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Abstract Let f be a cusp formonGL2 over an imaginary quadratic fieldF of class num-
ber 1, and let p be an odd prime which satisfies some mild conditions. Then we show the
existence of a finite-order Hecke character ϕ of F ×

A such that the algebraic part of the
special value of L-functions of f ⊗ ϕ at s = 1 is a p-adic unit. This is an analogous result
to the result of A. Ash and G. Stevens for GL2 over the field of rationals obtained in [AS].

1. Introduction

Mod p nonvanishing of special values of automorphic L-functions is an interesting
problem and is studied by various people. The purpose of this paper is to show
the mod p nonvanishing of special values of automorphic L-functions associated
with GL2 over an imaginary quadratic field of class number 1 (see Theorem 1.1
below). This result is an analogue of [AS, Theorem 4.5] for GL2 over the rational
number field (see also [OP, appendix], [Va, Remark 1.12]).

Our result is stated as follows. Let F be an imaginary quadratic field of class
number 1, and let N be an integral ideal of OF , the ring of integers of F , which
satisfies [Z : N ∩ Z] > 3. Let Γ := Γ1

1(N) be the subgroup of GL2(OF ) defined in
Section 2.1. We denote the discriminant of F by D. We fix an odd prime number
p which is prime to N, D, and the order of the group of roots of unity in F .
Moreover, we assume that F does not contain ζp, the primitive pth root of unity.
We fix an embedding of Q into Qp and an isomorphism Qp

∼= C. Let f be a cusp
form of weight (2,2) with respect to Γ which is defined in Section 2.1. Suppose
that f is normalized and f is an eigenform with respect to Hecke operators
T (q) for all prime ideals q of OF . We denote by λf (T (q)) the eigenvalue of f

with respect to T (q). Let Ωf ∈ C be a complex period of f which is introduced
in Section 2.2. It is known that the ratio L(1, f,ϕ)/Ωf is an algebraic number
(see [Hi2, Theorem 8.1]), where L(s, f,ϕ) denotes the automorphic L-function
associated with f which is introduced in Section 2.3. Then we prove the following
theorem.
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THEOREM 1.1

Suppose that there exists a prime element � ∈ OF such that � ≡ 1 mod N and
λf (T (�)) − �� − 1 is a p-adic unit. Then there exist infinitely many Hecke char-
acters ϕ of finite order of F ×

A such that

ΓC(1)2L(1, f,ϕ)
Ωf

is a p-adic unit,

where we define ΓC(s) = 2(2π)−sΓ(s) for s ∈ C.

Our proof is based on Stevens’s one in [St, Theorem 2.1] (see also [Su, Section 3]).
For the proof of algebraicity of the special values of the automorphic L-function,
we use the Eichler-Shimura-Harder isomorphism (see [Hi2, Proposition 3.1]). By
this isomorphism, we regard a cusp form f as a class [f ] in the first cohomology
group of a certain quotient XΓ of C × R>0 under the natural action of Γ (cf.
Section 2.1). The special value L(1, f,ϕ) is expressed as a pairing of [f ] and a
certain class in the first homology of XΓ. Hence by using Poincaré duality, we
prove our main theorem by investigating the first homology group of XΓ.

To be more precise, by reduction modulo p and Poincaré duality, a cusp form
defines a nonzero homomorphism from the first homology group of XΓ to Fp,
where Fp denotes the finite field of order p and Fp denotes its algebraic closure.

If we assume that ΓC(1)2L(1,f,ϕ)
Ωf

mod p are trivial for almost all Hecke char-
acters ϕ of finite order, then we show that this homomorphism must be a zero
map. Thus we get a contradiction.

In the appendix, we generalize Fricke’s lemma [St, Lemma, p. 526] on gen-
erators of a congruence subgroup for GL2 over the rational number field to a
congruence subgroup for GL2 over arbitrary number fields.

Notation
For z ∈ C, zc or z denotes the complex conjugate of z. Let F be an imaginary
quadratic field, and let OF be its ring of integers. Let IF := {id, c} be the set of
embeddings F ↪→ C. We denote by D the discriminant of F . We write h as the
class number of F . Let FA denote the ring of adeles of F . We put ÔF := OF ⊗Z Ẑ.
We denote by eF : FA/F → C× the usual additive character characterized by
eF (x∞) = exp(2π

√
−1(x∞ + x∞)), where we denote the infinite component of

x ∈ FA by x∞.
We denote by Z[IF ] the free Z-module generated by IF . For n = nid id+ncc ∈

Z[IF ], we define n∗ ∈ Z to be n∗ := nid + nc + 2. We set t := id+ c ∈ Z[IF ]. For
g = (a

c
b
d ) ∈ GL2(C), we set gι := ( d

−c
−b
a ), gc := (ac

cc
bc

dc ). For a nonnegative
integer m and a commutative ring A, we define L(m;A) to be a set of two-variable
homogeneous polynomials of degree m with coefficients in A. For functions f :
X → L(m;A), where X stands for a certain space, we sometimes denote f(x) for
x ∈ X by f

(
x,

(
S
T

))
, to emphasize the dependence of f on the variables

(
S
T

)
.

For a commutative ring A and an A-module M , we denote the largest torsion-
free quotient of M by M ′.
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2. Special values of the automorphic L-function

We recall the definition of cusp forms on GL2 over an imaginary quadratic field
F in Section 2.1 and recall the definition of complex periods associated with
cusp forms in Section 2.2. In Section 2.3, we recall a certain integral expression
of L-functions associated with cusp forms. Because of some technical difficulties,
Theorem 1.1 is proved only under the assumption that the class number of F is 1.
However, all statements in Sections 2.1 and 2.2 are given without the assumption
of class number for a future improvement. For most of the basic facts which are
stated in this section, the reader may consult [Hi1], [Hi2], and [Ur].

2.1. Definition of cusp forms
We introduce the definition of cusp forms over GL2(FA). Let n = nid id+ncc be
an element of Z[IF ]. We write k := n + 2t. Let χ : C× → C× be a character such
that χ(z) := z−n := z−nidz−nc . For an integral ideal N of F , we define

K1(N) = {
(

a b
c d

)
∈ GL2(ÔF ); c, d − 1 ∈ NÔF }.

DEFINITION 2.1

We put n∗ = nid + nc + 2. A cusp form on GL2(FA) of weight k and level N is a
C∞-function f : GL2(FA) → L(n∗;C) satisfying the following conditions:

(1) Dσf =
(n2

σ

2 +nσ

)
f , for σ ∈ IF , where we denote the Casimir operator by

Dσ (cf. [Hi2, Section 2.3]).
(2) f(γz∞g, s) = χ(z∞)f(g, s) for γ ∈ GL2(F ), z∞ ∈ C× ⊂ F ×

A . Here we iden-
tify F ×

A with the center of GL2(FA), and we denote a pair of variables
(

S
T

)
by s.

For g ∈ GL2(FA), we set f(g, s) :=
∑n∗

α=0 fα(g)Sn∗ −αTα.
(3) f(gu, s) = f(g,u∞s), for u = u∞uf ∈ SU2(C)K1(N).
(4)

∫
U(F )\U(FA)

f(vg, s)du = 0, for g ∈ GL2(FA), where we define U(F ) =
{v = ( 1 u

0 1 ) ;u ∈ F } and U(FA) = {v = ( 1 u
0 1 ) ;u ∈ FA}.

Let us denote by Sk(N) the space of cusp forms on GL2(FA).

If f : GL2(FA) → L(n∗;C) is a cusp form, then f has the Fourier expansion. To
describe this, we define the modified Bessel function Kα to be the unique solution
of the following equations:

d2Kα

dx2
+

1
x

dKα

dx
−

(
1 +

α2

x2

)
Kα = 0 and Kα(x) ∼

√
π

2x
e−x as x → ∞.

We define the Whittaker function Wk : C× → L(n∗;C) by

Wk(y) =
n∗∑

α=0

(
n∗

α

)( y√
−1|y|

)nc+1−α

Kα−(nc+1)(4π|y|)Sn∗ −αTα.

Then the Fourier expansion of f is obtained as follows.
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PROPOSITION 2.1 ([Hi2, THEOREM 6.1])

Let I be the group of fractional ideals of F . For f ∈ Sk(N), there exists a function
a : I × Sk(N) → C such that

(1) the function a vanishes outside the set of integral ideals of F ;
(2) we have f(( y x

0 1 )) = |y|A
∑

ξ∈F × a(ξyδF , f)Wk(ξy∞)eF (ξz), where δF is
the different of F/Q.

In the next subsection, we describe the Eichler-Shimura-Harder isomorphism. For
this purpose, we introduce a definition of cusp forms as a function on GL2(C).

For Γ, an arithmetic subgroup of GL2(F ), we define cusp forms on GL2(C).

DEFINITION 2.2

A cusp form on GL2(C) of weight k with respect to Γ is a C∞-function f :
GL2(C) → L(n∗;C) satisfying the following conditions:

(1) Dσf = (n2
σ/2+nσ)f , for σ = id or c, where we denote the Casimir oper-

ator by Dσ .
(2) f(γzg, s) = χ(z)f(g, s), for γ ∈ Γ, z ∈ C×.
(3) f(gu, s) = f(g,us), for u ∈ SU2(C).
(4)

∫
ξ−1Γξ∩U(C)\U(C)

f(ξvg, s)du = 0, for ξ ∈ SL2(F ), where we define
U(C) = {v = ( 1 u

0 1 ) ;u ∈ C}.

Let us denote by Sk(Γ) the space of cusp forms on GL2(C) of weight k with
respect to Γ.

REMARK 1

If nid �= nc, Sk(Γ) is trivial (see [Hi2, Corollary 2.2]).

We recall the relation between cusp forms in the sense of Definition 2.1 and cusp
forms in the sense of Definition 2.2.

We fix representatives {ai}i=1,...,h of the class group of F . We may assume
that ai is prime to N for i = 1, . . . , h. We fix finite ideles {ai}i=1,...,h such that the
ideal of OF associated with ai is ai. Then, by the strong approximation theorem,
we get a disjoint decomposition:

GL2(FA) =
h∐

i=1

GL2(F )ti GL2(C)K1(N),

where ti =
(

ai 0
0 1

)
. Throughout this paper, we fix a system of such elements

{ti}1≤i≤h. Then we define

Γi
1(N) = GL2(F ) ∩ ti GL2(C)K1(N)t−1

i .

For f ∈ Sk(N), we define a function fi : GL2(C) → L(n∗;C) by fi(g) = f(tig).
Then we can see that fi ∈ Sk(Γi

1(N)).
In Section 3, we use the modular symbol method, so we need to interpret

cusp forms as differential forms on a certain quotient of the hyperbolic 3-fold H
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defined as follows:

H =
{(

x −y

y x

)
;x ∈ C, y ∈ R>0

}
.

We set the action of SL2(C) on H by

γ · z =
(
ρ(a)z + ρ(b)

)(
ρ(c)z + ρ(d)

)−1
,

where γ =
(

a b
c d

)
∈ SL2(C), z ∈ H , and ρ(t) :=

(
t 0
0 t

)
for t ∈ C. Note that this

action is transitive and the stabilizer of ε :=
(

0 −1
1 0

)
is SU2(C). So we may identify

SL2(C)/SU2(C) to H . We recall that we can identify GL2(C)/C×U2(C) ∼=
SL2(C)/SU2(C). We define

Y i
1 (N) = Γi

1(N)\ GL2(C)/C×U2(C).

We may identify Y i
1 (N) to Γi

1(N)\ SL2(C)/SU2(C) or Γi
1(N)\H , where we

denote SL2(C) ∩ Γi
1(N) by Γi

1(N). Then we have

Y1(N) := GL2(F )\ GL2(FA)/C×U2(C)K1(N) =
h∐

i=1

Y i
1 (N).

2.2. Eichler-Shimura-Harder isomorphism
We fix n = nid id+ncc ∈ Z[IF ] and k := n + 2t. In this subsection, we describe
briefly the Eichler-Shimura-Harder isomorphism for f ∈ Sk(N) and define the
complex period of cusp forms which we use.

We recall the definition of the sheaf L (n;A), where A is a certain OF -
algebra. We define the action of GL2(C) on L(nid;C) ⊗ L(nc;C) by

(γ · P ⊗ Pc)
(
(X

Y ) ,
(

Xc

Yc

))
= P

((
d −b

−c a

)
(X

Y )
)

⊗ Pc

((
d −b

−c a

)
(X

Y )
)

,

where γ =
(

a b
c d

)
∈ GL2(C), P ((X

Y )) ∈ L(nid;C), and Pc

((
Xc

Yc

))
∈ L(nc;C). When

we regard L(nid;C) ⊗ L(nc;C) as the GL2(C)-module, we denote the GL2(C)-
module by L(n;C). For an OF -subalgebra A of C or ÔF , we define the GL2(A)-
module L(n;A) in a similar manner.

Let Li(n; OF ) denote the set L(n;F ) ∩ ti · L(n; ÔF ), and regard Li(n; OF ) as
the Γi

1(N)-module. For OF -algebra A, we write Li(n;A) = Li(n; OF ) ⊗OF
A. We

give Li(n;A) the discrete topology and denote by Li(n;A) the sheaf determined
by continuous section of the following projection:

Γi
1(N)\

(
H × Li(n;A)

)
→ Y i

1 (N).

By using Li(n;A), since Y1(N) =
∐h

i=1 Y i
1 (N), we define the sheaf L (n;A) on

Y1(N).

PROPOSITION 2.2 ([Ur, LEMME 2.3.1])

If [Z : N ∩ Z] > 3, then, for all i = 1, . . . , h, Γi
1(N) is torsion-free.

Hereafter in this article, we assume that [Z : N ∩ Z] > 3. By Proposition 2.2,
L (n;A) is a locally constant sheaf, and we have the following isomorphism.
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COROLLARY 2.1

If [Z : N ∩ Z] > 3, then

H∗(
Y1(N),L (n;A)

) ∼=
h⊕

i=1

H∗(
Γi

1(N),L(n;A)
)
.

For f ∈ Sk(Γi
1(N)), we define an element δΓi

1(N)(f) of the parabolic cohomol-
ogy group H1

par(Y
i
1 (N),Li(n;C)), where the parabolic cohomology is defined by

the image of the compact support cohomology H1
c (Y i

1 (N),Li(n;C)) under the
natural map H1

c (Y i
1 (N),Li(n;C)) → H1(Y i

1 (N),Li(n;C)).
To introduce δΓi

1(N)(f), we introduce some notation. For a pair of variables
u := (U

V ), we define an element Q(u) ∈ L(n∗;C)n∗+1 by the following equation:

Q(u) = t

((
n∗

i

)
(−1)n∗ −iU iV n∗ −i

)
i=0,1,...,n∗

.

By using Q(u), for variables X,Y,Xc, Yc,A,B, we define an element Ψ ∈ (L(n;
C) ⊗ L(2;C))n∗+1 by the following equation:

(XV − Y U)nid(XcU + YcV )nc(AV − BU)2 = tQ(u)Ψ(x,xc,a),

where x = (X
Y ), xc = (Xc

Yc
), a = (A

B ). For Ψ, we denote the ith component of Ψ
by Ψi ∈ L(n;C) ⊗ L(2;C) for i = 0, . . . , n∗, so by definition, we have

Ψ(X,Y,Xc, Yc,A,B) = t
(
Ψ0(X,Y,Xc, Yc,A,B), . . . ,Ψn∗ (X,Y,Xc, Yc,A,B)

)
.

We note that Ψi is homogeneous in each pair of variables (X,Y ), (Xc, Yc), and
(A,B) of degree nid, nc, and 2, respectively. For a pair of variables s = ( S

T ), we
set

sn∗
= t(Sn∗

, Sn∗ −1T, . . . , Tn∗
) ∈ L(n∗;C)n∗+1,

and for u ∈ SU2(C), we define an element ρn∗ (u) ∈ Mn∗+1(C) by the following
equation:

ρn∗ (u)sn∗
= (us)n∗

.

Then, by [Hi2, (2.8b)], we can check that Ψ have the following property:

ρn∗ (u)Ψ(x,xc,a) = Ψ(ux, ucxc, ua) for all u ∈ SU2(C).

Now, we define δΓi
1(N)(f). To restrict f ∈ Sk(Γi

1(N)) to SL2(C), we get a C∞-
function on SL2(C). We denote this function again by f . Since f is a L(n∗;C)-
valued function, we can describe f by the following form:

f(g, s) =
∑

0≤α≤n∗

fα(g)Sn∗ −αTα = f(g)sn∗
.

For f and Ψ, we write

f ′(g;x,xc,a) = f(g)Ψ
(
gιx, (gc)ιxc,

t j(g, ε)a
)
,

where for
(

a b
c d

)
∈ SL2(C), z ∈ H , we define j

((
a b
c d

)
, z

)
= ρ(c)z+ρ(d). By replac-

ing the variables (A2,AB,B2) with (dx, −dy, −dx) in f ′(g;x,xc,a), we define
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δΓi
1(N)(f) for f ∈ Sk(Γi

1(N)). Then δΓi
1(N)(f) gives an element of H1

par(Γi
1(N)\H ,

Li(n,C)). Furthermore, we get the following isomorphism.

PROPOSITION 2.3 ([Hi2, COROLLARY 2.2])

We have an isomorphism:

δΓi
1(N) : Sk

(
Γi

1(N)
) ∼→ H1

par

(
Γi

1(N)\H ,Li(n;C)
)
.

For f ∈ Sk(N), we define a function fi : GL2(C) → L(n∗;C) by fi(g) := f(tig).
Thus, by using δ :=

⊕h
i=1 δΓi

1(N), we get the Eichler-Shimura-Harder isomor-
phism.

THEOREM 2.1 ([Hi2, PROPOSITION 3.1], [Ur, THÉORÈME 3.2])

The map δ : Sk(N) → H1
par(Y1(N),L (n;C)) is an isomorphism of Hecke modules.

We take p, a prime ideal of F , and let f ∈ Sk(N) be a normalized Hecke eigenform;
that is, f is an eigenform for all Hecke operators which satisfies a(OF , f) = 1.
We define K to be the field generated by all Hecke eigenvalues of f over F . We
denote by P|p the prime ideal of K which is induced by the fixed embedding
Q → Qp. We denote by KP (resp., OK,P) the completion of K at P (resp., the
ring of integers of KP).

By [Hi2, Section 8], the dimension over C of H1
par(Y1(N),L (n;C)) equals the

rank over OK,P of H1
par(Y1(N),L (n; OK,P)). Moreover, for a Hecke eigenform f ,

H1
par(Y1(N),L (n; OK,P))′[f ] is a free OK,P-module of rank 1, where we denote

by H1
par(Y1(N),L (n; OK,P))′ the largest torsion-free quotient of H1

par(Y1(N),
L (n; OK,P)) and we denote by H1

par(Y1(N),L (n; OK,P))′[f ] the Hecke
eigenspace with respect to the Hecke algebra homomorphism corresponding to f .

We fix a generator ηf of H1
par(Y1(N),L (n; OK,P))′[f ], which is determined

up to multiplication by a unit of OK,P. We define a complex period Ωf ∈ C of
f by δ(f) = Ωfηf , where we regard ηf as an element of H1

par(Y1(N),L (n;C))[f ]
via the natural map

H1
par

(
Y1(N),L (n; OK,P)

)′[f ] ↪→ H1
par

(
Y1(N),L (n;C)

)
[f ].

We note that Ωf is determined up to multiplication by a unit of OK,P.

2.3. Integral expressions of special values
In this subsection, we show an analogous result to [AS, Proposition 4.4]. For
this purpose, we recall the integral expression of special values of L-functions
according to [Hi2, Section 7].

To introduce the definition of the L-function of f and its twists, we define
the Gaussian sum and the operator R(ϕ). Let ϕ : F ×

A → C× be a Hecke char-
acter of finite order. We denote the conductor of ϕ by c =

∏
i=1 p

ei
i and take

�c ∈ ÔF such that cÔF = �cÔF . For c, we denote by (c−1/OF )× the subset of
(c−1/OF ) consisting of elements whose annihilator coincides with c. We choose
and fix a subset R of Fc :=

∏
p|c Fp which is a representative of Im((c−1/OF )× ↪→



124 Kenichi Namikawa

⊕
p|c c

−1
p /OF,p ↪→

⊕
p|c Fp/OF,p). We fix d ∈ F ×

A,f such that the fractional ideal
of F generated by d ∈ F ×

A,f is the different of F/Q. We denote ϕ|F ×
c

by ϕc. Then
we define the Gaussian sum for ϕ by the following equation:

G(ϕ) = ϕ(d)−1
∑
u∈R

ϕc(�cu)eF (d−1u).

The Gaussian sum G(ϕ) does not depend on the choice of d (cf. [Hi2, Section 6]).
For u ∈ R, we write α(u) = ( 1 u

0 1 ) ∈ G(FA,f ). Then, for f ∈ Sk(N), we define

f |R(ϕ)(g) = ϕ
(
det(g)

) ∑
u∈R

ϕc(�cu)f
(
gα(u)

)
∈ Sk(Nc2)

(see [Hi2, Section 6, (6.7)]).
For a cusp form f and a Hecke character ϕ, the L-function of f and that of

f twisted by ϕ are defined respectively by

L(s, f) =
∑

a

λf

(
T (a)

)
N(a)−s,

L(s, f,ϕ) =
∑

a

λf

(
T (a)

)
ϕ(a)N(a)−s,

where the right-hand sum runs over all integral ideals a of OF , we denote by
T (a) the Hecke operator which is introduced in [Hi2, Section 4], and we denote
by λf (T (a)) the Hecke eigenvalue of f with respect to T (a).

We put C1 = {z ∈ C; |z| = 1}. We write E = C1\C× and define

Δi : E → Y i
1 (N) = Γi

1(N)\ GL2(C)/C×U2(C);a �→
( |a| 0

0 1

)
.

Let A be an OF -algebra. For each j = jid id+ jcc ∈ Z[IF ] satisfying 0 ≤ jid ≤ nid,
0 ≤ jc ≤ nc, and xj = xjidxjc = 1 for all x ∈ O ×

F , the map

L(n;A) → A;
nid,nc∑

mid=0,mc=0

amid,mcX
nid−midY midXnc −mc

c Y mc
c �→ aj

induces the map vj : Δ∗
i L (n;A) → A of local systems on E.

To discuss the integrality of special values of L-functions, we introduce some
notation. We regard δΓi

1(N)(fi) as an element of H1
c (Y i

1 (N),L (n;C)) via the
section si of the natural map

H1
c

(
Y i

1 (N),L (n;C)
)

→ H1
par

(
Y i

1 (N),L (n;C)
)
,

which is defined in [Hi3, Section 2.1]:

si : H1
par

(
Y i

1 (N),L (n;C)
)

→ H1
c

(
Y i

1 (N),L (n;C)
)
.

Then, we define the map

s =
h⊕

i=1

si : H1
par

(
Y1(N),L (n;C)

)
→ H1

c

(
Y1(N),L (n;C)

)
.

We define the cuspidal cohomology group H1
cusp(Y1(N),L (n; OK,P)) with coef-

ficient OK,P to be Ims ∩ ι
(
H1

c (Y1(N),L (n; OK,P))
)
, where ι is the scalar exten-

sion map H1
c (Y1(N),L (n; OK,P)) → H1

c (Y1(N),L (n;C)). For a Hecke eigenform
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f ∈ Sk(N), we denote by H1
cusp(Y1(N),L (n; OK,P))[f ] the Hecke eigenspace

with respect to the Hecke algebra homomorphism corresponding to f . Then
H1

cusp(Y1(N),L (n; OK,P))[f ] is a free OK,P-module of rank 1. We fix a gen-
erator ηf,c of H1

cusp(Y1(N),L (n; OK,P))[f ]. Then we define a complex number
Ωf,c ∈ C by s(δ(f)) = Ωf,cηf,c. At the end of this section, we prove that Ωf,c is
equal to Ωf up to multiplication by a unit of OK,P under the assumption that
the class number of F is 1 and under some mild conditions. We denote the largest
torsion-free quotient of H1

c (Y1(N),L (n; OK,P)) by H1
c (Y1(N),L (n; OK,P))′. We

also regard ηf,c as an element of H1
c (Y1(N), L (n; OK,P)) via the pullback of the

natural map

H1
c

(
Y1(N),L (n; OK,P)

)′
↪→ H1

c

(
Y1(N),L (n;C)

)
,

which is induced by the scalar extension map ι.
We denote by ηf,c,i the image of ηf,c via the natural map

H1
c

(
Y1(N),L (n; OK,P)

)′ → H1
c

(
Y i

1 (N),L (n; OK,P)
)′

,

which is induced by the projection

H1
c

(
Y1(N),L (n; OK,P)

)
→ H1

c

(
Y i

1 (N),L (n; OK,P)
)
.

For an OF -algebra A, the maps Δi and vj induce the natural map

H1
c

(
Y i

1 (N),L (n;A)
)′ Δ∗

i→ H1
c

(
E,Δ∗

i L (n;A)
)′ vj∗→ H1

c (E,A)′.

We denote by Δ∗
i δ

j(fi) (resp., Δ∗
i η

j
f ) the image of si(δΓi

1(N)(fi)) (resp., ηf,c,i)
under the above map for A = C (resp., A = OK,P). Then we have the integral
expression of special values of L-functions as follows.

THEOREM 2.2 ([Hi2, THEOREM 8.1])

We denote the different of F/Q by δF . Let j be an element of Z[IF ] satisfying
0 ≤ jid ≤ nid, 0 ≤ jc ≤ nc, and xj = xjidxjc = 1 for all x ∈ O ×

F . Then we have

h∑
i=1

ωj(aiδF )
∫

E

Δ∗
i δ

j(f |R(ϕ),i)

= (−1)nid+1
√

−1
jid+jc2−1(2π)−(jid+jc+2)

× Γ(jid + 1)Γ(jc + 1)�(O ×
F )G(ϕ)|D|L(1, f,ϕωj),

where ωj : F ×
A → C× is an unramified Hecke character such that ωj,∞(z) = zj for

z ∈ C×.

The goal of the rest of this subsection (see Proposition 2.5) is to rewrite the
left-hand side of the equality of Theorem 2.2. For this purpose, we recall some
basic properties of ϕ and R as follows.

LEMMA 2.1

We denote the conductor of ϕ by c. Then the following statements hold.
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(1) If c is nontrivial,
∑

u∈R ϕc(u) = 0.

(2) If c is a principal ideal, then we can take R ⊂ Fc as the image of{ t

mc

; t ∈
{
representative of (OF /c)×}}

⊂ F

via the embedding F ↪→ Fc, where we denote a generator of c by mc ∈ OF .

Hereafter we assume that the conductor of ϕ is nontrivial. From here on, we
define a map ˜R(ϕ) between cohomology groups for our use below.

By the strong approximation theorem, for u ∈ R and ti which is introduced
in Section 2.1, we can find ji ∈ {1, . . . , h}, α

(i)
u ∈ GL2(F ), and k

(i)
u = k

(i)
u,∞k

(i)
u,f ∈

GL2(C)K1(Nc2) such that

tiα(u) = α(i)
u tjik

(i)
u .

By taking the determinants of both sides, we have ji = i. By the definition of
α

(i)
u , we have

α(i)
u Γi

1(Nc2)(α(i)
u )−1 ⊂ Γi

1(N).

Hence the following map,

H × L(n;C) → H × L(n;C); (z,P ) �→ (α(i)
u · z,α(i)

u · P ),

induces a morphism of local systems

˜R(ϕ)i
u : Li(n;C)/Y i

1 (N) → Li(n;C)/Y i
1 (Nc2).

Note that this map does not depend on the choice of α
(i)
u . The map ˜R(ϕ)i

u induces

the morphism of cohomology groups, which we denote also by ˜R(ϕ)i
u. Then we

define

˜R(ϕ)i =
∑
u∈R

ϕc(�cu) ˜R(ϕ)i
u : H1

(
Y i

1 (N),L (n;C)
)

→ H1
(
Y i

1 (Nc2),L (n;C)
)

and

˜R(ϕ) =
h∑

i=1

ϕ(ai)˜R(ϕ)i : H1
(
Y1(N),L (n;C)

)
→ H1

(
Y1(Nc2),L (n;C)

)
,

where ai for i = 1, . . . , h is the finite idele of F ×
A which is fixed in Section 2.1.

In the same way, for any Z-algebra A which contains all matrix elements of
{αu}u∈R, we define the map

˜R(ϕ) : H1
(
Y1(N),L (n;A)

)
→ H1

(
Y1(Nc2),L (n;A)

)
.

Especially, ˜R(ϕ) is defined for A = KP(ϕ0), where ϕ0 := ϕ| Ô ×
F

and we denote
by KP(ϕ0) the subfield of Qp generated by the image of ϕ0 over KP. Similarly,

if the conductor of ϕ is prime to p := P ∩ OF , then ˜R(ϕ) is defined also for
A = OK,P[ϕ0], where OK,P[ϕ0] is the subring of C which is generated by the
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image of ϕ0 over OK,P. By abuse of notation, we also denote by ˜R(ϕ) the map
between compact support cohomology groups,

˜R(ϕ);H1
c

(
Y1(N),L (n;A)

)
→ H1

c

(
Y1(Nc2),L (n;A)

)
,

which is induced by the morphism of local systems ˜R(ϕ)i
u : Li(n;C)/Y i

1 (N) →
Li(n;C)/Y i

1 (Nc2) for i = 1, . . . , h.

By the definition of R(ϕ) and ˜R(ϕ), we deduce the following proposition.

PROPOSITION 2.4

The following diagram is commutative:

Sk(N)
R(ϕ)−−−−→ Sk(Nc2)

δ

⏐⏐� δ

⏐⏐�
H1

(
Y1(N),L (n;C)

) ˜R(ϕ)−−−−→ H1
(
Y1(Nc2),L (n;C)

)
,

where δ is the map introduced in Theorem 2.1.

By Theorem 2.2 and Proposition 2.4, we obtain the following corollary.

COROLLARY 2.2

We have the following equations.

(1) We have
h∑

i=1

ωj(aiδF )Δ∗
i δ

j(fi)|
˜R(ϕ)

∩ E

= (−1)nid+1
√

−1
jid+jc2−1(2π)−(jid+jc+2)

× Γ(jid + 1)Γ(jc + 1)�(O ×
F )G(ϕ)|D|L(1, f,ϕωj),

where ∩ denotes the cap product (cf. [Ur, Section 1]) and we identify Hc
0(E,C)

with C via the canonical isomorphism.
(2) By dividing the previous equation by Ωf,c, we obtain

h∑
i=1

ωj(aiδF )Δ∗
i η

j
f |

˜R(ϕ)
∩ E

= (−1)nid+1
√

−1
jid+jc2−1(2π)−(jid+jc+2)

× Γ(jid + 1)Γ(jc + 1)�(O ×
F )G(ϕ)|D|L(1, f,ϕωj)/Ωf,c.

We have Δ∗
i η

j
f |

˜R(ϕ)
∩ E ∈ Hc

0(E,KP(ϕ0)) ∼= KP(ϕ0). If the conductor of ϕ is

prime to N, then we have Δ∗
i η

j
f |

˜R(ϕ)
∩ E ∈ Hc

0(E, OK,P[ϕ0]) ∼= OK,P[ϕ0].

We rewrite the left-hand sides of the equalities of Corollary 2.2 in order to express
special values of the L-function associated with f as a cap product of ηf and a
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twisted cycle in Proposition 2.5. For this purpose, we introduce an element Ei
j

of H1(Y i
1 (N),L ∗

i (n; OK,P)), where L ∗
i (n; OK,P) is the local system on Y i

1 (N)
which is determined by HomOK,P

(L(n; OK,P), OK,P). Note that if [Z : P ∩Z] > n,
we define a nondegenerate bilinear form:

[ , ]n : L(n; OK,P) × L(n; OK,P) → OK,P;

(
P (X,Y,Xc, Yc),Q(X,Y,Xc, Yc)

)
�→

nid,nc∑
jid=0,jc=0

(−1)jid+jcajid,jcbnid−jid,nc −jc(
nid
jid

)(
nc

jc

) ,

where we define

P (X,Y,Xc, Yc) =
nid,nc∑

jid=0,jc=0

ajid,jcX
nid−jidY jidXnc −jc

c Y jc
c ,

Q(X,Y,Xc, Yc) =
nid,nc∑

jid=0,jc=0

bjid,jcX
nid−jidY jidXnc −jc

c Y jc
c .

We denote by L∗(n; OK,P) the OK,P-module which is generated by{(
nid

jid

)(
nc

jc

)
Xnid−jidY jidXnc −jc

c Y jc
c

}
0≤jid,jc ≤n

over OK,P. Then we identify HomOK,P
(L(n; OK,P), OK,P) with L∗(n; OK,P) via

[ , ]n.
Hereafter in this article, we assume that the class number of F is 1. Since

the class number is 1, we denote by Γ1(N) the group Γ1
1(N) which is defined in

Section 2.1 for short. We adjoin boundaries to H in the same manner as in [Ur,
Section 2.3], and we denote it by H ∗. (In [Ur, Section 2.3], H ∗ is denoted by Z ∗.)
We denote the Borel-Serre compactification of Y1(N) by Y1(N)∗ = Γ1(N)\H ∗

and its boundary by ∂Y1(N)∗. We note that Y1(N)∗ and Y1(N) are homotopy
equivalent.

We introduce an element Ej,x of a relative homology group H1(Y1(N)∗,

∂Y1(N)∗,L ∗(n; OK,P[ϕ0])) below. We define E∗ = E ∪ {0} ∪ { ∞} on which we
have a natural topology induced by the isomorphism E∗ ∼= R>0 ∪ {0} ∪ { ∞}. For
an element of x ∈ F , we define the map Δx : E → Y1(N) by

E → Y1(N);a �→
( |a| x

0 1

)
and we naturally extend Δx to the map E∗ → Y1(N)∗, which we also denote by
the same symbol Δx. We obtain a natural sequence:

H0
(
E∗,Δ∗

xL ∗(n; OK,P[ϕ0])
)

∼→ H1

(
E∗,Δ∗

xL ∗(n; OK,P[ϕ0])
)

→ H1

(
E∗, ∂E∗,Δ∗

xL ∗(n; OK,P[ϕ0])
)

→ H1

(
Y1(N)∗, ∂Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
.

We define an element Ej,x of H1(Y1(N)∗, ∂Y1(N)∗,L ∗(n; OK,P[ϕ0])) to be the
image of an element αj,x of H0(E∗,Δ∗

xL ∗(n; OK,P[ϕ0])) under the above map,
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which is defined as follows. Since Δ∗
xL ∗(n; OK,P[ϕ0]) is a constant sheaf on E∗,

we define αj,x by the following equation:

αj,x = (−1)jid+jc

(
nid

jid

)(
nc

jc

)(
1 −x

0 1

)
· (Xnid−jidY jidXnc −jc

c Y jc
c ).

Since the class number of F is 1, we fix a generator mc ∈ OF of the conductor
c of ϕ. Let R ⊂ F be a subset of representatives of (c−1/OF )× which is introduced
at the beginning of Section 2.3. Now we define a relative homology class:

cϕ,j =
∑

u∈R⊂F

ϕc(mcu)Ej,u ∈ H1

(
Y1(N)∗, ∂Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
.

We assume that c is prime to N. Then, by using cϕ,j, we introduce an element
of H1(Y1(N)∗,L ∗(n; OK,P[ϕ0])) for ϕ. For this purpose, we need the following
lemma.

LEMMA 2.2

Let t/mc, t
′/mc be elements of R. Then, if c is prime to N, t/mc and t′/mc

determine the same cusp in Γ1(N)\H .

Proof
Since c is prime to N, there exists n ∈ N such that nOF is prime to c. Since t and
t′ are prime to c, c is prime to tn and t′n. Therefore we find a, a′, c, and c′ ∈ OF

which satisfy:

amc − cnt = 1 and a′mc − c′nt′ = 1.

We write γ =
(

a t
cn mc

)
and γ′ =

(
a′ t′

c′
n mc

)
. Then we see that

γ · 0 =
t

mc

and γ′ · 0 =
t′

mc

,

and γ′γ−1 ∈ Γ1(N). This proves the lemma. �

By Lemma 2.2, cϕ,j belongs to the kernel of the boundary map

H1

(
Y1(N)∗, ∂Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
→ H0

(
∂Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
.

Hence, cϕ,j falls in the image of the map

H1

(
Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
/H1

(
∂Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
↪→ H1

(
Y1(N)∗, ∂Y1(N)∗,L ∗(n; OK,P[ϕ0])

)
,

whose image is equal to the kernel of the boundary map. By abuse of notation,
we also denote by cϕ,j a pullback of cϕ,j to H1(Y1(N)∗,L ∗(n; OK,P[ϕ0])).

Then, since δ(f) is an element of the parabolic cohomology group, the cap
product ηf,c ∩ cϕ,j does not depend on the choice of the pullback. We regard ηf,c ∩
cϕ,j ∈ Hc

0(Y1(N),L (n; OK,P[ϕ0]) ⊗ L ∗(n, OK,P[ϕ0])) as an element of OK,P[ϕ0]
via the following composition of maps:
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Hc
0

(
Y1(N),L (n; OK,P[ϕ0]) ⊗ L ∗(n; OK,P[ϕ0])

)
→ Hc

0

(
Y1(N), OK,P[ϕ0]

) ∼→ OK,P[ϕ0],

where the first map is induced by the bilinear form [ , ]n. Then we obtain the
desired expression of special values.

PROPOSITION 2.5

We have

ωj(δF )s
(
δ(f)

)
∩ cϕ,j

= (−1)nid+1
√

−1
jid+jc2−1(2π)−(jid+jc+2)

× Γ(jid + 1)Γ(jc + 1)�(O ×
F )G(ϕ)|D|L(1, f,ϕωj),

ωj(δF )ηf,c ∩ cϕ,j

= (−1)nid+1
√

−1
jid+jc2−1(2π)−(jid+jc+2)

× Γ(jid + 1)Γ(jc + 1)�(O ×
F )G(ϕ)|D|L(1, f,ϕωj)/Ωf,c.

Proof
Note that, since the conductor c of ϕ is principal, we have

ω|
˜R(ϕ)

=
∑

u∈R⊂F

ϕc(mcu)
(

1 u

0 1

)
· ω,

for ω ∈ H1(Γ1(N)\H ;L (n;C)). By the definitions of ˜R(ϕ) and cϕ, we have
Δ∗

1δ
j(f)|

˜R(ϕ)
∩ E = s(δ(f)) ∩ cϕ,j. This proves the proposition. �

We describe a relation between Ωf and Ωf,c in Proposition 2.6. For this purpose,
we need the following lemma.

LEMMA 2.3

Let � be a prime element of OF such that � ≡ 1 mod N. Then the Hecke operator
T (�) acts on H0(∂Y1(N)∗,L (n; OK,P)) by the multiplication of �n+1 + 1, where
we denote �nid+1(�)nc+1 by �n+1.

Proof
For each cusp s of Γ1(N), we denote by Γs the group {γ ∈ Γ1(N); γ(s) = s}.
We compute the action of the double coset Γ1(N) ( 1 0

0 � )Γ1(N) on H0(∂Y1(N)∗,

L (n; OF )) ∼=
⊕

s H0(Γs,L (n; OK,P)) according to the definition of the action
given in [Hi1, Section 3].

We take an element g of SL2(OF ) such that g(s) = ∞. By the assumption
� ≡ 1 mod N, we find a disjoint sum decomposition:

Γ1(N)
(

1 0
0 �

)
Γ1(N) = Γ1(N)g

(
1 0
0 �

)
g−1Γs ∪ Γ1(N)g

(
� 0
0 1

)
g−1Γs.
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Similarly, we have disjoint sum decompositions

Γ1(N)g
(

1 0
0 �

)
g−1Γs =

⋃
j mod �OF

Γ1(N)g
(

1 nj

0 �

)
g−1,

Γ1(N)g
(

� 0
0 1

)
g−1Γs = Γ1(N)g

(
� 0
0 1

)
g−1,

where we denote a generator of N by n. We note that g
(

�
0

0
1

)
g−1(s) = s and

g
(

1
0

0
�

)
g−1(s) = s. We put σ = g

(
�
0

0
1

)
g−1 and σj = g

(
1
0

nj
�

)
g−1.

Hence, for γ0 ∈ Γs, the action of
[
Γ1(N)

(
1
0

0
�

)
Γ1(N)

]
on u =

⊕
s us ∈

H0(∂Y1(N)∗,L (n; OK,P)) is calculated as follows:

(u|
[Γ1(N)(1 0

0 � )Γ1(N)]
)s(γ0) = σιus(γ) +

∑
j mod �OF

σι
jus(γj),

where γ (resp., γj for j mod �OF ) is an element of Γs such that σγ0 = γσ′ (resp.,
σjγ0 = γjσ

′
j) for some σ′ (resp., σ′

j) ∈ {σ} ∪ {σj : j mod �OF }.
By using the above description, we compute the action of the double coset.

We note that H0(Γs,L (n; OK,P)) = 〈g · Y nidY nc
c 〉 OK,P

. We have the following
equalities:

σι(g · Y nidY nc
c ) = g · Y nidY nc

c ,

σι
j(g · Y nidY nc

c ) = �nid(�)ncg · Y nidY nc
c .

This completes the lemma. �

PROPOSITION 2.6

Suppose that there exists a prime element � ∈ OF such that � ≡ 1 mod N and
λf (T (�)) − �n+1 − 1 is a unit of OK,P. Then Ωf,c/Ωf is a unit of OK,P.

Proof
We denote by H1

c (Y1(N),L (n; OK,P))′ the largest torsion-free quotient of
H1

c (Y1(N),L (n; OK,P)). Since the map

ι : H1
c

(
Y1(N),L (n; OK,P)

)′ → H1
par

(
Y1(N),L (n; OK,P)

)′

is Hecke equivariant, there exists α ∈ OK,P such that ι(ηf,c) = αηf . To prove the
proposition, it is enough to show that α is a unit of OK,P.

Since the map ι is surjective, there exists η′
f ∈ H1

c (Y1(N),L (n; OK,P))′ such
that ι(η′

f ) = ηf . Since the boundary exact sequence

H0
(
∂Y1(N)∗,L (n; OK,P)

)
→ H1

c

(
Y1(N),L (n; OK,P)

)
→ H1

par

(
Y1(N),L (n; OK,P)

)
is Hecke equivariant (see [Hi1, Section 1.10]), the kernel of ι is annihilated by the
operator (T (�) − �n+1 − 1) by Lemma 2.3. Since ηf,c − αη′

f belongs to the kernel
of ι, we obtain (T (�) − �n+1 − 1)(ηf,c − αη′

f ) = 0.



132 Kenichi Namikawa

We denote by 〈ηf,c〉 OK,P
the OK,P-submodule of H1

c (Y1(N),L (n; OK,P))′

which is generated by ηf,c. Since T (�)(ηf,c) = λf (T (�))ηf,c, α(T (�) − �n+1 − 1)η′
f

is an element of 〈ηf,c〉 OK,P
. By freeness of H1

c (Y1(N),L (n; OK,P))′, T (q) acts
on (T (�) − �n+1 − 1)η′

f by multiplication of the scalar λf (T (q)) for any prime
ideal q of OF . In particular, (T (�) − �n+1 − 1)η′

f belongs to 〈ηf,c〉 OK,P
. Hence,

there exists β ∈ OK,P such that (T (�) − �n+1 − 1)η′
f = βηf,c. By definition, we

have the following equalities:

ι
(
(T (�) − �n+1 − 1)η′

f

)
=

(
T (�) − �n+1 − 1

)
ηf

=
(
λf (T (�)) − �n+1 − 1

)
ηf ,

ι(βηf,c) = αβηf .

Thus we obtain (λf (T (�)) − �n+1 − 1)ηf = αβηf . By assumption, λf (T (�)) −
�n+1 − 1 is a unit of OK,P. This implies that α is a unit of OK,P. �

3. Proof of Theorem 1.1

In this section, we prove our main theorem, and we always assume that the class
number of F is 1 and p is prime to �O ×

F DN. Moreover, we suppose the condition
of Proposition 2.6 for nid = nc = 0.

We define the following homomorphism:

pr : Γ1(N) → H1

(
Y1(N)∗,Fp

)
/H1

(
∂Y1(N)∗,Fp

)
;γ �→ {0, γ · 0},

where {0, γ · 0} denotes the projection of the path from zero to γ · 0 in H ∗ to
the Y1(N)∗. Then pr is surjective.

REMARK 2

(1) The map pr does not depend on the choice of the cusp. In fact, we have
the same map replacing the cusp zero by another cusp x ∈ F . This follows from
the fact that H ∗ is simply connected. Hence we easily see that pr is actually a
homomorphism.

(2) We have pr({parabolic element of Γ1(N)}) = {0}. We see this from Re-
mark 2(1) and the definition of parabolic elements.

(3) For an element γ of Γ1(N), an element x of OF , and u = γ · 0, we have
u + x = ( 1 x

0 1 ) · γ · 0. By using Remarks 2(1) and 2(2), we have the following
identities:

{0, u + x} = pr
((

1 x

0 1

)
· γ

)

= pr
((

1 x

0 1

))
+ pr(γ)

= pr(γ) = {0, u}.

Hence we have {0, u + x} = {0, u} in H1(Y1(N)∗,Fp)/H1(∂Y1(N)∗,Fp).
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At the moment, we assume the following two lemmas and we complete the proof
of the main theorem.

LEMMA 3.1

There exists a natural homomorphism

H1
c

(
Y1(N), OK,P[ϕ0]

)′ → HomFp

(
H1(Y1(N)∗,Fp),Fp

)
,

and the image Φf of ηf under the homomorphism is not zero. Moreover, Φf

satisfies the following identity:

Φf (cϕ) = (−1)nid+12−3�O ×
F G(ϕ)|D| ΓC(1)2L(1, f,ϕ)

Ωf,c
∈ Fp,

where ϕ is a finite-order Hecke character of F ×
A whose conductor is prime to p

and ΓC(s) = 2(2π)−sΓ(s) for s ∈ C.

REMARK 3

We note that (−1)nid+12−3�O ×
F G(ϕ)|D| is a p-adic unit by assumption of p and

the conductor of ϕ. Since we suppose that there exists a prime element � ∈ OF

such that � ≡ 1 mod N and λf (T (�)) − �� − 1 is a p-adic unit, we see that the
quantity ΓC(1)2L(1,f,ϕ)

Ωf
∈ OK,P[ϕ0] is a p-adic unit if and only if the quantity

Φf (cϕ) ∈ Fp is not zero by Proposition 2.6.

We denote the extension of F obtained by adding a primitive pth root of unity
ζp by F (ζp). Let Mp denote the conductor of the extension of F (ζp)/F .

LEMMA 3.2

Let b and d ∈ OF be elements satisfying that d ≡ 1 modMpN and bOF is prime
to dMp. There exist infinitely many prime elements π ∈ OF which satisfy the
following conditions:

(1) the integer N(π) − 1 is prime to p;
(2) there exists a ν ∈ N such that π = 1 + ν;
(3) {0, b/d} = {0, b/π};
(4) N(π) − 1 �= �O ×

F .

The proofs of Lemmas 3.1 and 3.2 are given at the end of this section.

Proof of Theorem 1.1
By the identity in Lemma 3.1 and Remark 3, it is enough to show that there
exist infinitely many Hecke characters of finite order ϕ on F ×

A such that Φf (cϕ) �=
0. If we suppose Φf (cϕ) = 0 for almost all ϕ, we can prove that Φf is zero.
This contradicts Lemma 3.1. Hence, we show below that Φf ◦ pr(Γ1(N)) = {0}
assuming that Φf (cϕ) = 0 for almost all ϕ.

From Corollary A.2 (see the appendix) and Remark 2(2), to prove Φf ◦
pr(Γ1(N)) = {0}, it is enough to show that Φf ◦ pr(Γ1(M)) = {0} for a suitable
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integral ideal M of OF such that N|M. We define M := MpN and take an
arbitrary element

(
a b
c d

)
of Γ1(M). We show that Φf ◦ pr

((
a b
c d

))
= 0.

Note that we may assume that bOF is prime to Mp. This is easily checked
as follows. We take t ∈ OF such that tOF is prime to Mp. Since(

a b

c d

)(
1 t − b

0 1

)
=

(
a b + a(t − b)
c d + c(t − b)

)
,

(
1 t−b
0 1

)
is a parabolic element of Γ1(N), and b + a(t − b) ≡ t mod Mp, we may

replace b (resp., d) by b+a(t − b) (resp., d+ c(t − b)). Hence, hereafter we assume
that bOF is prime to Mp. Note, moreover, that bOF is prime to dMp.

Since b and d satisfy the condition of Lemma 3.2, we take a prime element
π = 1 + ν ∈ OF as in Lemma 3.2, where ν is an element of N. We may assume
that πOF is prime to bOF . For such a prime element π ∈ OF , we write

Hπ = {ϕ : F ×
A → C×;ϕ : finite-order Hecke character, cϕ := condϕ | πOF },

and we denote �Hπ by m. Then we have m | N(π) − 1; hence m is invertible
in Fp. Since there exist infinitely many such prime elements π by Lemma 3.2,
we may assume that Φf (cϕ) = 0 for all ϕ ∈ Hπ \{1}, where 1 denotes the trivial
character. Then, we have Φf ({0, b/d}) = Φf ({0,1/π}). In fact, we have

Φf

({
0,

b

d

})
= Φf

({
0,

b

π

})
=

{ 1
m

∑
ϕ∈Hπ

ϕcϕ(b)ϕcϕ(b)
}

Φf

({
0,

b

π

})

=
1
m

∑
ϕ∈Hπ

∑
u∈R

ϕcϕ(πu)ϕcϕ(b)Φf ({0, u}).

The first equality follows from the fact that π satisfies condition (3) of Lemma 3.2.
By Remark 2(3), we may assume that b/π ∈ R. The last equality follows from
the following property of characters ϕ for u ∈ R\{b/π}:

1
m

∑
ϕ∈Hπ

ϕcϕ(πu)ϕcϕ(b) = 0.

We note that we have the following identities in H1(Y1(N)∗,Fp) for every non-
trivial character ϕ:

{0, u} + {u, ∞} + { ∞,0} = 0,∑
u∈R

ϕcϕ(−πu){ ∞,0} = 0,

−
∑
u∈R

ϕcϕ(−πu){ ∞, u} =
∑
u∈R

ϕcϕ(−πu){u, ∞}.

Hence we have
1
m

∑
ϕ∈Hπ

∑
u∈R

ϕcϕ(πu)ϕcϕ(b)Φf ({0, u})

=
1
m

∑
ϕ∈Hπ \ {1}

∑
u∈R

ϕcϕ(πu)ϕcϕ(b)Φf ({0, u}) +
1
m

∑
u∈R

Φf ({0, u})



Mod p nonvanishing of special values 135

=
1
m

∑
ϕ∈Hπ \ {1}

ϕcϕ(−1)ϕcϕ(b)Φf

(∑
u∈R

ϕcϕ(−πu){u, ∞}
)

+
1
m

∑
u∈R

Φf ({0, u}).

By the definition of cϕ and by the assumption that Φf (cϕ) = 0, we have that

1
m

∑
ϕ∈Hπ \ {1}

ϕcϕ(−1)ϕcϕ(b)Φf

(∑
u∈R

ϕcϕ(−πu){u, ∞}
)

+
1
m

∑
u∈R

Φf ({0, u})

=
1
m

∑
ϕ∈Hπ \ {1}

ϕcϕ(−1)ϕcϕ(b)Φf (cϕ) +
1
m

∑
u∈R

Φf ({0, u})

=
1
m

∑
u∈R

Φf ({0, u}).

Thus, we have proved the following identity:

Φf

({
0,

b

d

})
=

1
m

∑
u∈R

Φf ({0, u}).

By the same manner as in the proof of the above equality, we also obtain
Φf ({0,1/π}) = (1/m)

∑
u∈R Φf ({0, u}). Therefore we conclude that Φf ({0,

b/d}) = Φf ({0,1/π}).
Now we easily show that Φf ({0, b/d}) = 0. Since ( 1 0

ν 1 ) and ( 1 1
0 1 ) are parabolic

elements of Γ1(N),

Φf

({
0,

b

d

})
= Φf

({
0,

1
π

})

= Φf

({
0,

1
1 + ν

})

= Φf ◦ pr
((

1 0
ν 1

)(
1 1
0 1

))
= 0.

Thus, Φf ◦ pr(Γ1(M)) = {0}. This completes the proof of Theorem 1.1. �

Proof of Lemma 3.1
We take an element ηf,c,0 in the inverse image of ηf,c under the map H1

c (Y1(N),
OK,P[ϕ0]) → H1

c (Y1(N), OK,P[ϕ0])′. We denote by ηf,0 the image of ηf,c,0 under
the natural map H1

c (Y1(N), OK,P[ϕ0]) → H1
par(Y1(N), OK,P[ϕ0]). We note that

the image of ηf,0 under the map H1
par(Y1(N), OK,P[ϕ0]) → H1

par(Y1(N),
OK,P[ϕ0])′ is equal to ηf up to multiplication of a unit of OK,P by Proposi-
tion 2.6.

First we consider the following sequence:

0 → H1
par

(
Y1(N), OK,P[ϕ0]

)
→ H1

(
Y1(N), OK,P[ϕ0]

)
.
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We denote also the image of the above map by ηf,0. Next we consider the following
map:

ι : H1
(
Y1(N), OK,P[ϕ0]

)
→ H1

(
Y1(N), OK,P[ϕ0]

)
⊗OK,P[ϕ0] Zp ⊗Zp

Fp.

Since we assume that p is prime to N, H1(∂Y1(N)∗, OK,P[ϕ0]) is torsion-free
over OK,P[ϕ0] (see [Ur, Proposition 2.4.1]). Thus, the image of ηf,0 by ι is not
zero.

Since the image of ηf,0 under the map ι is not zero, the image of ηf,c,0 under
the map

H1
c

(
Y1(N), OK,P[ϕ0]

)
→ H1

c

(
Y1(N), OK,P[ϕ0]

)
⊗OK,P[ϕ0] Zp ⊗Zp

Fp

is not zero. By the universal coefficient theorem, we obtain the following injection:

0 → H1
c

(
Y1(N), OK,P[ϕ0]

)
⊗OK,P[ϕ0] Zp ⊗Zp

Fp → H1
c

(
Y1(N),Fp

)
.

Since H3
c (Y1(N),Fp) is isomorphic to Fp and the cup product is nondegenerate,

we obtain the following injection:

0 → H1
c

(
Y1(N),Fp

)
→ HomFp

(
H2(Y1(N),Fp),Fp

)
.

Finally, by using the image of ηf,c,0 under the above maps, we obtain a map Φf

by Poincaré’s duality (see [Ur, Théorème 1.4,1.6]). By construction, Φf is not
zero. We note that the map Φf does not depend on a choice of pullback of ηf,c

∈ H1
c (Y1(N), OK,P[ϕ0])′ to H1

c (Y1(N), OK,P[ϕ0]). This follows from the fact that
the cup product

H1
c

(
Y1(N), O

)
⊗O H2

(
Y1(N), O

)
→ O

induces the map

H1
c

(
Y1(N), O

)′ ⊗O H2
(
Y1(N), O

)′ → O,

where M ′ denotes the largest torsion-free quotient of the O-module M , and that
we have the following commutative diagram:

H1
c

(
Y1(N), O

)
⊗O H2

(
Y1(N), O

)
−−−−→ H3

c

(
Y1(N), O

) ∼−−−−→ O⏐⏐� ⏐⏐� ⏐⏐�
H1

c

(
Y1(N),Fp

)
⊗Fp

H2
(
Y1(N),Fp

)
−−−−→ H3

c

(
Y1(N),Fp

) ∼−−−−→ Fp

where we abbreviate OK,P[ϕ0] to O.
By Proposition 2.5 and the definition of Φf , it is obvious to see that Φf (cϕ)

satisfies the identity in the statement of the lemma. �

Proof of Lemma 3.2
We denote the ray class group for Mp of F by ClF (Mp) and take their represen-
tative ClF (Mp) = {β1OF , . . . , βmOF }, where βi ∈ OF for i = 1, . . . ,m. Here we
note that we assume the class number of F to be equal to 1.

Since bN is prime to dMp, we take α ∈ N such that bα ≡ 1 mod dMp. We
write Pj = {d + bα(βj − 1 + μ);μ ∈ Mp}. Then there exists an πj ∈ Pj such that
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πj OF is a prime ideal. This follows from Chebotarev’s density theorem, since
bαMp and dOF are coprime. We take an μj ∈ Mp such that πj = d+ bα(βj − 1+
μj), which satisfies N(πj) − 1 �= �O ×

F . Then we show πj OF ∼ βj OF ∈ ClF (Mp).
To show this, it is enough to show that πj ≡ βj mod Mp:

πj = d + bα(βj − 1 + μj)

≡ 1 + 1 · (βj − 1 + 0) mod Mp

≡ βj .

We denote by F (Mp) the ray class field for Mp of F . Then F (Mp) contains F (ζp).
By assumption, we can take σ ∈ Gal(F (Mp)/F ) such that σ|F (ζp) �= idF (ζp) . From
the class field theory, there exists an isomorphism

ArtF (Mp)/F : Cl(Mp)
∼→ Gal

(
F (Mp)/F

)
,

where we denote the Artin map by ArtF (Mp)/F . Hence there exists j ∈ {1, . . . ,m}
such that βj OF = Art−1

F (Mp)/F (σ). Since πj OF ∼ βj OF ∈ ClF (Mp), we have
ArtF (Mp)/F (πj OF ) = σ.

For the above j, we set π := πj and c := πOF . Then, since σ|F (ζp) �= idF (ζp),
we have the condition (1).

The conditions (2) and (4) are obvious. We verify the condition (3). This
follows from the equation(

1 0
α(βj − 1 + μj) 1

)(
a b

c d

)
=

(
∗ b

∗ d + bα(βj − 1 + μj)

)

and the fact that
( 1 0

α(βj −1+μj) 1

)
is a parabolic element of Γ1(N).

The existence of infinitely many such π is a consequence of Chebotarev’s
density theorem. �

Appendix

In the proof of the main theorem, we need the following Corollary A.2, known
as Fricke’s lemma for the F = Q case (see [St, Lemma, p. 526]). We generalize
this to an arbitrary number field F . Let N be an integral ideal of OF . We fix
an integral ideal a which is prime to N. We fix a finite idele a0 whose associated
ideal is a. We put t =

(
a0 0
0 1

)
. We define F∞ = F ⊗Q R. We consider F∞ as the

set of infinite adeles of FA. We define

K1(N) =
{(

a b
c d

)
∈ GL2(ÔF ); c, d − 1 ∈ NÔF

}
,

Γa
1(N) = GL2(F ) ∩ tGL2(F∞)K1(N)t−1

=
{(

a b
c d

)
∈ GL2(F );a, d ∈ OF , b ∈ a, c ∈ a−1N,

d ≡ 1 modN, ad − bc ∈ O ×
F

}
,

Γa(N) =
{(

a b
c d

)
∈ Γa

1(N); b ∈ aN, a ≡ 1 modN
}

.

We put Γa
1(N) = SL2(F ) ∩ Γa

1(N) and Γa(N) = SL2(F ) ∩ Γa(N).
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We note that, for the integral ideal ai and Γi
1(N) which are introduced in

Section 2.1, we have Γai
1 (N) = Γi

1(N).

LEMMA A.1

Let M be an integral ideal of OF such that N|M and M is prime to a. Then
Γa(N) is generated by Γa(M) and parabolic elements of Γa(N).

Proof
Let γ :=

(
a b
c d

)
be an element of Γa(N). It suffices to show that we can get an

element of Γa(M) by multiplying some parabolic elements of Γa(N) to γ. We
show this by a four-step argument.

Step 1. First of all, we show that we can assume that aOF is coprime to aM.
Since γ ∈ Γa(N), aOF is prime to bcOF . By Chebotarev’s density theorem, we
can find α ∈ OF such that (a+αbc)OF is prime to aM. Now we note that ( 1 αb

0 1 )
is a parabolic element of Γa(N). We note that(

1 αb

0 1

)(
a b

c d

)
=

(
a + αbc b + αbd

c d

)
.

Hence, by replacing
(

a b
c d

)
with

(
a+αbc b+αbd

c d

)
, we may assume that aOF is prime

to aM.

Step 2. Next we show that we can assume b ∈ aM. For this purpose, we show
that there exists an α ∈ N such that b + aα ∈ aM. Since aOF is prime to aM,
we can find a k ∈ OF such that ak ≡ 1 mod aM. So we see b − bak ∈ aM. Since
b ∈ aN, for α := −bk ∈ aN, we have b+aα ∈ aM. Then, since ( 1 α

0 1 ) is a parabolic
element of Γa(N), (

a b

c d

)(
1 α

0 1

)
=

(
a b + aα

c d + cα

)
,

we may assume that b ∈ aM.

Step 3. Now we show that we can assume a ≡ 1 mod M. We take an element u of
a such that there exists an ideal b such that uOF = ab and b is prime to a. Since
a is prime to M by the assumption of Lemma A.1, we may assume that b is prime
to M. Since aOF is prime to M, there exists an element t of OF such that at ≡ 1
mod M and t ≡ 1 mod b by the Chinese remainder theorem. In particular, since
a ≡ 1 mod N, we have t ≡ 1 mod N. For the above t ∈ OF , we have u(t − 1) ∈ aN

and u−1(1 − t) ∈ a−1N. Then it is easy to see that
(

t u(t−1)

u−1(1−t) −t+2

)
is a parabolic

element of Γa(N). We note that(
a b

c d

)(
t u(t − 1)

u−1(1 − t) −t + 2

)
=

(
at + bu−1(1 − t) au(t − 1) + b(−t + 2)
ct + du−1(1 − t) cu(t − 1) + d(−t + 2)

)
.
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Since b ∈ aM, we have

at + bu−1(1 − t) ≡ 1 mod M.

Hence, by replacing
(

a b
c d

)
with

(
at+bu−1(1−t) au(t−1)+b(−t+2)

ct+du−1(1−t) cu(t−1)+d(−t+2)

)
, we may assume

that a ≡ 1 mod M. However, after this replacement, we might lose the condition
b ∈ aM.

Step 4. By the assumption a ≡ 1 mod M and(
a b

c d

)(
1 −b

0 1

)
=

(
a b − ab

c d − bc

)
,

(
1 0

−c 1

)(
a b

c d

)
=

(
a b

c − ac d − bc

)
;

we conclude the lemma. �

Since any element of Γa
1(N) is transformed to an element of Γa(N) by multiply-

ing a certain unipotent element of Γa
1(N), we have the following corollary from

Lemma A.1.

COROLLARY A.2

Notation is the same as in the above lemma. Then Γa
1(N) is generated by Γa(M)

and parabolic elements of Γa
1(N).
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