On the coefficients of Vilenkin-Fourier series with small gaps

Bhikha Lila Ghodadra

Abstract

The Riemann-Lebesgue lemma shows that the Vilenkin-Fourier coefficient $\hat{f}(n)$ is of $o(1)$ as $n \rightarrow \infty$ for any integrable function f on Vilenkin groups. However, it is known that the Vilenkin-Fourier coefficients of integrable functions can tend to zero as slowly as we wish. The definitive result is due to B. L. Ghodadra for functions of certain classes of generalized bounded fluctuations. We prove that this is a matter only of local fluctuation for functions with the Vilenkin-Fourier series lacunary with small gaps. Our results, as in the case of trigonometric Fourier series, illustrate the interconnection between 'localness' of the hypothesis and type of lacunarity and allow us to interpolate the results.

1. Introduction

Let G be a Vilenkin group, that is, a compact metrizable zero-dimensional (infinite) abelian group. Then the dual group X of G is a discrete, countable, torsion, abelian group (see [4, Theorems 24.15, 24.26]). In 1947, N. Ja. Vilenkin [14] developed part of the Fourier theory on G, and later Onneweer and Waterman [5]-[7] introduced various classes of functions of bounded fluctuations. For functions of these classes, in [3], we have studied the order of magnitude of Vilenkin-Fourier coefficients and proved Vilenkin group analogues of the results of Schramm and Waterman [13]. Here we study the order of magnitude of Fourier coefficients of Vilenkin-Fourier series with small gaps for functions of various classes of bounded fluctuations and prove the Vilenkin group analogue (Corollary 2) of the results of Patadia and Vyas [8, Theorem 5]. As in the case of trigonometric Fourier series (see [8]), here also we give an interconnection between the 'type of lacunarity' in Vilenkin-Fourier series and the localness of the hypothesis to be satisfied by the generic functions, which allow us to interpolate results concerning order of magnitude of Fourier coefficients of lacunary and nonlacunary Vilenkin-Fourier series.

2. Notation and definitions

For G and X as above, Vilenkin [14, Sections 1.1, 1.2] proved the existence of a sequence $\left\{X_{n}\right\}$ of finite subgroups of X and of a sequence $\left\{\varphi_{n}\right\}$ in X such that the following hold:
(i) $X_{0}=\left\{\chi_{0}\right\}$, where χ_{0} is the identity character on G;
(ii) $X_{0} \subset X_{1} \subset X_{2} \subset \ldots$;
(iii) for each $n \geq 1$, the quotient group X_{n} / X_{n-1} is of prime order p_{n};
(iv) $X=\bigcup_{n=0}^{\infty} X_{n}$;
(v) $\varphi_{n} \in X_{n+1} \backslash X_{n}$ for all $n \geq 0$;
(vi) $\varphi_{n}^{p_{n+1}} \in X_{n}$ for all $n \geq 0$.

The group G is bounded if

$$
p_{0}=\sup _{i=1,2, \ldots} p_{i}<\infty
$$

otherwise, G is said to be unbounded. Using the φ_{n} 's, we can enumerate X as follows. Let $m_{0}=1$, and let $m_{n}=\prod_{i=1}^{n} p_{i}$ for $n=1,2, \ldots$. Then each $k \in \mathbb{N}$ can be uniquely represented as $k=\sum_{i=0}^{s} a_{i} m_{i}$ with $0 \leq a_{i}<p_{i+1}$ for $0 \leq i \leq s$; we define χ_{k} by the formula $\chi_{k}=\varphi_{0}^{a_{0}} \cdots \cdots \varphi_{s}^{a_{s}}$. Observe that $\chi_{m_{n}}=\varphi_{n}$ for each $n \geq 0$. For $\chi \in X$ the degree of χ is defined by $\operatorname{deg} \chi_{0}=0$ and $\operatorname{deg} \chi_{k}=s+1$ if χ_{k} is written as the product of φ_{n} 's as described in the preceding lines. Any complex linear combination of finitely many elements of X is called a Vilenkin polynomial on G, and the degree of such a polynomial is the maximum of the degree of elements of X appearing in the polynomial.
$G=\prod_{n=1}^{\infty} \mathbb{Z}_{p_{n}},\left\{p_{n}\right\}$ - a sequence of prime numbers, is a standard example. If $p_{n}=2$ for all n, X is the group of Walsh functions $\psi_{n}, n=0,1,2, \ldots$, and $X_{n}=\left\{\psi_{0}, \psi_{1}, \ldots, \psi_{2^{n}-1}\right\}$ (using Payley enumeration; see [10]) described by Fine [2]. If $p_{n}=p$ for all n, X is the group of generalized Walsh functions [1].

Let $d x$ or m denote the normalized Haar measure on G. For $f \in L^{1}(G)$, the Vilenkin-Fourier series of f is given by

$$
S[f](x)=\sum_{n=0}^{\infty} \hat{f}(n) \chi_{n}(x), \quad \hat{f}(n)=\int_{G} f(x) \bar{\chi}_{n}(x) d x
$$

where $\hat{f}(n)(n=0,1,2, \ldots)$ is the nth Vilenkin-Fourier coefficient of f. It is said to be lacunary with small gaps if $\hat{f}(n) \neq 0$ for $n \neq n_{k}$, where $\left\{n_{k}\right\}_{k=1}^{\infty}$ is an increasing sequence of positive integers satisfying the small gap condition

$$
\begin{equation*}
\left(n_{k+1}-n_{k}\right) \geq q \geq 1 \quad(k=1,2, \ldots) \tag{1}
\end{equation*}
$$

or, in particular, a more stringent small gap condition

$$
\begin{equation*}
\left(n_{k+1}-n_{k}\right) \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty . \tag{2}
\end{equation*}
$$

Observe that for each $n, X_{n}=\left\{\chi_{k}: 0 \leq k<m_{n}\right\}$. Let G_{n} be the annihilator of X_{n}, that is,

$$
G_{n}=\left\{x \in G: \chi(x)=1, \chi \in X_{n}\right\}=\left\{x \in G: \chi_{k}(x)=1,0 \leq k<m_{n}\right\} .
$$

Then obviously, $G=G_{0} \supset G_{1} \supset G_{2} \supset \ldots, \bigcap_{n=0}^{\infty} G_{n}=\{0\}$, and the G_{n} 's form a fundamental system of neighborhoods of zero in G which are compact open and closed subgroups of G. Further, the index of G_{n} in G is m_{n}, and since the Haar measure is translation invariant with $m(G)=1$, one has $m\left(G_{n}\right)=1 / m_{n}$. In [14, Section 3.2] Vilenkin proved that for each $n \geq 0$ there exists $x_{n} \in G_{n} \backslash G_{n+1}$
such that $\chi_{m_{n}}\left(x_{n}\right)=\exp \left(2 \pi i / p_{n+1}\right)$ and observed that each $x \in G$ has a unique representation $x=\sum_{i=0}^{\infty} b_{i} x_{i}$ with $0 \leq b_{i}<p_{i+1}$ for all $i \geq 0$. This representation of the elements of G enables one to order them by means of the lexicographic ordering of the corresponding sequence $\left\{b_{n}\right\}$ and one observes that for each $n=$ $1,2, \ldots$,

$$
G_{n}=\left\{x \in G: x=\sum_{i=0}^{\infty} b_{i} x_{i}, b_{0}=\cdots=b_{n-1}=0\right\}=\left\{x \in G: x=\sum_{i=n}^{\infty} b_{i} x_{i}\right\} .
$$

Consequently, each coset of G_{n} in G has a representation of the form $z+G_{n}$, where $z=\sum_{i=0}^{n-1} b_{i} x_{i}$ for some choice of the b_{i} with $0 \leq b_{i}<p_{i+1}$. These z, ordered lexicographically, are denoted by $\left\{z_{\alpha}^{(n)}\right\}\left(0 \leq \alpha<m_{n}\right)$.

It may be noted that the choice of $\varphi_{n} \in X_{n+1} \backslash X_{n}$ and of the $x_{n} \in G_{n} \backslash G_{n+1}$ is not uniquely determined by the groups X and G. In the following, it is assumed that a particular choice has been made.

Observe that for $l, N \in \mathbb{N}$ if $l>N$; then $G_{l} \subset G_{N}$, and therefore,

$$
G_{l}=\left\{x \in G: x=\sum_{i=l}^{\infty} b_{i} x_{i}\right\}=\left\{x \in G_{N}: x=\sum_{i=N}^{\infty} b_{i} x_{i}, b_{N}=\cdots=b_{l-1}=0\right\} .
$$

Thus each coset of G_{l} in G_{N} has a representation of the form $z+G_{l}$, where $z=\sum_{i=N}^{l-1} b_{i} x_{i}$ for some choice of the b_{i} with $0 \leq b_{i}<p_{i+1}$. These $\left(m_{l} / m_{N}\right)=$ $p_{N+1} p_{N+2} \cdots p_{l}=L$ (say) cosets of G_{l} in G_{N} are precisely the cosets $z_{\alpha}^{(l)}+G_{l}$, $\alpha=0,1, \ldots, L-1$, of G_{l} in G in that order. Also observe that for a given $y_{0}=$ $\sum_{i=0}^{\infty} c_{i} x_{i}$ in G and $N \in \mathbb{N}$, the coset $y_{0}+G_{N}$ given by

$$
y_{0}+G_{N}=\left\{x=\sum_{i=0}^{\infty} b_{i} x_{i} \in G: b_{i}=c_{i}, i=0,1, \ldots, N-1\right\}
$$

contains y_{0} and is of Haar measure $1 / m_{N}$. Since G_{N} is the disjoint union of the cosets $z_{\alpha}^{(l)}+G_{l}, \alpha=0,1, \ldots, L-1$, for $l>N$, the coset $y_{0}+G_{N}$ is the disjoint union of the cosets $y_{0}+z_{\alpha}^{(l)}+G_{l}, \alpha=0,1, \ldots, L-1$.

Let f be a complex function on G, let $\Lambda=\left\{\lambda_{n}\right\}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty}\left(1 / \lambda_{n}\right)$ diverges, and let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function. Customarily ϕ is considered to be a convex function such that

$$
\phi(0)=0, \quad \frac{\phi(x)}{x} \rightarrow 0 \quad\left(x \rightarrow 0_{+}\right), \quad \frac{\phi(x)}{x} \rightarrow \infty \quad(x \rightarrow \infty) .
$$

Such a function is called an N-function. It is necessarily continuous and strictly increasing on $[0, \infty)$. For $H \subset G$, the oscillation of f on H is defined as

$$
\operatorname{osc}(f ; H)=\sup \left\{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|: x_{1}, x_{2} \in H\right\} .
$$

We define various classes of functions of bounded fluctuation on a coset of G as follows.

DEFINITION 1

We say that f is of ϕ-bounded fluctuation over $y_{0}+G_{N}\left(f \in \phi \mathrm{BF}\left(y_{0}+G_{N}\right)\right)$ if
the total ϕ-fluctuation of f on $y_{0}+G_{N}$ given by

$$
\mathrm{F}_{\phi}\left(f ; y_{0}+G_{N}\right)=\sup \left\{\sum_{t=1}^{T} \phi\left(\operatorname{osc}\left(f ; I_{t}\right)\right)\right\}
$$

is finite, where the supremum is taken over all finite disjoint collections $\left\{I_{1}, I_{2}, \ldots\right.$, $\left.I_{T}\right\}$ in which each I_{t} is a coset of some $G_{m(t)}$ and $\bigcup_{t=1}^{T} I_{t}=y_{0}+G_{N}$.

DEFIIITION 2

We say that f is of ϕ - Λ-bounded fluctuation over $y_{0}+G_{N}\left(f \in \phi \Lambda \mathrm{BF}\left(y_{0}+G_{N}\right)\right)$ if the total ϕ - Λ-fluctuation of f on $y_{0}+G_{N}$ given by

$$
\mathrm{F}_{\phi \Lambda}\left(f ; y_{0}+G_{N}\right)=\sup _{\left\{I_{n}\right\}}\left\{\sum_{n} \frac{\phi\left(\operatorname{osc}\left(f ; I_{n}\right)\right)}{\lambda_{n}}\right\}
$$

is finite, where the supremum is taken over all sequences $\left\{I_{n}\right\}$ of disjoint cosets in $y_{0}+G_{N}$.

DEFINITION 3

We say that f is of ϕ-generalized bounded fluctuation over $y_{0}+G_{N}(f \in$ $\left.\phi \operatorname{GBF}\left(y_{0}+G_{N}\right)\right)$ if the total generalized ϕ-fluctuation of f on $y_{0}+G_{N}$ given by

$$
\operatorname{GF}_{\phi}\left(f ; y_{0}+G_{N}\right)=\sup _{l \geq N} \sum_{\alpha=0}^{m_{l} / m_{N}-1} \phi\left(\operatorname{osc}\left(f ; y_{0}+z_{\alpha}^{(l)}+G_{l}\right)\right)
$$

is finite.

We observe that if $\lambda_{n} \equiv 1, \phi \Lambda \mathrm{BF}=\phi \mathrm{BF}$. If $\phi(x)=x^{p}(p \geq 1)$, then $\phi \mathrm{BF}$ (resp., $\phi \mathrm{GBF}$) is denoted as $\mathrm{BF}^{(p)}$ (resp., $\mathrm{GBF}^{(p)}$), and functions of this class are called functions of p-bounded fluctuation (resp., p-generalized bounded fluctuation). Also, when $p=1$, the class $\mathrm{BF}^{(p)}$ (resp., $\mathrm{GBF}^{(p)}$) is denoted as BF (resp., GBF), and functions of this class are called functions of bounded fluctuation (resp., generalized bounded fluctuation). Further, from Definitions 1 and 3, it is clear that $\phi \mathrm{BF} \subset \phi \mathrm{GBF}$.

When $y_{0}+G_{N}=G$, our Definitions 2 and 3 are the same as [7, Definition 3] and [6, Definition 6], respectively. For $y_{0}+G_{N}=G$ and $\phi(x)=x^{p}$, our Definition 3 is same as [5, Definition 4]. Further, when $y_{0}+G_{N}=G$ and $\phi(x)=x$, our Definitions 1 and 3 are the same as Definitions 4 and 5 , respectively, in [6].

3. Results

We prove the following results.

THEOREM 1

Let $f \in L^{1}(G)$ possess a lacunary Vilenkin-Fourier series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \hat{f}\left(n_{k}\right) \chi_{n_{k}}(x) \tag{3}
\end{equation*}
$$

with small gaps (1), and let $I=y_{0}+G_{N}$ be the coset with Haar measure $1 / m_{N} \geq$ $1 / q$. Then $f \in \phi \operatorname{GBF}(I)$ implies $\hat{f}\left(n_{k}\right)=O\left(\phi^{-1}\left(1 / m_{l}\right)\right)$, where $m_{l} \leq n_{k}<m_{l+1}$. If, in addition, G is bounded, then $\hat{f}\left(n_{k}\right)=O\left(\phi^{-1}\left(1 / n_{k}\right)\right)$.

Taking $\phi(x)=x^{p}(p \geq 1)$ in Theorem 1, we get the following.

COROLLARY 1

Let f and I be as in Theorem 1. Then $f \in \operatorname{GBF}^{(p)}(I)(p \geq 1)$ implies $\hat{f}\left(n_{k}\right)=$ $O\left(1 /\left(m_{l}\right)^{1 / p}\right)$, where $m_{l} \leq n_{k}<m_{l+1}$. If, in addition, G is bounded, then $\hat{f}\left(n_{k}\right)=$ $O\left(1 /\left(n_{k}\right)^{1 / p}\right)$.

REMARK 1
Since $\phi \mathrm{BF} \subset \phi \mathrm{GBF}$, Theorem 1 holds for functions in $\phi \mathrm{BF}$ also. Similarly, as $\mathrm{BF}^{(p)} \subset \mathrm{GBF}^{(p)}$, Corollary 1 holds for functions in $\mathrm{BF}^{(p)}$ also.

THEOREM 2
Let f and I be as in Theorem 1. Then $f \in \phi \Lambda \mathrm{BF}(I)$ implies

$$
\hat{f}\left(n_{k}\right)=O\left(\phi^{-1}\left(1 /\left(\sum_{j=1}^{m_{l}} \frac{1}{\lambda_{j}}\right)\right)\right),
$$

where $m_{l} \leq n_{k}<m_{l+1}$. If, in addition, G is bounded, then

$$
\hat{f}\left(n_{k}\right)=O\left(\phi^{-1}\left(1 /\left(\sum_{j=1}^{n_{k}} \frac{1}{\lambda_{j}}\right)\right)\right)
$$

Taking $\phi(x)=x^{p}(p \geq 1)$ in Theorem 2, we get the following result, which is the Vilenkin group analogue of the result of Patadia and Vyas [8, Theorem 5].

COROLLARY 2

Let f and I be as in Theorem 1. Then $f \in \Lambda \operatorname{BF}^{(p)}(I)(p \geq 1)$ implies

$$
\hat{f}\left(n_{k}\right)=O\left(1 /\left(\sum_{j=1}^{m_{l}} \frac{1}{\lambda_{j}}\right)^{1 / p}\right),
$$

where $m_{l} \leq n_{k}<m_{l+1}$. If, in addition, G is bounded, then

$$
\hat{f}\left(n_{k}\right)=O\left(1 /\left(\sum_{j=1}^{n_{k}} \frac{1}{\lambda_{j}}\right)^{1 / p}\right)
$$

REMARK 2

Observe that $n_{k}=k$ for all $k \Longrightarrow q=1$ in (1) $\Longrightarrow I$ is of Haar measure 1 in the above theorems $\Longrightarrow I=G$; and one gets corresponding results for nonlacunary Vilenkin-Fourier series (see [3]). On the other hand, if the Vilenkin-Fourier series (3) of $f \in L^{1}(G)$ has gaps (2), then the above results hold if the coset I is just of positive measure. Because if $|I|>0$, by the form of $I,|I|=1 / m_{N}$, where
$N \in \mathbb{N}$ can be taken as large as required. In view of (2), one gets $\left(n_{k+1}-n_{k}\right) \geq m_{N}$ for all $k \geq k_{0}$ for a suitable $k_{0}=k_{0}(N)$. Then adding to $f(x)$ the Vilenkin polynomial $\sum_{j=1}^{k_{0}}\left(-\hat{f}\left(n_{j}\right)\right) \chi_{n_{j}}(x)$, one gets a function g whose Fourier series is lacunary of the form (3) having gaps (1) with $q=m_{N}$, and results are true for g. Since f and g differ by a polynomial, results are true for f as well. Our results thus interpolate lacunary and nonlacunary results concerning order of magnitude of Fourier coefficients-displaying beautiful interconnection between types of lacunarity (as determined by q in (1)) and localness of the hypothesis to be satisfied by the generic function (as determined by the q-dependent length of I).

4. Proofs of results

The following lemma due to Schramm and Waterman [12] is needed.

LEMMA 1
If $a_{1} \geq a_{2} \geq \cdots \geq a_{n}>0, \sum_{i=1}^{n} a_{i}=1$, and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$, then

$$
\sum_{i=1}^{n} b_{i} \leq n \sum_{i=1}^{n} a_{i} b_{i} .
$$

Proof of Theorem 1.
We may assume without loss of generality that $y_{0}=0$; otherwise, one works with $g=T_{y_{0}} f \in \phi \operatorname{GBF}\left(G_{N}\right)$, whose Fourier series also has gaps (1). Then $I=G_{N}$, and if we consider the polynomial $P_{N}(x)$ (see [9, Lemma 4]) defined by

$$
\begin{aligned}
P_{N}(x) & =\prod_{k=0}^{N-1}\left(1+\varphi_{k}(x)+\varphi_{k}^{2}(x)+\cdots+\varphi_{k}^{p_{k}-1}(x)\right) \\
& =1+\sum_{i=0}^{N-1} \varphi_{i}(x)+\sum_{i, j=0, i \neq j}^{N-1} \sum_{l=1}^{p_{i}-1} \sum_{m=1}^{p_{j}-1} \varphi_{i}^{l}(x) \cdot \varphi_{j}^{m}(x)+\cdots+\left(\prod_{i=0}^{N-1} \varphi_{i}^{p_{i}-1}(x)\right)
\end{aligned}
$$

having constant term 1 and with degree less than or equal to N, then

$$
P_{N}(x)= \begin{cases}m_{N} & \text { if } x \in I \tag{4}\\ 0 & \text { if } x \in G \backslash I .\end{cases}
$$

Note that if $k \in \mathbb{N}$ is such that $\hat{f}\left(n_{k}\right) \neq 0$, then $\left(f \cdot P_{N}\right)^{\wedge}\left(n_{k}\right)=\hat{f}\left(n_{k}\right)$. In fact,

$$
\begin{align*}
\left(f \cdot P_{N}\right)^{\wedge}\left(n_{k}\right)= & \int_{G} f(x) P_{N}(x) \bar{\chi}_{n_{k}}(x) d x \\
= & \hat{f}\left(n_{k}\right)+\sum_{i=0}^{N-1} \hat{f}\left(\bar{\varphi}_{i} \chi_{n_{k}}\right)+\sum_{i, j=0, i \neq j}^{N-1} \sum_{l=1}^{p_{i}-1} \sum_{m=1}^{p_{j}-1} \hat{f}\left(\bar{\varphi}_{i}^{l} \bar{\varphi}_{j}^{m} \chi_{n_{k}}\right) \tag{5}\\
& +\cdots+\hat{f}\left(\prod_{i=0}^{N-1} \bar{\varphi}_{i}^{p_{i}-1} \chi_{n_{k}}\right) .
\end{align*}
$$

The characters appearing in the right-hand side of (5) are of the form $\chi_{n_{k}} \chi$ wherein χ is such that $\operatorname{deg} \chi$ is positive and less than or equal to N. Observe that for each $j \in \mathbb{N}$ there are totally $m_{j-1}\left(p_{j}-1\right)=\left(m_{j}-m_{j-1}\right)$ characters of degree j, namely, $\chi_{i} \varphi_{j-1}^{a_{j-1}}, 0 \leq i<m_{j-1}$, and $1 \leq a_{j-1} \leq\left(p_{j}-1\right)$, and they constitute ($X_{j}-X_{j-1}$). Consequently, the total number of characters of positive degree less than or equal to N is given by

$$
\left(m_{1}-m_{0}\right)+\left(m_{2}-m_{1}\right)+\cdots+\left(m_{N}-m_{N-1}\right)=m_{N}-1 ;
$$

they are from χ_{1} to $\chi_{m_{N}-1}$, and they constitute $\bigcup_{j=1}^{m_{N}}\left(X_{j}-X_{j-1}\right)$. It follows that when $\chi_{n_{k}}$ is multiplied by any character of positive degree less than or equal to N, the resulting character χ_{m} is such that

$$
n_{k}<m \leq n_{k}+m_{N}-1<n_{k}+m_{N} \leq n_{k}+q \leq n_{k+1}
$$

because the lacunary Vilenkin-Fourier series (3) of f has gaps (1) with $q \geq m_{N}$. Since $\hat{f}\left(n_{k}\right) \neq 0$, all the terms of the right-hand side of (5) vanish except the first.

Let k be large enough, and let $l \in \mathbb{N} \cup\{0\}$ be such that $\hat{f}\left(n_{k}\right) \neq 0, m_{l} \leq n_{k}<$ m_{l+1}, and $l>N$. Then, in view of (4),

$$
\begin{equation*}
\hat{f}\left(n_{k}\right)=\left(f \cdot P_{N}\right)^{\wedge}\left(n_{k}\right)=m_{N} \int_{G_{N}} f(x) \bar{\chi}_{n_{k}}(x) d x \tag{6}
\end{equation*}
$$

Since $n_{k} \geq m_{l}$ and the Haar measure is translation invariant, it follows (see, e.g., [11, p. 114, (15)]) that

$$
\int_{z_{\alpha}^{(l)}+G_{l}} \chi_{n_{k}}(x) d x=0
$$

for all $\alpha=0,1, \ldots, m_{l}-1$; hence

$$
\int_{z_{\alpha}^{(l)}+G_{l}} \bar{\chi}_{n_{k}}(x) d x=0 \quad\left(\alpha=0,1, \ldots, m_{l}-1\right) .
$$

Now, put $L=m_{l} / m_{N}=\left(p_{N+1} p_{N+2} \cdots p_{l}\right)$, and define a step function g on G_{N} by $g(x)=f\left(z_{\alpha}^{(l)}\right)$ for x in $z_{\alpha}^{(l)}+G_{l}, \alpha=0,1, \ldots, L-1$. Then

$$
\int_{G_{N}} g(x) \bar{\chi}_{n_{k}}(x) d x=\sum_{\alpha=0}^{L-1} f\left(z_{\alpha}^{(l)}\right) \int_{z_{\alpha}^{(l)}+G_{l}} \bar{\chi}_{n_{k}}(x) d x=0 .
$$

Therefore, in view of (6) we have

$$
\begin{equation*}
\left|\hat{f}\left(n_{k}\right)\right|=\left|m_{N} \int_{G_{N}}[f(x)-g(x)] \bar{\chi}_{n_{k}}(x) d x\right| \leq m_{N} \int_{G_{N}}|f(x)-g(x)| d x . \tag{7}
\end{equation*}
$$

Now, by Jensen's inequality, for $c>0$,

$$
\begin{align*}
\phi\left(m_{N} \cdot c \cdot \int_{G_{N}}|f(x)-g(x)| d x\right) & \leq m_{N} \int_{G_{N}} \phi(c|f(x)-g(x)|) d x \tag{8}\\
& =m_{N} \sum_{\alpha=0}^{L-1} \int_{z_{\alpha}^{(l)}+G_{l}} \phi\left(c\left|f(x)-f\left(z_{\alpha}^{(l)}\right)\right|\right) d x
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\phi\left(m_{N} \cdot c \cdot \int_{G_{N}}|f(x)-g(x)| d x\right) & \leq m_{N} \sum_{\alpha=0}^{L-1} \int_{z_{\alpha}^{(l)}+G_{l}} \phi\left(\operatorname{osc}\left(c f ; z_{\alpha}^{(l)}+G_{l}\right)\right) d x \\
& =m_{N} \sum_{\alpha=0}^{L-1} \phi\left(\operatorname{osc}\left(c f ; z_{\alpha}^{(l)}+G_{l}\right)\right) \frac{1}{m_{l}}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\phi\left(m_{N} \cdot c \cdot \int_{G_{N}}|f(x)-g(x)| d x\right) \leq\left(\frac{m_{N}}{m_{l}}\right) \operatorname{GF}_{\phi}(c f ; I) . \tag{9}
\end{equation*}
$$

Since ϕ is convex and $\phi(0)=0$, we have $\phi(a x) \leq a \phi(x)$ for $0<a<1$ and for all $x \geq 0$. Therefore, choosing c in $(0,1)$ so small that $\left(m_{N} \cdot \operatorname{GF}_{\phi}(c f ; I)\right) \leq 1$, one gets

$$
\left|\hat{f}\left(n_{k}\right)\right| \leq m_{N} \int_{G_{N}}|f(x)-g(x)| d x \leq\left(\frac{m_{N}}{m_{N} \cdot c}\right) \phi^{-1}\left(\frac{1}{m_{l}}\right)
$$

in view of (9) and (7). This shows that $\hat{f}\left(n_{k}\right)=O\left(\phi^{-1}\left(1 / m_{l}\right)\right)$.
Finally, if G is bounded, there is a positive integer p_{0} such that $p_{l} \leq p_{0}$ for all l. Thus $n_{k}<m_{l+1}=m_{l} \cdot p_{l+1} \leq m_{l} \cdot p_{0}$, which shows that $1 / m_{l} \leq p_{0} / n_{k}$, and hence (9) gives

$$
\begin{equation*}
\phi\left(m_{N} \cdot c \cdot \int_{G_{N}}|f(x)-g(x)| d x\right) \leq\left(\frac{p_{0} \cdot m_{N}}{n_{k}}\right) \mathrm{GF}_{\phi}(c f ; I) . \tag{10}
\end{equation*}
$$

Choosing now c in $(0,1)$ so small that $\left(p_{0} \cdot m_{N} \cdot \mathrm{GF}_{\phi}(c f ; I)\right) \leq 1$, one obtains

$$
\left|\hat{f}\left(n_{k}\right)\right| \leq m_{N} \int_{G_{N}}|f(x)-g(x)| d x \leq\left(\frac{m_{N}}{m_{N} \cdot c}\right) \phi^{-1}\left(\frac{1}{n_{k}}\right)
$$

in view of (10) and (7). This completes the proof of Theorem 1.
Proof of Theorem 2.
Proceeding as in the proof of Theorem 1, for $c>0$ we get (7) and (8). Let α_{i}, $i=0,1, \ldots, L-1$, denote a rearrangement of $0,1, \ldots, L-1$ such that $\left\{b_{i}\right\}_{i=0}^{L-1}$ is nonincreasing, where

$$
b_{i}=\int_{z_{\alpha_{\alpha_{i}}+G_{l}}^{(l)}} \phi\left(c\left|f(x)-f\left(z_{\alpha_{i}}^{(l)}\right)\right|\right) d x
$$

for all i. For each $i=0,1, \ldots, L-1$, put $a_{i}=1 /\left(\lambda_{i+1} \theta_{L}\right)$, where $\theta_{n}=\sum_{j=1}^{n} 1 / \lambda_{j}$, for all $n \in \mathbb{N}$. Then $\left\{a_{i}\right\}_{i=0}^{L-1}$ is nonincreasing, and $\sum_{i=0}^{L-1} a_{i}=1$. Therefore by the lemma,

$$
\begin{aligned}
\sum_{\alpha=0}^{L-1} \int_{z_{\alpha}^{(l)}+G_{l}} \phi\left(\left|f(x)-f\left(z_{\alpha}^{(l)}\right)\right|\right) d x & =\sum_{i=0}^{L-1} b_{i} \leq L \sum_{i=0}^{L-1} a_{i} b_{i} \\
& =\frac{L}{\theta_{L}} \sum_{i=0}^{L-1} \int_{z_{\alpha_{i}}+G_{l}}^{(l)}\left(\frac{\phi\left(c\left|f(x)-f\left(z_{\alpha_{i}}^{(l)}\right)\right|\right)}{\lambda_{i+1}}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{L}{\theta_{L}} \sum_{i=0}^{L-1} \int_{z_{\alpha_{i}}^{(l)}+G_{l}}\left(\frac{\phi\left(\operatorname{osc}\left(c f ; z_{\alpha_{i}}^{(l)}+G_{l}\right)\right)}{\lambda_{i+1}}\right) d x \\
& =\frac{m_{l}}{m_{N} \theta_{L}} \sum_{i=0}^{L-1} \frac{\phi\left(\operatorname{osc}\left(c f ; z_{\alpha_{i}}^{(l)}+G_{l}\right)\right)}{\lambda_{i+1}} \cdot \frac{1}{m_{l}} \\
& \leq \frac{\mathrm{F}_{\phi \Lambda}(c f ; I)}{m_{N} \theta_{L}} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum_{\alpha=0}^{L-1} \int_{z_{\alpha}^{(l)}+G_{l}} \phi\left(\left|f(x)-f\left(z_{\alpha}^{(l)}\right)\right|\right) d x \leq \frac{\mathrm{F}_{\phi \Lambda}(c f ; I)}{\theta_{m_{l}}}, \tag{11}
\end{equation*}
$$

since $\left\{\lambda_{i}\right\}$ is nondecreasing. In view of (11) and (8) we get

$$
\begin{equation*}
\phi\left(m_{N} \cdot c \cdot \int_{G_{N}}|f(x)-g(x)| d x\right) \leq \frac{m_{N} \cdot \mathrm{~F}_{\phi \Lambda}(c f ; I)}{\theta_{m_{l}}} . \tag{12}
\end{equation*}
$$

Since ϕ is convex and $\phi(0)=0$, we can choose c in $(0,1)$ so small such that (m_{N}. $\left.\mathrm{F}_{\phi \Lambda}(c f ; I)\right) \leq 1$. This proves, in view of (12) and (7), that $\hat{f}\left(n_{k}\right)=O\left(\phi^{-1}\left(1 / \theta_{m_{l}}\right)\right)$.

Finally, if G is bounded, $1 / \theta_{m_{l}} \leq p_{0} / \theta_{n_{k}}$, and hence by (8) and (11)

$$
\phi\left(m_{N} \cdot c \cdot \int_{G_{N}}|f(x)-g(x)| d x\right) \leq \frac{m_{N} \cdot p_{0} \cdot \mathrm{~F}_{\phi \Lambda}(c f ; I)}{\theta_{n_{k}}} .
$$

Choosing now $c \in(0,1)$ small enough such that $\left(m_{N} \cdot p_{0} \cdot \mathrm{~F}_{\phi \Lambda}(c f ; G)\right) \leq 1$, we then get

$$
\int_{G_{N}}|f(x)-g(x)| d x \leq\left(\frac{1}{m_{N} \cdot c}\right) \phi^{-1}\left(\frac{1}{\theta_{n_{k}}}\right),
$$

and hence we have the theorem in view of (7).
Acknowledgments. The author thanks Professor J. R. Patadia for his help and guidance in the preparation of this paper. He also thanks the referees for critical reading of the manuscript and useful suggestions.

References

[1] H. E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17-31.
[2] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
[3] B. L. Ghodadra, On the magnitude of Vilenkin-Fourier coefficients, J. Indian Math. Soc. (N.S.) 75 (2008), 93-104.
[4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, 2nd ed., Grundlehren Math. Wiss. 115, Springer, Berlin, 1979.
[5] C. W. Onneweer, Absolute convergence of Fourier series on certain groups, Duke Math. J. 39 (1972), 599-609.
[6] C. W. Onneweer and D. Waterman, Uniform convergence of Fourier series on groups, I, Michigan Math. J. 18 (1971), 265-273.
[7] , Fourier series of functions of harmonic bounded fluctuation on groups, J. Analyse Math. 27 (1974), 79-83.
[8] J. R. Patadia and R. G. Vyas, Fourier series with small gaps and functions of generalised variations, J. Math. Anal. Appl. 182 (1994), 113-126.
[9] J. R. Patadia and J. H. Williamson, Local theorems for the absolute convergence of lacunary Fourier series on certain groups, Quart. J. Math. Oxford Ser. (2) 37 (1986), 81-93.
[10] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
[11] M. Pepić, About characters and the Dirichlet kernel on Vilenkin groups, Sarajevo J. Math. 4 (16) (2008), 109-123.
[12] M. Schramm and D. Waterman, Absolute convergence of Fourier series of functions of $\Lambda \mathrm{BV}^{(p)}$ and $\phi \Lambda \mathrm{BV}$, Acta. Math. Acad. Sci. Hungar. 40 (1982), 273-276.
[13] , On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc. 85 (1982), 407-410.
[14] N. J. Vilenkin, On a class of complete orthonormal systems, Bull. Acad. Sci. URSS Ser. Math. [Izvestia Akad. Nauk SSSR] 11 (1947), 363-400; Amer. Math. Soc. Transl. (2) 28 (1963), 1-35.

Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara - 390002 (Gujarat), India; bhikhu_ghodadra@yahoo.com

