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Abstract We introduce four different notions of weak Tannaka-type duality theorems,

and we define three categories of topological groups, called T-type groups, strongly T-

type groups, and NOS-groups.

We call a one-parameter subgroup a nontrivial homomorphic image of the additive

groupR of real numbers into a topological groupG. WhenG does not contain any one-

parameter subgroup, we call G a NOS-group.

The aimof this paper is to show the following relations. In the table below, the symbol

⇐⇒means that for a given topological groupG the duality theoremon the left-hand side

holds if and only ifG is of type cited on the right-hand side:

(1) u-duality⇐⇒ T-type,

(2) i-duality⇐⇒ strongly T-type,

(3) b-duality⇐⇒ locally compact,

(4) c-duality⇐⇒ locally compact NOS.

We give in the last section some examples which show the actual differences among

(1)–(4).

0. Introduction

Four types of weak Tannaka-type duality theorems for topological groups are

stated as follows.

We take the set Ω≡ {D = (HD, TD
g )} of all unitary representations of given

topological group G, dimensions of which are bounded by max(ℵ0,#G). Then

there exist relations between elements of Ω as

(1) unitary equivalence: D1 ∼W D2 (W : intertwining operator),

(2) direct sum: D1 ⊕D2,

(3) tensor product: D1 ⊗D2,

(4) contragradient: D→D.

We consider an operator field A≡ {AD}D∈Ω on Ω satisfying the following:

(B-0) for each D ∈Ω, AD is an operator in a certain category on the repre-

sentation Hilbert space HD:
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(B-1) D1 ∼W D2 =⇒WAD1W−1 =AD2 ,

(B-2) AD1 ⊕AD2 =AD1⊕D2 ,

(B-3) AD1 ⊗AD2 =AD1⊗D2 ,

(B-4) AD =AD.

In the condition (B-0), for the terminology certain category we consider four

cases as follows.

At first, we take the unitarity property, that is,

(B-01) for each D ∈ Ω, AD is a unitary operator on the representation

Hilbert space HD .

We shall call such an operator field which satisfies (B-01)–(B-4) simply a

birepresentation of G and write U for the set of all birepresentations.

Secondly, we take isometricity, that is,

(B-02) for each D ∈ Ω, AD is an isometric operator on the representation

Hilbert space HD .

We shall call such an operator field which satisfies (B-02), (B-1), (B-2),

(B-3), and (B-4) an isobirepresentation of G and write J for the set of all iso-

birepresentations.

Thirdly, we take nonzero and uniform boundedness, that is,

(B-03) for eachD ∈Ω, AD is a nonzero bounded operator such that ‖AD‖ ≤ 1

on the representation Hilbert space HD .

We shall call such an operator field which satisfies (B-03), (B-1), (B-2), (B-3),

(B-4) a bd-birepresentation of G and write B the set of all bd-birepresentations.

Lastly, we take the property nonzero closed with a common fixed domain DD

dense in HD and range in the same subspace for each D.

(B-04) For each D ∈Ω, AD is a nonzero closed operator on HD with domain

and range a fixed dense subspace DD in common.

But in this case, we must assume relations for subspaces DD as

(B-041) DD1 ∼W DD2 =⇒WDD1 =DD2 ,

(B-042) DD1 ⊕DD2 ⊂DD1⊕D2 ,

(B-043) DD1 ⊗DD2 ⊂DD1⊗D2 ,

(B-044) DD
=DD .

We shall call such an operator field that satisfies (B-04), (B-1), (B-2), (B-3),

(B-4) a cl-birepresentation of G and write C for the set of all cl-birepresentations.

Of course, a birepresentation is an isobirepresentation, an isobirepresentation

is a bd-birepresentation, and a bd-birepresentation is a cl-birepresentation.
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PROPOSITION 0.1

We have

U ⊂ J ⊂ B ⊂ C.

On the space B, we give a topology which is the product of weak topologies

τD on each spaces BD of bounded operators on Hilbert spaces HD. We write this

topology on B as τ . The topologies on U ,J are the restriction of τ onto each of

the spaces.

In the case of cl-birepresentations, we must consider for CD the space of

closed operators with domain DD at each component D, the topology which is

the weakest topology τDC making continuous all matrix elements 〈ADvD, uD〉
(vD, uD ∈DD), and give the product topology τC on the space C.

PROPOSITION 0.2

Topology τ is the restriction of τC to the space B from C.

Proof

For any fixed D and vD, uD in DD , 〈ADvD, uD〉 is a continuous function of AD

with respect to the weak topology τD on the space BD.

Therefore it is sufficient to show for any vD, uD (‖vD‖= ‖uD‖= 1) in HD,

that the function 〈ADvD, uD〉 is continuous with respect to τDC |BD .

The common fixed domain DD is dense in HD for each D, and we assumed

by (B-03) that the components of BD are bounded by 1. So for any ε > 0 as in

(B-03), there exist vD0 , uD
0 (‖vD0 ‖= ‖uD

0 ‖= 1) in DD such that

(0.1) ‖vD − vD0 ‖< ε, ‖uD − uD
0 ‖< ε.

This shows for any AD bounded as ‖AD‖ ≤ 1,∣∣〈ADvD, uD〉 − 〈ADvD0 , uD
0 〉

∣∣
≤
∣∣〈ADvD −ADvD0 , uD〉

∣∣+ ∣∣〈ADvD0 , uD − uD
0 〉

∣∣
(0.2)

≤ ‖ADvD −ADvD0 ‖ × ‖uD‖+ ‖ADvD0 ‖ × ‖uD − uD
0 ‖

≤ ‖AD‖ × ‖vD − vD0 ‖+ ‖AD‖ × ‖uD − uD
0 ‖ ≤ ε.

Therefore on BD the function 〈ADvD, uD〉 is continuous with respect to τDC
as a limit of uniform convergence of continuous functions 〈ADvD0 , uD

0 〉. �

For any g ∈G the operator field Tg ≡ {TD
g }D∈Ω gives a birepresentation.

Our weak Tannaka-type duality theorems assert the converses, which are

separated into the set theoretical part and the topological part.

SET PART OF U-DUALITY’S ASSERTION

For any birepresentation U ≡ {UD}D∈Ω, there exists a unique g ∈ G such that

UD = TD
g (∀D ∈Ω).
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SET PART OF I-DUALITY’S ASSERTION

For any isobirepresentation J≡ {JD}D∈Ω, there exists a unique g ∈G such that

JD = TD
g (∀D ∈Ω).

SET PART OF B-DUALITY’S ASSERTION

For any bd-birepresentation B≡ {BD}D∈Ω, there exists a unique g ∈G such that

BD = TD
g (∀D ∈Ω).

SET PART OF C-DUALITY’S ASSERTION

For any cl-birepresentation C≡ {CD}D∈Ω, there exists a unique g ∈G such that

CD = TD
g (∀D ∈Ω).

TOPOLOGICAL ASSERTION OF THESE DUALITIES

Moreover, the topologies given above coincide with the original topology of G

under the correspondence g→Tg.

PROPOSITION 0.3

c-duality =⇒ b-duality =⇒ i-duality =⇒ u-duality.

Proof

From Proposition 0.1, the set part of this implication is valid. Proposition 0.2

shows that the topological part is also satisfied. �

NOTATION

For a representation D ≡ {HD, TD
g } of G, we take its cyclic subrepresentation

on the closed subspace (HD) of HD spanned by {TD
g vD}g∈G for a fixed vD ∈

HD,‖vD‖= 1. We express it as (D) = {(HD), TD
g , vD}.

Hereafter, for two cyclic representations Dj = {Hj , T j
g , v

j}, j = 1,2, we

denote cyclic subrepresentations contained in D1⊕D2 and D1⊗D2, respectively,

as

(D1 ⊕D2) ≡
{
(H1 ⊕H2), T 1

g ⊕ T 2
g , v

1 ⊕ v2
}
,

(D1 ⊗D2) ≡
{
(H1 ⊗H2), T 1

g ⊗ T 2
g , v

1 ⊗ v2
}
.

In Section 1 of this paper, we give the notion of an SSUR of G, and “com-

plete” and “b-complete” properties for G, after [8, Section 2]. Using these con-

cepts, we define categories of T-type and strongly T-type groups for topological

groups.

Section 2 is devoted to proving the condition (W-3′) in [8, Section 8], for

topological groups G to have an SSUR. This shows that a T-type group is a

well-behaved group, and a strongly T-type group is strongly well behaved as is

stated in [8, Sections 7, 8].
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We show in Section 3 that a T-type group satisfies weak, Tannaka-type

i-duality.

Since strongly T-type deduces T-type, this gives also the following.

(1) A T-type group satisfies u-duality.

(2) A strongly-T-type group satisfies i-duality.

The converse problems for T-type groups and strongly T-type groups are

solved in Section 4. And we obtain the following:

(3) if a topological group G satisfies u-duality, then G is T-type;

(4) if a topological group G satisfies i-duality, then G is strongly T-type.

We discuss in Section 5 the similar problems for locally compact groups and

locally compact NOS groups.

Summarizing the above results, we state the main theorem in Section 6.

We give in the same section several examples of groups of each type.

1. Separating systems of unitary representations: T-type groups and strongly
T-type groups

We consider a Hausdorff (i.e., T2-) topological group G.

DEFINITION 1.1

We say that a set Ω0 ≡ {Dα ≡ {HDα , TDα
g , vDα}}α∈A of cyclic unitary represen-

tations of G gives a separating system of unitary representations (SSUR) if for

any neighborhood V of the unit e in G, there exist a positive definite function

ηD(g)≡ 〈TD
g vD, vD〉 (D ∈Ω0, ‖vD‖= 1) and ε > 0 such that

(1.1) F (D,ε)≡
{
g ∈G

∣∣ ∣∣1− ηD(g)
∣∣< ε

}
⊂ V.

For any given cyclic unitary representation D ≡ {HD, TD
g , vD} (‖vD‖= 1), and

the trivial representation I = {C, Ig, v0} of G, we define a unitary representation

Dp ≡ I ⊕D⊕D and its cyclic part (Dp), whose representation space is spanned

by the vector

vp ≡ (2−1/2)v0 ⊕ (1/2)(vD ⊕ vD).

Here D ≡ {HD, TD
g , vD} is the contragradient representation of D and vD is the

vector in the space HD corresponding to vD. We showed in our previous paper

(see [8, Corollaries 1-2-1, 1-2-2]) that

(1.2) 1≥ 〈TDp
g vp, vp〉 ≥ 0.

For any D in Ω we write ηD(g)≡ 〈TD
g vD, vD〉 and

F (D,ε)≡
{
g ∈G

∣∣ ∣∣1− ηD(g)
∣∣< ε

}
;

then

(1.3) 1> ∀ε≥ 0,∃δ > 0, F
(
(Dp), δ

)
⊂ F (D,ε).
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Using (1.3), if a topological group G has an SSUR Ω0 ≡ {Dα}α∈A, then

we can select a new SSUR Ω1 ≡ {(Dα,p)α∈A}, for which any (Dα,p) = {(HDα,p),

T
Dα,p
g , vDα,p} ∈Ω1 has a nonnegative-valued positive definite function ηDα,p(g)≡

〈TDα,p
g vDα,p , vDα,p〉.
For a given Hilbert space H, we denote by B(H) the space of all bounded

operators on H, by U(H) the space of all unitary operators on H, and by J(H)

the space of all isometric operators on H. Put the weak topologies on each of the

spaces.

For any isometric operator J on a Hilbert space H, we get

‖Jv− v‖2 = ‖Jv‖2 + ‖v‖2 − 2�〈Jv, v〉
(1.4)

= 2
(
〈v, v〉 −�

(
〈Jv, v〉

))
= 2�

(
〈v− Jv, v〉

)
.

This shows that on J(H), and so on U(H) too, the weak topology coincides with

the strong topology.

Moreover, U(H) becomes a topological group with the multiplication of oper-

ators and this topology. As a group topology, this topology gives a uniform struc-

ture on U(H).

For a topological group G, let D ≡ {HD, TD
g } be any unitary representation.

Then the map G � g→ TD
g ∈ U(HD)⊂ J(HD) is continuous for each D.

Construct U(Ω)≡
∏

D∈ΩU(HD
)⊂ J(Ω)≡

∏
D∈Ω J(HD) with natural prod-

uct topologies. The maps

G � g �−→ (TD
g )D∈Ω ∈ U

(
⊂

∏
D∈Ω

U(HD) =U(Ω)
)
,(1.5)

G � g �−→ (TD
g )D∈Ω ∈ U ⊂ J ⊂

∏
D∈Ω

J(HD) = J(Ω)(1.6)

are into-homomorphisms as topological groups.

When G is a T2-topological group with an SSUR [7, Lemma 1.4] shows

that the map (1.5) is an into-isomorphism, so by this map, G is embedded as a

topological group in J(Ω).

We denote by GJ the image of G under the map (1.6) into J(Ω).

LEMMA 1.1

Let G be a T2-topological group with an SSUR.

(1) The weak Tannaka-type u-duality theorem is valid for G, if and only if

GJ = U and the map (1.5) is an isomorphism between G and its image GJ in

U(Ω) as topological groups.

(2) The weak Tannaka-type i-duality theorem is valid for G, if and only if

GJ = J and the map (1.6) is an isomorphism between G and its image GJ in

J(Ω) as topological spaces. In this case, GJ = U = J .

Proof

It is obvious from the definitions. �
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In [8, Section 2, Definition 2.1], we defined the notions of l -Cauchy and b-Cauchy

properties for a filter base as follows.

DEFINITION 1.2

A filter base F ≡ {Fα}α∈Γ on G, where Γ is a partially ordered set, is called

l -Cauchy (hereafter simply Cauchy), if for any neighborhood V of e ∈G, there

exists an α ∈ Γ such that

∀β,γ � α (β,γ ∈ Γ), F−1
β Fγ ⊂ V.

We say that F is b-Cauchy (both Cauchy) when both of F and F−1 ≡ {F−1
α }α∈Γ

are Cauchy at the same time.

If any Cauchy (resp., b-Cauchy) filter base has limit points in G, we say that

G is complete (resp., b-complete).

Evidently a b-Cauchy filter base is also Cauchy, so a complete group is

b-complete too.

If a filter base F converges to a point g0 in G, then F−1 converges to g−1
0 .

We consider the topological group G≡U(Ω) =
∏

D∈ΩU(HD) and a Cauchy

(resp., b-Cauchy) filter base F ≡ {Fα} on G. Projection image FD ≡ {FD
α ≡

ProjHD Fα} for anyD ∈Ω gives a Cauchy (resp., b-Cauchy) filter base on U(HD).

Conversely, for a filter base F ≡ {Fα}α∈Γ on U(Ω) to be Cauchy (resp.,

b-Cauchy), it is enough that, for any D in Ω, FD are Cauchy (resp., b-Cauchy).

Since on U(Ω) the weak topology is equivalent to the strong topology, we

can consider these Cauchy or b-Cauchy properties in the sense of strong topology

on U(Ω).

Let F ≡ {Fα}α∈Γ be a Cauchy filter base on U(Ω).

For any v ∈HD for a fixed D, a Cauchy filter base {FD
α v}α∈Γ converges to a

vector u(v) in the Hilbert space HD , that is, for any UD
α ∈ FD

α and any v ∈HD,

strong-limαU
D
α v = u(v). Then, for any a, b ∈C,

(1.7) lim
α

UD
α (av1 + bv2) = au(v1) + bu(v2),

∥∥u(v)∥∥= lim
α

‖UD
α v‖= ‖v‖.

Therefore the map HD � v→ u(v) ∈HD is linear and isometric. Thus there exists

an isometric operator BD such that u(v) =BDv.

LEMMA 1.2

Any Cauchy filter base on U(Ω) =
∏

D∈ΩU(HD) converges to a B≡ (BD)D∈Ω ∈
J(Ω) =

∏
D∈Ω J(HD), where BD are isometric operators.

For a topological group G, any filter base F on it is mapped to a filter base FJ

in GJ . And if F is Cauchy (resp., b-Cauchy), then FJ in U(Ω) is also Cauchy

(resp., b-Cauchy).

LEMMA 1.3

(1) A Cauchy filter base FJ on a group GJ converges to an element B ≡
(BD)D∈Ω in J(Ω).
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(2) If FJ is b-Cauchy, then FJ converges to an element in U(Ω).

Proof

(1) The result is deduced directly from Lemma 1.2.

(2) If FJ is b-Cauchy, then FJ and F−1
J are both Cauchy. So by Lemma 1.2,

FJ converges to a B≡ (BD)D∈Ω ∈ J(Ω) and F−1
J converges to a C≡ (CD)D∈Ω ∈

J(Ω), where BD and CD are isometric operators. This means that for eachD ∈Ω,

the component FD
J ≡ {FD

α } of FJ converges to BD and (F−1)DJ ≡ {(FD
α )−1} of

F−1
J converges to CD under the strong topology of J(HD), so that, for any

neighborhood V D of ID (the identity operator in J(HD)), BD ∈ FD
α V D and

CD ∈ V D(FD
α )−1.

For given neighborhood WD of ID in J(HD), take V D as (V D)3 ⊂WD, and

take α as F−1
α Fα ⊂ V D. Then CDBD ∈ V DF−1

α FαV
D ⊂ (V D)3 ⊂WD, that is,

CDBD ∈
⋂
WD; here WD runs any neighborhood of ID.

We get CDBD = ID .

But CD is an isometric operator having the range the full space HD and

therefore is a unitary operator on HD .

Therefore we have

(1.8) ∀D ∈Ω, BD = (CD)−1.

Thus BD must be a unitary operator, and B≡ (BD)D∈Ω ∈U(Ω). �

DEFINITION 1.3

(1) We say that a topological group G is T-type if

(T-1) G has an SSUR (separating condition), and

(T-2) G is b-complete.

(2) We say that a topological group G is strongly T-type if

(T-1) G has an SSUR (separating condition), and

(T-2′) G is complete.

Since a complete group is b-complete, so a strongly T-type group is a T-type

group.

REMARK

The conditions (T-1), (T-2), and (T-2′) above are just the same as the conditions

(W-1), (W-2), and (W-2′) defined in [8, Sections 7, 8], respectively.

In the succeeding sections, we shall discuss relations between groups of this type

and two types of weak Tannaka-type dualities.

We showed in [8, Lemma 7.1] that any locally compact groups and any closed-

type inductive limits of such groups are strongly T-type, therefore of T-type.
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2. Birepresentation and isobirepresentation of G

Now we discuss some elementary properties of isobirepresentations on G with an

SSUR. Since any birepresentation is also an isobirepresentation, these properties

are valid for it too.

The following arguments in Lemma 2.1 and its corollaries are just similar to

those of [7, Section 6]. The only difference is to change the letter U to J ; we will

repeat it to confirm.

The condition (B-4) assures that for any isobirepresentation J≡ {JD},

(2.1) JD = (JD).

LEMMA 2.1

For D0 ≡D⊕D, the matrix element 〈JD0

(u⊕ u), v⊕ v〉 is real valued.

Proof

〈JD0

(u ⊕ u), v ⊕ v〉 = 〈JDu, v〉 + 〈JDu, v〉 = 〈JDu, v〉 + 〈(JDu), v〉 = 〈JDu, v〉 +
〈JDu, v〉 ∈R. �

COROLLARY 2.1.1

Put Dp ≡ I⊕D⊕D. Take vectors w0 ∈HI ,w ∈HD such that 21/2‖w0‖= 2‖w‖=
1, and put vp ≡w0 ⊕w⊕w. Then the matrix element

(2.2) 〈JDpvp, vp〉=
〈
JDp(w0 ⊕w⊕w),w0 ⊕w⊕w

〉
≥ 0.

Proof

We have

〈JDpvp, vp〉 =
〈
(Iw0)⊕ (JDw)⊕ (JDw),w0 ⊕w⊕w

〉
= 〈w0,w0〉+ 〈JDw,w〉+ 〈JDw,w〉

= ‖w0‖2 + 2�〈JDw,w〉

= 2−1 + 2�〈JDw,w〉.

But |〈JDw,w〉| ≤ ‖w‖2 = 2−2. So −2−1 ≤ 2�〈JDw,w〉 ≤ 2−1, whence

〈JDpwp,wp〉 ≥ 0. �

COROLLARY 2.1.2

As in the case of Corollary 2.1.1, for Dp ≡ I ⊕D⊕D,

(2.3) ∀g ∈G, 〈TDp
g JDpvp, vp〉 ≥ 0 (vp =w0 ⊕w⊕w).

Proof

For any isobirepresentations J ≡ {JD} and Tg ≡ {TD
g },TgJ ≡ {TD

g JD} is also

an isobirepresentation. So we can apply the result of Corollary 2.1.1. �
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LetD = {HD, TD
g , vD} be a cyclic unitary representation ofG. Denote by ηD(g)≡

〈TD
g vD, vD〉 the positive definite function to which D belongs, and put

KD(g)≡ 〈TD
g JDvD, vD〉.

LEMMA 2.2

Let J be an isobirepresentation. Then, for any D ≡ {HD, TD
g , vD} (‖vD‖ = 1)

in Ω,

(2.4) sup
g∈G

∣∣KD(g)
∣∣= 1.

Proof

Since ‖vD‖= 1 and JD, TD
g are isometric, |KD(g)| ≤ 1.

Now consider the family F ≡ {ζD(g) = 〈TD
g u,w〉} of matrix elements. Here

D runs over Ω, and u, w are any unit vectors in HD . For two ζD1(g), ζD2(g),

ζD(g) = ζD(g),(2.5)

ζD1(g) + ζD2(g) = ζD1⊕D2(g),(2.6)

ζD1(g)× ζD2(g) = ζD1⊗D2(g).(2.7)

Therefore F is a ∗-algebra contained in the ∗-algebra Cb(G) of all bounded

continuous functions on G.

Define norm ‖ζD‖ ≡ supg∈G |ζD(g)| on F. Consider the completion FC of F

with respect to this norm. Then as a set of uniform limits of continuous functions

of F, FC becomes a C∗-algebra of continuous functions on G.

Applying the Gelfand representation theorem, there exists a locally compact

space X , and FC is isomorphic to the space Cb(X) of all bounded continuous

functions on X under the correspondence FC � f −→ f∼ ∈ Cb(X). A point x of

X is considered as a homomorphic map such that

ψx : Cb(X)−→C,(2.8)

ψx(ϕ)≡ ϕ(x)
(
ϕ ∈ Cb(X)

)
.(2.9)

For any element g in G and f in FC ,

(2.10) f �−→ f(g)

gives a homomorphic map from FC to C. So there exits a unique element xg in

X as

(2.11) f(g) = f∼(xg).

The existence of an SSUR assures us that the map g �−→ xg is one-to-one.

So by this map, G is embedded into X . But Cb(X) is given as the space of

{f∼ | f ∈ FC} and FC ⊂ Cb(G). From this we conclude that the image of G is

dense in X . That is, for any x ∈X , δ > 0, and f∼(x) ∈ FC , there exists g0 ∈G

such that

(2.12)
∣∣f∼(g0)− f∼(x)

∣∣< δ.
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For a given isobirepresentation J≡ {JD}D∈Ω, consider the map

(2.13) ζD(g) = 〈TD
g vD, uD〉 −→ 〈TD

g JDvD, uD〉 ≡ θJ(ζ
D)(g).

By analogous consideration as in (2.5)–(2.7), we get

θJζD(g) = 〈TD
g JDvD, uD〉= 〈TD

g JDvD, uD〉= 〈TD
g JDvD, uD〉

= θJ(ζ
D)(g),

θJ(ζ
D1)(g) + θJ(ζ

D2)(g) = 〈TD1
g JD1vD1 , uD1〉+ 〈TD2

g JD2vD2 , uD2〉

=
〈
(TD1

g JD1vD1 ⊕ TD2
g JD2vD2), (uD1 ⊕ uD2)

〉
= θJ(ζ

D1⊕D2)(g),

θJ(ζ
D1)(g)× θJ(ζ

D2)(g) = 〈TD1
g JD1vD1 , uD1〉 × 〈TD2

g JD2vD2 , uD2〉

=
〈
(TD1

g JD1vD1 ⊗ TD2
g JD2vD2), (uD1 ⊗ uD2)

〉
= θJ(ζ

D1⊗D2)(g).

Consider the case Σj〈TDj
g vDj , uDj 〉 ≡ 0 as a function on G for some countable

set {Dj} ⊂Ω and {vDj , uDj ∈HDj} such that Σj‖vDj‖2,Σj‖uDj‖2 <∞.

Put D ≡Σ⊕
j Dj , v ≡Σ⊕

j v
Dj , u≡Σ⊕

j u
Dj ; then

for any g,h ∈G, 〈TD
g v,TD

h u〉 ≡ 0,

that is, [{TD
g v | g ∈G}]⊥ [{TD

h u | h ∈G}].
The condition (B-2) shows that the operator JD of isobirepresentation J≡

{JD}D∈Ω keeps invariant subspaces; therefore [{TD
g v | g ∈G}]⊥JDu. This con-

cludes

(2.14) 0 = 〈TD
g v, JDu〉=Σj〈TDj

g vDj , JDjuDj 〉.
Therefore the map (2.13) generates a *-algebra homomorphism

(2.15) f∼(g)−→ θJ(f
∼)(e)≡ f∼(xJ)

of the space F, and of FC to C; that is, it gives an element xJ ∈X .

Put f∼(g)≡ 〈TD
g vD, JDvD〉, and apply (2.12). We obtain∣∣f∼(g0)− f∼(xJ )

∣∣ = ∣∣〈TD
g0v

D, JDvD〉 − 〈JDvD, JDvD〉
∣∣

(2.16)
=

∣∣〈TD
g0v

D, JDvD〉 − 1
∣∣= ∣∣1−K(g−1

0 )
∣∣< δ.

This proves (2.4). �

In [7, Sections 7, 8], we give the following conditions to a topological group G:

(W-3) For any cyclic unitary representation

D ≡ {HD, TD
g , vD}

(
‖vD‖= 1

)
,

and any birepresentation U≡ {UD}D, there holds

sup
g∈G

∣∣〈TD
g UDvD, vD〉

∣∣= 1;
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(W-3′) For any cyclic unitary representation

D ≡ {HD, TD
g , vD}

(
‖vD‖= 1

)
,

and any isobirepresentation J≡ {JD}D, there holds

sup
g∈G

∣∣〈TD
g JDvD, vD〉

∣∣= 1.

After the above argument, we obtain the following lemma.

LEMMA 2.3

If a topological group G has an SSUR, then (W-3 ′) holds for G, and so does

(W-3).

We defined well-behaved group as a topological group which satisfies the con-

ditions (T-1), (T-2) ((W-1), (W-2) in [8]), and (W-3), and we defined strongly

well-behaved group as a topological group which satisfies the conditions (T-1),

(T-2′) ((W-1), (W-2′) in [7]), and (W-3′). Therefore we ge the following.

COROLLARY 2.3.1

(1) A T-type group is a well-behaved group.

(2) A strongly T-type group is a strongly well-behaved group.

As in Section 2, for representations of type (Dp), the set {(Dp)}D gives an SSUR

of G, and also

(2.17) inf
g∈G

(
1−KDp(g)

)
= 0.

We denote by Ω+ the set of all cyclic representations D = (HD, TD
g , vD)

(‖vD‖= 1) satisfying

KD(g) = 〈TD
g JDvD, vD〉 ≥ 0 (g ∈G).

As was shown, Ω+ contains cyclic representations of type (Dp).

Introduce a subset of G,

(2.18) F (D,ε)≡
{
g
∣∣ 1−KD(g−1)< ε

}
for ε > 0,D ∈Ω+, and consider the family of subsets

(2.19) Z≡
{
F (D,ε)

}
D∈Ω+,ε>0

.

LEMMA 2.4

Let G be a topological group with SSUR, and let J be an isobirepresentation of G.

Then Z gives a Cauchy filter base on G by the order of sets inclusion.

If a given J is a birepresentation U≡ {UD}D, that is, for any D,JD(= UD)

is a unitary operator, then Z is b-Cauchy.
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Proof

The arguments are almost the same as in [8, Sections 7, 8]. So we will trace the

argument there shortly.

Lemma 2.2 shows that for any D ∈Ω+ and ε > 0, F (D,ε) is not empty:

(2.20) ε1 > ε2 =⇒ F (D,ε1)⊇ F (D,ε2).

And for D0 ≡ (D1 ⊗D2), we obtain

(2.21) 1−KD0

(g−1)≥ 1−KD1

(g−1), 1−KD2

(g−1).

Therefore

(2.22) F (D1, ε)∩ F (D2, ε)⊇ F (D0, ε) �= φ.

This shows that Z is a filter base.

To show that Z is l-Cauchy, we showed in [8, (7.8)] that the condition 1−
KD(g−1)< ε leads to

(2.23) ‖UDvD − TD
g vD‖ ≤ (2ε)1/2.

Using this relation we get for any g,h ∈ F (D,ε),

(2.24) ‖TD
g vD − TD

h vD‖= ‖TD
h−1gv

D − vD‖ ≤ 2(2ε)1/2.

For an arbitrary given neighborhood V of e in G, if we take the above D in

Ω+ as {
g ∈G

∣∣ ∣∣〈TD
g vD − vD, vD〉

∣∣< δ
}
⊂ V,

then 4ε < δ leads to

F (D,ε)−1F (D,ε)⊂ V,(2.25)

that is, Z is l-Cauchy.

Next we consider the case where a given isobirepresentation J is a birepre-

sentation U= {UD}D.

We will show that the family of subsets

(2.26) Z−1 ≡
{
F (D,ε)−1

}
D∈Ω+,ε>0

gives a Cauchy filter base. In the above arguments, we proved that Z≡ {F (D,ε)}
gives a filter base, so Z−1 ≡ {F (D,ε)−1} is also a filter base. Hence it is sufficient

to see that Z−1 is Cauchy.

For an arbitrary given neighborhood V0 of e in G and δ > 0, take D ∈ Ω+

and a normalized vector w in HD as{
g ∈G

∣∣ ∣∣〈TD
g w−w,w〉

∣∣< δ
}
⊂ V0.

Since UD is unitary, we can take vD ≡ (UD)−1w and ε > 0 as ε < δ.

Consider KD(g) = 〈TD
g UDvD, vD〉 ≥ 0 (g ∈ G), and consider F (D,ε) as

above.
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As in (2.23), the relation 1−KD(g−1)< ε gives that for any g ∈ F (D,ε),∥∥TD
g−1w− (UD)−1w

∥∥ =
∥∥w− TD

g (UD)−1w
∥∥

(2.27)
= ‖UDvD − Tgv

D‖ ≤ (2ε)1/2.

Consequently we see that for any g,h ∈ F (D,ε),

‖TD
hg−1w−w‖ = ‖TD

g−1w− TD
h−1w‖

≤
∥∥TD

g−1w− (UD)−1w
∥∥+ ∥∥(UD)−1w− TD

h−1w
∥∥≤ 2(2ε)1/2.

By analogous arguments as after (2.24) or in the proof of [8, Section 7,

Lemma 7.4], this leads to hg−1 ∈ V0. Therefore

F (D,ε)F (D,ε)−1 ⊂ V0.

This shows that {F (D,ε)−1} gives a Cauchy filter, and Z is b-Cauchy. �

3. Proof of a Tannaka-type weak duality theorem for T-type groups and
strongly T-type groups

PROPOSITION 3.1

(1) For a T-type group G, a weak Tannaka-type u-duality theorem is valid.

(2) For a strongly-T-type group G, a weak Tannaka-type i-duality theorem

is valid.

Proof

We fix an isobirepresentation J≡ {JD} and show that there exists a unique g in

G such that

(3.1) {JD}= {TD
g }.

Lemma 2.4 shows that for T-type (also for strongly T-type) group G and J

as above, Z≡ {F (D,ε)}D∈Ω+,ε>0 gives a Cauchy filter base.

Especially in the case that J is a birepresentation, Z give a b-Cauchy filter

base.

Therefore if G is T-type and J is a birepresentation, or G is strongly-T-type

and J is an isobirepresentation, Z converges to a point in G.

In both cases we write this limit point as (gJ)
−1. Then,

(3.2)
⋂

(D,ε)

F (D,ε) =
{
(gJ)

−1
}
.

So 1 = 〈TD
(gJ)−1JDvD, vD〉, and

(3.3) ∀D ∈Ω+, JDvD = TD
gJv

D.

For a general cyclic representation D, consider (Dp) ∈ Ω+ as in Section 1;

then we obtain from JDpvp = T
Dp
gJ vp,

(3.4) Iw0 ⊕ JDw⊕ JDw = Iw0 ⊕ TD
gJw⊕ TD

gJw.
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So for any D in Ω, we get JDw = TD
gJw.

This concludes the proof of the assertion. �

4. Converse of duality theorems for T-type or strongly T-type groups

PROPOSITION 4.1

For a T2-topological group G, if a weak Tannaka-type u-duality theorem holds,

then G has an SSUR; that is, the condition (T-1) in Definition 1.3 is satisfied.

Proof

By Lemma 1.1, the inverse map of (1.5) must be continuous. A fundamental

system of neighborhoods V of e in the image GJ of G in U is given as the

collection of

(4.1) V1 ≡
⋂

1≤j≤n

{
Tg = (TD

g )D∈Ω

∣∣ ‖vj − TDj
g vj‖2 < εj

}

for a finite set {(Dj , vj , εj)}, where Dj ∈ Ω and vj ∈ HDj (‖vj‖ = 1), εj > 0

(j = 1,2, . . . , n).

Consider the representations D0 ≡ Σ⊕
j Dj and v0 = n−(1/2)Σ⊕

j vj , ε0 =

Minj εj ; then

(4.2) V1 ⊇ V2(ε0)≡
{
Tg = (TD

g )D∈Ω

∣∣ ‖v0 − TD0
g v0‖2 < ε0

}
.

The evaluation

‖v0 − TD0
g v0‖2 = 2

(
1−�

(
〈TD0

g v0, v0〉
))

(4.3)
≤ 2

∣∣1− 〈TD0
g v0, v0〉

∣∣
shows that, if we take δ < 2−1ε0, then

(4.4) V2(ε0)⊃ Vδ ≡
{
Tg = (TD

g )D∈Ω

∣∣ ∣∣1− 〈TD0
g v0, v0〉

∣∣< δ
}
.

Since the inverse map of (1.5) is continuous, for any neighborhood V of e

in G, there exist V,V1, V2(ε0), and Vδ such that

(4.5) V ⊇ V1 ⊇ V2(ε0)⊇ Vδ.

This shows the separating condition (T-1) in Definition 1.3. �

As is shown in Proposition 0.3, u-duality follows from i-duality. Then we have

the following.

COROLLARY 4.1.1

For a topological group G, if the weak Tannaka-type i-duality theorem holds, then

the condition (T-1) is satisfied.

Now we discuss about the conditions (T-2) and (T-2′).
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PROPOSITION 4.2

Let G be a T2-topological group.

(1) For the weak Tannaka-type i-duality theorem to hold, G must be com-

plete; that is, the condition (T-2 ′) should hold.

(2) For the weak Tannaka-type u-duality theorem to hold, G must be b-

complete; that is, the condition (T-2) should hold.

Proof

The map (1.6) is isomorphic. We consider the image GJ in U(Ω)⊂ J(Ω).

Lemma 1.3 asserts that a Cauchy filter base FJ on GJ has a limit B≡ (BD)D
in J(Ω). And if F is a b-Cauchy filter base, then B is in U(Ω).

Obviously any element of GJ satisfies the conditions (B-1)–(B-4) of birep-

resentation and isobirepresentation in Section 0. And these conditions are valid

for its limit point B≡ (BD)D of these elements too.

Consequently, we see that B is an isobirepresentation. If B is in U(Ω), it is

a birepresentation too.

If the weak Tannaka-type i-duality theorem holds for G, then B ∈GJ . This

shows that any Cauchy filter base F on GJ converges to a point in GJ ; that is,

GJ is complete. Equivalently G must be complete; that is, G is strongly T-type.

In the case where the weak Tannaka-type u-duality theorem holds for G, a

b-Cauchy filter base F must converge to a point B in U(Ω). That is, B turns to

be a birepresentation. So the assumption that the weak Tannaka-type u-duality

is valid for G induces the assertion that G is b-complete. Hence, in this case, G

is a T-type group. �

5. Case of locally compact groups and NOS-groups

We consider the case of locally compact groups. Here we quote the papers [3]–[5],

and [8].

In [3] and [4], we have shown that, for locally compact groups, the b-duality

theorem is valid. And in [5] and [8], it is shown that b-duality is false if the group

is not locally compact.

Altogether we showed

b-duality ⇐⇒ locally compact.

And it is remarkable that for locally compact groups to prove the weak

duality theorem we do not need the condition (B-4) in the definition of birepre-

sentations (cf. [3], [4]).

Next we consider the case where c-duality is false for a locally compact

group G.

In [4], we introduced so-called Katz–Takesaki operator WR on the regular

representation R≡ (H,Rg),H= L2(G) of a given locally compact group G. WR

is a unitary operator defined on the space H⊗H. And WR gives an intertwining

operator from R ⊗R to Σ⊕R (a multiple of R). WR is written for any fixed
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CONS {Φα}α in H as(
WR(f1 ⊗ f2)

)
(g) =

{
〈Rgf2,Φα〉f1(g)

}
α
∈Σ⊕

αH (f1 ⊗ f2 ∈H⊗H)

(cf. [4]).

The group G satisfies the b-duality theorem, so G is identified as

(5.1) G≈GR ≡
{
U

∣∣WR(U ⊗U) = (I ⊗U)WR �= 0
}
⊂ U(H).

To extend the discussion to the case of c-duality, we must extend GR to the

space

(5.2) GR
C ≡

{
C
∣∣WR(C ⊗C) = (I ⊗C)WR �= 0

}
⊂C(H).

Here C(H) is the space of closed operators C on H with a common domain

DR satisfying (B-041)–(B-044) for the case

D1 =D2 =R.

An element C of GR
C is called an admissible operator. It is a closed operator with

domain DR and range in the same DR satisfying

(5.3) WR(C ⊗C) = (I ⊗C)WR.

We must show the following proposition which is an extension of [3, Lem-

ma 2.4].

PROPOSITION 5.1

For any cl-birepresentation C = {CD}D∈Ω, its component CR on the regular

representation R is an admissible operator. For two cl-birepresentations C1 and

C2, if

(5.4) CR
1 =CR

2 ,

then C1 =C2, that is, the same CD
1 =CD

2 for any D in Ω.

Proof

The proof is done similarly to the argument in [3]. It was shown that D ⊗R

is unitary equivalent to Σ⊕
dimDR with an intertwining operator WD. So, for a

cl-birepresentation C= {CD},

(5.5) WD(CD ⊗CR) = (I ⊗CR)WD.

When D =R, this shows that the operator CR is an admissible operator.

For two Ci ≡ (CD
i )D∈Ω (i= 1,2),

(5.6) WD(CD
1 ⊗CR) = (I ⊗CR)WD =WD(CD

2 ⊗CR);

that is,

(5.7) CD
1 u⊗CRv =CD

2 u⊗CRv,

for any u in DD and v in DR. The nonzero assumption of cl-birepresentation

leads CD
1 u=CD

2 u for any u in DD, that is,
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(5.8) CD
1 =CD

2

for any D in Ω. �

After Proposition 5.1, to show c-duality, it is sufficient to show that for any

admissible operator C, there exists an element g in G such that C =Rg .

PROPOSITION 5.2

Let C1 and C2 be two admissible operators; then their product C1C2 is also an

admissible operator.

Proof

WR(C1C2 ⊗C1C2) =WR(C1 ⊗C1)(C2 ⊗C2) = (I ⊗C1)WR(C2 ⊗C2)

= (I ⊗C1)(I ⊗C2)WR = (I ⊗C1C2)WR. �

PROPOSITION 5.3

For an admissible operator C, its conjugate operator C is an admissible operator

too.

Proof

We have

WR(C ⊗C) = (C ⊗C)WR = (C ⊗C)W−1
R

(5.9)
=W−1

R
(I ⊗C) =WR(I ⊗C) = (I ⊗C)WR. �

COROLLARY 5.3.1

For an admissible operator C, the positive definite operator CC (i.e., CP ) is an

admissible operator too; that is,

(5.10) WR(CP ⊗CP ) = (I ⊗CP )WR.

Proof

From Propositions 5.2 and 5.3, the result is direct. �

COROLLARY 5.3.2

For an admissible operator C, the positive definite operator (CP )
t ≡ (CC)t (t ∈

R) is an admissible operator too.

Proof

For positive definite operators CP , we can define uniquely t-power (CP )
t:

(CP )
t ⊗ (CP )

t = (CP ⊗CP )
t =

(
W−1

R
(I ⊗CP )WR

)t
(5.11)

=W−1
R

(I ⊗CP )
tWR =W−1

R

(
I ⊗ (CP )

t
)
WR.

This shows that (CP )
t is an admissible operator. �
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PROPOSITION 5.4

Take the spectral decomposition

(CP )
t =

∫ ∞

0

λt dE(λ)

in Corollary 5.3.2, and consider the self-adjoint operator

L (≡ logCP )≡
∫ ∞

0

(logλ)dE(λ);

then

(5.12) WR(L⊗ I + I ⊗L) = (I ⊗L)WR.

Proof

For v and u in DR, take derivatives with respect to t of the both sides of (5.11)

in the strong sense, and put t= 0 as shown below:(∫ ∞

0

λt dE(λ)⊗
∫ ∞

0

λt dE(λ)
)
(u⊗ v) = (CP )

t ⊗ (CP )
t(u⊗ v)

=W−1
R

(
I ⊗ (CP )

t
)
WR(u⊗ v)

=W−1
R

(
I ⊗

∫ ∞

0

λt dE(λ)
)
WR(u⊗ v).

Then

(d/dt)(CP )
tu|t=0 =

∫ ∞

0

log(λ)dE(λ)u≡ Lu,(5.13)

(d/dt)(CP )
t(u⊗ v)|t=0 = (Lu)⊗ v+ u⊗ (Lv)

(5.14)
= (L⊗ I + I ⊗L)(u⊗ v),

and combining these results, we get

(5.15) WR(L⊗ I + I ⊗L)(u⊗ v) = (I ⊗L)WR(u⊗ v). �

PROPOSITION 5.5

For a nonunitary admissible operator C, there exists a one-parameter subgroup

{(CP )
it (t ∈R)} of admissible unitary operators.

Proof

Since the operator C is not unitary, the above CP is not I , so L is not zero,

{(CP )
it = exp(itL) (t ∈R)} is a group of unitary operators, and

(CP )
it ⊗ (CP )

it = exp(itL)⊗ exp(itL)

= exp
(
it(L⊗ I + I ⊗L)

)
=W−1

R
exp

(
it(I ⊗L)

)
WR

=W−1
R

(
I ⊗ (CP )

it
)
WR.

Therefore (CP )
it is an admissible operator. �
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PROPOSITION 5.6

A locally compact NOS-group G satisfies c-duality.

Proof

If c-duality is not valid for G, there exists a nontrivial cl-birepresentation C ≡
(CD)D∈Ω of G, which is not a birepresentation. Let CR be its component on the

regular representation R.

By Proposition 5.1, CR is nonzero. If CR is unitary, the b-duality theorem

for locally compact groups asserts that CR must be an element of GR. So by

Proposition 5.1, C must be a birepresentation.

Consequently, CR is nonzero and nonunitary.

Thus, using Proposition 5.5, we get a one-parameter subgroup of admissible

unitary operators. Again by the b-duality theorem, G must have a one-parameter

subgroup. This contradicts our assumption that G is an NOS-group. �

Next we consider the case where the c-duality theorem is valid for a topological

group G.

PROPOSITION 5.7

If G has a one-parameter subgroup, then the c-duality theorem is false for G.

Proof

Let K = {gt}t be a one-parameter subgroup of G. Then {TD
gt }t is a one-parameter

subgroup in U(HD) for any D in Ω. Especially for the regular representation,

{Rgt}t is a one-parameter subgroup in U(L2(G)).

For a C∞-function f with compact support on R, we define

TD
f ≡

∫
f(t)TD

gt dt.(5.16)

Then, for any vD in HD, TD
f vD is a C∞-vector with respect to the parame-

ter t.

By Stone’s theorem, there exists a self-adjoint operator AD on the space HD ,

and {TD
f vD | vD ∈HD, f ∈C∞(R)} spans the domain of AD and

(5.17) TD
gt = exp(iADt) (∀t ∈R) =

∫
eiλt dED(λ).

Here

AD =

∫
λdED(λ)(5.18)

is the spectral decomposition of A.

Since TD
gt satisfies (B-1)–(B-3),

(5.19) exp(iAD1t)⊗ exp(iAD2t) = exp(iAD1⊗D2t).

For the case where D2 is a regular representation,
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(5.20) exp(iAD1t)⊗ exp(iARt) =W−1
D1

(
I ⊗ exp(iARt)

)
WD1 .

Here WD1 is the intertwining operator corresponding to the equivalence relation

of

(5.21) D1 ⊗R∼WD1
Σ⊕

dim(D1)
R.

Moreover, when D1 is R,

(5.22) exp(iARt)⊗ exp(iARt) =W−1
R

(
I ⊗ exp(iARt)

)
WR.

In the cases (5.19) and (5.20), we differentiate with respect to t both sides

and put t= 0; then we obtain

AD1 ⊗ IR + ID1 ⊗AR =W−1
D1

(ID ⊗AR)WD1 ,

AR ⊗ IR + IR ⊗AR =W−1
R

(IR ⊗AR)WR.

For the spectral decomposition (5.18) of AD and for any a, b ∈R, take the pro-

jection operator

PD
(a,b) ≡

∫ b

a

dED(λ).

The subspace DD
0 ≡

⋃
(a,b)P(a,b)HD is dense in HD and contained in the

domain of AD.

Put for any v ∈DD
0 ,

(5.23) CD
0 v ≡ exp(AD)v =

∞∑
k=0

(k!)−1(AD)kv.

The right-hand side converges in the norm sense. CD
0 is closable, and its closure

CD is a positive definite operator.

Moreover, for any vD ∈DD
0 and vR ∈DR

0 ,

(CD
0 ⊗CR)(vD ⊗ vR)

= (CD
0 vD ⊗CRvR)

=
( ∞∑
k=0

(k!)−1(AD)k
)
vD ⊗

( ∞∑
k=0

(k!)−1(AR)k
)
vR

=

∞∑
k=0

(k!)−1(AD ⊗ IR + ID ⊗AR)k(vD ⊗ vR)(5.24)

=W−1
D

( ∞∑
k=0

(k!)−1(ID ⊗AR)k
)
WD(vD ⊗ vR)

=W−1
D

(
ID ⊗

( ∞∑
k=0

(k!)−1(AR)k
))

WD(vD ⊗ vR)

=W−1
D (ID ⊗CR)WD(vD ⊗ vR),
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(CR ⊗CR)(vR1 ⊗ vR2 )

= (CRvR1 ⊗CRvR2 )

=
( ∞∑
k=0

(k!)−1(AR)k
)
⊗
( ∞∑
k=0

(k!)−1(AR)k
)
(vR1 ⊗ vR2 )

(5.25)

=
( ∞∑

k=0

(k!)−1(AR ⊗ IR + IR ⊗AR)k
)
(vR1 ⊗ vR2 )

=W−1
R

(
IR ⊗

( ∞∑
k=0

(k!)−1(AR)k
))

WR(vR1 ⊗ vR2 )

=W−1
R

(IR ⊗CR)WR(vR1 ⊗ vR2 ).

This equality is valid on dense sets of domains of operators in both sides,

so taking the closure of operators, we get that CR is a nonzero, nonunitary

admissible operator, and C ≡ {CD} gives a cl-birepresentation not belonging

to GJ .

This shows that c-duality is false for G. �

6. Main theorem and examples

Summarizing the results in Sections 3–5, we obtain the following.

MAIN THEOREM

Let G be a T2-topological group.

(1) For G, the weak Tannaka-type u-duality theorem holds if and only if G

is a T-type group.

(2) For G, the weak Tannaka-type i-duality theorem holds if and only if G

is a strongly T-type group.

(3) For G, the weak Tannaka-type b-duality theorem holds if and only if G

is a locally compact group.

(4) For G, the weak Tannaka-type c-duality theorem holds if and only if G

is a locally compact NOS-group.

EXAMPLE 1

Let H be a Hilbert space of infinite dimension, and let G≡ U(H) be the group

of all unitary operators on H with the weak (resp., strong) topology of operator

space.

LEMMA 6.1

The group G= U(H) is a topological group and has an SSUR.
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Proof

G is a topological group by the strong topology, and this topology is equivalent

to the weak one. Consider the identical representation D0 ≡ {H, TU},

(6.1) G � U �−→ TU (≡ U) ∈ U(H).

Evidently this representation is cyclic with cyclic vector v, which is any

normalized vector in H. We denote this cyclic representation as Dv ≡ {H, TU , v}
and take the family Ω0 ≡ {Dv}v . We show that this family gives an SSUR of G.

A fundamental system of neighborhoods of e (= I) is given by the family of

sets

V ≡
{
V (v, ε)≡

{
U ∈G

∣∣ ‖Uv− v‖< ε
} ∣∣ v ∈H,‖v‖= 1, ε > 0

}
.

For any Dv in Ω0, ‖Uv − v‖2 = 2(1 − �〈Uv, v〉) and |1 − 〈TUv, v〉|2 = |1 −
�(〈TUv, v〉)|2 + |�(〈TUv, v〉)|2, so∣∣1− 〈TUv, v〉

∣∣≥ ∣∣1−�〈TUv, v〉
∣∣= (1/2)‖Uv− v‖2.(6.2)

As in Section 1, we put η(g)≡ 〈TUv, v〉 and F (D,ε)≡ {g ∈G | |1−η(g)|< δ}.
This means that for δ ≤ 2−1ε2,

(6.3) F (D,δ)⊂ V (v, ε);

that is, Ω0 gives an SSUR for G. �

LEMMA 6.2

The group G≡ U(H) is b-complete but not complete.

Proof

Lemma 1.3(1) shows that any Cauchy filter base on GJ converges to an element

in J (Ω), and Lemma 1.3(2) shows that any b-Cauchy filter base converges to an

element in U(Ω).
The map G= U(H) � U −→ U ∈ U(H) gives a unitary representation of G.

As a component of GJ , U(H) =G is b-complete.

In H, we take a countable infinite orthonormal system L≡ {v1, v2, . . .} and

the closed subspace H0 spanned by L. We consider the unitary operator Un which

is identity on (H0)
⊥ and is defined on H0 as follows:

(6.4) Un

(∑
j

ajvj

)
= anv1 +

n−1∑
j=1

ajvj+1 +

∞∑
j=n+1

ajvj .

Then U−1
m (

∑
j ajvj) =

∑m
j=2 ajvj−1+a1vm+

∑∞
j=m+1 ajvj . Therefore, for n <m,

(U−1
m Un)

(∑
j

ajvj

)
=

n−1∑
j=1

ajvj +

m−1∑
j=n

aj+1vj + anvm +

∞∑
j=m+1

ajvj ,

(6.5)

(U−1
m Un)

(∑
j

ajvj

)
−
(∑

j

ajvj

)
=

m−1∑
j=n

(aj+1 − aj)vj + (an − am)vm.
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However,

∥∥∥m−1∑
j=n

(aj+1 − aj)vj + (an − am)vm

∥∥∥

≤
∥∥∥m−1∑
j=n

aj+1vj + anvm

∥∥∥+ ∥∥∥m−1∑
j=n

ajvj + amvm

∥∥∥

≤
(m−1∑

j=n

∣∣(aj+1)
∣∣2 + |an|2

)1/2

+
(m−1∑

j=n

|aj |2 + |am|2
)1/2

≤ 2
( ∞∑
j=n

|aj |2
)1/2

.

This shows that {Un}n is a Cauchy sequence, and

Un

(∑
j

ajvj

)
−
∑
j

ajvj+1 = anv1 +

∞∑
j=n+1

(aj − aj−1)vj

converges to zero as n→∞. So {Un}n strongly (equivalently, weakly) converges

to the operator

P
(∑

j

ajvj

)
=
∑
j

ajvj+1

which is valued in the subspace {v1}⊥ of H. So P is not unitary.

This concludes that G is not complete. �

PROPOSITION 6.1

The group of unitary operators G ≡ U(H) is a T-type group and not strongly

T-type; therefore it satisfies u-duality but not i-duality.

EXAMPLE 2

Let G0 ≡ {Ug} be a group of unitary operators on some Hilbert space H. Intro-

duce the strong (resp., weak) topology on G0; then G0 becomes a topological

group.

Take b-completion G of G0 in J(H). Lemma 1.3(2) shows that G ⊂ U(H).

Therefore G is a b-complete topological group.

A similar argument as for Lemma 6.1 leads to the fact that this G has an

SSUR.

Therefore G is a T-type group and satisfies the weak Tannaka-type u-duality.

EXAMPLE 3

We consider a sequence of topological groups as

G⊃G1 ⊃G2 ⊃ · · · ⊃Gn ⊃ · · · ,
⋂

Gn = {e}.(6.6)

Here for each n, Gn is a closed normal subgroup of G and the factor group

G(n) ≡G/Gn is a locally compact topological group.



Duality theorems and topological structures of groups 99

We give the topology on G the projective limit topology of {G(n)}, that is,
the weakest topology for which the canonical map

(6.7) ϕn :G−→G(n)

is continuous and open.

We call such a G a projective limit group of {G(n)} and write

(6.8) G≡Proj-lim
n

{G(n)}.

Under such a situation, for any neighborhood V of e in G, there exists an n

and a neighborhood Vn of e in G(n) such that

(ϕn)
−1(Vn)⊂ V.

Any locally compact group has an SSUR, and any unitary representation

of G(n) gives naturally a unitary representation of G through the canonical

map ϕn. So G has an SSUR too.

Any element g in G corresponds to a sequence {g(n)(∈G(n))}n such that

g(n) = ϕn(g),

and, for any Cauchy filter base F ≡ {Fα} on G, Fn ≡ {ϕn(Fα)} gives also a

Cauchy filter base on a locally compact group G(n) which is complete. So F
converges in G and G is complete.

Thus we get the following.

PROPOSITION 6.2

The limit group G ≡ Proj-limn{G(n)} is strongly-T-type; therefore it satisfies

i-duality.

EXAMPLE 4

In the papers [7] and [8], we have shown that inductive limit groups G ≡
limn→∞Gn, where each Gn is locally compact and Gn is embedded as a closed

subgroup into Gn+1 but not locally homeomorphic, satisfies the i-duality theo-

rem. In this situation, G is not locally compact.

So, this group gives an example which satisfies i-duality but not b-duality.

EXAMPLE 5

C. Chevalley gave a complexification of compact Lie groups in his book [1] using

Tannaka duality for compact groups.

His argument is as follows. He gives a lemma for compact Lie groups.

LEMMA 6.3

A compact group is a Lie group if and only if it has a faithful finite-dimensional

unitary representation D ≡ {H, Tg}.
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By this lemma, G is imbedded isomorphically into GL(d,C). We will write it

as G0. He considered the algebra F of functions generated by all matrix elements

F≡ {〈Tgu, v〉, 〈Tgu, v〉 (u, v ∈H)}. That is, the same as F is a *-algebra of func-

tions generated by matrix elements of unitary representations through tensor

products and direct sums of representations.

He considered the set (G0)
C =Hom(F,C) and showed that (G0)

C must be

an algebraic subgroup of GL(d,C) topologically isomorphic to G×RdimG.

We can extend any irreducible representation ω of G to a representation

ω̃ ≡ {Hω, Tω
g0} of (G0)

C. But it may not be a unitary representation of (G0)
C.

Any unitary representation D of G is decomposable to a discrete direct sum

asD ∼
∑⊕

α ωα, and according to this decomposition, we can consider D̃ ∼
∑⊕

α ω̃α.

On the space H̃D ≡
∑⊕

α Hωα , the operator (T̃D
g0 )0 =

∑⊕
α Tωα

g0 is closable and

{(T̃D
g0 )0}g0∈(G0)C gives a representation of (G0)

C. Take the closure T̃D
g0 of each

(T̃D
g0 )0 on HD; then TD ≡ {T̃D

g0}g0∈(G0)C is also a representation of (G0)
C.

Moreover, the relations of elements of the algebra F shows that these repre-

sentations of (G0)
C satisfy (B-1)–(B-4) in Section 1.

Consequently, we see that Tg0 ≡ {T̃D
g0}D∈Ω gives a cl-birepresentation.

This complexification of a compact Lie group is an example of a group for

which b-duality is valid but c-duality is not valid.

EXAMPLE 6

A totally disconnected locally compact group gives an example for which c-

duality is valid, since it is a locally compact NOS-group.
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