (Γ) adequate. If distinct vertices p

and q are the endpoints of an edge, then we call them adjacent vertices.

Let Γ be a metrized graph with e edges and an adequate vertex set V (Γ)

containing v vertices. Fix an ordering of the vertices in V (Γ). Let {L1,L2, . . . ,Le}
be a labeling of the edge lengths. The matrix A = (apq)v×v given by

apq =

{
0 if p= q or if p and q are not adjacent,
1
Lk

if p �= q and an edge of length Lk connects p and q
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is called the adjacency matrix of Γ. Let D = diag(dpp) be the v×v diagonal matrix

given by dpp =
∑

s∈V (Γ) aps. Then L := D − A is called the discrete Laplacian

matrix of Γ. That is, L = (lpq)v×v where

lpq =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if p �= q and p and q are not adjacent,

− 1
Lk

if p �= q and p and q are connected by

an edge of length Lk,

−
∑

s∈V (Γ)−{p} lps if p= q.

Since a metrized graph Γ is represented by connected graphs, one of the

eigenvalues of L is 0 and the others are positive. Thus, L is not invertible. How-

ever, it has generalized inverses. In particular, it has the pseudoinverse L+, also

known as the Moore–Penrose generalized inverse, which is uniquely determined

by the following properties:

(a) LL+L= L, (c) (LL+)T =LL+,

(b) L+LL+ =L+, (d) (L+L)T =L+L.

One can find more information about L and L+ in [6, Section 3] and the

references therein.

3. Resistance function r(x, y)

In this section, we study the resistance and voltage functions on a metrized graph

Γ. After reviewing the facts that we will use about these functions, we consider

the following problem. If one considers these functions on a graph having only

combinatorial nature, consisting of vertices and edges between these vertices, one

can compute the resistance and voltage functions by using the discrete Laplacian

matrix of the graph. However, these functions are continuous functions on a

metrized graph Γ. A metrized graph being more than a combinatorial graph

has additional structures, but still has the combinatorial properties of a graph.

Therefore, there should be a way to relate the values of continuous resistance and

voltage functions on Γ with the values of discrete resistance and voltage functions

on the vertices of a combinatorial graph. Our goal is to clarify this relation in

this section. The results we obtain in this section will be used in the next section.

For any x, y, z in Γ, the voltage function jz(x, y) on a metrized graph Γ is a

symmetric function in x and y which satisfies jx(x, y) = 0 and jz(x, y)≥ 0 for all

x, y, z in Γ. For each vertex set V (Γ), jz(x, y) is continuous on Γ as a function of

all three variables. For fixed z and y it has the following physical interpretation:

if Γ is viewed as a resistive electric circuit with terminals at z and y, with the

resistance in each edge given by its length, then jz(x, y) is the voltage difference

between x and z, when unit current enters at y and exits at z (with reference

voltage 0 at z).

The effective resistance between two points x, y of a metrized graph Γ is given

by r(x, y) = jy(x,x), where r(x, y) is the resistance function on Γ. The resistance
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Figure 1. Circuit reduction with reference to an edge and a point.

function inherits certain properties of the voltage function. For any x, y in Γ,

r(x, y) on Γ is a symmetric function in x and y, and it satisfies r(x,x) = 0. For

each vertex set V (Γ), r(x, y) is continuous on Γ as a function of two variables

and r(x, y) ≥ 0 for all x, y in Γ. If a metrized graph Γ is viewed as a resistive

electric circuit with terminals at x and y, with the resistance in each edge given

by its length, then r(x, y) is the effective resistance between x and y.

The proofs of the facts mentioned above can be found in [4], [3, Sections 1.5

and 6], and [13, Appendix]. The voltage function jz(x, y) and the resistance

function r(x, y) are also studied in [2] and [10].

We will denote by Ri the resistance between the endpoints of an edge ei of

a graph Γ when the interior of the edge ei is deleted from Γ.

Let Γ be a metrized graph with p ∈ V (Γ), and let ei ∈E(Γ) having endpoints

pi and qi. If Γ− ei is connected, then Γ can be transformed into the graph in

Figure 1 by circuit reductions. More details on this fact can be found in [4] and

[5, Section 2]. Note that, in Figure 1, we have Rai,p = ĵpi(p, qi), Rbi,p = ĵqi(p, pi),

and Rci,p = ĵp(pi, qi), where ĵx(y, z) is the voltage function in Γ− ei. We have

Rai,p +Rbi,p =Ri for each p ∈ Γ.

If Γ − ei is not connected, then we set Rbi,p = Ri = ∞ and Rai,p = 0 if p

belongs to the component of Γ− ei containing pi, and we set Rai,p =Ri =∞ and

Rbi,p = 0 if p belongs to the component of Γ− ei containing qi. We will use this

notation for the rest of the paper.

Recall that the function r(x, y) is defined on Γ and has nonnegative real

number values. Therefore, when we write an equality as in Lemma 3.1 below,

we mean that x, y ∈ Γ on the left-hand side of the equality and that x, y are the

corresponding real numbers via the parameterization. For example, if x is on edge

ei of length Li with endpoints pi and qi, then we consider a parameterization

identifying ei by the interval [0,Li] so that the points pi and qi correspond to 0

and Li, respectively, and that x ∈ [0,Li]. We follow this approach in the rest of

the paper. One should note that the direction of parameterization presents no
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Figure 2. Circuit reduction with reference to an edge ei having endpoints pi and qi.

problem in our computations as long as one is careful about the adjustment of

the relevant formulas.

LEMMA 3.1

Let ei ∈ E(Γ) be an edge of length Li with endpoints pi and qi. If both x and y

belong to the same edge ei, then

r(x, y) = |x− y| − (x− y)2
Li − r(pi, qi)

L2
i

.

Proof

Through circuit reductions, this case can be illustrated as in Figure 2. With abuse

of notation, x and y denote points on ei and also their distances to the vertex pi.

The result follows from the fact that r(pi, qi) =
LiRi

Li+Ri
and that x and y are

connected by two parallel edges with edge lengths |x−y| and Li+Ri−|x−y|. �

Note that Li and r(pi, qi) can be expressed in terms of the entries of the discrete

Laplacian matrix L and its pseudoinverse L+, respectively. In this way, whenever

x and y are chosen from the same edge, we can express the continuous function

r(x, y) as a piecewise linear or quadratic function with coefficients obtained by

using the discrete graph representation of metrized graphs. The condition that

both x and y are on the same edge is an essential hypothesis in Lemma 3.1. A

relevant question is: what would be the corresponding formula of r(x, y) if x and

y are chosen from different edges of Γ? In the rest of this section, we provide an

answer to this question. First, we need the following technical lemma.

LEMMA 3.2

Let ei ∈ E(Γ) be an edge of length Li with endpoints pi and qi. If x belongs to

the edge ei, then for any vertex p ∈ V (Γ) we have

r(p,x) =−x2Li − r(pi, qi)

L2
i

+ x
Li − r(pi, qi) + r(p, qi)− r(p, pi)

Li
+ r(p, pi).

Proof

Using circuit reductions, this case can be illustrated as in Figure 3. Applying

circuit reductions on the electric circuit given in Figure 3, we obtain
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Figure 3. Circuit reduction with reference to an edge and a vertex.

r(p,x) =
(x+Rai,p)(Li − x+Rbi,p)

Li +Ri
+Rci,p, r(pi, qi) =

LiRi

Li +Ri
,(1)

r(p, pi) =
Rai,p(Li +Rbi,p)

Li +Ri
+Rci,p, r(p, qi) =

Rbi,p(Li +Rai,p)

Li +Ri
+Rci,p.(2)

Then the result follows from these equations. �

THEOREM 3.3

Let ei ∈E(Γ) be an edge of length Li with endpoints pi and qi, and let ej ∈E(Γ)

be an edge of length Lj with endpoints pj and qj . Suppose that the edges ei and

ej are distinct, but their endpoints are not necessarily distinct. If x belongs to

the edge ei and y belongs to the edge ej , then we have

r(x, y) = −x2Li − r(pi, qi)

L2
i

− y2
Lj − r(pj , qj)

L2
j

+
2xy

LiLj

(
jpj (pi, qj)− jpj (qi, qj)

)
+

x

Li

(
Li − 2jpi(qi, pj)

)
+

y

Lj

(
Lj − 2jpj (pi, qj)

)
+ r(pi, pj).

Proof

Applying Lemma 3.2 with edge ej containing y and vertex pi, we obtain

r(pi, y) = −y2
Lj − r(pj , qj)

L2
j

(3)

+ y
Lj − r(pj , qj) + r(pi, qj)− r(pi, pj)

Lj
+ r(pi, pj).

Similarly, applying Lemma 3.2 with edge ej containing y and vertex qi gives

r(qi, y) = −y2
Lj − r(pj , qj)

L2
j

(4)

+ y
Lj − r(pj , qj) + r(qi, qj)− r(qi, pj)

Lj
+ r(qi, pj).

Now, we fix a point y ∈E(ej), consider it as a vertex, and apply Lemma 3.2 with

edge ei containing x and vertex y. In this way, we obtain

(5) r(x, y) =−x2Li − r(pi, qi)

L2
i

+ x
Li − r(pi, qi) + r(y, qi)− r(y, pi)

Li
+ r(y, pi).
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Using the fact that the resistance function is symmetric, we substitute (3) and

(4) into (5) to obtain

r(x, y) = −x2Li − r(pi, qi)

L2
i

− y2
Lj − r(pj , qj)

L2
j

+
xy

LiLj

(
r(pi, pj)− r(pi, qj)− r(qi, pj) + r(qi, qj)

)
+

x

Li

(
Li − r(pi, qi) + r(qi, pj)− r(pi, pj)

)
(6)

+
y

Lj

(
Lj − r(pj , qj) + r(pi, qj)− r(pi, pj)

)
+ r(pi, pj).

Then the result follows using the fact that 2jx(y, z) = r(x, y) + r(x, z)− r(y, z)

for any x, y, z ∈ Γ. �

REMARK 3.4

Whenever the edges ei and ej that x and y belong to are bridges, that is, Γ− ei
or Γ− ej is disconnected, we obtain the following results by letting Ri →∞ or

Rj →∞ in the formulas given in Lemma 3.1 and Theorem 3.3.

(a) r(x, y) = |x− y| if both x and y are on the same edge that is a bridge.

(b)

r(p,x) =

{
x+ r(p, pi) if p is on the side of pi,

Li − x+ r(p, qi) if p is on the side of qi.

(c) If both ei and ej are bridges that are distinct edges, then we have that

r(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x+ y+ r(pi, pj) if pi and pj are between x and y,

x+Lj − y+ r(pi, qj) if pi and qj are between x and y,

Li − x+ y+ r(qi, pj) if qi and pj are between x and y,

Li − x+Lj − y+ r(qi, qj) if qi and qj are between x and y.

(d) Suppose that only ei is a bridge. (The case that only ej is a bridge can

be done by imitating this case.) Then we have two cases. If y is on the side of pi,

we have

r(x, y) = x− y2
Lj − r(pj , qj)

L2
j

+ y
Lj − r(pj , qj) + r(pi, qj)− r(pi, pj)

Lj
+ r(pi, pj).

If y is on the side of qi, we have

r(x, y) = Li − x− y2
Lj − r(pj , qj)

L2
j

+ y
Lj − r(pj , qj) + r(qi, qj)− r(qi, pj)

Lj
+ r(qi, pj).
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REMARK 3.5

Since 2jx(y, z) = r(x, y) + r(x, z) − r(y, z) for any x, y, z ∈ Γ, one can use The-

orem 3.3 for each of r(x, y), r(x, z), and r(y, z) to express the voltage function

jx(y, z) in terms of its values on vertices of Γ.

4. Arakelov–Green function gμcan(x, y)

In this section, we first give the definition of Arakelov–Green functions gμ(x, y)

on a metrized graph Γ. Then we study the Arakelov–Green function gμcan(x, y)

defined with respect to a canonical measure μcan on Γ. Our goal is to clarify the

combinatorial interpretation of gμcan(x, y).

For any real-valued, signed Borel measure μ on Γ with μ(Γ) = 1 and

|μ|(Γ) < ∞, define the function jμ(x, y) =
∫
Γ
jz(x, y)dμ(z). Clearly jμ(x, y) is

symmetric, and is jointly continuous in x and y. Chinburg and Rumely [4] dis-

covered that there is a unique real-valued, signed Borel measure μ = μcan such

that jμ(x,x) is constant on Γ. The measure μcan is called the canonical measure.

One can find several interpretations of μcan in [3] and [5]. Baker and Rumely [3,

Section 14] called the constant 1
2jμ(x,x) the tau constant of Γ and denoted it by

τ(Γ). The following lemma gives a description of the tau constant.

LEMMA 4.1 ([3, LEMMA 14.4])

For any fixed y in Γ, τ(Γ) = 1
4

∫
Γ
( ∂
∂xr(x, y))

2 dx.

One can find more detailed information on τ(Γ) in [10], [6], [8], and [7].

Let μ be a real-valued, signed Borel measure of total mass 1 on Γ. In [3], the

Arakelov–Green function gμ(x, y) associated to μ is defined to be

gμ(x, y) =

∫
Γ

jz(x, y)dμ(z)−
∫
Γ3

jz(x, y)dμ(z)dμ(x)dμ(y),

where the latter integral is a constant that depends on Γ and μ.

As shown in [3], gμ(x, y) is continuous, symmetric (i.e., gμ(x, y) = gμ(y,x),

for each x and y), and for each y,
∫
Γ
gμ(x, y)dμ(x) = 0. More precisely, as shown

in [3], one can characterize gμ(x, y) as the unique function on Γ× Γ such that

the following hold.

(a) gμ(x, y) is jointly continuous in x, y and belongs to BDVμ(Γ) as a func-

tion of x, for each fixed y, where BDVμ(Γ) := {f ∈ BDV(Γ) :
∫
Γ
f dμ = 0} and

BDV(Γ) is a space of continuous functions of bounded differential variation Γ.

(b) For fixed y, gμ satisfies the identity Δxgμ(x, y) = δy(x)− μ(x).

(c)
∫∫

Γ×Γ
gμ(x, y)dμ(x)dμ(y) = 0.

Precise definitions of BDV(Γ) and of Δf for f ∈BDV(Γ) can be found in [3].

The Arakelov–Green function gμ(x, y) satisfies the following properties.

(A detailed proof can be found in [4, Theorem 2.11] and [10, p. 34].)
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THEOREM 4.2 ([3, THEOREM 14.1])

(a) The probability measure μcan = Δx(
1
2r(x, y)) + δy(x) is independent of

y ∈ Γ.

(b) μcan is the unique measure μ of total mass 1 on Γ for which gμ(x,x) is

a constant independent of x.

(c) There is a constant τ(Γ) ∈R such that gμcan(x, y) =−1
2r(x, y) + τ(Γ).

Since r(x,x) = 0 for every x ∈ Γ, the diagonal values gμcan(x,x) are constant

on Γ, and are equal to the tau constant τ(Γ).

Next, we state the main result of this paper.

THEOREM 4.3

Suppose that ei ∈ E(Γ) is an edge of length Li with endpoints pi and qi, and

suppose that ej ∈E(Γ) is an edge of length Lj with endpoints pj and qj . Assume

that the edges ei and ej are not bridges and distinct edges, but their endpoints

are not necessarily distinct. If x belongs to the edge ei and y belongs to the edge

ej , we have

gμcan(x, y) = τ(Γ) + x2Li − r(pi, qi)

2L2
i

+ y2
Lj − r(pj , qj)

2L2
j

− xy

LiLj

(
jpj (pi, qj)− jpj (qi, qj)

)
− x

2Li

(
Li − 2jpi(qi, pj)

)

− y

2Lj

(
Lj − 2jpj (pi, qj)

)
− 1

2
r(pi, pj).

If both x and y belong to the same edge ei of length Li with endpoints pi and qi,

then we have

gμcan(x, y) = τ(Γ)− 1

2
|x− y|+ (x− y)2

Li − r(pi, qi)

2L2
i

.

Proof

The result follows from Theorem 4.2 along with Lemma 3.1 and Theorem 3.3. �

If any of the involved edges in Theorem 4.3 is a bridge, then we interpret the given

formulas by using Remark 3.4. In such cases, we obtain the following modified

version of Theorem 4.3 by applying Theorem 4.2 and Remark 3.4.

THEOREM 4.4

Suppose that ei ∈ E(Γ) is an edge of length Li with endpoints pi and qi, and

suppose that ej ∈ E(Γ) is an edge of length Lj with endpoints pj and qj . Let x

and y belong to ei and ej , respectively.

(a) If both x and y are on the same edge that is a bridge, then we have

gμcan(x, y) = τ(Γ)− 1

2
|x− y|.
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(b) If both ei and ej are bridges that are distinct edges, then we have that

gμcan(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(Γ)− 1
2 (x+ y+ r(pi, pj))

if pi and pj are between x and y,

τ(Γ)− 1
2 (x+Lj − y+ r(pi, qj))

if pi and qj are between x and y,

τ(Γ)− 1
2 (Li − x+ y+ r(pj , qi))

if pj and qi are between x and y,

τ(Γ)− 1
2 (Li − x+Lj − y+ r(qi, qj))

if qi and qj are between x and y.

(c) Suppose that only ei is a bridge. (The case in which only ej is a bridge

can be proved similarly.) Then we have two cases. If y is on the side of pi, then

we have

gμcan(x, y) = τ(Γ) + y2
Lj − r(pj , qj)

2L2
j

− y
Lj − r(pj , qj) + r(pi, qj)− r(pi, pj)

2Lj

− 1

2

(
x+ r(pi, pj)

)
.

If y is on the side of qi, then we have

gμcan(x, y) = τ(Γ) + y2
Lj − r(pj , qj)

2L2
j

− y
Lj − r(pj , qj) + r(qi, qj)− r(qi, pj)

2Lj

− 1

2

(
Li − x+ r(qi, pj)

)
.

Recall that gμcan(x, y) is a symmetric function, that is, gμcan(x, y) = gμcan(y,x),

and recall that it is continuous in x and y. It is clear from Theorem 4.3 that

gμcan(x, y) is a piecewisely defined function on each pair of edges (ei, ej). Based

on this information about gμcan(x, y) and Theorem 4.3, we suggest that a matrix

Z defined below can be used to describe gμcan(x, y). We call Z the value matrix

of gμcan(x, y).

We define Z = (zij) as a matrix of size e × e, where e is the number of

edges of Γ, such that zij is equal to gμcan(x, y) when x ∈ ei and y ∈ ej . We

note that Z is a symmetric matrix. The diagonal values of Z are of the form

a2(x− y)2 + a1(x− y) + a0 for some constants a0, a1, and a2, where a2 = 0 if

and only if the edge that x and y belong to is a bridge. Other entries of Z are of

the form ax2 + by2 + cxy + dx+ ey + f for some constants a, b, c, d, e, and f ,

where ei is a bridge if and only if a= 0 and where ej is a bridge if and only if

b= 0. We provide various examples in Section 6.

5. Arakelov–Green function gμD
(x, y)

In this section, we consider another important Arakelov–Green function gμD
(x, y)

defined by Zhang [13, Section 3] as the generalization of gμcan(x, y). Here,

gμD
(x, y) is defined with respect to the measure μD(x), where D is a divisor
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on Γ. More precisely, for any divisor D =
∑

q∈V (Γ) aq · q on Γ with deg(D) �=−2

and for the corresponding measure (called the admissible metric on Γ with respect

to D)

μD(x) =
1

deg(D) + 2

( ∑
q∈V (Γ)

aqδq(x) + 2μcan(x)
)
,

gμD
(x, y) can be given as follows (see [10, Section 4.4]):

(7) gμD
(x, y) =

1

deg(D) + 2

( ∑
s∈V (Γ)

as · js(x, y) + 4τ(Γ)− r(x, y)
)
− cμD

,

where

cμD
=

1

2(deg(D) + 2)2

(
8τ(Γ)

(
deg(D) + 1

)
+

∑
q,s∈V (Γ)

aq · as · r(q, s)
)
.

Note that gμD
(x, y) = gμcan(x, y) and μD(x) = μcan if D = 0.

Using Theorem 3.3, Lemma 3.1, Remark 3.5, and (7), one can extend Theo-

rems 4.3 and 4.4 to a formula for gμD
(x, y).

6. Computational examples for gμcan(x, y)

We first give two examples for symbolic computations, and then an example with

numerical computations. Given a metrized graph Γ with discrete Laplacian L, we

first compute the pseudoinverse L+ of L. We can compute the tau constant τ(Γ)

symbolically for certain graphs or numerically for all graphs by using L and L+

as shown in [6, Theorem 1.1]. Then we compute the resistance matrix R using

the matrix L+ along with Lemma 6.1 given below. Finally, we compute the value

matrix Z using either Theorem 4.3 or Theorem 4.4.

We first recall that both voltage and resistance values on vertices can be

expressed in terms of the entries of the pseudoinverse L+ of L (see [5, Lemmas 3.4

and 3.5] and the related references therein).

LEMMA 6.1

For any p, q, s in V (Γ), we have

r(p, q) = l+pp − 2l+pq + l+qq and jp(q, s) = l+pp − l+pq − l+ps + l+qs.

Suppose that Je denotes an e× e matrix where each entry is equal to 1.

EXAMPLE 6.1

Let Γ be the circle graph with three vertices as illustrated in Figure 4. The total

length of Γ is �(Γ) = a+ b+ c. We have τ(Γ) = �(Γ)/12 and the following discrete

Laplacian matrix L, its pseudoinverse L+, the resistance matrix R, and the value

matrix Z with respect to the ordered endpoints of edges {(v1, v2), (v1, v3), (v2, v3)}:
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Figure 4. A circle graph with vertices {v1, v2, v3} and edge lengths {a, b, c}.

Figure 5. A tree graph with vertices {v1, v2, v3, v4, v5, v6} and edge lengths {a, b, c, d, e}.

L =

⎡
⎣1/a+ 1/b −1/a −1/b

−1/a 1/a+ 1/c −1/c

−1/b −1/c 1/b+ 1/c

⎤
⎦ ,

R =
1

�(Γ)

⎡
⎣ 0 ab+ ac ab+ bc

ab+ ac 0 ac+ bc

ab+ bc ac+ bc 0

⎤
⎦ ,

L+ =
1

9�(Γ)

⎡
⎣ bc+ a(4b+ c) bc− 2a(b+ c) −2bc+ a(−2b+ c)

bc− 2a(b+ c) bc+ a(b+ 4c) a(b− 2c)− 2bc

−2bc+ a(−2b+ c) a(b− 2c)− 2bc 4bc+ a(b+ c)

⎤
⎦ ,

Z = τ(Γ)J3

− 1

2�(Γ)

⎡
⎣−(x− y)2 + (a+ b+ c)|x− y| (a+ b+ c− x− y)(x+ y)

(a+ b+ c− x− y)(x+ y) −(x− y)2 + (a+ b+ c)|x− y|
(b+ c+ x− y)(a− x+ y) (b+ c− x− y)(a+ x+ y)

(b+ c+ x− y)(a− x+ y)

(b+ c− x− y)(a+ x+ y)

−(x− y)2 + (a+ b+ c)|x− y|

⎤
⎦ .

Since Γ has no bridge, each entry of Z is a quadratic function in both x and y.

EXAMPLE 6.2

Let Γ be the tree graph as given in Figure 5. The list of the ordered end-

points of the edges is {(v1, v3), (v2, v3), (v3, v4), (v4, v5), (v4, v6)}, and the list of
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the corresponding edge lengths in order is given by {a, b, c, d, e}. In this case,

τ(Γ) = 1
4 (a+ b+ c+d+ e), and the Laplacian matrix L and the resistance matrix

R are given as follows:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/a 0 −1a 0 0 0

0 1/b −1/b 0 0 0

−1/a −1/b 1/a+ 1/b+ 1/c −1/c 0 0

0 0 −1/c 1/c+ 1/d+ 1/e −1/d −1/e

0 0 0 −1/d 1/d 0

0 0 0 −1/e 0 1/e

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 a+ b a a+ c a+ c+ d a+ c+ e

a+ b 0 b b+ c b+ c+ d b+ c+ e

a b 0 c c+ d c+ e

a+ c b+ c c 0 d e

a+ c+ d b+ c+ d c+ d d 0 d+ e

a+ c+ e b+ c+ e c+ e e d+ e 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Z = τ(Γ)J5

− 1

2

⎡
⎢⎢⎢⎣

|x− y| a− x+ b− y a− x+ y a− x+ c+ y a− x+ c+ y
a− x+ b− y |x− y| b− x+ y b− x+ c+ y b− x+ c+ y
a− x+ y b− x+ y |x− y| c− x+ y c− x+ y

a− x+ c+ y b− x+ c+ y c− x+ y |x− y| x+ y
a− x+ c+ y b− x+ c+ y c− x+ y x+ y |x− y|

⎤
⎥⎥⎥⎦ .

We consider the following cases to clarify how we use the value matrix Z.

If x, y ∈ e1, then gμcan(x, y) = τ(Γ) − 1
2 |x − y|, where 0 ≤ x ≤ a, 0 ≤ y ≤ a,

and v1 corresponds to 0.

If x, y ∈ e3, then gμcan(x, y) = τ(Γ)− 1
2 |x−y|, where 0≤ x≤ c, 0≤ y ≤ c, and

v3 corresponds to 0.

If x ∈ e2 and y ∈ e4, then gμcan(x, y) = τ(Γ)− 1
2 (b−x+c+y), where 0≤ x≤ b,

0≤ y ≤ d, and both v2 and v4 correspond to 0.

Note that each entry of Z is a linear function in both x and y because of the

fact that Γ is a tree, that is, has no bridges.

EXAMPLE 6.3

In this example, we consider the tetrahedral graph with edge lengths given as in

Figure 6.

In this case, we have τ(Γ) = 5/16. The discrete Laplacian matrix L, its

pseudoinverse of L+, and the resistance matrix R are as follows:

L =

⎡
⎢⎢⎣

3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

⎤
⎥⎥⎦ , L+ =

1

48

⎡
⎢⎢⎣
19 7 7 7

7 19 7 7

7 7 19 7

7 7 7 19

⎤
⎥⎥⎦ ,
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Figure 6. Tetrahedral graph with vertices {v1, v2, v3, v4}.

R =
1

2

⎡
⎢⎢⎣
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤
⎥⎥⎦ .

If the ordered endpoints of edges are {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4),
(v3, v4)}, then we have the value matrix Z = 5

16J6 − 1
4 [C1,C2,C3,C4,C5,C6],

where the Ci’s with i ∈ {1,2,3,4,5,6} are columns as given below:

[C1,C2,C3]

=

⎡
⎢⎢⎢⎢⎣
−x2 + 2xy− y2 + 2|x− y| 2x− x2 + 2y− xy− y2 2x− x2 + 2y− xy− y2

2x− x2 + 2y− xy− y2 −x2 + 2xy− y2 + 2|x− y| 2x− x2 + 2y− xy− y2

2x− x2 + 2y− xy− y2 2x− x2 + 2y− xy− y2 −x2 + 2xy− y2 + 2|x− y|
1− x2 + y+ xy− y2 1 + x− x2 + y− xy− y2 1 + x− x2 + y− y2

1− x2 + y+ xy− y2 1 + x− x2 + y− y2 1 + x− x2 + y− xy− y2

1 + x− x2 + y− y2 1− x2 + y+ xy− y2 1 + x− x2 + y− xy− y2

⎤
⎥⎥⎥⎥⎦ ,

[C4,C5,C6]

=

⎡
⎢⎢⎢⎢⎣

1− x2 + y+ xy− y2 1− x2 + y+ xy− y2 1 + x− x2 + y− y2

1 + x− x2 + y− xy− y2 1 + x− x2 + y− y2 1− x2 + y+ xy− y2

1 + x− x2 + y− y2 1 + x− x2 + y− xy− y2 1 + x− x2 + y− xy− y2

−x2 + 2xy− y2 + 2|x− y| 2x− x2 + 2y− xy− y2 1− x2 + y+ xy− y2

2x− x2 + 2y− xy− y2 −x2 + 2xy− y2 + 2|x− y| 1 + x− x2 + y− xy− y2

1− x2 + y+ xy− y2 1 + x− x2 + y− xy− y2 −x2 + 2xy− y2 + 2|x− y|

⎤
⎥⎥⎥⎥⎦ .

Note that each entry of Z is a quadratic function in both x and y as expected,

because Γ has no bridge.

Acknowledgments. I would like to thank the anonymous referees for their valuable

suggestions.
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