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Abstract The Riemann-Lebesgue lemma shows that the Vilenkin-Fourier coefficient
f̂(n) is of o(1) as n → ∞ for any integrable function f on Vilenkin groups. However, it
is known that the Vilenkin-Fourier coefficients of integrable functions can tend to zero
as slowly as we wish. The definitive result is due to B. L. Ghodadra for functions of cer-
tain classes of generalized bounded fluctuations. We prove that this is a matter only of
local fluctuation for functions with the Vilenkin-Fourier series lacunary with small gaps.
Our results, as in the case of trigonometric Fourier series, illustrate the interconnection
between ‘localness’ of the hypothesis and type of lacunarity and allow us to interpolate
the results.

1. Introduction

Let G be a Vilenkin group, that is, a compact metrizable zero-dimensional (infi-
nite) abelian group. Then the dual group X of G is a discrete, countable, torsion,
abelian group (see [4, Theorems 24.15, 24.26]). In 1947, N. Ja. Vilenkin [14] devel-
oped part of the Fourier theory on G, and later Onneweer and Waterman [5]–[7]
introduced various classes of functions of bounded fluctuations. For functions of
these classes, in [3], we have studied the order of magnitude of Vilenkin-Fourier
coefficients and proved Vilenkin group analogues of the results of Schramm and
Waterman [13]. Here we study the order of magnitude of Fourier coefficients of
Vilenkin-Fourier series with small gaps for functions of various classes of bounded
fluctuations and prove the Vilenkin group analogue (Corollary 2) of the results of
Patadia and Vyas [8, Theorem 5]. As in the case of trigonometric Fourier series
(see [8]), here also we give an interconnection between the ‘type of lacunarity’ in
Vilenkin-Fourier series and the localness of the hypothesis to be satisfied by the
generic functions, which allow us to interpolate results concerning order of mag-
nitude of Fourier coefficients of lacunary and nonlacunary Vilenkin-Fourier series.

2. Notation and definitions

For G and X as above, Vilenkin [14, Sections 1.1, 1.2] proved the existence of a
sequence {Xn} of finite subgroups of X and of a sequence {ϕn} in X such that
the following hold:
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(i) X0 = {χ0}, where χ0 is the identity character on G;
(ii) X0 ⊂ X1 ⊂ X2 ⊂ . . .;
(iii) for each n ≥ 1, the quotient group Xn/Xn−1 is of prime order pn;
(iv) X =

⋃∞
n=0 Xn;

(v) ϕn ∈ Xn+1 \ Xn for all n ≥ 0;
(vi) ϕ

pn+1
n ∈ Xn for all n ≥ 0.

The group G is bounded if

p0 = sup
i=1,2,...

pi < ∞;

otherwise, G is said to be unbounded. Using the ϕn’s, we can enumerate X as
follows. Let m0 = 1, and let mn =

∏n
i=1 pi for n = 1,2, . . . . Then each k ∈ N can

be uniquely represented as k =
∑s

i=0 aimi with 0 ≤ ai < pi+1 for 0 ≤ i ≤ s; we
define χk by the formula χk = ϕa0

0 · · · · · ϕas
s . Observe that χmn = ϕn for each

n ≥ 0. For χ ∈ X the degree of χ is defined by degχ0 = 0 and degχk = s + 1
if χk is written as the product of ϕn’s as described in the preceding lines. Any
complex linear combination of finitely many elements of X is called a Vilenkin
polynomial on G, and the degree of such a polynomial is the maximum of the
degree of elements of X appearing in the polynomial.

G =
∏∞

n=1 Zpn , {pn} – a sequence of prime numbers, is a standard example.
If pn = 2 for all n, X is the group of Walsh functions ψn, n = 0,1,2, . . . , and
Xn = {ψ0, ψ1, . . . , ψ2n −1} (using Payley enumeration; see [10]) described by Fine
[2]. If pn = p for all n, X is the group of generalized Walsh functions [1].

Let dx or m denote the normalized Haar measure on G. For f ∈ L1(G), the
Vilenkin-Fourier series of f is given by

S[f ](x) =
∞∑

n=0

f̂(n)χn(x), f̂(n) =
∫

G

f(x)χ̄n(x)dx,

where f̂(n) (n = 0,1,2, . . .) is the nth Vilenkin-Fourier coefficient of f . It is said
to be lacunary with small gaps if f̂(n) �= 0 for n �= nk, where {nk } ∞

k=1 is an
increasing sequence of positive integers satisfying the small gap condition

(1) (nk+1 − nk) ≥ q ≥ 1 (k = 1,2, . . .)

or, in particular, a more stringent small gap condition

(2) (nk+1 − nk) → ∞ as k → ∞.

Observe that for each n, Xn = {χk : 0 ≤ k < mn}. Let Gn be the annihilator
of Xn, that is,

Gn =
{
x ∈ G : χ(x) = 1, χ ∈ Xn

}
=

{
x ∈ G : χk(x) = 1,0 ≤ k < mn

}
.

Then obviously, G = G0 ⊃ G1 ⊃ G2 ⊃ . . . ,
⋂∞

n=0 Gn = {0}, and the Gn’s form a
fundamental system of neighborhoods of zero in G which are compact open and
closed subgroups of G. Further, the index of Gn in G is mn, and since the Haar
measure is translation invariant with m(G) = 1, one has m(Gn) = 1/mn. In [14,
Section 3.2] Vilenkin proved that for each n ≥ 0 there exists xn ∈ Gn \ Gn+1
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such that χmn(xn) = exp(2πi/pn+1) and observed that each x ∈ G has a unique
representation x =

∑∞
i=0 bixi with 0 ≤ bi < pi+1 for all i ≥ 0. This representation

of the elements of G enables one to order them by means of the lexicographic
ordering of the corresponding sequence {bn} and one observes that for each n =
1,2, . . . ,

Gn =
{

x ∈ G : x =
∞∑

i=0

bixi, b0 = · · · = bn−1 = 0
}

=
{

x ∈ G : x =
∞∑

i=n

bixi

}
.

Consequently, each coset of Gn in G has a representation of the form z + Gn,

where z =
∑n−1

i=0 bixi for some choice of the bi with 0 ≤ bi < pi+1. These z, ordered
lexicographically, are denoted by {z

(n)
α } (0 ≤ α < mn).

It may be noted that the choice of ϕn ∈ Xn+1\Xn and of the xn ∈ Gn\Gn+1

is not uniquely determined by the groups X and G. In the following, it is assumed
that a particular choice has been made.

Observe that for l,N ∈ N if l > N ; then Gl ⊂ GN , and therefore,

Gl =
{

x ∈ G : x =
∞∑
i=l

bixi

}
=

{
x ∈ GN : x =

∞∑
i=N

bixi, bN = · · · = bl−1 = 0
}

.

Thus each coset of Gl in GN has a representation of the form z + Gl, where
z =

∑l−1
i=N bixi for some choice of the bi with 0 ≤ bi < pi+1. These (ml/mN ) =

pN+1pN+2 · · · pl = L (say) cosets of Gl in GN are precisely the cosets z
(l)
α + Gl,

α = 0,1, . . . ,L − 1, of Gl in G in that order. Also observe that for a given y0 =∑∞
i=0 cixi in G and N ∈ N, the coset y0 + GN given by

y0 + GN =
{

x =
∞∑

i=0

bixi ∈ G : bi = ci, i = 0,1, . . . ,N − 1
}

contains y0 and is of Haar measure 1/mN . Since GN is the disjoint union of the
cosets z

(l)
α + Gl, α = 0,1, . . . ,L − 1, for l > N , the coset y0 + GN is the disjoint

union of the cosets y0 + z
(l)
α + Gl, α = 0,1, . . . ,L − 1.

Let f be a complex function on G, let Λ = {λn} be a sequence of positive
real numbers such that

∑∞
n=1(1/λn) diverges, and let φ : [0, ∞) → [0, ∞) be a

strictly increasing function. Customarily φ is considered to be a convex function
such that

φ(0) = 0,
φ(x)

x
→ 0 (x → 0+),

φ(x)
x

→ ∞ (x → ∞).

Such a function is called an N -function. It is necessarily continuous and strictly
increasing on [0, ∞). For H ⊂ G, the oscillation of f on H is defined as

osc(f ;H) = sup
{

|f(x1) − f(x2)| : x1, x2 ∈ H
}
.

We define various classes of functions of bounded fluctuation on a coset of G as
follows.

DEFINITION 1

We say that f is of φ-bounded fluctuation over y0 + GN (f ∈ φBF(y0 + GN )) if
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the total φ-fluctuation of f on y0 + GN given by

Fφ(f ;y0 + GN ) = sup
{ T∑

t=1

φ
(
osc(f ; It)

)}

is finite, where the supremum is taken over all finite disjoint collections {I1, I2, . . . ,

IT } in which each It is a coset of some Gm(t) and
⋃T

t=1 It = y0 + GN .

DEFINITION 2

We say that f is of φ-Λ-bounded fluctuation over y0 + GN (f ∈ φΛBF(y0 + GN ))
if the total φ-Λ-fluctuation of f on y0 + GN given by

FφΛ(f ;y0 + GN ) = sup
{In }

{∑
n

φ(osc(f ; In))
λn

}

is finite, where the supremum is taken over all sequences {In} of disjoint cosets
in y0 + GN .

DEFINITION 3

We say that f is of φ-generalized bounded fluctuation over y0 + GN (f ∈
φGBF(y0 + GN )) if the total generalized φ-fluctuation of f on y0 + GN given by

GFφ(f ;y0 + GN ) = sup
l≥N

ml/mN −1∑
α=0

φ
(
osc(f ;y0 + z(l)

α + Gl)
)

is finite.

We observe that if λn ≡ 1, φΛBF = φBF. If φ(x) = xp (p ≥ 1), then φBF (resp.,
φGBF) is denoted as BF(p) (resp., GBF(p)), and functions of this class are
called functions of p-bounded fluctuation (resp., p-generalized bounded fluctua-
tion). Also, when p = 1, the class BF(p) (resp., GBF(p)) is denoted as BF (resp.,
GBF), and functions of this class are called functions of bounded fluctuation
(resp., generalized bounded fluctuation). Further, from Definitions 1 and 3, it is
clear that φBF ⊂ φGBF.

When y0 +GN = G, our Definitions 2 and 3 are the same as [7, Definition 3]
and [6, Definition 6], respectively. For y0 + GN = G and φ(x) = xp, our Defini-
tion 3 is same as [5, Definition 4]. Further, when y0 + GN = G and φ(x) = x, our
Definitions 1 and 3 are the same as Definitions 4 and 5, respectively, in [6].

3. Results

We prove the following results.

THEOREM 1

Let f ∈ L1(G) possess a lacunary Vilenkin-Fourier series

(3)
∞∑

k=1

f̂(nk)χnk
(x)
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with small gaps (1), and let I = y0 +GN be the coset with Haar measure 1/mN ≥
1/q. Then f ∈ φGBF(I) implies f̂(nk) = O(φ−1(1/ml)), where ml ≤ nk < ml+1.

If, in addition, G is bounded, then f̂(nk) = O(φ−1(1/nk)).

Taking φ(x) = xp (p ≥ 1) in Theorem 1, we get the following.

COROLLARY 1

Let f and I be as in Theorem 1. Then f ∈ GBF(p)(I) (p ≥ 1) implies f̂(nk) =
O(1/(ml)1/p), where ml ≤ nk < ml+1. If, in addition, G is bounded, then f̂(nk) =
O(1/(nk)1/p).

REMARK 1

Since φBF ⊂ φGBF, Theorem 1 holds for functions in φBF also. Similarly, as
BF(p) ⊂ GBF(p), Corollary 1 holds for functions in BF(p) also.

THEOREM 2

Let f and I be as in Theorem 1. Then f ∈ φΛBF(I) implies

f̂(nk) = O

(
φ−1

(
1
/( ml∑

j=1

1
λj

)))
,

where ml ≤ nk < ml+1. If, in addition, G is bounded, then

f̂(nk) = O

(
φ−1

(
1
/( nk∑

j=1

1
λj

)))
.

Taking φ(x) = xp (p ≥ 1) in Theorem 2, we get the following result, which is the
Vilenkin group analogue of the result of Patadia and Vyas [8, Theorem 5].

COROLLARY 2

Let f and I be as in Theorem 1. Then f ∈ ΛBF(p)(I) (p ≥ 1) implies

f̂(nk) = O

(
1
/( ml∑

j=1

1
λj

)1/p
)

,

where ml ≤ nk < ml+1. If, in addition, G is bounded, then

f̂(nk) = O

(
1
/( nk∑

j=1

1
λj

)1/p
)

.

REMARK 2

Observe that nk = k for all k =⇒ q = 1 in (1) =⇒ I is of Haar measure 1 in
the above theorems =⇒ I = G; and one gets corresponding results for nonlacu-
nary Vilenkin-Fourier series (see [3]). On the other hand, if the Vilenkin-Fourier
series (3) of f ∈ L1(G) has gaps (2), then the above results hold if the coset I is
just of positive measure. Because if |I| > 0, by the form of I , |I| = 1/mN , where
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N ∈ N can be taken as large as required. In view of (2), one gets (nk+1 − nk) ≥ mN

for all k ≥ k0 for a suitable k0 = k0(N). Then adding to f(x) the Vilenkin polyno-
mial

∑k0
j=1(−f̂(nj))χnj (x), one gets a function g whose Fourier series is lacunary

of the form (3) having gaps (1) with q = mN , and results are true for g. Since
f and g differ by a polynomial, results are true for f as well. Our results thus
interpolate lacunary and nonlacunary results concerning order of magnitude of
Fourier coefficients—displaying beautiful interconnection between types of lacu-
narity (as determined by q in (1)) and localness of the hypothesis to be satisfied
by the generic function (as determined by the q-dependent length of I).

4. Proofs of results

The following lemma due to Schramm and Waterman [12] is needed.

LEMMA 1

If a1 ≥ a2 ≥ · · · ≥ an > 0,
∑n

i=1 ai = 1, and b1 ≥ b2 ≥ · · · ≥ bn, then
n∑

i=1

bi ≤ n

n∑
i=1

aibi.

Proof of Theorem 1.
We may assume without loss of generality that y0 = 0; otherwise, one works with
g = Ty0f ∈ φGBF(GN ), whose Fourier series also has gaps (1). Then I = GN ,
and if we consider the polynomial PN (x) (see [9, Lemma 4]) defined by

PN (x) =
N −1∏
k=0

(
1 + ϕk(x) + ϕ2

k(x) + · · · + ϕpk −1
k (x)

)

= 1 +
N −1∑
i=0

ϕi(x) +
N −1∑

i,j=0,i �=j

pi −1∑
l=1

pj −1∑
m=1

ϕl
i(x) · ϕm

j (x) + · · · +
(N −1∏

i=0

ϕpi −1
i (x)

)

having constant term 1 and with degree less than or equal to N , then

(4) PN (x) =

{
mN if x ∈ I,

0 if x ∈ G \ I.

Note that if k ∈ N is such that f̂(nk) �= 0, then (f · PN )̂ (nk) = f̂(nk). In fact,

(f · PN )̂ (nk) =
∫

G

f(x)PN (x)χ̄nk
(x)dx

= f̂(nk) +
N −1∑
i=0

f̂(ϕ̄iχnk
) +

N −1∑
i,j=0,i �=j

pi −1∑
l=1

pj −1∑
m=1

f̂(ϕ̄l
iϕ̄

m
j χnk

)(5)

+ · · · + f̂
(N −1∏

i=0

ϕ̄pi −1
i χnk

)
.
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The characters appearing in the right-hand side of (5) are of the form χnk
χ

wherein χ is such that degχ is positive and less than or equal to N . Observe
that for each j ∈ N there are totally mj−1(pj − 1) = (mj − mj−1) characters
of degree j, namely, χiϕ

aj−1
j−1 , 0 ≤ i < mj−1, and 1 ≤ aj−1 ≤ (pj − 1), and they

constitute (Xj − Xj−1). Consequently, the total number of characters of positive
degree less than or equal to N is given by

(m1 − m0) + (m2 − m1) + · · · + (mN − mN −1) = mN − 1;

they are from χ1 to χmN −1, and they constitute
⋃mN

j=1(Xj − Xj−1). It follows
that when χnk

is multiplied by any character of positive degree less than or
equal to N , the resulting character χm is such that

nk < m ≤ nk + mN − 1 < nk + mN ≤ nk + q ≤ nk+1

because the lacunary Vilenkin-Fourier series (3) of f has gaps (1) with q ≥ mN .

Since f̂(nk) �= 0, all the terms of the right-hand side of (5) vanish except the first.
Let k be large enough, and let l ∈ N ∪ {0} be such that f̂(nk) �= 0,ml ≤ nk <

ml+1, and l > N. Then, in view of (4),

(6) f̂(nk) = (f · PN )̂ (nk) = mN

∫
GN

f(x)χ̄nk
(x)dx.

Since nk ≥ ml and the Haar measure is translation invariant, it follows (see,
e.g., [11, p. 114, (15)]) that ∫

z
(l)
α +Gl

χnk
(x)dx = 0

for all α = 0,1, . . . ,ml − 1; hence∫
z
(l)
α +Gl

χ̄nk
(x)dx = 0 (α = 0,1, . . . ,ml − 1).

Now, put L = ml/mN = (pN+1pN+2 · · · pl), and define a step function g on GN

by g(x) = f(z(l)
α ) for x in z

(l)
α + Gl, α = 0,1, . . . ,L − 1. Then∫

GN

g(x)χ̄nk
(x)dx =

L−1∑
α=0

f(z(l)
α )

∫
z
(l)
α +Gl

χ̄nk
(x)dx = 0.

Therefore, in view of (6) we have

(7) |f̂(nk)| =
∣∣∣mN

∫
GN

[f(x) − g(x)]χ̄nk
(x)dx

∣∣∣ ≤ mN

∫
GN

|f(x) − g(x)| dx.

Now, by Jensen’s inequality, for c > 0,

φ
(
mN · c ·

∫
GN

|f(x) − g(x)| dx
)

≤ mN

∫
GN

φ
(
c|f(x) − g(x)|

)
dx

(8)

= mN

L−1∑
α=0

∫
z
(l)
α +Gl

φ
(
c|f(x) − f(z(l)

α )|
)
dx.
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Therefore,

φ
(
mN · c ·

∫
GN

|f(x) − g(x)| dx
)

≤ mN

L−1∑
α=0

∫
z
(l)
α +Gl

φ
(
osc(cf ; z(l)

α + Gl)
)
dx

= mN

L−1∑
α=0

φ
(
osc(cf ; z(l)

α + Gl)
) 1
ml

,

and hence

(9) φ
(
mN · c ·

∫
GN

|f(x) − g(x)| dx
)

≤
(mN

ml

)
GFφ(cf ; I).

Since φ is convex and φ(0) = 0, we have φ(ax) ≤ aφ(x) for 0 < a < 1 and for all
x ≥ 0. Therefore, choosing c in (0,1) so small that (mN · GFφ(cf ; I)) ≤ 1, one
gets

|f̂(nk)| ≤ mN

∫
GN

|f(x) − g(x)| dx ≤
( mN

mN · c

)
φ−1

( 1
ml

)

in view of (9) and (7). This shows that f̂(nk) = O(φ−1(1/ml)).
Finally, if G is bounded, there is a positive integer p0 such that pl ≤ p0 for

all l. Thus nk < ml+1 = ml · pl+1 ≤ ml · p0, which shows that 1/ml ≤ p0/nk, and
hence (9) gives

(10) φ
(
mN · c ·

∫
GN

|f(x) − g(x)| dx
)

≤
(p0 · mN

nk

)
GFφ(cf ; I).

Choosing now c in (0,1) so small that (p0 · mN · GFφ(cf ; I)) ≤ 1, one obtains

|f̂(nk)| ≤ mN

∫
GN

|f(x) − g(x)| dx ≤
( mN

mN · c

)
φ−1

( 1
nk

)
in view of (10) and (7). This completes the proof of Theorem 1. �

Proof of Theorem 2.
Proceeding as in the proof of Theorem 1, for c > 0 we get (7) and (8). Let αi,
i = 0,1, . . . ,L − 1, denote a rearrangement of 0,1, . . . ,L − 1 such that {bi}L−1

i=0 is
nonincreasing, where

bi =
∫

z
(l)
αi +Gl

φ
(
c|f(x) − f(z(l)

αi
)|

)
dx

for all i. For each i = 0,1, . . . ,L − 1, put ai = 1/(λi+1θL), where θn =
∑n

j=1 1/λj ,
for all n ∈ N. Then {ai}L−1

i=0 is nonincreasing, and
∑L−1

i=0 ai = 1. Therefore by the
lemma,

L−1∑
α=0

∫
z
(l)
α +Gl

φ
(

|f(x) − f(z(l)
α )|

)
dx =

L−1∑
i=0

bi ≤ L

L−1∑
i=0

aibi

=
L

θL

L−1∑
i=0

∫
z
(l)
αi +Gl

(φ(c|f(x) − f(z(l)
αi )|)

λi+1

)
dx
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≤ L

θL

L−1∑
i=0

∫
z
(l)
αi +Gl

(φ(osc(cf ; z(l)
αi + Gl))

λi+1

)
dx

=
ml

mNθL

L−1∑
i=0

φ(osc(cf ; z(l)
αi + Gl))

λi+1
· 1
ml

≤ FφΛ(cf ; I)
mNθL

.

Therefore,

(11)
L−1∑
α=0

∫
z
(l)
α +Gl

φ
(

|f(x) − f(z(l)
α )|

)
dx ≤ FφΛ(cf ; I)

θml

,

since {λi} is nondecreasing. In view of (11) and (8) we get

φ
(
mN · c ·

∫
GN

|f(x) − g(x)| dx
)

≤ mN · FφΛ(cf ; I)
θml

.(12)

Since φ is convex and φ(0) = 0, we can choose c in (0,1) so small such that (mN ·
FφΛ(cf ; I)) ≤ 1. This proves, in view of (12) and (7), that f̂(nk) = O(φ−1(1/θml

)).
Finally, if G is bounded, 1/θml

≤ p0/θnk
, and hence by (8) and (11)

φ
(
mN · c ·

∫
GN

|f(x) − g(x)| dx
)

≤ mN · p0 · FφΛ(cf ; I)
θnk

.

Choosing now c ∈ (0,1) small enough such that (mN · p0 · FφΛ(cf ;G)) ≤ 1, we
then get ∫

GN

|f(x) − g(x)| dx ≤
( 1

mN · c

)
φ−1

( 1
θnk

)
,

and hence we have the theorem in view of (7). �
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