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Abstract In this paper, we show the so-called weak duality theorem of Tannaka type

for an inductive limit–type topological group G = limn→∞Gn in the case where each

Gn is a locally compact group, and Gn is embedded into Gn+1 homeomorphically as a

closed subgroup. First, we explain what a weak duality theorem of Tannaka type is and

explain the difference between the case of locally compact groups and the case of non-

locally compact groups. Then we introduce the concept “separating system of unitary

representations (SSUR),” which assures the existence of sufficiently many unitary rep-

resentations.The presentGhas anSSUR.Weprove thatG is complete.Wegive semireg-

ular representations and their extensions for G. Using them, we deduce a fundamental

formula about “birepresentation” onG. Combining these results, we can prove the weak

duality theorem of Tannaka type for G.

0. Introduction

Let G= limn→∞Gn be an inductive limit–type topological group. We treat the

case where each Gn is a locally compact group and Gn is embedded in Gn+1

homeomorphically as a closed subgroup. We say that such a group is a closed type

(see Definition 3.1). About topologies and duality theorem of this group, some

results were given in [1], [3], [5], and [6]. In the previous paper [4], we studied

properties of such a group and obtained some family of unitary representations

of it. Based on these results, we show in this paper that for these groups, the

so-called weak duality theorem of Tannaka type is valid.

The weak Tannaka-type duality theorem for topological groups is stated as

follows.

We take the set Ω≡ {D = (HD, TD
g )} of all unitary representations of a given

topological group K, dimensions of which are bounded by max(ℵ0,#K). There

exist operations between elements of Ω such as

(1) unitary equivalence: D1 ∼W D2 (W : intertwining operator),

(2) direct sum: D1 ⊕D2,

(3) tensor product: D1 ⊗D2,

(4) contragradient representation: D→D.

We consider an operator field U ≡ {UD}D∈Ω on Ω satisfying the following:
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(B-0) for each D ∈Ω, UD is a unitary operator on the representation Hilbert

space HD ;

(B-1) D1 ∼W D2 =⇒WUD1W−1 = UD2 ;

(B-2) UD1 ⊕UD2 = UD1⊕D2 ;

(B-3) UD1 ⊗UD2 = UD1⊗D2 ;

(B-4) (UD) = UD.

Here D is the contragradient representation of D, and (UD) is the operator on

HD “contragradient” to UD (see Section 1).

We shall call such an operator field U a birepresentation of K.

On the space of all birepresentations, we give a topology which is the product

of weak topologies on spaces of unitary operators on Hilbert spaces HD .

As it is shown in Section 1, Lemma 1.1 that for any g in K the operator

field T g ≡ {TD
g }D∈Ω satisfies the conditions (B.1)–(B.4); therefore T g gives a

birepresentation.

The weak Tannaka-type duality theorem asserts the converse.

ASSERTION

For any birepresentation U ≡ {UD}D∈Ω,

∃1g ∈K such that UD = TD
g (∀D ∈Ω).

Moreover, the topology given above on the space of birepresentations coincides

with the original topology of K under this correspondence.

As shown in our previous paper [2], for any locally compact group, a theorem

of such type is valid. But there exist several differences for the definition of

birepresentation.

In duality theory for locally compact groups, birepresentations are operator

fields U ≡ {UD}D with values not only of unitary operators but also of nonzero

bounded operators on HD at D ∈Ω. However, for the case of nonlocally compact

groups, the unitary assumption cannot be abridged.

The reason for this phenomenon is explained as follows.

In the case of a locally compact group, norms of any component operators

UD of birepresentation U are bounded by 1 (see [2, (2.16)]).

So, for the case where we take this bounded operator condition as the def-

inition of birepresentation instead of unitarity, we shall call this type of duality

for topological groups the B-type. Consider the space of operator fields

B ≡
{
B = {BD}D∈Ω

∣∣BD bounded operator on HD such that ‖BD‖ ≤ 1
}

with product topology of weak ones. The ball BD ≡ {BD;‖BD‖ ≤ 1} is weakly

compact for each D. So the space B, which is the direct product of these balls,

is weakly compact too. The set KU of all birepresentations is a subgroup of B.

Suppose, for a topological group K, that the B-type duality theorem is valid.

Then we ask what can we conclude on the topology of K.
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It is easy to see that operations (1)–(4) are continuous with respect to the

weak topology. The set B0 ⊂ B satisfying conditions (B-1)–(B-4) is closed in

B and hence is weakly compact. So K is imbedded into B0 as K � g → T g ≡
{TD

g }D∈Ω ∈B0 with the isomorphic image KU .

The only difference between KU and B0 is the nonzero condition. So we see

KU =B0 \ {0}. Now we conclude that K is locally compact as a set taken off

one point from a compact set.

PROPOSITION 0.1

A topological group K for which the B-type duality is valid must be a locally

compact group.

NOTATION

For a representation D = {HD, TD
g } of G, we take its cyclic subrepresentation on

the closed subspace (HD) of HD spanned by {TD
g vD}g∈G (vD ∈HD,‖vD‖= 1).

We express it as (D) = {(HD), TD
g , vD}.

Hereafter, for two cyclic representations Dj = {Hj , T j
g , v

j}, j = 1,2, we denote

cyclic representations contained in D1 ⊕D2 and D1 ⊗D2, respectively, as

(D1 ⊕D2) ≡
{
(H1 ⊕H2), T 1

g ⊕ T 2
g , v

1 ⊕ v2
}
,

(D1 ⊗D2) ≡
{
(H1 ⊗H2), T 1

g ⊗ T 2
g , v

1 ⊗ v2
}
.

This paper is organized as follows. In Section 1, we introduce the concept

separating system of unitary representations (SSUR), which assures existence

of sufficiently many unitary representations. G has an SSUR (see Section 1,

Example 2).

To prove the completeness of G in Section 4, we prepare lemmata about G

in Sections 2 and 3.

We give semiregular representations and their extensions of G in Section 5.

Using results in Section 5, we deduce important properties about “birepresenta-

tions” on G in Section 6.

Combining results in Sections 4 and 6, we can prove the weak duality theorem

of Tannaka type for G in Section 7.

In Section 8, we introduce a new notion, isobirepresentation, which gives

a wider category than of birepresentation. We can prove an analogous duality

theorem for these isobirepresentations.

1. Separating system of unitary representations

Consider a Hausdorff (i.e., T2-) topological group K.

Let D ≡ {HD, TD
g , vD} be a cyclic unitary representation of K. Here HD

is the representation space, TD
g is the operator of representation, and vD is the

normalized cyclic vector ‖vD‖= 1. Then the function ηD(g)≡ 〈TD
g vD, vD〉 is a

normalized continuous positive definite function on K.
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For later arguments, we treat D ≡ {H, T g, v}, the so-called contragradient

representation of D ≡ {H, Tg, v}, where H is the linear dual space of H, and there

exists an antilinear map from H to H defined by

(1.1) H� u→ u ∈H : u(w)≡ (w,u) = 〈w,u〉.

In H, we introduce an inner product as 〈w,u〉= 〈w,u〉. As is easily shown,

(u) = u. For a bounded operator A on H, we define Au≡ (Au); then A gives a

bounded linear operator on H. By definition, Tgu= (Tgu), and if A and B are

bounded operators on H, then ABu=A(Bu) =A(Bu) = (A(Bu)) = (ABu).

Hence g → T g ≡ (Tg) gives a unitary representation of K on H. This is

by definition the contragradient representation of D. Let v ∈ H be the vector

corresponding to v ∈H as above; then

(1.2) ∀g ∈K, 〈T gv, v〉= 〈Tgv, v〉.

It is easy to see that (D) is equivalent to the original D.

LEMMA 1.1

We have ∀g ∈K,∀D ∈Ω, (TD
g ) = TD

g .

Proof

It is just the definition of D.

On the other hand, the representation D0 ≡D ⊕D is self-adjoint; that is,

(D0)∼W D0, with an intertwining operator W exchanging the first space with

the second space, which maps a vector u⊕ v to v⊕ u. �

LEMMA 1.2

Consider a representation D0 ≡D⊕D for a given representation D ≡ {HD, TD
g }.

Let A be a bounded operator on HD.

Then, for ∀u, v ∈HD, 〈(A⊕A)(u⊕ u), v⊕ v〉 (≤ 1) is real valued.

Proof

We have 〈(A ⊕ A)(u ⊕ u), v ⊕ v〉 = 〈Au,v〉 + 〈Au,v〉 = 〈Au,v〉 + 〈(Au), v〉 =
〈Au,v〉+ 〈Au,v〉= 2�〈Au,v〉. (� shows the real part.) �

Now for any given cyclic unitary representation D ≡ {H, Tg, v} (‖v‖ = 1), and

the trivial representation I = {C, Ig, v0}, we consider unitary representation

Dp ≡ I ⊕D⊕D

and its cyclic part (Dp), whose representation space is spanned by the vector

vp ≡ (2−1/2)v0 ⊕ (1/2)(v⊕ v).

COROLLARY 1.2.1

For the above cyclic representation (Dp), the matrix element

1≥ 〈TDp
g vp, vp〉 ≥ 0.
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Proof

At first, ‖vp‖2 = 2−1‖v0‖2 + 2× 2−2‖v‖2 = 2−1 + 2× 2−2 = 1.

Therefore 〈TDp
g vp, vp〉 ≤ 1 and |〈TD

g v, v〉| ≤ 1,

1≥ 〈TDp
g vp, vp〉= (2−1)〈Igv0, v0〉+ (4−1)

{
〈TD

g v, v〉+ 〈TD
g v, v〉

}

= 2−1 + (2−1)
(
�〈TD

g v, v〉
)
≥ 0.

(1.3)
�

Write η(g)≡ 〈TD
g v, v〉. Take 0< ε< 1, and put

F (D,ε)≡
{
g ∈K

∣∣ ∣∣1− η(g)
∣∣< ε

}
.

COROLLARY 1.2.2

Let D, and (Dp) be as in Corollary 1.2.1. Then

(1.4) 1> ∀ε≥ 0,∃δ > 0, F (Dp, δ)⊂ F (D,ε).

Proof ∣∣1− η(g)
∣∣< ε< 1 shows that

∣∣1−�η(g)
∣∣< 1; therefore �η(g)> 0.

Since ηp(g) = 〈TDp
g vp, vp〉= 2−1(1 + (�〈TD

g v, v〉),

1− ηp(g) = 1−�ηp(g) = 1− 2−1 − (2−1)�η(g) = 2−1
(
1−�η(g)

)
.

On the other hand, 1≥ |�η(g)|2 + |�η(g)|2. (� is the imaginary part.)

So |�η(g)|2 ≤ 1− (�η(g))2 = (1−�η(g))× (1+�η(g))≤ 2(1−�η(g)). Thus
∣∣1− η(g)

∣∣2 = ∣∣1−�η(g)
∣∣2 + ∣∣�η(g)∣∣2 ≤ (

1−�η(g)
)2

+ 2
(
1−�η(g)

)
=

(
1−�η(g)

)(
3−�η(g)

)
≤ 3

(
1−�η(g)

)
= 6

(
1− ηp(g)

)
.

This shows that if 6δ < ε2, then ∀g ∈ F (Dp, δ) leads us to g ∈ F (D,ε). �

DEFINITION 1.1

We say that a set Ω0 ≡ {Dα}α∈A of cyclic unitary representations of K gives

a separating system of unitary representations (SSUR) if, for any neighbor-

hood V of the unit e in K, there exists a positive definite function ηD(g) ≡
〈TD

g vD, vD〉 (D ∈Ω0) and ε > 0 such that
{
g ∈K

∣∣ ∣∣1− ηD(g)
∣∣< ε

}
⊂ V.

EXAMPLE 1

Let K be a locally compact group. For any neighborhood V of e, we can take a

continuous function f such that [f∗ ∗ f ]⊂ V , where [f∗ ∗ f ] denotes the carrier

of the convolution function of f∗ and f , where f∗(g) =Δ(g)f(g−1) (Δ(g) shows

the modular function on G).

As is well known, f∗ ∗f gives a positive definite function. This shows that the

family of cyclic subrepresentations of the regular representation gives an SSUR

of K.
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EXAMPLE 2

In [4, Proposition 5.5], we have shown that, for a closed-type inductive limit

group G = limn→∞Gn and a neighborhood V of e in G, we can construct a

positive definite function F on G such that the carrier [F ]⊂ V . This shows that

the family of representations given in the paper [4] gives an SSUR for G.

LEMMA 1.3

If a topological group K has an SSUR, then we can select a new SSUR Ω1 ≡ {D},
for which any D = {HD, TD

g , vD} ∈Ω1 has a nonnegative valued positive definite

function ηD(g)≡ 〈TD
g vD, vD〉.

Proof

Take, instead of the initially given SSUR, Ω≡ {D}, the new system Ω1 ≡ {(Dp)}
as above; Corollaries 1.2.1 and 1.2.2 show that Ω1 is also an SSUR. �

For a given Hilbert space H, we denote by B(H) the space of all bounded opera-

tors, by J(H) the space of all isometric operators, and by U(H) the space of all

unitary operators on H. Put the weak topologies on J(H)’s.

For U ∈ J(H) and v ∈H,

‖Uv− v‖2 = ‖Uv‖2 + ‖v‖2 − 2�〈Uv, v〉

= 2
(
〈v, v〉 −�

(
〈Uv, v〉

))
= 2�

(
〈v−Uv, v〉

)
.

(1.5)

That is, the weak topology coincides with the strong topology.

Moreover, U(H) becomes a topological group with the multiplication of oper-

ators and this topology. As a group topology, this topology gives a uniform struc-

ture on U(H).

Now, for a topological group K, we consider any unitary representation D ≡
{HD, TD

g } and the map K � g→ TD
g ∈ U(HD). Of course this map is continuous

for each D.

Construct U(Ω)≡
∏

D∈ΩU(HD) with natural product topology. Then U(Ω)

is a topological group too, by the componentwise multiplication. The map

K � g �−→ (TD
g )D∈Ω ∈

∏
D∈Ω

U(HD) =U(Ω)(1.6)

is an injective homomorphism as topological groups.

Now let K be a T2-topological group with an SSUR.

LEMMA 1.4

For this group K the map (1.6) is an injective isomorphism, so by this map, K

is embedded as a topological group in U(Ω).

Proof

According to the above discussions, this map is continuous.

Conversely the T2-property and existence of an SSUR Ω0 show that this map

must be injective, and for any neighborhood V of e ∈K, we can select elements
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D ∈Ω0 and ε > 0 such that{
g ∈K

∣∣ ‖TD
g v− v‖< ε

}
⊂ V.

This shows the continuity of the inverse map of (1.6). �

Hereafter we denote by KU the image of K under (1.6) in U(Ω).

2. Cauchy filter base

DEFINITION 2.1

Take a filter base F ≡ {Fα}α∈Γ on a T2-topological group K, where Γ is a par-

tially ordered set. We say that F is l-Cauchy (resp., r-Cauchy) if for any neigh-

borhood V of e ∈K, there exists α ∈ Γ such that

∀β,γ � α (β,γ ∈ Γ), F−1
β Fγ ⊂ V (resp., FβF

−1
γ ⊂ V ).

And we say that F is b-Cauchy (both Cauchy) when F is l-Cauchy and at

the same time F−1 ≡ {F−1
α }α∈Γ is l-Cauchy.

If any l-Cauchy (resp., r-Cauchy, b-Cauchy) filter bases have limit points in

K, we say that K is l-complete (resp., r-complete, b-complete).

As is well known that an l-complete group is also r-complete.

For simplicity, hereafter we use the word “Cauchy” (resp., complete) for “l-

Cauchy” (resp., l-complete).

A b-Cauchy filter base is also l-Cauchy, so an l-complete group is b-complete

too.

If a filter base F converges to a point g0 in K, then F−1 converges to g−1
0 .

LEMMA 2.1

For an arbitrary given Cauchy filter base F ≡ {Fα}α∈Γ on a T2-topological group

K, the set F ≡ {Fα}α∈Γ gives a base of a Cauchy filter on K too, where Fα

denotes the closure of Fα.

If one of F and F converges, then the other one converges to the same limit

point. (We say that this property is cofinal.)

Proof

Since Fα ∩ Fβ ⊃ Fα ∩ Fβ , F ≡ {Fα}α∈Γ gives a base of a filter on K.

We show that it is Cauchy.

For any given neighborhood W of e, take a symmetric neighborhood V (i.e.,

V = V −1) of e as V 3 ⊂W .

Because F is Cauchy, ∃α ∈ Γ such that ∀β,γ � α, F−1
β Fγ ⊂ V .

But Fα ⊂ FαV,Fβ ⊂ FβV . Therefore Fα
−1

Fβ ⊂ V F−1
α FβV ⊂ V 3 ⊂W .

We have ∀α,Fα ⊃ Fα, so if F converges, then F converges to the same limit.

Conversely if F converges, then VF ≡ {V Fα}α∈Γ,V ∈V (V is the set of all

neighborhoods of e) converges to the same limit.

Since VF ⊃F , this concludes the proof. �
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DEFINITION 2.2

We call a filter base F ≡ {Fα} such that all Fα are closed, as C-filter base.

3. Partially compact set in an inductive limit group

DEFINITION 3.1

We say that an inductive limit group G= limn→∞Gn of closed type if each Gn

is a locally compact group, and Gn is imbedded in Gn+1 homeomorphically as a

closed subgroup.

REMARK

Here we can assume without any loss of generality that each Gn is not locally

isomorphic to Gn+1.

If there is an n such that ∀m ≥ n,Gm is locally isomorphic to Gn, then G

is itself locally compact group which is locally isomorphic to Gn. So we have no

need to discuss this case.

If not, we can take a subsequence {Gn(m) (n(m) < n(m + 1))} such that

Gn(m) is not locally isomorphic toGn(m+1), andG is isomorphic to limn→∞Gn(m),

which satisfies the above condition.

In this section, we consider a closed-type inductive limit group G= limn→∞Gn.

We quote some results from our previous paper [4].

DEFINITION 3.2

Take for each n a neighborhood Wn of e in Gn. Then

(3.1) W ≡
⋃

1≤k<∞
W1 ·W2 · · ·Wk

is a neighborhood of e in G. We call a neighborhood of this type a BS (bamboo

shoot) neighborhood.

In [4, Proposition 2.3], the next proposition was shown.

PROPOSITION 3.1

Let G be a closed-type inductive limit group. Then the family of BS neighborhoods

gives a fundamental system of neighborhoods of e in G.

DEFINITION 3.3

A subset E (⊂G) is called a partially compact set, or a PC set, if for any n,E∩Gn

is a compact set (may be vacant).

The next is obvious.

LEMMA 3.1

For any PC set E and ∀g ∈G, the sets Eg, gE are also PC sets.
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LEMMA 3.2

Let E be a PC set in G such that ∃n,E∩Gn = ∅. Then there exists a neighborhood

W of e in G such that E ∩GnW = ∅.

Proof

Since Gn is closed in Gn+1, for the compact set En+1 ≡E ∩Gn+1, we can take

a compact neighborhood Wn+1 of e in Gn+1 such that En+1 ∩GnWn+1 = ∅.
Obviously GnWn+1 ⊂Gn+1, Gn is closed, and Wn+1 is compact, so its prod-

uct GnWn+1 is closed.

For a closed set GnWn+1 in Gn+2 and a compact set En+2 ≡E ∩Gn+2,

En+2 ∩GnWn+1 = E ∩Gn+2 ∩GnWn+1 =E ∩Gn+1 ∩GnWn+1

= En+1 ∩GnWn+1 = ∅.

So we can take a compact neighborhood Wn+2 of e in Gn+2 such that

En+2 ∩GnWn+1Wn+2 = ∅.

Similarly for the closed set GnWn+1Wn+2 in Gn+3 and a compact set En+3 ≡
E ∩Gn+3, define a compact neighborhood Wn+3 of e in Gn+3 such that

En+3 ∩GnWn+1Wn+2Wn+3 = ∅.

Repeating these steps, by induction on k, we can obtain a compact neighborhood

Wn+k such that

En+k ∩GnWn+1Wn+2 · · ·Wn+k = ∅.

We have ∀k >m,En+k ⊃En+m,En+m ∩GnWn+1Wn+2 · · ·Wn+k = ∅, that is,

En+m ∩Gn

(⋃
k≥1

Wn+1Wn+2 · · ·Wn+k

)
= ∅.

The set W ≡
⋃

k≥1Wn+1Wn+2 · · ·Wn+k is a BS neighborhood of e in G, and

∀m, En+m ∩GnW = ∅.

But E =
⋃

k≥1En+k, and so E ∩GnW = ∅. �

LEMMA 3.3

If there exists a family {Fm}m≥1 of PC sets in G satisfying

(1) ∀m, Fm ⊃ Fm+1, (2) ∀m, Fm ∩Gm = ∅,

then we can take a neighborhood V of e ∈G such that

∀m, Fm+1 ∩GmV = ∅.

Proof

Take Fm+1 as E in Lemma 3.2; then there exists a neighborhood Vm+1 of e ∈G

such that Fm+1 ∩GmVm+1 = ∅. Here GmVm+1 is a neighborhood of e ∈G.
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Put V ≡
⋂

m≥1GmVm+1. We show that V is also a neighborhood of e ∈G.

For this it is enough to show that V contains an open neighborhood of e ∈G.

Since Vm is a neighborhood in G, there exists an open neighborhood Om ⊂ Vm

of e ∈G. Put

V =
⋂
m≥1

GmVm+1 ⊃O ≡
⋂
m≥1

GmOm+1 � e.

To prove that O is open in G, it is enough to see that ∀k,O ∩Gk is open in

Gk. But ∀m≥ k,Gk ⊂GmOm+1. So

O ∩Gk =
( ⋂
m<k

GmOm+1

)
∩
( ⋂
m≥k

GmOm+1

)
∩Gk

=
( ⋂
m<k

GmOm+1

)
∩
(( ⋂

m≥k

GmOm+1

)
∩Gk

)

=
⋂
m<k

GmOm+1 ∩Gk,

which is open in Gk. And

∀m, Fm+1 ∩GmV = Fm+1 ∩Gm

(⋂
k≥1

GkVk+1

)
⊂ Fm+1 ∩GmVm+1 = ∅.

�

LEMMA 3.4

For any neighborhood V of e ∈G, there exists a PC neighborhood of e ∈G con-

tained in V .

Proof

Without any loss of generality, we can assume that V is a BS neighborhood; that

is, we can consider it as V =
⋃

1≤k<∞ V1 · V2 · · ·Vk.

We will take Wn in (3.1) inductively as ∀n,Wn ⊂ Vn.

At first, take an open relatively compact neighborhood of e in G1 as W1 ⊂ V1.

Next, we select W2 a relatively compact neighborhood of e in G2 as W2 ⊂ V2

and (W2)
2 ∩G1 ⊂W1.

Now, if we can determine Wj−1, then we select Wj as a relatively compact

neighborhood of e in Gj satisfying Wj ⊂ Vj and (Wj)
2 ∩Gj−1 ⊂Wj−1.

In this situationW1 ·W2 · · ·Wj−1 ·(Wj)
2 is a relatively compact neighborhood

of e in Gj . Now put W ≡
⋃

k≥1W1 ·W2 · · ·Wk and E(k, j)≡W1 ·W2 · · ·Wk ∩Gj .

If k ≤ j, then Gj ⊃W1 ·W2 · · ·Wk ⊃E(k, j).

When k > j, then

E(k, j)≡W1 ·W2 · · ·Wk ∩Gj ⊂W1 ·W2 · · ·Wk−1(Wk)
2 ∩Gj

=W1 ·W2 · · ·Wk−1(Wk)
2 ∩Gk−1 ∩Gj

=
(
W1 ·W2 · · ·Wk−1(Wk)

2 ∩Gk−1

)
∩Gj

⊂
(
(W1 ·W2 · · ·Wk−1)

(
(Wk)

2 ∩Gk−1

))
∩Gj
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⊂W1 ·W2 · · ·Wk−2(Wk−1)
2 ∩Gk−2 ∩Gj

· · ·

⊂W1 ·W2 · · ·Wj−1(Wj)
2 ∩Gj =W1 ·W2 · · ·Wj−1(Wj)

2.

In both cases, ∀k,E(k, j)⊂W1 ·W2 · · ·Wj−1(Wj)
2, that is,

W ∩Gj ≡
⋃
k≥1

W1 ·W2 · · ·Wk ∩Gj ⊂W1 ·W2 · · ·Wj−1(Wj)
2

is a relatively compact set in G.

Since W is a neighborhood of e in the topological group G, there exists a

neighborhood V0 of e such that (V0)
2 ⊂W and V0 ⊂ (V0)

2 ⊂W .

Thus V0 is closed, and ∀n,V0 ∩Gn (⊂W ∩Gn) is compact.

V0 is a PC neighborhood of e ∈G contained in V . �

COROLLARY 3.4.1

If F = {Fα}α∈A is a Cauchy C-filter base, then there exists an α such that for

all β � α,Fβ are PC sets.

Proof

Take a PC neighborhood W of e ∈G. Since F = {Fα}α∈A is Cauchy, ∃α,∀β >

α,F−1
α Fβ ⊂W . So, for some g ∈ Fα, Fβ ⊂ gW . This shows that ∀β > α, Fβ is a

PC set. �

LEMMA 3.5

A σ-compact set in a Hilbert space is contained in a closed separable subspace.

Proof

Any compact set C in a metric vector space has a countable dense subset Ξ.

For a given σ-compact set B ≡
⋃

n≥1Cn with Cn compact, take Ξn a count-

able dense set in Cn. Then
⋃

n≥1Ξn spans a closed separable subspace contain-

ing B. �

COROLLARY 3.5.1

Let E be a partially compact set in G.

For any unitary representation D = {HD, TD
g } of G and v ∈ HD, the set

TD
E v ≡ {TD

g v | g ∈E} is contained in a closed separable subspace.

Proof

The set E is σ-compact, so its continuous image TD
E v is the same. �

4. Completeness of G= limn→∞Gn

THEOREM 1

A closed-type inductive limit group G= limn→∞Gn is complete.
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Proof

We show that any Cauchy filter base F ≡ {Fα}α∈A on G converges to a point

in G.

There exist two cases.

Case (1) We have ∃n such that ∀α,Fα ∩Gn �= ∅;
Case (2) We have ∀n, ∃α such that Fα ∩Gn = ∅.
In case (1), the set Fn ≡ {Fα,n ≡ Fα ∩Gn}α∈A gives a Cauchy filter base in

the locally compact group Gn. In fact,

∀Fα,n, Fβ,n ∈ Fn, Fα,n ∩ Fβ,n = (Fα ∩Gn)∩ (Fβ ∩Gn) = (Fα ∩ Fβ)∩Gn

contains an element of Fn. So Fn gives a filter base. The “Cauchy property” for

F assures the same property for Fn.

Since a locally compact group is complete, Fn converges to a point in Gn.

This point is also the limit of F . So F converges to a point of Gn.

Now we shall show that case (2) does not exist.

Assume that F is a C-filter base as in case (2). By Corollary 3.4.1, all ele-

ments of F can be taken as PC sets. Since G=
⋃
Gn, for ∀Fα,∃n such that

Fα ∩Gn �= ∅.(4.1)

Now take F1 ∈ F as F1 ∩G1 = ∅ and n(1) as F1 ∩Gn(1) �= ∅.
Next take F2 ∈ F as F2 ⊂ F1, F2 ∩Gn(1) = ∅, and n(2) as F2 ∩Gn(2) �= ∅.
Repeating these steps inductively, after determining Fk−1 and n(k − 1), we

take

Fk ∈ F as Fk ⊂ Fk−1, Fk ∩Gn(k−1) = ∅, and n(k) as Fk ∩Gn(k) �= ∅.

Thus we obtain a sequence {Fm, n(m)}m≥1 of pairs as

∀m, Fm+1 ⊂ Fm, Fm+1 ∩Gn(m) = ∅, Fm+1 ∩Gn(m+1) �= ∅.(4.2)

For any inductive limit group G= limn→∞Gn, we can omit components in

the middle of the sequence. So we rewrite Gn(m) to Gm, and apply Lemma 3.3.

Then we obtain a neighborhood V of e ∈G satisfying ∀m,Fm+1 ∩GmV = ∅. In
other words,

GmFm+1 ∩ V = ∅ and Fm+1 ∩Gm+1 �= ∅.(4.3)

Now, we quote here the result of [5, Proposition 5.5, Theorem 5.10].

PROPOSITION

Let G= limn→∞Gn be a closed-type inductive limit group. Then for any neigh-

borhood V of e in G, there exists a continuous positive definite function η such

that its support is contained in V :

[η]⊂ V.(4.4)

Recall that the GNS-construction method gives a cyclic unitary representation

D ≡ {H, Tg, v} such that η(g) = 〈Tgv, v〉, and (4.4) means that, if g0 is not con-
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tained in V , then 〈Tg0v, v〉= 0; that is the same as

Tg0v ⊥ v.(4.5)

Combining with (4.3), we get

∀hm ∈Gm,∀gm+1 ∈ Fm+1, Th−1
m gm+1

v ⊥ v,(4.6)

that is,

∀hm ∈Gm,∀gm+1 ∈ Fm+1, Tgm+1v ⊥ Thmv.(4.7)

On the other hand, the family of sets of vectors {TF v}F∈F must be a Cauchy

filter base in the representation Hilbert space H. Let u be the limit of {TF v}F∈F .

Now put

Dm ≡
{
g ∈G

∣∣ ‖Tgv− u‖< 1/m
}
.

Since u is the limit of monotone filter base {TFmv}m≥1, we have ∀m,n,

Dm ∩ Fn �= ∅.
Put E(m)≡Dm∩Fm. Then these sets are nonempty and monotone decreas-

ing with respect to m. By (4.2), Gm ∩E(m+ 1) = ∅.
At first, we take the minimal n(1) such that Gn(1) ∩ E(1) �= ∅ and take

g1 ∈Gn(1) ∩E(1).

Next take the minimal n(2) such that Gn(2) ∩ E(n(1) + 1) �= ∅ and g2 ∈
Gn(2) ∩E(n(1) + 1).

Repeating this process, take the minimal n(k) such that Gn(k) ∩ E(n(k −
1) + 1) �= ∅, we obtain a sequence of pairs {(n(k), gk)}k≥1, where gk ∈ Gn(k) ∩
E(n(k− 1) + 1). Since Gn are monotone increasing,

∀m< k, gm ∈Gn(k)−1, but gk ∈E
(
n(k− 1) + 1

)
⊂ F

(
n(k− 1) + 1

)
.

The equation (4.7) claims ∀m< k,Tgmv ⊥ Tgkv; that is, all the elements of the

sequence {Tgkv}k≥1 are mutually orthogonal. But we say that the family of

sets of vectors {TF v}F∈F must be a Cauchy filter base. This is a contradiction.

�

5. Semiregular representation

In the previous paper [5, Sections 5.1–5.3, Theorem 5.10], for any given PC

neighborhood E of e ∈G, we construct explicitly a cyclic unitary representation

of G corresponding to a positive definite function η(g) ≡ 〈Rgf
∼, f∼〉 such that

the support of η satisfies [η] ⊂ E. We write this unitary representation as R ≡
{H,Rg, f

∼}, and review its construction.

First we select a sequence {(f∼
n , μn)}n≥1 of pairs of positive-valued continu-

ous function f∼
n and right Haar measure μn on Gn, inductively.

The vector f∼ is given as a continuous positive-valued function on G whose

restriction on each Gn is in L2(μn), and f∼ is the uniform limit and at the same

time the limit in L2(μn) of f
∼
n , n≥ 1.
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We show

‖f∼‖ ≡ lim
n→∞

‖f∼
n ‖L2(μn)

(5.1)

= lim
n→∞

(∫
Gn

∣∣f∼
n (g)

∣∣2 dμn(g)
)1/2

= 1,

‖Rgf
∼‖ ≡ lim

n→∞
‖Rgf

∼
n ‖L2(μn) = ‖f∼‖ (∀g ∈G),(5.2)

(
‖Rg1f

∼
n ‖L2(μn)

)2
=

∫
Gn

∣∣Rg1f
∼
n (g)

∣∣2 dμn(g) (∀g1 ∈Gn).(5.3)

Here Rg denotes the right translation by g on a function.

Consider the space H linearly spanned by {Rgf
∼}g∈G, that is, the space

of functions {
∑

j cjRgjf
∼(g)} on G. The norm ‖ ∗ ‖ gives a pre-Hilbert space

structure on H , and its completion H is a Hilbert space, and R≡ {H,Rg, f
∼} is

a unitary representation of G such that [η]⊂E for η(g)≡ 〈Rgf
∼, f∼〉. Thus the

construction is reviewed.

DEFINITION 5.1

We call the representation R≡ {H,Rg, f
∼}, a semiregular representation.

However, in the following, we will be forced to treat other unitary representations.

Take a cyclic unitary representation D ≡ {HD, TD
g , vD} of G, and take a

cyclic part of the tensor product

D∼ ≡ (D⊗R) =
{
(HD ⊗H), TD

g ⊗Rg,f
∼ ≡ vD ⊗ f∼},

where (D⊗R) means the subrepresentation ofD⊗R on the subspace (HD⊗H) of

HD ⊗H spanned by f∼. As is easily shown, an element of HD ⊗H is considered

as a vector-valued function f(g) ≡
∑

j cjRgjf
∼(g)vj (vj ∈ HD) on G, and for

f ,k ∈HD ⊗H ,

‖f‖2 = lim
n→∞

∫
Gn

∥∥f(g)∥∥2HD dμn(g),(5.4)

〈f ,k〉 = lim
n→∞

∫
Gn

〈
f(g),k(g)

〉
HD dμn(g).(5.5)

Then the representation D∼ belongs to the positive definite function

〈TD∼

g f∼,f∼〉=
〈
(TD

g ⊗Rg)(v
D ⊗ f∼), (vD ⊗ f∼)

〉

= 〈TD
g vD, vD〉 · 〈Rgf

∼, f∼〉.
(5.6)

As a product of two continuous functions, 〈TD∼
g f∼,f∼〉 is continuous. So

the “direct product” representation D∼ is also continuous.

Elements of HD ⊗H are considered to be vector-valued functions on G.

We consider an operator (T 0
g f)(∗)≡ TD

g f(∗g) on this space; then

D(0) ≡ {HD ⊗H, T 0
g }
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gives a unitary representation of G. As the restriction to the subspace (HD ⊗H)

of HD ⊗H, D∼ is a subrepresentation of D(0).

The vector f∼ = vD ⊗ f∼ is represented as f∼(g)vD , and T 0
g (v

D ⊗ f∼) =

f∼(∗g)(TD
g vD).

Consider an operator

W : f(g)→ TD
g f(g)(5.7)

on HD ⊗H, that is, for f∼ ≡ vD ⊗ f∼,Wf∼(g) = TD
g vD ⊗ f∼(g), and

‖Wf∼‖HD⊗H =
∥∥TD

∗ f∼(∗)
∥∥
HD⊗H

= lim
n→∞

(∫
Gn

∥∥f∼
n (g)TD

g vD
∥∥2 dμ(g))1/2

= lim
n→∞

(∫
Gn

∣∣f∼
n (g)

∣∣2‖vD‖2 dμ(g)
)1/2

= lim
n→∞

(∫
Gn

∥∥f∼
n (g)vD

∥∥2 dμ(g))1/2

= ‖f∼‖HD⊗H.

(5.8)

Moreover, TD
g−1 = (TD

g )−1, so W gives a unitary operator. Therefore D1 ≡ {HD⊗
H,WTD0

g W−1} is a unitary representation of G and is equivalent to D0. The

relation

WTD0

g0 W−1
(
TD
∗ (vD)⊗ f∼(∗)

)
=W

(
TD0

g0 vDf∼(∗g0)
)

=W
(
(TD

∗g0v
D)f(∗g0)

)
= f(∗g0)

(5.9)

shows that the operator TD1

g ≡WTD0

g W−1 is the right translation operator by

g in this representation D1 ≡ {HD ⊗H, T 1
g }.

We take E as a PC set in G. By Corollary 3.5.1, TD
E vD is contained in a

closed separable subspace HD
0 in HD . We fix a CONS{vj} in HD

0 such as v1 = vD.

Now expand with respect to this CONS{vj}, f in HD as

(5.10) f(∗) =
∑
j≥1

〈
f(∗), vj

〉
vj ;

then,

(5.11) (T 1
g f)(∗) =

∑
j≥1

〈
f(∗g), vj

〉
vj (g ∈E).

This means that for each j the space Hj ≡ {〈f(∗), vj〉vj}f∈(HD⊗H) is an

invariant subspace in HD for any f such that [f ]⊂E.

We return to our D∼. According to the above arguments, W (f∼(g)vD) =

f∼(g)TD
g vD for any g ∈G, and f∼(g) = 0 if g /∈E, so the components in (5.10)

are 〈
f(∗), vj

〉
= f∼(∗)〈TD

∗ vD, vj〉.(5.12)

Especially in the case j = 1, we have 〈f(∗), vD〉= f∼(∗)〈TD
∗ vD, vD〉.
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The subrepresentation corresponding to this component is realized on a func-

tion space HD on G, spanned by {Rg(f
∼(∗)〈TD

∗ vD, vD〉)}g∈G, and the operators

of representation are the right translation Rg on this function space.

DEFINITION 5.2

We call the representation

D∼(D)≡
{
(HD),Rg, f

∼(∗)〈TD
∗ vD, vD〉

}
(5.13)

of G a generalized semiregular representation.

6. Birepresentation of G

Now we remark on some elementary properties of birepresentations.

From the condition (B-4), for any birepresentation U ≡ {UD},

UD = (UD).(6.1)

LEMMA 6.1

For D0 ≡D⊕D, 〈UD0

(u⊕ u), v⊕ v〉 is real valued.

Proof

We have〈
UD0

(u⊕ u), v⊕ v
〉
= 〈UDu, v〉+ 〈UDu, v〉

= 〈UDu, v〉+
〈
(UDu), v

〉
= 〈UDu, v〉+ 〈UDu, v〉 ∈R. �

COROLLARY 6.1.1

Put Dp ≡ I⊕D⊕D. Take vectors w0 ∈HI ,w ∈HD such that 21/2‖w0‖= 2‖w‖=
1, and put vp ≡w0 ⊕w⊕w. Then

〈UDpvp, vp〉=
〈
UDp(w0 ⊕w⊕w),w0 ⊕w⊕w

〉
≥ 0.(6.2)

Proof

The proof of this corollary is completely similar to one of Corollary 1.2.1. We

substitute in (1.3), UDp as T
Dp
g ,UD as TD

g and w as v. And get

〈UDpvp, vp〉= 2−1 + 2−1�〈UDw,w〉.

But ∣∣〈UDw,w〉
∣∣≤ ‖w‖2 = 2−2.

So −2−1 ≤ 2�〈UDw,w〉 ≤ 2−1, whence 〈UDpwp,wp〉 ≥ 0. �

COROLLARY 6.1.2

As in the case of Corollary 6.1.1, for Dp ≡ I ⊕D⊕D,

(6.3) ∀g ∈G, 〈TDp
g UDpvp, vp〉 ≥ 0 (vp =w0 ⊕w⊕w).
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Proof

For any birepresentation U ≡ {UD} and T g ≡ {TD
g },T gU ≡ {TD

g UD} is also a

birepresentation. So we can apply the result of Corollary 6.1.1. �

Now we consider a birepresentation for a closed-type inductive limit group G.

Let D = {HD, TD
g , vD} be a cyclic unitary representation of G. Denote by

ηD(g)≡ 〈TD
g vD, vD〉 the positive definite function to which D belongs, and put

KD(g)≡ 〈TD
g UDvD, vD〉.

LEMMA 6.2

We have

(6.4) sup
g∈G

∣∣KD(g)
∣∣= sup

g∈G

∣∣ηD(g)
∣∣= ηD(e) = ‖vD‖2 = 1.

Proof

Since ‖vD‖= 1 and UD, TD
g are unitary, |KD(g)| ≤ 1.

If there exists a δ > 0 such that a≡ supg∈G |KD(g)|< 1− δ, then using the

continuity of ηD(g), we can select a neighborhood V of e in G in such a way that

if g ∈ V , then �(ηD(g))> 1− δ.

By Section 5, there exists a semiregular representation

R≡ {H,Rg, f
∼} as

[
〈Rgf

∼, f∼〉
]
⊂ V.

On the tensor product D0 ≡ (D⊗R) = {(HD ⊗H), TD
g ⊗Rg, v

D ⊗ f∼},

(6.5) W
(
UD0

(vD ⊗ f∼)
)
= URW (vD ⊗ f∼) = UR

(
〈TD

∗ vD, vD〉f∼(∗)
)
,

where W is given in (5.7). On the other hand,

W
(
UD0

(vD ⊗ f∼)
)
=W (UDvD ⊗URf∼)

= vD ⊗
(
〈TD

∗ UDvD, vD〉URf∼(∗)
)
.

(6.6)

Take the norm of both sides; then∥∥UR
(
〈TD

∗ vD, vD〉f∼(∗)
)∥∥=

∥∥〈TD
∗ vD, vD〉f∼(∗)

∥∥
(6.7)

> (1− δ)‖f∼‖= 1− δ,
∥∥〈TD

∗ UDvD, vD〉URf(∗)
∥∥=

∥∥K(∗)URf(∗)
∥∥

(6.8)
< (1− δ)‖URf∼‖= (1− δ)‖f∼‖= 1− δ.

This is a contradiction. �

REMARK 6.1

By just analogous arguments, using the regular representation instead of the

semiregular representation, we obtain the same assertion for any locally compact

group.
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7. Duality theorem for well-behaved group

DEFINITION 7.1

We call a topological group G a well-behaved group if

(W-1) G has an SSUR,

(W-2) G is b-complete,

(W-3) for any cyclic unitary representation D ≡ {HD, TD
g , vD} (‖vD‖ = 1)

and any birepresentation U ≡ {UD}D, there holds

sup
g∈G

∣∣〈TD
g UDvD, vD〉

∣∣= 1.

The next lemma has been shown in the arguments in Lemma 6.2 and Remark 6.1.

LEMMA 7.1

Any locally compact groups and closed-type inductive limit groups are all well

behaved.

Now we fix a birepresentation U ≡ {UD}D of a well-behaved group G.

As in Section 6, we will use the notation KD(g)≡ 〈TD
g UDvD, vD〉.

In the same section, we gave Dp ≡ I⊕D⊕D, which contains a cyclic subrep-

resentation such that associated positive definite functions satisfy KDp(g)≥ 0.

By Corollary 6.1.2, we take actually the following as cyclic subrepresentation

(Dp) =
{
(C ⊕HD ⊕HD), (I ⊕ TD

g ⊕ TD
g ), vp ≡w0 ⊕w⊕w

}
.(7.1)

LEMMA 7.2

If for any g ∈G,KD(g) = 〈TD
g UDvD, vD〉 ≥ 0, then

(7.2) inf
g∈G

(
1−KD(g)

)
= 0.

Proof

From the assumption, UD is a unitary operator and ‖vD‖= 1.

Hence 1≥KD(g)≥ 0, and so |KD(g)|=KD(g).

Then condition (W-3) gives supg∈GKD(g) = 1. This is the result. �

We denote by Ω+ the set of all cyclic representations (HD, TD
g , vD) satisfying

KD(g) = 〈TD
g UDvD, vD〉 ≥ 0.

As was shown, Ω+ contains cyclic representations of types as (Dp).

If KD1

(g),KD2

(g) ≥ 0, then KD1

(g) ×KD2

(g) ≥ 0. That is, the following

holds.

LEMMA 7.3

We have D1,D2 ∈Ω+ ⇒ (D1 ⊗D2) ∈Ω+, and the corresponding function is

KD1⊗D2

(g) =KD1

(g)×KD2

(g).
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LEMMA 7.4

For a birepresentation U ≡ {UD}, put

F (D,ε)≡
{
g ∈G

∣∣ 1−KD(g)< ε
}

for ε > 0,D ∈Ω+, and consider the family of sets

(7.3) Z≡
{
F (D,ε)

}
D∈Ω+,ε>0

.

Then, with the order of set inclusion, Z gives an l-Cauchy filter base on G.

Proof

Condition (W-3) in Definition 7.1 shows F (D,ε) �= ∅. Evidently

(7.4) ε1 > ε2 =⇒ F (D,ε1)⊇ F (D,ε2).

Next, for given two Dj ≡ {Hj , T j
g , v

j} (j = 1,2), we consider D0 ≡ (D1⊗D2).

By Lemma 7.3, and since 0≤KD1

(g),KD2

(g)≤ 1, we have

KD0

(g) =KD1

(g)×KD2

(g)≤KD1

(g),KD2

(g).

So

(7.5) 1−KD0

(g)≥ 1−KD1

(g),1−KD2

(g).

This means that

(7.6) F (D1, ε)∩ F (D2, ε)⊇ F (D0, ε) �= φ.

Hence Z gives a filter base.

Next, the inequality 1−KD(g)< ε gives

‖TD
g UDvD − vD‖2 = ‖TD

g UDvD‖2 + ‖vD‖2 − 2KD(g)

= 2
(
1−KD(g)

)
≤ 2ε.

(7.7)

Therefore,

(7.8) ‖UDvD − TD
g−1vD‖= ‖TD

g UDvD − vD‖ ≤ (2ε)1/2.

So, for g,h ∈ F (D,ε),

‖TD
hg−1vD − vD‖= ‖TD

g−1vD − TD
h−1vD‖

≤ ‖TD
g−1vD −UDvD‖+ ‖UDvD − TD

h−1vD‖ ≤ 2(2ε)1/2.
(7.9)

From separating condition (W-1) in Definition 7.1, for any neighborhood V

of e in G, there exists a D ∈Ω+ and δ > 0 such that {g ∈G | |〈TD
g vD−vD, vD〉|<

δ} ⊂ V .

The equation

‖TD
g vD − vD‖2 = 2

(
1−�

(
〈TD

g vD, vD〉
))

= 2
(
1− 〈TD

g vD, vD〉
)

= 2〈vD − TD
g vD, vD〉
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means that, if we take ζ > 0 as ζ2 < 2δ, then

‖TD
g vD − vD‖< ζ ⇒ g ∈ V.

Consequently when 2(2ε)1/2 < ζ and ζ2 < 2δ, that is, when 4ε < δ,

g,h ∈ F (D,ε) deduces ‖TD
hg−1vD − vD‖< ζ =⇒ hg−1 ∈ V ;(7.10)

that is,

F (D,ε)F (D,ε)−1 ⊂ V.(7.11)

This shows that Z gives a Cauchy filter base. �

LEMMA 7.5

Z is a b-Cauchy filter base.

Proof

It is enough to show that Z−1 ≡ {F (D,ε)−1}D∈Ω+,ε>0 is Cauchy.

Here F (D,ε)≡ {g | 1−KD(g)< ε} for ε > 0,D ∈Ω+.

The condition (7.2) does not change if we take g−1 instead of g. So we

exchange g and h to g−1, h−1 in the proof of Lemma 7.4; that is, F (D,ε) becomes

F (D,ε)−1, and lastly Z becomes Z−1.

This shows that Z−1 is Cauchy; therefore Z is b-Cauchy. �

LEMMA 7.6

There exists a unique element gU ∈G, such that

(7.12) ∀D ∈Ω+, UDvD = TD
gU v

D.

Proof

By condition (W-2) in Definition 7.1, G is b-complete. The b-Cauchy filter base Z

converges to a unique element (gU )−1 in G; that is,
⋂

(D,ε)F (D,ε) = {(gU )−1}.
For any D ∈Ω+,⋂

ε

F (D,ε) =
⋂
ε

{
g
∣∣ 1− 〈TD

g UDvD, vD〉< ε
}
� (gU )−1.

This means that 1 = 〈TD
(gU )−1UDvD, vD〉, that is,

TD
(gU )−1UDvD = vD or UDvD = TD

gU v
D. �

LEMMA 7.7

For any D ∈Ω,UD = TD
gU .

Proof

For any v ∈HD (‖v‖= 1), consider a cyclic representation (D)≡ {(HD), TD
g , vD}.

Then

(7.13) (Dp) =
{
(C ⊕HD ⊕HD), I ⊕ TD

g ⊕ TD
g , u≡w0 ⊕w⊕w

}
∈Ω+.
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By Lemma 7.5, UDpu= T
Dp
gU u, that is,

(7.14) Iw0 ⊕UDw⊕UDw = Iw0 ⊕ TD
gUw⊕ TD

gUw.

Thus UDw = TD
gUw. Here we can select as v ≡ 2w any normalized vector in HD.

This shows that UD = TD
gU on the whole space HD . �

In this way, we get the weak duality theorem for a well-behaved group.

THEOREM 2

For any well-behaved group G, a Tannaka-type weak duality theorem holds.

COROLLARY A

For locally compact groups, a Tannaka-type weak duality theorem holds.

COROLLARY B

For closed type inductive limit topological groups, Tannaka-type weak duality the-

orem holds.

8. Isobirepresentation

We remark that we can give some modification to the notion of birepresentation

in the category of associative algebras over C.

In the introduction, we defined “birepresentation” as an operator field U ≡
{UD}D∈Ω on Ω satisfying the following:

(B-0) for each D ∈Ω, UD is a unitary operator on the representation Hilbert

spaces HD ;

(B-1) D1 ∼W D2 =⇒WUD1W−1 = UD2 ;

(B-2) UD1 ⊕UD2 = UD1⊕D2 ;

(B-3) UD1 ⊗UD2 = UD1⊗D2 ;

(B-4) (UD) = UD .

Now we set the condition (B-0′) below instead of (B-0) above.

(B-0′) For each D ∈ Ω, UD is an isometric operator on the representation

Hilbert spaces HD .

And consider operator field J ≡ {JD}D∈Ω on Ω satisfying (B-0′), (B-1),

(B-2), (B-3), and (B-4).

We call these operator fields isobirepresentations of G.

Through this paper, the arguments in Sections 1, 6, and 7 used only isometric

properties of UD , not necessarily unitary one. This shows that we can obtain a

somewhat wider duality theorem for well-behaved groups.
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THEOREM 3

For well-behaved groups G, for any isobirepresentation J ≡ {JD}D∈Ω,

∃1g ∈G such that JD = TD
g (∀D ∈Ω).

A unitary operator is isometric. So any birepresentation is also an isobirepresen-

tation. This shows that the result of Theorem 3 is just stronger than the one of

Theorem 2.

Moreover, any complete group is also b-complete. That is, if we replace con-

dition (2) in Definition 7.1 of “well-behaved group” with the condition

(W-2′) G is complete,

we get a more narrow category of groups.

We say a group G is strongly well behaved if it satisfies the following condi-

tions:

(W-1) G has an SSUR;

(W-2′) G is complete;

(W-3) for any cyclic unitary representation D ≡ {HD, TD
g , vD} (‖vD‖= 1)

and any birepresentation U ≡ {UD}D, there holds

sup
g∈G

∣∣〈TD
g UDvD, vD〉

∣∣= 1.

Of course the weak duality theorem is valid for these groups.

REMARK

When G is a locally compact group, it is remarkable that to prove the weak

duality theorem for G we do not need the condition (B-4) in the definitions of

birepresentation and isobirepresentation (cf. [2]).
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http://www.ams.org/mathscinet-getitem?mr=1661157
http://www.ams.org/mathscinet-getitem?mr=1670011

	Introduction
	Separating system of unitary representations
	Cauchy filter base
	Partially compact set in an inductive limit group
	Completeness of G=limn->infty Gn
	Semiregular representation
	Birepresentation of G
	Duality theorem for well-behaved group
	Isobirepresentation
	Acknowledgment
	References
	Author's Addresses

