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Abstract In this paper, we generalize construction of Seidel’s long exact sequence of
Lagrangian Floer cohomology to that of compact Lagrangian submanifolds with van-
ishing Malsov class on general Calabi-Yau manifolds. We use the framework of anchored
Lagrangian submanifolds and some compactness theorem of smooth J-holomorphic sec-
tions of Lefschetz Hamiltonian fibration for a generic choice of J . The proof of the latter
compactness theorem involves a study of proper pseudoholomorphic curves in the set-
ting of noncompact symplectic manifolds with cylindrical ends.
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1. Introduction

To put the content of this paper in perspective, we first recall a long exact
sequence for symplectic Floer cohomology of Lagrangian submanifolds, which
was constructed by Seidel [Se3] originally for the category of exact Lagrangian
submanifolds on (noncompact) exact symplectic manifolds.
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1.1. Dehn twists and Seidel’s long exact sequence
Let (M,ω,α) be an exact symplectic manifold with contact-type boundary: α is a
contact 1-form on ∂M which satisfies dα = ω|∂M and makes ∂M convex. Assume
that [ω,α] ∈ H2(M,∂M ;R) is zero so that α can be extended to a 1-form θ on
M satisfying dθ = ω.

THEOREM 1.1 (SEIDEL [Se3])

Let L be an exact Lagrangian sphere in M together with a preferred diffeomor-
phism f : S2 → L. Denote by τL = τ(L,[f ]) the Dehn twist associated to (L, [f ]).
For any two compact exact Lagrangian submanifolds L0,L1 ⊂ M , there is a long
exact sequence of Floer cohomology groups

(1.1) −→ HF
(
τL(L0),L1

)
−→ HF (L0,L1) −→ HF (L,L1) ⊗ HF (L0,L) −→ .

Due to the well-known difficulties in the construction of Lagrangian intersection
Floer cohomology and a new nontrivial compactness issue arising from the sin-
gularities of the Lefschetz fibration used for the construction, Seidel used the
exactness assumption to avoid these difficulties and work entirely with the exact
Lagrangian category, and he left the extension to the more general situation,
such as that for closed Calabi-Yau manifolds, as an open problem (see [Se3]).
While the limitation to the exact Lagrangian category simplifies the analysis of
holomorphic disc bubbles, it also forces him to work entirely with the language
of exact Lefschetz fibrations and to make sure that he does not go out of this
domain largely for the consistency of his exposition, as Seidel himself indicated.
Because of this, [Se3] develops a fair amount of geometry of exact Lefschetz
fibrations, some of which are not directly relevant to the construction of the long
exact sequence. Partly due to this digression, it took some effort and time for the
author of this paper to get to the main point of Seidel’s construction in [Se3].

The cases of closed Calabi-Yau manifolds or Fano toric manifolds are the
ones that are physically most relevant to mirror symmetry. According to Kontse-
vich [K2] and Seidel [Se3], the symplectic Dehn twists correspond to a particular
class of autoequivalences, “twist functors along spherical objects,” of derived cat-
egories of coherent sheaves, and this long exact sequence corresponds to an exact
sequence of the same form in the mirror Calabi-Yau. Therefore it is important to
establish the long exact sequence for a class of Lagrangian branes that is closed
under the action of symplectic Dehn twists. The class of exact Lagrangian sub-
manifolds in exact symplectic manifolds is one such class, which Seidel considered
in [Se3].

One of the points Seidel tried to ensure by working with the exact Lagrangian
category is to have not only single-valuedness of the action functional on the path
space but coherence of the definition of the action functional between different
exact Lagrangian submanifolds: this then allows one to have the energy estimate
for the Floer trajectories and, more importantly, to have tiny-big decomposition
of the Floer moduli spaces entering in the construction. This decomposition then
enables him to apply the spectral sequence argument and derive the desired
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conclusion based on the contribution coming from the tiny part of the Floer
moduli spaces which can be explicitly analyzed.

1.2. Calabi-Yau Lagrangian branes
In regard to extending Seidel’s construction to closed Calabi-Yau manifolds, we
highlight two points that we take in this paper.

The first point is our restriction to the class of Lagrangian submanifolds with
zero Maslov class. This class is closed under the action by symplectic Dehn twists
and enables one to consider the involved cohomology as a Z-graded group which
is essential in the point of view of mirror symmetry. It appears to the author
that for this kind of long exact sequence to exist some condition of this sort of
Calabi-Yau property is needed (see the remark at the end of Section 7.4 for the
reason).

The second point is the usage of the notion of anchors and anchored Lagran-
gian submanifolds introduced in [FO+2]. We recall the definition of anchored
Lagrangian submanifolds introduced in [FO+2].

DEFINITION 1.1

Fix a base point y of an ambient symplectic manifold (M,ω). Let L be a Lagrangian
submanifold of (M,ω). We define an anchor of L to y as a path γ : [0,1] → M

such that

γ(0) = y, γ(1) ∈ L.

We call a pair (L,γ) an anchored Lagrangian submanifold.

This notion has its origin in the preprint [FO+3] when the authors take the
based point of view of Lagrangian submanifolds in relation to the coherence of
the definitions of various Maslov-type indices and of action functionals when one
considers several Lagrangian submanifolds altogether as one studies the Fukaya
category. From a technical point of view, consideration of anchored Lagrangian
submanifolds enables one to maintain the consistency of the definitions both of
action functionals and of the absolute gradings on the Calabi-Yau Lagrangian
branes. Most importantly, this also enables us to provide a coherent filtration in
the relevant Floer complexes and to have tiny-big decomposition of the relevant
Floer moduli spaces of the kind Seidel considered in [Se3].

Now we introduce a class of decorated Lagrangian submanifolds on Calabi-
Yau manifold (M,ω) which we call Calabi-Yau Lagrangian branes. It is expected
that this class of Lagrangian submanifolds generates the Fukaya category of a
Calabi-Yau manifold that is mirror to the derived category of coherent sheaves
on the mirror Calabi-Yau. We refer readers to the main part of the paper for
various undefined terms in the statement. We also omit the important datum of
flat line bundles on L in this definition because it does not play much of a role
in our proof but can be easily incorporated in the construction.
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DEFINITION 1.2

Let y ∈ M be a base point, and let Λy ⊂ TyM be a fixed Lagrangian sub-
space. Suppose that Θ is a quadratic complex volume form on (M,ω,J) with
〈Θ(y),Λy 〉 = 1. We consider the quadruple ((L,γ), s, [b]), which we call an
(anchored) Calabi-Yau Lagrangian brane, that satisfies the following data:

(1) L is a Lagrangian submanifold of M such that the Maslov index of L is
zero and [ω] ∈ H2(M,L;Z); we also enhance L with a flat complex line bundle
on it;

(2) γ is an anchor of L relative to y;
(3) s is a spin structure of L;
(4) [b] ∈ M(L) is a bounding cochain described in Section 8.2.

We denote by E CY
brane the collection of Calabi-Yau Lagrangian branes and define

Fuk(E CY
brane) to be the Fukaya category generated by E CY

brane.

We remark that the notion of an anchor to L is introduced to solve the problems
of grading and filtration on the Floer complex in a uniform way in [FO+2].
In particular, it provides a canonical filtration on the associated Floer complex
of anchored Lagrangian submanifolds which is needed to apply some spectral
sequence argument in the proof (see the end of Section 10 in particular).

1.3. Statement of the main result and compactness issue
The main purpose of this paper is to construct an exact sequence for the Calabi-
Yau Lagrangian branes on Calabi-Yau manifolds which is the analogue to that
of Seidel [Se3].

We first note that each Dehn twist τL along a given Lagrangian sphere L ⊂ M

acts on E CY
brane. We denote this action by

(τL)∗ : E CY
brane → E CY

brane

and the image of L under this action by τL(L) = (τL)∗ L. This action defines an
autoequivalence on Fuk(E CY

brane), whose nonanchored versions should correspond
to twist functors along spherical objects of derived categories of coherent sheaves
alluded to in the beginning of this introduction.

THEOREM 1.2

Let (M,ω) be a compact (symplectic) Calabi-Yau manifold, and let y ∈ M be a
base point. Let L ⊂ M be a Lagrangian sphere together with a preferred diffeo-
morphism f : Sn → L, and let L = ((L,γ), sst,0) be the associated Calabi-Yau
Lagrangian brane. Denote by τL = τ(L,[f ]) the Dehn twist associated to (L, [f ]).

Consider any Calabi-Yau Lagrangian branes L0, L1. Then there is a long
exact sequence of Z-graded Floer cohomologies

(1.2) −→ HF
(
(τL)∗ L0, L1

)
−→ HF (L0, L1) −→ HF (L, L1) ⊗ HF (L0, L1) −→

as a Λnov-module, where the Floer cohomologies involved are the deformed Floer
cohomologies constructed in [FO+1].
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We also have the long exact sequence for the nonanchored version of the Floer
cohomology (see Section 11.2).

Once we use these frameworks, construction of the long exact sequence
largely follows Seidel’s strategy: we use the framework of Lefschetz fibration
with Lagrangian boundary conditions for the construction of various operators
appearing in the Floer theory, and we use the spectral sequence for the R-filtered
groups based on the tiny-big decomposition of the Floer moduli spaces. How-
ever, unlike the exact Lagrangian case, the definition of Lagrangian Floer coho-
mology for Calabi-Yau Lagrangian branes meets obstruction, as described in
[FO+1]. Because of this we have to use the Maurer-Cartan elements bi and use
the associated deformed Floer cohomology appearing in the statement of the
main theorem (Theorem 1.2). (Since Lagrangian submanifolds with zero Maslov
class in Calabi-Yau manifolds are semipositive, the related transversality issue is
relatively standard, which is one of the advantages of considering this class of
Lagrangian submanifolds.) For the reader’s convenience and the readability of
the paper, we borrow a fair amount of material from [FO+1] in our exposition.
For the same reason, we also borrow much exposition from [Se3] and refer to the
two for further details. In a way, most of the materials used in this paper are not
new but have already been present in the literature in one way or another. We
organize them in a coherent way to be able to construct the required long exact
sequence. Familiarity with the scheme in [Se3] would be useful for the readers to
follow the stream of the arguments used in this paper, especially those presented
in Sections 9–11.

However, there is one nontrivial analytical issue that needs to be overcome.
This concerns the issue of compactification of the smooth pseudoholomorphic
section of Lefschetz (Hamiltonian) fibration when the fibration has nonempty
critical fibers. By the definition of Lefschetz Hamiltonian fibration given in Def-
inition 5.1, any smooth section avoids critical points of the fibration. However,
a priori a sequence of smooth sections may approach critical points if the deriva-
tives of the sections in the sequence blow up. When applied to a sequence of pseu-
doholomorphic sections, the bubble could touch the critical points. Therefore to
define the relative Gromov-Witten-type invariants in the Lefschetz fibration set-
ting, one should study the behavior of pseudoholomorphic sections approaching
the critical points. This compactness result may be mathematically the most
novel part of this paper and is performed in Section 7.

In this regard, we prove the following.

THEOREM 1.3 (THEOREM 7.6)

Let π : E → Σ be a Lefschetz Hamiltonian fibration with Lagrangian boundary Q ⊂
E∂Σ such that E is fiberwise Calabi-Yau and Q has vanishing fiberwise Maslov
class. Then there exists a dense subset of j-compatible J ’s for which we have a
constant C > 0 depending only on (E,J, j) and the section class B ∈ πsec

2 (E,Q),
but independent of s, such that we have

(1.3) dist(Ims,Ecrit) ≥ C
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for any smooth section s : Σ → E with [s, ∂s] ∈ B ∈ πsec
2 (E,Q).

The proof of this theorem turns out to involve the compactification and the
Fredholm theory in the setting of symplectic field theory (see [EGH]) in which
we regard a bubble touching a critical point x0 as a proper pseudoholomorphic
curve on C in a punctured fiber Ez0 \ {x0} (see [FO+4], [OZ] for relevant studies of
such compactification and Fredholm theory). This theorem may not hold without
assuming that E is fiberwise Calabi-Yau and that Q has vanishing relative Maslov
class (see the end of Section 7.4 for the reason).

Once this theorem is established, study of compactification of smooth pseu-
doholomorphic sections in the current case is essentially the same as the case of
smooth Hamiltonian fibrations as studied in [En] and [MS].

The result in this paper was first announced at Eliashberg’s 60th birthday
conference “New Challenges and Perspectives in Symplectic Field Theory” held
at Stanford University June 25–29, 2007 and then presented in various semi-
nars and in conferences afterward. We apologize to readers for the long delay in
appearance.

2. Basic facts on symplectic Dehn twists

In this section, we summarize basic facts on the Dehn twists in the symplectic
point of view which Seidel [Se1], [Se3] extensively studied in a series of papers.
We borrow the basic facts on the symplectic Dehn twists from them with a slight
variation of the exposition that is necessary for the purpose of this paper.

Assume that L ⊂ (M,ω) is an embedded Lagrangian sphere together with an
equivalence class [f ] of diffeomorphisms f : Sn → L: two f1, f2 are equivalent if
and only if f −1

2 f1 can be deformed inside Diff(Sn) to an element of O(n+1). To
any such (L, [f ]) Seidel associates a Dehn twist τL = τ(L,[f ]) ∈ Symp(M) using a
model Dehn twist on the cotangent bundle T := T ∗Sn. Let f : Sn → L ⊂ M be a
representative of the equivalence class [f ]. Denote by T (r) ⊂ T ∗Sn the disc bundle
of radius r in terms of the standard metric on the unit sphere Sn = Sn(1) ⊂ Rn+1.
Identifying T = TSn with respect to the standard metric, one considers the map

(2.1) σt(u, v) =
(
cos(t)u − sin(t)‖u‖v, cos(t)v + sin(t)

u

‖u‖
)

⊂ Rn+1 × Sn

for 0 < t < π; σπ is the antipodal involution A(u, v) = (−u, −v). Next we fix a
function R ∈ C∞(R,R) such that

suppR ⊂ T (1),

R(−t) = R(t) − t for |t| ≤ 1
2
.(2.2)

Then we consider the rescaled function

(2.3) Rλ(t) = λR
( t

λ

)
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for all 0 < λ ≤ 1. Then Rλ is supported in T (λ) and satisfies

(2.4) Rλ(−t) = Rλ(t) − t for |t| ≤ λ

2
.

Insertion of 1-parameter λ in our choice of R is deliberate and is later explicitly
related to the parameter that enters in the Lagrangian surgery.

The following lemma is a slight variation of [Se3, Lemma 1.8], whose proof
is referred thereto.

LEMMA 2.1

Let μ : T \ T (0) → R be the length function μ(u, v) = ‖v‖, and let Hλ = Rλ ◦ μ on
T \ T (0). Then φ2π

Hλ
extends smoothly over T (0) to a symplectic diffeomorphism

φλ of T . The function Kλ = 2π(R′
λ ◦ μ − R ◦ μ) also extends smoothly over T (0)

and satisfies

φ∗
λθT − θT = dKλ.

These φλ are called model Dehn twists.

The model Dehn twists, denoted by τλ, have the explicit formula

(2.5) τλ(y) =

{
σ2πR′

λ(μ(y))(y), y ∈ T (λ) \ T (0),

A(y), y ∈ T (0),

where the angle of rotation goes from 2πR′
λ(0) = π to 2πR′

λ(λ) = 0. Note that as
λ → 0, we have

2πR′
λ

(
μ(y)
)

= 2πR′
(μ(y)

λ

)
and it changes from 2πR′(0) = π to 2πR′(1) = 0.

Now we take a Darboux-Weinstein chart, or a symplectic embedding ι :
T (λ) → M such that

ι|oT ∗ Sn = f, ι∗ω = ωT (= −dθT ),

for a representative of the framed Lagrangian sphere (L, [f ]).
Take a model Dehn twist τ supported in the interior of T (1) ⊂ T ∗Sn.
We denote U = im ι and fix the Darboux neighborhood once and for all, and

we consider the 1-parameter family of Dehn twists τr, any of which we denote
by τL:

(2.6) τL = τ(L,[f ];r) =

{
ι ◦ τr ◦ ι−1 on im(ι) = U,

id elsewhere.

We quote the following basic fact on the Dehn twist τ(L,[f ]) from [Se3] with a
slight variation of the statements.

PROPOSITION 2.2 ([Se3, PROPOSITION 1.11])

Let (L, [f ]) be a framed Lagrangian sphere in M . There is a 1-parameter family of
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Lefschetz fibrations (EL
λ , πL

λ ) → D(λ) together with an isomorphism φL
λ : EL

λ → M

of symplectic manifolds, such that we have the following.

(1) Consider the rescaling map Rλ : D(λ) → D(1) defined by z �→ z/λ. Then

(Rλ)∗EL
1 = EL

λ .

(2) If ρL
λ is the symplectic monodromy around ∂D(λ), then φL

λ ◦ ρL ◦ (φL
λ )−1

is a Dehn twist along (L, [f ]).
(3) There exists a decomposition

EL = E ∪ D(λ) ×
(
M \ ι(T (λ)) \ V

)
such that E is the standard fibration q : Cn+1 → C defined by

q(z1, . . . , zn+1) = z2
1 + · · · + z2

n+1.

We denote any of these maps by τL.

An important point on this Dehn twist τ(L,[f ];λ) is that its support can be put
into a Darboux neighborhood of the given Lagrangian sphere L which can be
made as close as L by choosing λ > 0 small, whose derivative can be controlled.
One can choose R such that for some δ > 0 we have

R′(t) ≥ 0 for all t ≥ 0,(2.7)

R′ ′(t) < 0 for all t ≥ 0 such that R′(t) ≥ δ(2.8)

and then consider Rλ for any sufficiently small λ > 0. According to Seidel’s ter-
minology, the corresponding Dehn twist is δ-wobbly.

3. Action, grading, and anchored Lagrangian submanifolds

In this section, we consider the general Lagrangian submanifolds treated as in
[FO+1]. For the fine chain level analysis of the Floer complex, it is essential to
analyze the R-filtration on CF (L0,L1) that is provided by the action functional
A on Ω(L0,L1). This action functional is not single valued on Ω(L0,L1) itself,
even for the pair (L0,L1) of Calabi-Yau Lagrangian branes, but single valued only
on some covering space. For the purpose of studying the Fukaya category and
performing various constructions in the Floer homology in a coherent manner,
we need to consider a whole collection of Lagrangian submanifolds and assign
these auxiliary data to each pair of the given collection in a consistent way.
For this purpose, [FO+1] and [FO+2] use the notion of anchored Lagrangian
submanifolds. This auxiliary data is important later for consistency of definition
of action functionals and in turn for the analysis of tiny-big decomposition of the
various Floer moduli spaces entering in the construction of boundary map, chain
map, chain homotopy, and pants products.
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3.1. Novikov covering space
We consider the space of paths

Ω = Ω(L0,L1) =
{
� : [0,1] → P | �(0) ∈ L0, �(1) ∈ L1

}
.

On this space, we are given the action 1-form α defined by

α(�)(ξ) =
∫ 1

0

ω
(
�̇(t), ξ(t)

)
dt

for each tangent vector ξ ∈ T�Ω. From this expression, it follows that

Zero(α) =
{
�p : [0,1] → M

∣∣ p ∈ L0 ∩ L1, �p ≡ p
}
.

Using the Lagrangian property of (L0,L1), a straightforward calculation shows
that this form is closed. Note that Ω(L0,L1) is not connected but has countably
many connected components. We work on a particular fixed connected compo-
nent of Ω(L0,L1). We pick up a based path �0 ∈ Ω(L0,L1) and consider the
corresponding component Ω(L0,L1; �0); then we define a covering space

π : Ω̃(L0,L1; �0) → Ω(L0,L1; �0)

on which we have a single-valued action functional such that dA = −π∗α.
The base path �0 automatically picks out a connected component from each

of L0 and L1 as its initial and final points x0 = �0(0) ∈ L0, x1 = �0(1) ∈ L1.

Then Ω(L0,L1; �0) is a subspace of the space of paths between the corresponding
connected components of L0 and L1, respectively. Because of this we always
assume that L0,L1 are connected from now on, unless otherwise stated.

Next we describe the Novikov covering of the component Ω(L0,L1; �0) of
Ω(L0,L1). We first start by describing the universal covering space of Ω(L0,L1;
�0). Consider the set of all pairs (�,w) such that � ∈ Ω(L0,L1) and such that
w : [0,1]2 → M satisfies the boundary condition{

w(0, ·) = �0,w(1, ·) = �,

w(s,0) ∈ L0,w(s,1) ∈ L1 for all s ∈ [0,1].

Considering w as a continuous path s �→ w(s, ·) in Ω(L0,L1; �0) from �0 and �,
the fiber at � of the universal covering space of Ω(L0,L1; �0) can be represented
by the set of path homotopy classes of w relative to its end s = 0,1.

3.2. The Γ-equivalence
We define a covering space of Ω(L0,L1; �0) by modding out the space of paths in
Ω(L0,L1; �0) by another equivalence relation that is weaker than the homotopy.
The deck transformation group of this covering space is shown to be abelian by
construction.

Note that when we are given two pairs (�,w) and (�,w′) from Ω(L0,L1; �0),
the concatenation

w#w′ : [0,1] × [0,1] → M
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defines a loop c : S1 → Ω(L0,L1; �0). One may regard this loop as a map

(3.1) C : S1 × [0,1] → M

satisfying the boundary condition C(s,0) ∈ L0, C(s,1) ∈ L1. Obviously the sym-
plectic area of C, denoted by

Iω(c) =
∫

C

ω,

depends only on the homotopy class of C satisfying (3.1) and so defines a homo-
morphism on π1(Ω(L0,L1; �0)), which we also denote by

Iω : π1(Ω(L0,L1), �0) → R.

Next we note that for the map C : S1 × [0,1] → M satisfying (3.1), it associates
a symplectic bundle pair (V , λ) defined by

VC = C∗TM,λC = c∗
0TL0 � c∗

1TL1,

where ci : S1 → Li is the map given by ci(s) = C(s, i) for i = 0,1. This allows us
to define another homomorphism

Iμ : π1(Ω(L0,L1), �0) → Z, Iμ(c) = μ(VC , λC),

where μ(VC , λC) is the Maslov index of the bundle pair (VC , λC).
Using the homomorphisms Iμ and Iω , we define an equivalence relation ∼ on

the set of all pairs (�,w) satisfying (3.1). For given such pair w,w′, we denote by
w#w′ the concatenation of w and w′ along �, which defines a loop in Ω(L0,L1; �0)
based at �0.

DEFINITION 3.1

We say that (�,w) is Γ-equivalent to (�,w′) and write (�,w) ∼ (�,w′) if the fol-
lowing conditions are satisfied: Iω(w#w′) = 0 = Iμ(w#w′). We denote the set of
equivalence classes [�,w] by Ω̃(L0,L1; �0) and call it the Novikov covering space.

There is a canonical lifting of �0 ∈ Ω(L0,L1; �0) to Ω̃(L0,L1; �0): this is just
[�0, �̃0] ∈ Ω̃(L0,L1; �0), where �̃0 is the map �̃0 : [0,1]2 → M with �̃0(s, t) = �0(t).
In this way, Ω̃(L0,L1; �0) also has a natural base point which we suppress from
the notation.

We denote by Π(L0,L1; �0) the group of deck transformations of the covering
space Ω̃(L0,L1; �0) → Ω(L0,L1; �0). It is easy to see that the isomorphism class
of Π(L0,L1; �0) depends only on the connected component containing �0.

The two homomorphisms Iω and Iμ push down to homomorphisms

E : Π(L0,L1; �0) → R, μ : Π(L0,L1; �0) → Z

defined by

E(g) = Iω[C], μ(g) = Iμ[C]

for any map C : S1 × [0,1] → M representing the class g ∈ Π(L0,L1; �0). By
construction, it follows that the group Π(L0,L1; �0) is an abelian group. We
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now define the Novikov ring Λ(L0,L1; �0) associated to the abelian covering
Ω̃(L0,L1; �0) → Ω(L0,L1; �0) as a completion of the group ring R[Π(L0,L1; �0)].
Here R is a commutative ring with unit.

DEFINITION 3.2

ΛR
k (L0,L1; �0) denotes the set of all (infinite) sums∑

g∈Π(L0,L1;�0)

μ(g)=k

ag[g]

such that ag ∈ R and, for each C, the set {g ∈ Π(L0,L1; �0) | E(g) ≤ C,ag �= 0} is
of finite order. We put

ΛR(L0,L1; �0) =
⊕

k

ΛR
k (L0,L1; �0).

The ring structure on ΛR(L0,L1; �0) is defined by the convolution product( ∑
g∈Π(L0,L1;�0)

ag[g]
)

·
( ∑

g∈Π(L0,L1;�0)

bg[g]
)

=
∑

g1,g2∈Π(L0,L1;�0)

ag1bg2 [g1g2].

It is easy to see that the term in the right-hand side is indeed an element in
ΛR(L0,L1; �0). Thus ΛR(L0,L1; �0) =

⊕
k ΛR

k (L0,L1; �0) becomes a graded ring
under this multiplication. We call this graded ring the Novikov ring associated
to the pair (L0,L1) and the connected component containing �0.

We also use the universal Novikov ring Λnov in this paper. We recall its
definition here. An element of Λnov is a formal sum

∑
aiT

λieμi with ai ∈ C,
λi ∈ R, μi ∈ Z such that λi ≤ λi+1 and limi→∞ λi = ∞. T and e are formal
parameters. We define a valuation v : Λnov → R≥0 defined by

v

( ∞∑
i=1

aiT
λieμi

)
= λ1.

We denote the corresponding valuation ring by

Λ0,nov =
{ ∞∑

i=1

aiT
λieμi ∈ Λnov

∣∣∣ λi ≥ 0
}
.

It carries a unique maximal ideal consisting of
∑

aiT
λieμi with λi > 0 for all i

which we denote by Λ+
0,nov. We have a natural embedding

ΛR(L0,L1; �0) → Λnov

given by

(3.2)
∑

g∈Π(L0,L1;�0)

bg[g] �→
∑

g∈Π(L0,L1;�0)

bgT
ω(g)eμ(g)/2.

Now for a given pair (�,w), we define the action functional

A : Ω̃(L0,L1; �0) → R
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by the formula

A(�,w) =
∫

w∗ω.

It follows from the definition of Π(L0,L1; �0) that the integral depends only on
the Γ-equivalence class [�,w] and so pushes down to a well-defined functional on
the covering space Ω̃(L0,L1; �0).

We call an intersection point admissible to �01 when the associated constant
path lies in the same connected component Ω(L0,L1; �01) as �01 in Ω(L0,L1).

LEMMA 3.1

The set Cr(L0,L1; �0) of admissible critical points of A consists of the pairs of the
type [�p,w], where �p is the constant path with p ∈ L0 ∩ L1 and w is as in (2.2).
Cr(L0,L1; �0) is invariant under the action of Π(L0,L1; �0) and so forms a prin-
cipal bundle over a subset of L0 ∩ L1 with its fiber isomorphic to Π(L0,L1; �0).

We put

Cr(L0,L1) =
⋃
�0,i

Cr(L0,L1; �0,i),

where �0,i runs over the set of base points of connected components of Ω(L0,L1).
Next we assign an absolute Morse index to each critical point of A. In general,

assigning such an absolute index is not a trivial matter because the obvious
Morse index of A at any critical point is infinite. For this purpose, we use the
Maslov index of a certain bundle pair naturally associated to the critical point
[�p,w] ∈ Cr(L0,L1; �0).

We call this Morse index of [�p,w] the Maslov-Morse index (relative to the
base path �0) of the critical point. The definition of the index somewhat resembles
that of A. However, to define this we also need to fix a section λ0 of �∗

0Λ(M)
such that

λ0(0) = T�0(0)L0, λ0(1) = T�0(1)L1.

Here Λ(M) is the bundle of Lagrangian Grassmanians of TM ,

Λ(M) =
⋃

p∈M

Λ(TpM),

where Λ(TpM) is the set of Lagrangian subspaces of the symplectic vector space
(TpM,ωp).

Let [�p,w] ∈ Cr(L0,L1; �0) ⊂ Ω̃(L0,L1; �0) be an element whose projection
corresponds to the intersection point p ∈ L0 ∩ L1.

As before, we associate a symplectic bundle pair (Vw, λw) over the square
[0,1]2, which is defined uniquely up to the homotopy. We first choose Vw =
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w∗TM . To define λw, let us choose a path αp : [0,1] → Λ(TpM,ωp) satisfying⎧⎪⎪⎨⎪⎪⎩
αp(0) = TpL0, α

p(1) = TpL1 ⊂ TpM,

(αp)(t) ⊕ TpL0 = TpM,

αp(t) ∈ U0(TpL0) for small t,

where U0(TpL0) is as above.
Then we consider a continuous Lagrangian subbundle λw → ∂[0,1]2 of V |∂[0,1]2

by the following formula: the fiber at each point of ∂[0,1]2 is given as{
λw(s,0) = Tw(s,0)L0, λw(1, t) = αp(t),

λw(s,1) = Tw(s,1)L1, λw(0, t) = λ0(0, t).

It follows that the homotopy type of the bundle pair constructed as above does
not depend on the choice of αp either.

DEFINITION 3.3

We define the Maslov-Morse index of [�p,w] (relative to λ0) by

μ([�p,w];λ0) = μ(Vw, λw).

3.3. Anchored Lagrangian submanifolds
Now we generalize this construction for a chain

L = (L0, . . . ,Lk)

of more than two Lagrangian submanifolds, that is, with k ≥ 2.
To realize this purpose, we need the notion of anchors of Lagrangian sub-

manifolds.

DEFINITION 3.4

Fix a base point y of an ambient symplectic manifold (M,ω). Let L be a Lagrangian
submanifold of (M,ω). We define an anchor of L to y as a path γ : [0,1] → M

such that

γ(0) = y, γ(1) ∈ L.

We call a pair (L,γ) an anchored Lagrangian submanifold.

It is easy to see that any homotopy class of path in Ω(L,L′) can be realized by
a path that passes through the given point y. We denote the set of homotopy
classes of the anchors γ to y ∈ M by π1(y,L).

The following lemma is easy to check.

LEMMA 3.2

Suppose that L is connected. Then the set π1(y,L) of homotopy classes relative to
the ends is a principal homogeneous space of π1(M,L); that is, it is a π1(M,L)-
torsor. We call an element of π1(y,L) an anchor class of L relative to y.
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Proof
Since L is connected, the natural map π1(M) → π1(M,L) is surjective, and so
π1(M,L) ∼= π1(M)/ im(π1(L) → π1(M)) forms a group. It is obvious to see that
π1(M,L) acts on π1(y,L) by concatenation of paths on the right. By definition,
this action is free. Transitivity is obvious by definition. �

For a given pair (L, L ′) of anchored Lagrangians L = (L,γ), L ′ = (L′, γ′), we
denote

Ω(L, L ′) := Ω(L,L′;γ#γ′),

where the latter is the path component of Ω(L,L′) containing γ#γ′. We also
denote

(3.3) L ∩ L ′ =
{
p ∈ L ∩ L′ ∣∣ p̂ ∈ Ω(L, L ′)

}
.

Here p̂ is the constant path p̂(t) ≡ p.
When we are given a Lagrangian chain

L = (L0,L1, . . . ,Lk),

we also consider a chain of anchors γi : [0,1] → M of Li to y for i = 0, . . . , k. These
anchors give a systematic choice of a base path �ij ∈ Ω(Li,Lj) by concatenating
γi and γj as

�ij = γi ∗ γj ,

where γ is the time reversal of γ given by γ(t) = γ(1 − t). The upshot of this
construction is the following overlapping property:

�ij(t) = �i�(t) for 0 ≤ t ≤ 1
2
,

(3.4)
�ij(t) = ��j(t) for

1
2

≤ t ≤ 1,

for all j, �.
We write �p = (p10, . . . , pk(k−1)). Let χi = exp(−2πi

√
−1/k). We consider the

set of homotopy class of maps v : D2 → M such that v(χi+1χi) ⊂ Li and v(χi) =
pi(i+1). We denote it by π2(L;�p ). If E is an anchored Lagrangian chain and L is
its underlying Lagrangian chain, we write π2(E ;�p ) in place of π2(L;�p ), sometimes
by abuse of notation.

DEFINITION 3.5

Let E = {(Li, γi)}0≤i≤k be a chain of anchored Lagrangian submanifolds.A homo-
topy class B ∈ π2(L;�p ) is called admissible to E if it can be obtained by a polygon
that is a gluing of k bounding strips wi(i+1) : [0,1] × [0,1] → M satisfying

wi(i+1)(0, t) =

{
γi(2t − 1), 0 ≤ t ≤ 1

2 ,

γi+1(2t − 1), 1
2 ≤ t ≤ 1,

(3.5)

wi(i+1)(s,0) ∈ Li, wi(i+1)(s,1) ∈ Li+1,(3.6)
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wi(i+1)(1, t) = pi(i+1).(3.7)

When this is the case, we denote the homotopy class B as

B = [w01]#[w12]# · · · #[wk0]

and the set of admissible homotopy classes by πad
2 (E ;�p ).

We call such a tuple E an anchored Lagrangian chain.

REMARK 3.6

We remark that we denote by L a chain (L0, . . . ,Lk) of Lagrangian submanifolds
and by E that of anchored Lagrangian submanifolds.

When the collection E = {(Li, γi)}0≤i≤k is given, we note that not all homotopy
classes in π2(L;�p ) are admissible. But we have the following basic lemma, which
is enough for the construction of a Fukaya category, whose proof is easy and so
is omitted.

LEMMA 3.3

Let wi(i+1) be given for i = 1, . . . , k, and let B ∈ π2(L;�p ). Then they canonically
define a class [wk0] ∈ π1(�k0, pk0) by

[wk0] := [w01]# · · · #[w(k−1)k]#B.

The following basic identity immediately follows from the definitions.

PROPOSITION 3.4

Suppose that B ∈ π2(E , �p ) is given as in Lemma 3.3, and provide the analytic
coordinates at the puncture zj ∈ ∂D2 ⊂ D2 so that all zj are outgoing. Then we
have ω(B) =

∑k
i=0 A([pi,wi]) and

ω(B) =
k∑

i=0

A�i(i+1)([pi,wi]),(3.8)

μ(E ,�v;B) =
k∑

i=0

μ([pi,wi];λi(i+1)).(3.9)

In particular, the sums in the right-hand sides do not depend on the choice of
λi ⊂ γ∗

i TM .

Here the index μ([pi,wi];λi(i+1)) is the Maslov-Morse index relative to the path
λi(i+1) of Lagrangian planes as defined in [FO+1], which provides a coherent
grading μ : Crit A → Z.

The action functional provides a canonical R-filtration on the set

A : Crit A → R.
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In addition, inside the collection of anchored Lagrangian submanifolds (L,γ) we
are given a coherent system of single-valued action functionals

A : Ω̃0(Li,Lj ;γi#γj) → R

at one stroke for any pair from the given collection E of anchored Lagrangian
submanifolds.

3.4. Relation to the graded Lagrangian submanifolds
Now we go back to the collection of Lagrangian submanifolds with vanishing
Maslov class on a Calabi-Yau manifold. In this case, we are able to obtain a
canonical Lagrangian path λ along a given anchor γ of L to y. We call a pair
(γ,λ) a graded anchor of L.

Let J be a compatible almost complex structure. The assumption that
2c1(M) = 0 implies that the bundle Δ = Λn(TM,J)⊗2 is trivial. Choose a section
Θ of Δ∗ that has length one everywhere in terms of the metric g = ω(·, J ·). This
determines a map det2Θ : Λ(M,ω) → S1 and then an ∞-fold Maslov covering by

(3.10) Λ∞ =
{
(Λ, t) ∈ Λ × R

∣∣ det2Θ(Λ) = e2πit
}
,

where sL : L → Λ(M,ω)|L is the natural section defined by the Gauss map
sL(x) = TxL. An Λ∞-grading of a Lagrangian submanifold L ⊂ (M,ω) according
to Seidel [Se2] is just a lift to R of the map

det2Θ ◦sL : L → S1.

First of all, the condition on μL = 0 implies that there is such a lifting to Λ∞.
A grading of L is a lift s̃L of sL.

We now explain how we give a coherent grading to anchored Lagrangian
submanifolds with vanishing Maslov class.

First we go from a graded anchored Lagrangian submanifold to a graded
Lagrangian submanifold. We first pick a Lagrangian subspace Vy ∈ TyM such
that

det2Θ(y)(Vy) = 1.

We consider a graded anchored Lagrangian submanifold (L,γ,λ) with λ(0) = Vy .
We lift λ to a section of γ∗L̃ag(TM) so that λ̃(0) = (Vy,0). Then λ̃(1) is a lifting
of λ(1) in L̃ag(Tγ(1)M). Since the lifting of λ̃ of λ is homotopically unique, λ̃(1)
depends only on (L,γ) and the fixed Vy . Therefore if μL = 0, then this determines
a unique grading s̃ of L with s̃(γ(1)) = λ̃(1).

DEFINITION 3.7

Let (M,ω) be such that 2c1(M) = 0, fix a base point y ∈ M , and let Λy ∈
Λ(M,ω)y be a Lagrangian subspace. Let (L,γ) be a Calabi-Yau anchored Lagran-
gian. We denote the above common lifting by α(L,(xL,γL)) : L → R and call it the
canonical grading of (L,γ) relative to (y,Λy).
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Next we go from a lifting s̃L to λ. Let s̃L be a grading of L. Consider any anchored
Lagrangian submanifold (L,γ) with μL = 0. We take a section λ̃ of the pullback
γ∗(L̃ag(TM)) → [0,1] such that

λ̃(0) = (Vy,0), λ̃(1) = s̃L

(
λi(1)
)
.

Such a path is unique up to homotopy because [0,1] is contractible, and so
γ∗

i L̃ag(TM) is simply connected. We push it out and obtain a section λ in
γ∗ Lag(TM). In this way, a graded Lagrangian submanifold (L, s̃ ) canonically
determines a grading λ of an anchored Lagrangian submanifold (L,γ).

We remark that the path λ01 induced by these graded anchors lifts to λ̃01

joining s0(�01(0)) to s1(�01(1)).
We then define μ([p,w]; �01) using this path λ01 as in Section 3.2.

LEMMA 3.5

μ([p,w]; �01) is independent of w.

Proof
Independence of the degree of w is a consequence of our assumption that Maslov
indices of L0,L1 are zero. We omit the detail. �

We refer to [FO+2, Section 9.2] for a more detailed explanation on the above
discussion.

Because of this presence of canonical grading associated to (L,γ), we drop λ

from our notation L = (L,γ,λ) when we consider Calabi-Yau Lagrangian branes
later in this paper.

Adapting to the convention from [K1] and [Se2], we denote L̃[0] = (L,α(L,γ))
and

L̃[k] = (L,α(L,γ) − k).

4. Calabi-Yau Lagrangian branes and Dehn twists

We restrict ourselves to the case of (M,ω) with 2c1(M,ω) = 0 and L ⊂ M whose
Maslov class vanishes from now on. We give a precise definition of Calabi-Yau
Lagrangian branes in this section. This is the case that is most relevant to mir-
ror symmetry and to the extension of Seidel’s long exact sequence of Z-graded
symplectic Floer cohomology.

Now we introduce a class of decorated Lagrangian submanifolds on Calabi-
Yau manifold (M,ω) which we call Calabi-Yau Lagrangian branes.

DEFINITION 4.1

Let y ∈ M be a base point, and let Λy ⊂ TyM be a fixed Lagrangian subspace.
Suppose that Θ is a quadratic complex volume form on (M,ω,J). Let E CY be
the Calabi-Yau Lagrangian collection of (M,ω). We consider the triple (L, s, [b]),
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L = (L,γ), which we call an anchored Calabi-Yau Lagrangian brane, that satisfies
the following data:

(1) L is a Lagrangian submanifold of M such that the Maslov index of L is
zero and [ω] ∈ H2(M,L;Z); we also enhance L with a flat complex line bundle;

(2) γ is an anchor of L to y;
(3) s is a spin structure of L;
(4) [b] ∈ M(L) is a bounding cochain described in Section 8.2.

We denote the collection of Calabi-Yau (CY) Lagrangian branes by E CY
brane and

denote the Fukaya category generated by them by Fuk(E CY
brane).

The first simplification arising from considering the CY Lagrangian collection is
that we have only to use the Novikov ring of the form

(4.1) Λ(0)
nov =
{ ∞∑

i=1

aiT
λi

∣∣∣ ai ∈ Q, λi ∈ R, λi ≤ λi+1, lim
i→∞

λi = ∞
}

,

which becomes a field. We also consider the subring

(4.2) Λ(0)
0,nov =

{ ∞∑
i=1

aiT
λi ∈ Λnov

∣∣∣ λi ≥ 0
}

.

This is because the Maslov index satisfies μ(w) = μL(∂w) = 0 for any disc map
w : (D2, ∂D2) → (M,L), where μL ∈ H1(L;Z) is the Maslov class of L.

REMARK 4.2

Furthermore, as we mentioned in Section 3.4, the anchor provides a canonical
graded structure on a CY Lagrangian brane. Therefore it provides a canonical
R-filtration and a Z-grading on

CF (L0, L1) = CF
(
(L0, γ0), (L1, γ1)

)
:= CF (L0,L1;γ0#γ1)

for any pair (L0, L1) of CY Lagrangian branes, and hence on its cohomology
HF (L0, L1). See Section 8 for a related discussion.

Now we examine the effect of Dehn twists on the CY Lagrangian collection.

PROPOSITION 4.1

Let E CY
brane be the associated collection of anchored CY Lagrangian branes. Then

E CY
brane is closed under the action of τL’s for all framed Lagrangian spheres (L, [f ])

and so induces an autoequivalence of Fuk(E CY
brane).

Proof
We note that the Dehn twist τL is a symplectic automorphism. Therefore it
pushes the spin structure of L0 to the image τL(L0) and pulls back the Maslov
class. Therefore the Maslov class of τL(L0) is also zero. Similarly we can push
forward the anchor of L to τL(L0). Finally, [FO+1, Theorem B (B.2)] states that
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the bounding cochain can also be canonically pushed out under the symplectic
automorphism and hence under the action of τL. This finishes the proof. �

Therefore we can ask the question about how the Floer cohomology changes
under the Dehn twist along a Lagrangian sphere. The answer is supposed to
come from a long exact sequence that Seidel introduced in [Se3] for the context
of exact Lagrangian submanifolds. The rest of the paper is occupied with the
construction of this long exact sequence for the CY Lagrangian branes on Calabi-
Yau manifolds.

5. Lefschetz Hamiltonian fibration and coupling form

In this section, we first recall the basics on smooth Hamiltonian fibrations pre-
sented in [GLS] and [En] and extend our discussion to fibrations with Lefschetz-
type singular fibers. Especially we generalize the notion of coupling form to the
current singular fibration and prove the uniqueness of the coupling form on a
given Lefschetz Hamiltonian fibration when the fibration π : E → Σ is proper,
that is, when the fiber of E is compact.

The notion of Hamiltonian fibrations introduced by Guillemin, Lerman, and
Sternberg [GLS] is the family of symplectic manifolds of a fixed isomorphism
type, which could be twisted on the parameter space Σ. On the other hand,
Seidel introduced the notion of exact Lefschetz fibrations which could have a
finite number of singular fibers of type A1-singularity.

Combining [GLS] and [Se3], we give the following definition.

DEFINITION 5.1 (LEFSCHETZ HAMILTONIAN FIBRATION)

A Lefschetz Hamiltonian fibration over a compact surface Σ with boundary ∂Σ
consists of the data (E,π,Ω, J0, j0) as follows.

(1) We have ∂E = π−1(∂Σ), and π|∂E → ∂Σ forms a smooth fiber bundle.
(2) The projection π : E → Σ can have at most finitely many critical points,

and no two may lie on the same fiber. Denote Ecrit ⊂ E and Σcrit ⊂ Σ.
(3) J0 is a complex structure on a neighborhood of Ecrit, j0 is a positively ori-

ented complex structure on a neighborhood of Σcrit, and π is (J0, j0)-holomorphic
near Ecrit. And the Hessian D2π at any critical point is nondegenerate as a com-
plex quadratic form.

(4) Ω is a closed 2-form on E which must be nondegenerate on kerDπx for
each x ∈ E, and a Kähler form for J0 in some neighborhood of Ecrit.

We say that the fibration π : E → Σ is (symplectically) Calabi-Yau if c1(Ev
z ) = 0

at all z /∈ Σcrit.

We remark that one may allow more than one critical point in the same fiber,
which could be useful for the study of a family of Lefschetz Hamiltonian fibra-
tions.
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REMARK 5.2

We wish highlight that at a critical point x ∈ E of π, Definition 5.1(4) implies
that the 2-form Ωx is required to be nondegenerate on the whole tangent space
TeE since kerDπx = TxE, while at a regular point Ωx it is required to be so only
on the vertical tangent space T v

e E as kerDπx = T v
x E.

When a generic fiber Ez with z ∈ Σ \ Σcrit is compact, it is proved in [GLS] for
a smooth Hamiltonian fibration that the choice of Ω is uniquely determined by
the following additional requirement:

(5.1) π∗Ωn+1 = 0,

where π∗ is the integration along the fiber. Now we prove the following analogue
to this result for the case of Lefschetz Hamiltonian fibrations.

THEOREM 5.1

Let (E,π,Ω, J0, j0) be a Lefschetz Hamiltonian fibration as in Definition 5.1.
Then there exists a closed 2-form Ω′ smooth on E \ Ecrit that satisfies the fol-
lowing:

(1) Ω′ |T vE = Ω|T vE at all e ∈ E \ Ecrit,
(2) it satisfies (5.1) on E \ π−1(Σcrit).

Furthermore, such a form Ω′ is unique. We call such a form the coupling form
of (E,π,Ω, J0, j0).

Proof
We first consider the subset E \ Ecrit. Then the form Ω induces a splitting

Γ : TxE = TxEv ⊕ Th
x E

at any regular point x ∈ E \ Ecrit, where the horizontal space is given by

Th
x E =
{
η ∈ TxE

∣∣Ω(η, ξ) = 0, ∀ξ ∈ T v
x E
}

and hence induces a natural (Ehresman) connection on E \ Ecrit whose mon-
odromy is symplectic.

Because of the closedness of Ω, the connection is Hamiltonian (see [GLS])
in that its curvature curv(Γ) has its values contained in Ham(Eπ(e)), the set
of Hamiltonian vector fields of the fiber Eπ(e), and hence the restriction π :
E \ Ecrit → Σ \ Σcrit is a smooth Hamiltonian fibration in the sense of [GLS]. In
particular, if we restrict to E \ π−1(Σcrit) → Σ \ Σcrit, its fibers are all compact,
and so we can construct a closed 2-form Ω′ = Ω+π∗α on E \ π−1(Σcrit) for some
closed 2-form α on Σ \ Σcrit that satisfies (5.1) thereon. In fact, Ω′ (and so dβ)
can be explicitly constructed by requiring

(5.2) Ω′(η�
1, η

�
2) = Hη1,η2 ,

where Hη1,η2 is the smooth function whose restriction to each fiber over a point
in Σ \ Σcrit is uniquely determined by the following two requirements:
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(1) Hη1,η2 generates the Lie algebra element curvΓ(η1, η2) of Ham(Ez, ωz)
which is a Hamiltonian vector field,

(2) it satisfies the normalization condition∫
Ez

Hη1,η2ω
n
z = 0, ωz = Ω|Ez ,

for all z ∈ Σ \ Σcrit.

This finishes the proof. �

DEFINITION 5.3 (COUPLING FORM)

We call the above unique closed 2-form constructed in Theorem 5.1 the coupling
form of the Lefschetz Hamiltonian fibration E → Σ.

The following result was essentially proved by Seidel in [Se3, Lemma 1.6]. Seidel
proved this for the context of exact Lefschetz fibrations, but the same proof
applies if one ignores his consideration of generating functions of Q therein.

LEMMA 5.2 (SEE [Se3, LEMMA 1.6])

Let (E,π,Ω, J0, j0) be a Lefschetz Hamiltonian fibration, and let x0 be a critical
point of π. Then there are smooth families Ωμ ∈ Ω2(E), 0 ≤ μ ≤ 1, such that

(1) Ω0 = Ω;
(2) for all μ, Ωμ = Ω0 outside a small neighborhood of x0;
(3) each (E,π,Ωμ, J0, j0) is a Lefschetz Hamiltonian fibration;
(4) there is a holomorphic Morse chart (ξ,Ξ) around x0 with Ξ : V ⊂ Cn+1 →

E such that Ξ∗Ω1 agree near the origin with the standard forms ωCn+1 = (i/2) ×∑
dxk ∧ dxk.

In fact, if near Ecrit we are given a 1-form Θ with Ω = dΘ as in the exact cases,
we can also deform the 1-form to Θμ so that Ξ∗Θ1 becomes the standard 1-form

θCn+1 =
i

4

(∑
xk dxk − xk dxk

)
(see [Se3, Lemma 1.6]).

6. Exact Lagrangian boundary condition

Now we consider a subbundle iQ : Q → ∂Σ of the symplectic fiber bundle
(E|∂Σ,Ω|∂Σ) whose fiber Qz is a Lagrangian submanifold of Ωz for each z ∈ ∂Σ.
We call such a Q a fiberwise Lagrangian submanifold of (E|∂Σ,Ω|∂Σ).

We start with the notion of exact Lagrangian boundary over ∂Σ.
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DEFINITION 6.1

We call a fiberwise Lagrangian submanifold Q ⊂ ∂E an exact Lagrangian bound-
ary over ∂Σ if there exists a 1-form κQ on Q such that

κQ|T (∂E)v ≡ 0 and i∗
QΩ = dκQ,

where iQ : Q → ∂E is the inclusion map and T v(∂E) is the vertical tangent space
of ∂E.

We note that when Σ is oriented and the boundary orientation on ∂Σ is provided
by an orientation 1-form, denoted by dθ with θ ∈ ∂Σ, the connection induced by
the form Ω|∂E enables us to express any such 1-form κQ as

κQ(θ,x) = hi(θ,x)dθ

for (θ,x) ∈ ∂E with θ ∈ ∂iΣ and hi : ∂E → R, where ∂Σ =
∐

∂iΣ. The function
hi is unique up to the addition of the function ci : ∂Σi → R.

DEFINITION 6.2

We define ‖κQ‖(1,∞) by

‖κQ‖(1,∞) =
∫

∂Σ

osc(hθ)dθ

with osc(hθ) := maxx∈Ex h(θ,x) − minx∈Ex h(θ,x) and call it the L(1,∞)-norm
of κQ.

We remark that ‖κQ‖(1,∞) does not depend on the choice of the function h.
To give readers some insight on these definitions, we compare this with the

classical notion of exact Lagrangian isotopy (see [Gr]).

EXAMPLE 6.3

Let E = (R × [0,1]) × (M,ω) with π : (R × [0,1]) × (M,ω) → (M,ω) be the projec-
tion. Consider the 2-form Ω = π∗ω. Let Li ⊂ (M,ω) be a Lagrangian submanifold,
and let ψi : [0,1] × L → M be a Lagrangian isotopy for i = 1,2. The isotopy ψi

is an exact Lagrangian isotopy if there is a smooth function hi : [0,1] × L → R

such that ψ∗
i ω = dhi ∧ dt = d(hidt) (see [Gr]). This definition is a special case of

Definition 6.1: just consider the embedding

(hi, ψi) : R × Li → R × [0,1] × M,

set Qi = im(hi, ψi) as the Lagrangian suspension, and let κQi(t, x) = hi(t, x)dt.

We now study the structure of π2(E,Q). We start with the following relative
version of section class. A class B ∈ π2(E,Q) is a section class if π∗B ∈ π2(Σ, ∂Σ)
is the positive generator with respect to the given orientation of Σ. We say that
B is a fiber class if it is in the image of π2(M,L) → π2(E,Q) induced from the
inclusion of the fiber. The following is proved in [HL, Lemma 2.2] for the smooth
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Hamiltonian fibration but the same proof applies to the current case with singular
fibers. We refer readers to [HL] for its proof.

LEMMA 6.1

The following sequence of homotopy groups is exact at the middle term:

π2(M,L) → π2(E,Q) → π2(Σ, ∂Σ).

The following proposition is the reason why the notion of exact Lagrangian
boundary is relevant to the study of pseudoholomorphic curves with bound-
ary later. Similar estimates were previously obtained in [En], [Oh3], and [Se3] in
somewhat different contexts.

PROPOSITION 6.2

Suppose that Σ is oriented, and denote by dθ a given orientation 1-form on
∂Σ. Let Q ⊂ ∂E over ∂Σ be an exact Lagrangian boundary of E, and let κQ be
a corresponding Hamiltonian 1-form. Consider a section s : Σ → E \ Ecrit with
s(∂Σ) ⊂ Q ⊂ ∂E. Then for each given section class [s, ∂s] ∈ π2(E,Q;Z), there
exists a constant C = C(κQ, [s, ∂s]) > 0 such that the integral bound∣∣∣∫

Σ

s∗Ω
∣∣∣≤ C = C(B)

holds for any section s in a fixed class B = [s, ∂s] ∈ H2(E,Q;Z). In fact, we have

(6.1)
∣∣∣∫

Σ

s∗
2Ω −
∫

Σ

s∗
1Ω
∣∣∣≤ ‖κQ‖(1,∞)

for any two such sections with [s1, ∂s1] = [s2, ∂s2].

Proof
Recall that i∗

QΩ = dκQ for a 1-form κQ which exists by definition of exact
Lagrangian boundary Q. Let si, i = 1,2, be two sections of E with si(∂Σ) ⊂ Q

and [s1, ∂s1] = [s2, ∂s2]. Then we have a geometric chain (S,C) with

∂S = s1

∐
s2

∐
C,

and we have ∂C = ∂s2 − ∂s1 as a chain in Q.
By Stokes’s formula and closedness of Ω, we have

0 =
∫

S∗(dΩ) =
∫

∂S

Ω =
∫

Σ

s∗
2Ω −
∫

Σ

s∗
1Ω −
∫

C∗Ω

and hence ∫
Σ

s∗
2Ω −
∫

Σ

s∗
1Ω =
∫

C

Ω.

But by the exactness of the fiberwise Lagrangian subbundle Q and since C has
its image in Q, we obtain∫

C

Ω =
∫

C

dκQ =
∫

C

κQ =
∫

∂s2

κQ −
∫

∂s1

κQ.
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Therefore we have obtained∫
Σ

s∗
2Ω −
∫

Σ

s∗
1Ω =
∫

∂s2

κQ −
∫

∂s1

κQ =
∫

∂Σ

(h ◦ s2 − h ◦ s1)dθ,

and so ∣∣∣∫
Σ

s∗
2Ω −
∫

Σ

s∗
1Ω
∣∣∣≤
∫

∂Σ

(
max
x∈Ex

hθ(x) − min
x∈Ex

hθ(x)
)

dθ ≤ ‖κQ‖(1,∞).

Since ‖κQ‖(1,∞) does not depend on s, this finishes the proof. �

Next we consider the topological index associated to the section (s, ∂s) for s which
does not pass through critical points Ecrit. By the pullback s∗(TEv), it defines a
symplectic bundle pair (s∗TEv, (∂s)∗TQv), where TQv = TQv = TQ ∩ TEv |∂Σ.
Therefore we can associate the Maslov index, which we denote by μ([s, ∂s]) (see
[KL], [FO+1]).

Now we examine the topological dependence of μ([s, ∂s]). Note that each
section (s, ∂s) defines an element in π2(E,Q). We denote the corresponding class
by s∗([Σ, ∂Σ]), where [Σ, ∂Σ] is the fundamental class which is a generator of
H2(Σ, ∂Σ;Z) ∼= Z. The following lemma immediately follows from the definition
of the Maslov index for the bundle pair.

LEMMA 6.3

Suppose that (s1)∗([Σ, ∂Σ]) = (s2)∗([Σ, ∂Σ]). Then we have

μ([s1, ∂s1]) = μ([s1, ∂s2]).

DEFINITION 6.4

We denote by πsec
2 (E,Q) ⊂ π2(E,Q) the subset of section classes [s, ∂s] in π2(E,

Q). We say that two section classes B1,B2 are Γ-equivalent if they satisfy

Ω(B1) = Ω(B2), μ(B1) = μ(B2)

and denote by Π(E,Q) the quotient group

Π(E,Q) = πsec
2 (E,Q)/ ∼ .

For the Calabi-Yau Lefschetz fibrations, one can proceed to the study of Maslov
indices following the exposition given in [Se4]. Consider the bundle of relative
quadratic volume forms

K2
E/Σ = π∗det2C(TΣ) ⊗ det⊗ −2

C .

By definition, if E → Σ is Calabi-Yau, we have nowhere a zero section η2
E/B of

this on E \ Ecrit. Furthermore, we can require η2
E/B to satisfy

η2
E/B =

(dz1 ∧ · · · ∧ dzn+1)2

(2z1dz1 + · · · + 2zn+1dzn+1)∧2

in a neighborhood U ⊂ E of each critical point under the given identification
π : U \ {x} → π(U \ {x}) with q : Cn+1 \ {0} → C \ 0.
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DEFINITION 6.5

We say that a fiberwise Lagrangian submanifold Q ⊂ E is (relatively) graded if
there exists a function

α : Q → R

such that

exp
(
2π

√
−1α(x)

)
= η2

E/B(T v
x Q), x ∈ Q.

We call α an L ∞-grading of Q.

For a given pair of a fiberwise Lagrangian submanifold Q1,Q2 ⊂ E intersecting
transversely, we can associate a natural Z-grading on the intersection Q1 ∩ Q2 in
the following way.

We consider the 2-form

ωE,λ = Ω + λπ∗ωΣ

which is nondegenerate on E \ Ecrit. The existence of such λ > 0 is easy to check.
The next lemma also immediately follows. We leave the proof to the readers.

LEMMA 6.4

Any fiberwise Lagrangian submanifold Q ⊂ E is Lagrangian for ωE,λ.

Finally, we define the bundle analogue to the relative spin structure introduced
in [FO+1].

DEFINITION 6.6

Let E → Σ be a Lefschetz Hamiltonian fibration, and let Q ⊂ ∂E → ∂Σ with Q ⊂
∂E be a Lagrangian boundary condition such that the vertical tangent bundle
T vQ → ∂Σ is orientable. A fiberwise relative spin structure of Q → ∂Σ is a pair
of a vector bundle V → Σ and a spin structure on T vQ ⊕ i∗

ΣV for the inclusion
map iΣ : ∂Σ → Σ.

Any relative spin structure on Q can be used to induce an orientation on the
moduli space M(E,Q;�p;B) of pseudoholomorphic sections whose explanation is
now in order. But in the present paper, we restrict our attention to the case of
spin structures.

7. Pseudoholomorphic sections

In this section, we perform various studies of geometry and analysis of pseu-
doholomorphic sections with Lagrangian boundary condition in the setting of
Lefschetz Hamiltonian fibrations.

Let (E,π,Ω, J0, j0) be a Lefschetz Hamiltonian fibration, and let x0 ∈ Ecrit.
Denote by (ξ,Ξ) a holomorphic Morse chart at x0, that is, a j0-holomorphic coor-
dinates ξ : U → S with ξ(0) = z0 = π(x0), where U ⊂ C is a neighborhood of the
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origin and Ξ : W → E is a J0-holomorphic chart with W ⊂ Cn+1 a neighborhood
of the origin in Cn+1 with Ξ(0) = x0 such that

(7.1) (ξ−1 ◦ π ◦ Ξ)(x) = x2
1 + · · · + x2

n+1.

With (ξ,Ξ) fixed, we denote the model Lefschetz fibration by q : Cn+1 → C

defined by

q(z1, . . . , zn) = z2
1 + · · · + z2

n+1.

Now for the given (E,π,Ω, J0, j0) and the holomorphic Morse charts (ξ,Ξ) at
each of the critical points of E, we consider an almost complex structure J on E

that satisfies the following:

(1) J = J0 in a neighborhood of Ecrit;
(2) dπ ◦ J = j ◦ dπ;
(3) Ω(·, J ·)|TEv

x
is symmetric and positive definite for any x ∈ E.

Following Seidel [Se3], we call such J compatible relative to j. An immediate
consequence of the definition is the following lemma.

LEMMA 7.1

Let J be compatible relative to j. Then for any given area form ωΣ on Σ with∫
Σ

ωΣ = 1, the 2-form Ω + λπ∗ωΣ tames J for all sufficiently large λ.

We refer to [Se3] for a more complete explanation of the structure of J ’s com-
patible to j.

7.1. Energy estimates and Hamiltonian curvature
Next we study the energy estimates of pseudoholomorphic sections in terms of
the topological action

∫
u∗Ω and the contribution coming from the curvature

integral of
∫
Σ

u∗Ω of a canonical symplectic connection of the Hamiltonian fibra-
tion E → Σ associated to the coupling form Ω defined in Definition 5.3. This
kind of estimate has been studied in [Se3], [Oh3], and [MS].

Using the connection associated to Ω, we decompose Du = (Du)v + (Du)h

into vertical and horizontal components. Now we consider the symplectic
form

ωE = Ω + λπ∗ωΣ

with ωΣ an area form on Σ with
∫
Σ

ωΣ = 1. We like to remark that an almost
complex structure J compatible to j it is not compatible in the usual sense in
that the bilinear form

Ω(·, J ·)

may not be symmetric. However, if λ is sufficiently large, it is tame to ωE (see
[Se3, Lemma 2.1]). Therefore we can symmetrize this bilinear form and define
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the associate metric gJ by

(7.2) 〈V,W 〉 = gJ(V,W ) :=
1
2
(
Ω(V,JW ) + Ω(W,JV )

)
.

We call (7.2) the metric associated to J and denote

|V |2 = |V |2J = gJ(V,V ).

With respect to this metric, we still have the following basic identity, whose proof
we omit.

LEMMA 7.2

Let s : Σ → E be any smooth section v. Then we have

(7.3)
1
2

∫
|Ds|2 =

∫
s∗ωE +

∫
|∂Js|2.

In particular, if s is J -holomorphic, then

1
2

∫
|Ds|2 =

∫
s∗ωE .

To examine some positivity property of J -holomorphic sections, we now decom-
pose Ds = (Ds)v + (Ds)h into vertical and horizontal parts and write

|Ds|2 = |(Ds)v |2 + |(Ds)h|2 + 2〈(Ds)v, (Ds)h〉.

Then it is straightforward to prove

(7.4) |(Ds)h|2ωΣ = 2(s∗Ω + λωΣ)

by the identity
2∑

i=1

|(Ds)h(ei)|2 =
2∑

i=1

ωE,λ

(
(Ds)h(ei), J(Ds)h(ei)

)
=

2∑
i=1

(Ω + λπ∗ωΣ)
(
(Ds)h(ei), J(Ds)h(ei)

)
= 2
(
ωE((Ds)h(e1), (Ds)h(e2)) + λωΣ(e1, e2)

)
for an orthonormal frame {e1, e2} and then apply the curvature identity

d
(
Ω(e#

1 , e#
2 )
)

= −[e#
1 , e#

2 ]�Ω : fiberwise.

Here e#
i is the horizontal lift of ei, and we have

curvΓ(e1, e2) = Ω(e#
1 , e#

2 )

by the definition of coupling form (see [GLS, (1.12)] but with caution on the sign
convention). The following is an immediate corollary of (7.4).

PROPOSITION 7.3

Let Ω be the coupling form of E. Suppose that Ω + λπ∗ωΣ for λ > 0 is positive,
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that is, symplectic for an area form ωΣ on Σ. Then we have the inequality as a
2-form

(7.5) s∗Ω + λωΣ ≥ 0

for any J -holomorphic section s. In other words, if we write s∗Ω = f(s)ωΣ for a
function f : Σ → R, then we have f(s) + λ ≥ 0.

Proof
Just choose a complex structure j on Σ and a j-compatible J on E. Positivity
(7.5) immediately follows from (7.4). �

7.2. Gromov-Floer moduli space of J -holomorphic sections
We first translate the anchor introduced in Section 3 in the setting of pointed
Lagrangian boundary conditions in Hamiltonian fibrations over the surface Σ
with boundary ∂Σ �= ∅. This is needed to study morphisms between two Floer
chain modules constructed via the moduli space of pseudoholomorphic sections
of Lefschetz fibrations over Σ.

Let y ∈ M be a base point, and let (L,γ), (L′, γ′) be two anchored Lagrangian
submanifolds of (M,ω) which intersect transversely. Let γ and γ′ be the paths
γ(0) = γ′(0) = y and γ(1) ∈ L,γ′(1) = L′ given as in the anchor data. We denote
by γ̃ the time reversal of γ, that is, the path defined by

γ̃(t) = γ(1 − t).

Now to each intersection p ∈ L ∩ L′ we associate a Hamiltonian fibration over
[0,1]2. The paths γ and γ′ provide a path in M along {0} × [0,1] via the obvious
concatenation of γ̃ and γ′ with the midpoint given by y.

We take the trivial fibrations E = [0,1]2 × (M,ω) → [0,1]2. Then for each
given pair [p,w] with p ∈ L ∩ L′ and with a bounding strip w : [0,1]2 → M such
that

w(0, t) = γ̃#γ′(t), w(1, t) ≡ p,
(7.6)

w(s,0) ∈ L0, w(s,1) ∈ L1,

we can associate a section of s[p,w] : [0,1]2 → E by

(s, t) �→
(
(s, t),w(s, t)

)
[0,1]2 → [0,1]2 × (M,ω).

We call this fibration over [0,1]2 with a section s[p,w] an anchor cap associated
to [p,w] relative to the given anchor. For notational convenience, we denote the
corresponding fibration with the fiberwise Lagrangian submanifolds by

(E[p,w]; [0,1] × {0} × L0, [0,1] × {1} × L1;s[p,w])

or simply as (E[p,w];s[p,w]).
Note that the set of homotopy classes [p,w] of w relative to the boundary

condition (7.6) has one-to-one correspondence with the homotopy class of sections
with the obvious corresponding boundary condition on ∂[0,1]2.
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For a given compact surface Σ with marked points �ζ = {ζ0, . . . , ζk }, we
consider the corresponding surface Σ̇ = Σ \ �ζ with punctures. We denote the
given preferred holomorphic chart ϕζ : Dζ ⊂ Σ → D+ of the half-disc D+ =
D ∩ {im(z) ≥ 0} with ϕζ(ζ) = 0. We also have a local trivialization

Φζ : E|Dζ \ {ζ} → D+ \ {0} × M

lying over ϕζ . When Q ⊂ E is a Lagrangian boundary condition, we have a unique
pair Lζ,± of Lagrangian submanifolds of M such that

Φζ(Q) = [−1,0) × Lζ,− ∪ (0,1] × Lζ,+.

For the given ordered chain of Lagrangian boundaries Q = (Q0,Q1, . . . ,Qk),
denote Q =

⋃
i Qi. Then we require the unique pair Lζi,± at ζi to be

Φζi(Q) = [−1,0) × Li ∪ (0,1] × Li+1

at each ζi. In this way, for each given (π : E → Σ; Q) and a chain of intersection
points �p = (p0, . . . , pk) with pi ∈ Li ∩ Li+1, we consider the moduli space

MJ(E, Q;�p;B)

of smooth J -holomorphic sections for each section class B ∈ π2(E, Q;�p ).
The following lemma immediately follows from the definition.

LEMMA 7.4

For [pi,wi] with i = 0, . . . , k realizing B = ([w̃0])#([w1]# · · · #[wk]), we have the
identity

(7.7)
∫

w∗
0ω =

k∑
i=1

∫
w∗

i ω − Ω(B)

or equivalently

(7.8) Ω(B) =
k∑

i=1

∫
w∗

i ω −
∫

w∗
0ω.

Since any section s in class [s, ∂s] = B that satisfies the asymptotic condition
s(zi) = xi, with xi ∈ Q with xi = (pi, u(pi)) in the trivialization, satisfies

∫
s∗Ω =

Ω(B), Lemmas 7.2 and 7.4 imply

(7.9)
1
2

∫
‖Ds‖2 =

k∑
i=1

∫
w∗

i ω −
∫

w∗
0ω + λ < ∞.

Once we have this energy estimate, it follows by a standard compactness argu-
ment that there are only finitely many section classes B (and so MJ(E, Q;�p;B)
is nonempty) such that MJ(E, Q;�p;B).

Finally, we state the Gromov-Floer type compactness of MJ(E, Q;�p;B) in
a precise way for later use. For this we introduce additional marked points in the
interior of Σ and on the boundary ∂Σ besides the punctures �ζ .
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DEFINITION 7.1

A configuration on Σ̇ is the set of finite points consisting of

(xj) ∈ IntΣ for j = 1, . . . ,m,

(y(i)
j ) ∈ ∂iΣ̇ for j = 1, . . . , ni and for i = 0, . . . , k.

We denote by C̃m;�n the set of such configurations.

We denote such a configuration by

C =
({

(xj)
}

1≤j≤m
;
{
(y(i)

j )
}

1≤j≤ni
,0 ≤ i ≤ k

)
in general. We note that there are no nontrivial holomorphic automorphisms of
C except the following cases:

• #(�ζ ) = 0 and 2m +
∑k

i=0 ni ≤ 2,
• #(�ζ ) = 1, m = 0 and k = 1, n1 = 1.

We consider the pairs

(s,C) ∈ M̃J(E, Q;�p;B) × C̃(m;�n), �n = (n0, n1, . . . , nk).

There is a natural Aut(Σ̇)-action on the product M̃J(E, Q;�p;B) × C̃(m;�n) defined
by

(s,C) �→
(
s ◦ φ−1, φ(C)

)
,

where φ ∈ Aut(Σ̇). We define MJ,(m;�n)(E, Q;�p;B) to be the quotient

MJ,(m;�n)(E, Q;�p;B) = M̃J(E, Q;�p;B) × C̃(m;�n)/Aut(Σ̇).

We note that when C �= ∅, we have the natural evaluation maps

ev : M(m;�n)(E, Q;�p;B) → Em ×
k∏

i=0

Qni
i ,

which respect the above-mentioned Aut(Σ̇)-action and so are well defined.
We denote by M1(Ez, Jz;αz) the stable maps of genus zero with one marked

point and by M1(Ez,Qz, Jz;βz) the set of bordered stable maps with one marked
point at a boundary of the disc. We consider the fiber product

M̃(m;�n)

(
E, Q;�p;B0; {αi}, {βi

j }
)
:= M̃(m;�n)(E, Q;�p;B0)

(7.10)

ev × ev

(∏
i

M(Ezi , Jzi ;αi) ×
k∏

i=0

ni∏
j=1

M(Ezi ,Qzi , Jzi ;β
(i)
j )
)

with respect to the obvious evaluation maps.

7.3. Bubble may hit critical points
In this subsection, we analyze the failure of convergence of a sequence of smooth
pseudoholomorphic sections MJ(E, Q;�p;B) with

(7.11) virdim MJ(E, Q;�p;B) = 0
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of symplectic Lefschetz fibrations E ⊂ Σ with the asymptotic condition provided
by �p. We are especially interested in bubble components passing through critical
points.

By definition, the pullback Ξ∗J is the standard complex structure on Cn+1,
ξ∗j is the standard one on C, and ξ−1 ◦ π ◦ Ξ = q on the neighborhoods W ⊂ Cn+1,
U ⊂ C of the origins, corresponding, respectively, to the given holomorphic Morse
chart (ξ,Ξ) at each x0 ∈ Ecrit. We denote by Wx0 ⊂ E, Ux0 ⊂ Σ the corresponding
neighborhoods of x0 and π(x0), respectively. We also denote by B2n+2(r) the ball
of radius r > 0 in Cn+1 with its center at the origin, and by Bx0(r) its image
under Ξ at x0 ∈ Ecrit, and similarly for B2(ε) and Bz0(ε).

Since we assume that there are finitely many critical points, we can choose
constants ε, r > 0 and the above-mentioned balls Bx0(r) and B2(ε) so that

(7.12) Bz(ε) ∩ Bz′ (ε) = ∅ for z �= z′ with z = π(x), z′ = π(x′)

for x,x′ ∈ Ecrit and

(7.13) π
(
Bx0(r)
)

⊃ Bz0(ε) for all x0 ∈ Ecrit ∩ Ez0 .

LEMMA 7.5

The graph of any differentiable section does not intersect Ecrit.

Proof
Since s is a section, we have π ◦ s = id. By differentiating this, we obtain dπ ◦ ds =
Id. In particular, dπ is surjective at any point s(z); that is, s(z) must be a regular
point of π, and hence s(z) ∈ E \ Ecrit. �

Obviously we have the inequality

(7.14) dist
(
s(z),Ecrit

)
≥ C > 0 for z ∈ Σ \

⋃
x∈Ecrit

Bπ(x)(ε),

where C = C(ε, (ξ,Ξ)) is a constant depending only on ε and the holomorphic
Morse chart (ξ,Ξ) independent of s. Now we consider the restriction of s on⋃

x∈Ecrit Bπ(x)(ε). On this neighborhood, we can identify the section s to the
holomorphic map

f : B2(ε) ⊂ C → B2n+2(r) ⊂ Cn+1

satisfying q ◦ f(z) = z for all z ∈ B2(ε); that is,

f2
1 (z) + · · · + f2

n+1(z) = z.

In particular, we have

|f(z)|2 =
n+1∑
j=1

|f2
j (z)| ≥ |f2

1 (z) + · · · + f2
n+1(z)| = |z|

for all z ∈ B2(ε). Therefore we obtain

(7.15) |f(z)| ≥
√

ε for z ∈ ∂B2(ε).
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The following theorem is the main theorem proved in this section.

THEOREM 7.6

Suppose that the Lefschetz Hamiltonian fibration with Lagrangian boundary Q ⊂
E|∂Σ such that E is relative Calabi-Yau and Q has vanishing fiberwise Maslov
class. Then there exists a dense subset of j-compatible J ’s such that for any such
J , there exists a constant C > 0 depending only on (E,Q,J, j), the section class
[s], and ε > 0 such that we have

(7.16) dist(Im s,Ecrit) ≥ C

for any smooth section s : Σ → E.

We prove Theorem 7.6 by contradiction. Let J be j-compatible and suppose that
there is a sequence si of smooth J -holomorphic sections such that

(7.17) min
z∈Σ

dist
(
si(z),Ecrit

)
→ 0.

Since Ecrit is a finite set and by (7.12), we may choose a critical point x0 ∈ Ecrit

and a sequence zi ∈ Σ such that

(7.18) dist
(
si(zi), x0

)
→ 0.

By choosing a subsequence of zi if necessary, we may assume that zi → z0, and
so

(7.19) zi ∈ Bz0(ε)

for all i. By the Gromov-Floer convergence applied to J -holomorphic curves si :
(Σ, j) → (E,J), which are also J -holomorphic sections, there exists a subsequence
that converges to

s∞ = s0 + bubble components,

where s0 is a smooth section of E → Σ and where each bubble must be either
a fiberwise pseudoholomorphic sphere or a fiberwise pseudoholomorphic disc.
And each disc bubble has its boundary lying in the given Lagrangian boundary
condition.

Due to property (7.19), at least one bubble must pass through the critical
point x0 whose image is contained in Ez0 . By the connectedness of the image
of the limit, this bubble is contained in a bubble tree rooted at a point z1 ∈ Σ
in the principal component (s0,Σ). The image of this bubble tree itself must be
contained in the same fiber Ez0 . Denote this bubble tree by (v, (C,z)), z ∈ C,
which is a stable map in E such that

v(z) = s0(z1) ∈ E.

However, since Ez0 contains a singularity x0 and so is not a smooth manifold,
we need further clarification on the bubble component passing through x0. Since
π : E → Σ is isomorphic to the standard Lefschetz fibration

q(z1, . . . , zn+1) = z2
1 + · · · + z2

n+1
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near x0, there is a well-defined multiplicity of the component at the critical point
x0. We make this statement precise in the next subsection.

7.4. Proper holomorphic curves in Ez0 \ {x0}
Using the holomorphic Morse chart (ξ,Ξ) at the critical point x0 ∈ Ez0 ⊂ E, we
consider the decomposition

E = Bx0(δ)
∐(

E \ Bx0(δ)
)
,

where Bx0(δ) = Ξ−1(B2(n+1)(δ)) ∩ Ez0 for 0 < δ < ε.
Now we consider the hypersurface

q−1(0) =
{
(x1, . . . , xn+1) | x2

1 + · · · + x2
n+1 = 0

}
.

The only singularity of this hypersurface is 0 ∈ Cn+1, and so q−1(0) \ {0} is a
smooth complex hypersurface of Cn+1 \ 0. We denote by θCn+1 the 1-form

θCn+1 =
i

4

(∑
xk dxk − xk dxk

)
and the standard Kähler form

ωCn+1 = −dθCn+1

(
=
∑

dqk ∧ dpk

)
,

where xk = qk + ipk. We denote by θ and ω the restriction of these to q−1(0) \ {0}.
Following [Se3], we denote T = T ∗Sn, and T (0) equals the zero section of T ,

and by θT and ωT = −dθT , respectively, we denote the standard Liouville 1-form
and the standard symplectic form on the cotangent bundle T . We identify T with
the subset {

(u, v) ∈ Rn+1 × Rn+1
∣∣ 〈u, v〉 = 0, ‖v‖ = 1

}
and then consider the map

Φ : q−1(0) \ {0} → T \ T (0)

defined by

(7.20) Φ(x) =
(
im(x̂)‖ re(x̂)‖, re(x̂)‖ re(x̂)‖−1

)
,

where seiα are polar coordinates on the base of q : Cn+1 → C, and x̂ = e−iα/2. We
note that this map is equivariant with respect to the canonical O(n + 1)-actions
on q−1 \ {0} ⊂ Cn+1 \ {0} and T = T ∗Sn.

The following is a consequence of a straightforward calculation, which is a
restriction of the identity in [Se3, p. 1014].

LEMMA 7.7

Φ is a diffeomorphism such that

Φ∗θT = θ,

and so Φ∗ωT = ω. In particular, the symplectic manifold (q−1(0) \ {0}, ω) is sym-
plectomorphic to the cotangent bundle T = T ∗Sn.
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This lemma shows that Ez0 \ {x0} is a symplectic manifold with negative cylin-
drical end whose asymptotic boundary is symplectomorphic to the unit cosphere
bundle S1(T ∗Sn). Furthermore, complex structure on Ξ−1(W ) is required to be
induced from the standard complex structure from q−1(0) \ {0} ⊂ Cn+1 \ {0}.
Therefore any j-compatible J provides a translational invariant almost complex
structure with respect to the cylindrical structure, and any J -holomorphic curve
is genuinely holomorphic near the end of q−1(0) \ {0}.

In particular, any such curve converges to a Reeb orbit of S1(T ∗Sn) with
finite multiplicity. This motivates us to study the moduli problem of proper
J -holomorphic curves from C ∼= CP 1 \ {N } with the asymptotic boundary con-
dition given by (γ, k), where γ is a simple Reeb orbit of S1(T ∗Sn) and a multi-
plicity k ∈ Z+. We denote by R̃1(S1(T ∗Sn)) the set of parameterized Reeb orbits
on S1(T ∗Sn) with period 2π and by R1(S1(T ∗Sn)) the quotient by the natural
S1-action, that is, the set of unparameterized Reeb orbits.

We denote by (s,Θ) the cylindrical coordinates of T \ T (0), where s and Θ
are defined by

s(q, p) = ‖p‖, Θ(q, p) =
(
q,

p

|p|
)
.

Note that all geodesics on Sn have the same period, which implies that the
contact manifold S1(T ∗Sn) is foliated by Reeb orbits, all of which have the same
period. We denote the corresponding cylindrical coordinates on Bx0(ε) \ {x0} ⊂
E \ {x0} by the same letters (s,Θ). By a suitable translation of s-coordinates,
we may assume the identification

(s,Θ) : Bx0(ε) \ {x0} → (−∞,0] × S1(T ∗Sn).

Now we are ready to define the moduli space of our interest. For simplicity
of notation, we denote

Ez0 \ {x0} = E∗
z0

,

and Ṡ = S \ {z0} is either an open Riemann surface isomorphic to C or an open
Riemann surface with boundary isomorphic to C \ D1(1). We fix an analytic
coordinate z = eτ+it near z0 ∈ S. Let u : Ṡ → Ez0 \ {x0} be a pseudoholomorphic
curve with Lagrangian boundary condition

u(∂S) ⊂ Qz0 ⊂ Ez0 \ {x0}.

Since the treatment of the latter is essentially similar to the former, we focus on
the former case in the following exposition. We briefly mention the latter case at
the end of our discussion.

By the properness and exponential convergence property of u as τ → −∞,
we have

Imu|(− ∞,−R]×S1 ⊂ Bx0(ε)

for a sufficiently large R > 0. It is proved in [H] that

T = lim
τ → − ∞

∫
(Θ ◦ uτ )∗λ
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with T = 2πk for some integer k ≥ 1, where uτ (t) := u(τ, t). Then it is proved in
[H] and [Bo] that there exist constants C,δ > 0 depending only on (S1(T ∗Sn), λ)
such that

lim
τ − ∞

dist
(
u(τ/T, t/T ), uγ(τ + τ0, t + t0)

)
≤ Ce−δ|τ |

for some simple Reeb orbit γ of S1(T ∗Sn) and τ0 ∈ R and t0 ∈ S1. (See also
[FO+4] for a proof of a similar exponential convergence result in the relative
context.) Here uγ : [0, ∞) × S1 → (−∞,0] × S1(T ∗Sn) denotes the trivial cylinder
map uγ(t) = (τ, γ(t)).

By the above discussion, we can now define the following moduli spaces for
each given integer k ≥ 1 and a homotopy class A.

DEFINITION 7.2

Let γ ∈ R1(S1(T ∗Sn)) and k ∈ Z+. For each given (γ, k), we define

MSFT
z0

(E∗, J0, γ;A,k) =
{

u : Σ̇ → E∗
z0

∣∣∣ ∂J0u = 0,

∫
u∗Ω < ∞,

lim
τ → − ∞

u(τ/2πk, t/2πk) = uγ(t), [u] = A
}

.

We then define

MSFT
z0

(E∗, J0;A,k) =
⋃

γ∈R1(S1(T ∗Sn))

MSFT
z0

(E∗, J0, γ;A,k).

The following general index formula can be derived from [Bo, Corollary 5.4]. In
this regard, we note that the dimension of the space R1(S1(T ∗Sn)) of simple
Reeb orbits of S1(T ∗Sn) is n.

PROPOSITION 7.8

Let u ∈ MSFT
z0

(E∗, J0;A,k). Then we have

(7.21) IndexDu∂J =
(

−μCZ(γ) +
n

2

)
+ (n − 3) + 2c1(u;φγ),

where μCZ is the generalized Conley-Zehnder index defined by Robbin and Sala-
mon [RS].

For the reader’s convenience, we provide the precise definitions of μCZ(γ) and
c1(u;φγ) in the appendix. Once the definitions are made precise, its proof follows
from that of [Bo].

The following transversality result is an easy consequence of a standard argu-
ment whose proof is omitted. We first note that we have

μCZ(γ) = Morse(γ) +
dim Rsim

2
for the Reeb orbit at the negative end (see, e.g., [Mo], [EGH, Corollary 1.7.4] for
such a formula). We denote by

MSFT
inj (E∗, J0;A,k) ⊂ MSFT(E∗, J0;A,k)
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the open subset consisting of somewhere injective curves.

PROPOSITION 7.9

Let x0 ∈ Ecrit. There exists a dense subset J tr(x0) of the set J (j) of Ω-compatible
almost complex structures such that MSFT

inj (E∗, J0;A,k) is Fredholm-regular and
so becomes a smooth manifold of dimension

(7.22) − Morse(γ) + (n − 3) + 2c1(u;φγ)

for any k ≥ 1.

An immediate corollary of this proposition is the following vanishing result.

COROLLARY 7.10

Let x0 ∈ Ecrit and E∗ = E \ {x0}. Suppose that the relative Maslov class of E → Σ
is zero. Then for any J0 ∈ J tr(x0), MSFT(E∗, J0;A,k) = ∅ for all A and k.

Proof
Since any element of MSFT(E∗

z0
, J0;A,k) is a composition of a somewhere injec-

tive curve and a branched covering of the domain, it is enough to prove that

MSFT
inj (E∗, J0;A,k) = ∅

for a generic choice of J0.
By the assumption, we have c1(A) = 0 for all A ∈ π2(E∗

z0
; z0). Furthermore,

the Morse index for the simple closed geodesic of Sn is given by n − 1 and is
greater than n − 1 for multiple geodesics. Therefore we derive

dim MSFT
inj (E∗

z0
, J0;A,k) ≤ −(n − 1) + n − 3 = −2

for all k ≥ 1 from (7.22) and hence the proof. �

Finally, we briefly mention the case in which Ṡ ∼= C \ D2(1) and u(∂S) ⊂ Qz0 .
Since we assume that Q has vanishing fiberwise Maslov class, the corresponding
moduli space

MSFT(E∗
z0

,Qz0 , J0;A,k)

has its dimension exactly the same as that of MSFT(E∗
z0

, J0;A,k). Therefore the
same dimension-counting argument applies in exactly the same way (see, e.g.,
[Mo] for a discussion on the dimension formula in the context of Lagrangian
boundary).

We note that the above dimension-counting argument strongly relies on the
fact that E is (fiberwise) Calabi-Yau so that c1(u;φγ) = 0 and Q has vanishing
fiberwise Maslov class. It may be interesting to investigate how the long exact
sequence will be transformed in other contexts, such as in the Fano case.
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7.5. Bubble does not hit critical points
In this subsection, we restrict ourselves to the case of vanishing relative first
Chern class c1(E) = 0.

We prove Theorem 7.6 in this subsection. In fact, it is enough to take

J tr :=
⋂

x0∈Ecrit

J tr(x0)

for the dense subset of j-compatible J ’s.

Proof of Theorem 7.6
Let J ∈ J tr be defined as above.

We have derived before by the Gromov-Floer compactness applied to MJ(E,

Q;�p;B) in E that there exists a subsequence which converges to

s∞ = s0 + bubble components,

where s0 is a smooth section of E → Σ and each bubble tree is contained in a
fiber which consists of either fiberwise pseudoholomorphic spheres or discs. By
Corollary 7.10, there cannot be any bubble tree passing through a critical point
of E and so contained in E \ Ecrit. Since the principal component s0, which is
smooth, cannot pass through a critical point by Lemma 7.5, we have proved that
the Gromov-Floer limit of si : Σ → E \ Ecrit does not pass any critical point of
E. Therefore the compactification MJ(E, Q;�p;B) of MJ(E, Q;�p;B) has image
contained in E \ Ecrit.

Once we have achieved this, the rest of the proof follows, in the same way as
in the case of smooth Hamiltonian fibration, by the standard dimension-counting
argument from the fact that E → Σ is a Hamiltonian Lefschetz fibration with
vanishing relative Maslov class. We consider the evaluation maps

ev : M(m;�n)(E, Q;�p;B) → Em ×
k∏

i=0

Qni

i

and

ev1 : M1(Ez, Jz;αz) → Ez, ev1 : M1(Ez,Qz, Jz;βz) → Ez

for z ∈ Σ \ Σcrit and consider the fiber product

M̃(m;�n)

(
E, Q;�p;B0; {αi}, {βi

j }
)

:= M̃(m;�n)(E, Q;�p;B0)

ev ×ev1

(∏
i

M(Ezi , Jzi ;αi) ×
k∏

i=0

ni∏
j=1

M(Ezi ,Qzi , Jzi ;β
(i)
j )
)

(7.23)

with respect to the obvious evaluation maps.
Note that the dimension of the moduli space of a holomorphic sphere in any

class in a fiber Ez \ Ecrit has virtual dimension given by 2n − 6, and so

vir.dim
⋃
z∈Σ

M1(Ez, Jz;αz) = 2n − 4.
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In particular, for a generic choice of J all somewhere injective holomorphic
spheres are regular, and hence we have the condition c1 = 0, which implies semi-
positivity; the standard argument from [RT] implies that the evaluation image
of the moduli space in each fiber has at least codimension 4, which obviously
avoids the images of pseudoholomorphic sections in the classes whose associated
moduli space has dimension zero. This proves that there cannot be any bub-
ble passing through critical points of E in the limit, and hence the above fiber
product, for a generic choice of J , becomes empty. The relevant Fredholm theory
needed to perform this kind of dimension-counting argument is by now standard.
We refer to [Se3, Section 2] for an elegant exposition on this Fredholm theory
in the context of exact Lefschetz fibrations, which applies to the current context
of Lefschetz Hamiltonian fibrations without change. This proves that there exist
a dense subset J reg,tr ⊂ J tr such that for any given (�p;B) the moduli spaces
M(m;�n)(E, Q, J ;�p;B) is compact for J ∈ J reg,tr.

In particular, there exists a constant C = C(E,Q, �p;B) > 0:

min
z∈Σ

dist
(
s∞(z),Ecrit

)
> C.

But this together with Hausdorff convergence of the image of si to that of s∞
contradicts the assumption that si(zi) → x0 ∈ Ecrit. This finishes the proof. �

This proposition shows that as far as compactness property of the set of smooth
pseudoholomorphic sections is concerned, we can ignore the presence of critical
points of the fibration E → Σ.

7.6. Gromov-Floer moduli space of J -holomorphic trajectories
With Theorem 7.6 at our disposal, we can safely ignore the critical points in
the study of smooth J -holomorphic sections and their degenerations for the Lef-
schetz Hamiltonian fibrations π : E → Σ. This, together with the energy estimates
derived from Section 6, makes the study essentially the same as for the case of
usual smooth Hamiltonian fibrations (without critical points) as studied in [En]
and [MS].

We formulate the definition of Fukaya, Oh, Ohta, and Ono’s mk-maps in the
setting of fibrations. Obviously this discussion can be extended to the Lefschetz
Hamiltonian fibration π : E → Σ with punctures �ζ = {ζ0, . . . , ζk } ⊂ ∂Σ̇ and with
a chain of Lagrangian boundary conditions

Q = (Q0, . . . ,Qk)

by considering the anchor caps attached to [pij ,wij ] with p ∈ Li ∩ Lj . Here Qj is
the parallel fiberwise Lagrangian submanifold corresponding to Lj . We decom-
pose

∂Σ̇ =
k∐

j=0

∂jΣ,
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where ∂jΣ is the jth connected component of ∂Σ̇. We briefly add some neces-
sary modification from [FO+1] to accommodate the possible critical point in the
fibration π : E → Σ following the notation from [Se3].

For a given compact surface Σ with marked points �ζ , we consider the corre-
sponding surface Σ̇ = Σ \ �ζ with punctures. We fix a given preferred holomorphic
chart ϕζ : Dζ ⊂ Σ → D+ of the half-disc D+ = D ∩ {im(z) ≥ 0} with ϕζ(ζ) = 0.
We consider the moduli space

MJ(E, Q;�p;B)

as in Section 7.2 for all the section class B ∈ π2(E, Q;�p ) with

vit.dim MJ(E, Q;�p;B) = 0.

More specifically, the map is supposed to be given by

Φrel
0 (E,π; Q)

( k⊗
j=1

[pj ,wj ]
)

=
∑

k

#
(

MJ(E, Q;�p;B)
)
[pk,wk]

with a suitable definition of the coefficient #(MJ(E, Q;�p;B)).
Finally, we recall the notion of broken Floer trajectory moduli spaces; that

is, the case corresponds to k + 1 = 2 (see [FOn] for the corresponding definition
for the closed case).

DEFINITION 7.3

Let J = {Jt}0≤t≤1, and let x, y ∈ L+ ∩ L−. A stable broken Floer trajectory from
p to q is a triple

u =
(
(u1, . . . , ua); (σ1, . . . , σm), (γ0

1 , . . . , γ0
n0

), (γ1
1 , . . . , γ1

n1
);o
)

that satisfies the following.

(1) For i = 1, . . . , a − 1, ui ∈ M(xi, xi+1) and satisfies

u1(−∞) = p,ua(∞) = q,
(7.24)

ui(∞) = ui+1(−∞) for i = 1, . . . , a − 1.

We call (7.24) the matching condition, and we say that a pair (u,u′) of Floer
trajectories is gluable if it satisfies the matching condition.

(2) We have σi ∈ M1(Jti ;αi) for i = 1, . . . ,m.
(3) We have γ0

j ∈ M1(L0, J0;β0
j ) for j = 1, . . . , n0 and γ1

k ∈ M1(L1, J1;β1
k)

for k = 1, . . . , n1.
(4) For each � = 1, . . . , a, either the map u� is nonstationary or Θ� ∩ Imo �= ∅.

We denote the domain of u simply by Θu, which is the product of a broken
configuration. This is the union of finite copies of

R × [0,1],

the principal components, and the prestable curves of closed or bordered Riemann
surfaces of genus zero are the bubble components with their roots attached to the
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principal components of Θu. Each broken Floer trajectory u : Θu → M can be
regarded as a broken Floer trajectory into the fiber Mζ for a ζ ∈ �ζ . We denote
by M̃(p, q;B0; {αi}, {β0,j }, {β1,k }) the set of stable broken Floer trajectories in
the prescribed topological types. The group Aut(Σ̇) acts on the moduli space
M̃(p, q;B0; {αi}, {β0,j }, {β1,k }) by the simultaneous translation of the roots of
the bubbles attached to the principal component. Then we denote by M(p, q;B)
the set of all stable broken trajectories in class B ∈ π2(p, q).

We then define

M(E, Q;�p;B) =
∐

M(m;�n)(E, Q;�p ′;B′; {αi}, {βi
j })#
(∏

i

M(p′
i, qi;Bi)

)
for all choices of B0, {αi}, {βi

j }, and Bi’s satisfying

B = B0 +
∑

i

αi +
k∑

i=0

( ni∑
j=1

β
(i)
j

)
+
∑

Bi

and provide it with a topology of stable maps. We denote the corresponding
decomposition of maps by

s = s0#
(∏

i

vi

)
#
(

#k
i=0

(∏
j

w
(i)
j

))
#(ui),

and we call s0 the principal component and other fiberwise curves the bubble
components.

At this stage, we emphasize that this compactification is defined as a topo-
logical space for any choice of (j, J) for a transversal chain (L0, . . . ,Lk) of
Lagrangian submanifolds. The topological space M(E, Q;�p;B) will not be a
smooth “manifold” even for a generic choice of J , but will be a space with
Kuranishi structure (see [FOn]).

7.7. Orientation and signs
Recall that our main object of concern is the collection E CY

brane consisting of
anchored CY Lagrangian branes and are the CY Lagrangian branes, that is,
((L,γ), s, [b]). We also recall that the action of the Dehn twist τL preserves this
collection.

In particular, we assume that L is orientable and spin. Because of this we
ignore the background class st in the definition of relative spin structures; that
is, we restrict ourselves to st = 0. The existence of compatible orientations on
the ordinary Floer moduli spaces

Mk+1(L, �p;B),

together with some enhancement on their fiber products with chains in Lagran-
gian submanifolds, is already established in [FO+2, Section 6] based on the anal-
ysis of compatible orientations given in [FO+1, Chapter 6]. This establishes all
the necessary ingredients needed for the construction of A∞-structures on the
Fukaya category Fuk(E CY

brane).
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For the purpose of constructing Seidel-type exact sequences over Z-coeffi-
cients, not just Z2-coefficients, in addition to the study performed in [FO+1] and
[FO+2], we need to study orientation of the moduli space of pseudoholomorphic
sections

M(E, Q, J ;�p;B)

and establish the morphism Φrel
0 (E,π; Q) over Z. Recall that Seidel considered

this morphism over Z2 in [Se3] but extended his construction over Z by incorpo-
rating the study of orientations in [Se4] in the exact framework.

For the reader’s convenience, we first borrow the exposition of orientations
from [FO+2] in this subsection. We examine the orientation on M(E, Q, J ;�p;B)
later in Section 9.3 in relation to the construction of Seidel’s map c which is
induced by the Lefschetz Hamiltonian fibration associated to the Dehn twist.

Let p, q ∈ L0 ∩ L1 and B ∈ π2(p, q). We consider u : R × [0,1] → M such that

du

dτ
+ J

du

dt
= 0,(7.25a)

u(τ,0) ∈ L0, u(τ,1) ∈ L1,

∫
u∗ω < ∞,(7.25b)

u(−∞, ·) ≡ p, u(∞, ·) ≡ q.(7.25c)

It induces a continuous map u : [0,1]2 → M with u(0, t) ≡ p,u(1, t) ≡ q in an
obvious way. With an abuse of notation, we denote by [u] the homotopy class
of the map u in π2(p, q). We denote by M̃ ◦(p, q;B) the moduli space consisting
of the maps u satisfying (7.25) and compactify M̃ ◦(p, q;B)/R its quotient by
the τ -translations by using an appropriate notion of stable maps as in [FO+1,
Section 2.1].

If (L0,L1) is a relative spin pair, then M(p, q;B) is orientable. Furthermore,
a choice of relative spin structures gives rise to a compatible system of orien-
tations for M(p, q;B) for all pairs p, q ∈ L0 ∩ L1 and B ∈ π2(p, q). For the sake
of completeness, we now recall from [FO+1, Section 8.1]) how the relative spin
structure gives rise to a system of coherent orientations.

Let p ∈ L0 ∩ L1 and [w] ∈ π2(�01;p) for a relevant map w : [0,1]2 → M as
before. We denote by Map(�01;p;L0,L1;α) the set of such maps [0,1]2 → M and
denote its homotopy class by [w] = α in π2(�01;p). Let w ∈ Map(�01;p;L0,L1;α).
Let Φ : w∗TM → [0,1]2 × TpM be a (homotopically unique) symplectic trivi-
alization as before. The trivialization Φ, together with the boundary condition
w(0, t) = �01(t) and the Lagrangian path λ01 along �01, defines a Lagrangian path

λΦ = λΦ
([p,w];λ01)

: [0,1] → TpM

satisfying λΦ(0) = TpL0, λ
Φ(1) = TpL1. The homotopy class of this path does not

depend on the trivialization Φ but depends only on [p,w] and the homotopy class
of λ01. Hereafter we omit Φ from the notation.

We remark that relative spin structure determines a trivialization of Vλ01(0) ⊕
Tλ01(0)L0 = Vλ01(0) ⊕ λ01(0) and Vλ01(1) ⊕ TpL1 = Vλ01(1) ⊕ λ01(1). We take and
fix away to extend this trivialization to the family �∗

01V ⊕ λ01 on [0,1].
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We consider the following boundary-valued problem for the section ξ of
w∗TM on R≥0 × [0,1] of a W 1,p-class such that

Dw∂(ξ) = 0,(7.26a)

ξ(0, t) ∈ λ01(t), ξ(τ,0) ∈ TpL0, ξ(τ,1) ∈ TpL1.(7.26b)

Here Dw∂ is the linearization operator of the Cauchy-Riemann equation.
We define W 1,p(R≥0 × [0,1], TpM ;λ01) to be the set of sections ξ of w∗TM on

R≥0 × [0,1] of a W 1,p-class satisfying (7.26b). Then (7.26a) induces an operator

Dw∂ : W 1,p(R≥0 × [0,1], TpM ;λ) → Lp(R≥0 × [0,1], TpM ⊗ Λ0,1),

which we denote by ∂([p,w];λ01). The following proposition was proved in [FO+1,
Lemma 3.7.69].

PROPOSITION 7.11

We have

(7.27) Index∂([p,w];λ01) = μ([p,w];λ01).

We denote its determinant line by

det∂([p,w];λ01).

By varying w in its homotopy class α ∈ π2(�01;p) = π2(�01;p;L0,L1), these lines
define a line bundle

(7.28) det∂([p,w];λ01) → Map(�01;p;L0,L1;α).

The bundle (7.28) is trivial if (L0,L1) is a relatively spin pair (see [FO+1, Sec-
tion 8.1]).

We need to find a systematic way to orient (7.28) for various α ∈ π2(�01;p)
simultaneously. Following [FO+1, Section 8.1.3], we proceed as follows. Let λp :
[0,1] → TpM be a path connecting from TpL0 to TpL1 in Lag+(TpM,ω). The
relative spin structure determines a trivialization of Vp ⊕ TpL0 = Vp ⊕ λp(0) and
of Vp ⊕ TpL1 = Vp ⊕ λp(1). We fix an extension of this trivialization of the [0,1]-
parameterized family of vector spaces Vp ⊕ λp. We define

(7.29) Z+ =
{
(τ, t) ∈ R2

∣∣ τ ≤ 0,0 ≤ t ≤ 1
}

∪
{
(τ, t)
∣∣ τ2 + (t − 1/2)2 ≤ 1/4

}
.

We consider maps ξ : Z+ → TpM of the W 1,p-class and study the linear
differential equation

∂ξ = 0,(7.30a)

ξ(eπi(t−1/2)/2 + i/2) ∈ λp(t), ξ(τ,0) ∈ TpL0, ξ(τ,1) ∈ TpL1.(7.30b)

It defines an operator

W 1,p(Z+, TpM ;λp) → Lp(Z+;TpM ⊗ Λ0,1),
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which we denote by ∂λp . Let Index∂λp be its index, which is a virtual vector
space. The following theorem is proved in [FO+2, Theorem 6.5] whose proof in
turn follows that of [FO+1, Chapter 6].

THEOREM 7.12

Let (L0,L1) be a relatively spin pair of oriented Lagrangian submanifolds. Then
for each fixed α, the bundle (7.28) is trivial.

If we fix a choice of systems of orientations op on Index∂λp for each p, then
it determines orientations on (7.28), which we denote by o[p,w].

Moreover op, o[p,w] determine an orientation of M(p, q;B) denoted by o(p, q;
B) by the gluing rule

(7.31) o[q,w#B] = o[p,w]#o(p, q;B)

for all p, q ∈ L0 ∩ L1 and B ∈ π2(p, q) so that they satisfy the gluing formulae

∂o(p, r;B) = o(p, q;B1)#o(q, r;B2)

whenever the virtual dimension of M(p, r;B) is 1. Here ∂o(p, r;B) is the induced
boundary orientation of the boundary ∂M(p, r;B) and B = B1#B2, and M(p, q;
B1)#M(q, r;B2) appears as a component of the boundary ∂M(p, r;B).

REMARK 7.4

For the definition of the orientation of the moduli spaces for the filtered bimodule
structure, see [FO+1, Sections 8.7, 8.8, Definition 8.8.11].

One can generalize the above discussion to the moduli space of pseudoholomor-
phic polygons, which we describe below.

Consider a disc D2 with k + 1 marked points z0k, zk(k−1), . . . , z10 ⊂ ∂D2

respecting the counterclockwise cyclic order of ∂D2. We take a neighborhood
Ui of zi(i−1) and a conformal diffeomorphism ϕi : Ui \ {zi(i−1)} ⊂ D2 ∼= (−∞,0] ×
[0,1] of each zi(i−1). For any smooth map

w : D2 → M ;w(zi(i−1)) = pi(i−1),w(z(i+1)izi(i−1)) ⊂ Li,

we deform w so that it becomes constant on ϕ−1
i ((−∞, −1] × [0,1]) ⊂ Ui; that is,

w(z) ≡ pi(i−1) for all z ∈ ϕ−1((−∞, −1] × [0,1]). So assume that this holds for w

from now on. We now consider the Cauchy-Riemann equation

Dw∂(ξ) = 0,(7.32a)

ξ(θ) ∈ Tw(t)Li for θ ∈ z(i+1)izi(i−1) ⊂ ∂D2.(7.32b)

We remark that on Ui = (−∞,0] × [0,1] the boundary condition (7.32b) becomes

(7.33) ξ(s,0) ∈ Li−1, ξ(s,1) ∈ Li.

Equation (7.32) induces a Fredholm operator, which we denote by

(7.34) ∂w;L : W 1,p(D2;w∗TM ;L) → Lp(D2;w∗ ⊗ Λ0,1).
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Moving w, we obtain a family of Fredholm operators ∂(L;�p;B) parameterized by
a suitable completion of F (�p;L;B) for B ∈ π2(�p;L). Therefore we have a well-
defined determinant line bundle

(7.35) det∂(L;�p;B) → F (L;�p;B).

The following theorem is an extension of Theorem 7.12, which is [FO+2, Theo-
rem 6.7], whose proof we refer readers thereto.

THEOREM 7.13

Suppose that L = (L0, . . . ,Lk) is a relatively spin Lagrangian chain. Then each
det∂(�p;L;B) is trivial.

Moreover, we have the following. If we fix orientations opij on Index∂λpij
as

in Theorem 7.12 for all pij ∈ Li ∩ Lj , with Li transversal to Lj , then we have a
system of orientations, denoted by ok+1(�p;L;B), on the bundles (7.35), so that
it is compatible with the gluing map in an obvious sense.

We can prove that the orientation of ∂(L;�p;B) depends on the choice of op(i+1)i

(and so on λp) with i = 0, . . . , k, but is independent of the choice of w+
(i+1)i, and so

on. This is a consequence of the proof of Theorem 7.12. Therefore the orientation
in Theorem 7.13 is independent of the choice of anchors.

REMARK 7.5

To give an orientation of M(L;�p;B), we have to take the moduli parame-
ters of marked points and the action of the automorphism group into account.
We also treat the intersection point pi(i−1) as if it is a chain of codimension
μ([pi(i−1),w

+
i(i−1)];λ(i−1)i) in a way similar to [FO+1, Chapter 8, Section 8.5].

8. Anchored Floer cohomology: Review

In the first subsection, we recall the exposition from [FO+2] on the Lagrangian
Floer theory of anchored Lagrangian submanifolds.

8.1. Floer chain complex
Let (L0,L1) be a pair with L0 intersecting L1 transversely.

Let (Li, γi), i = 0,1, be anchored Lagrangian submanifolds. Let p, q ∈ L0 ∩ L1

be admissible intersection points. We defined the set π2(p, q) = π2((L0,L1), (p, q))
in Section 3. We also defined π2(�01;p) there. We now define the following.

DEFINITION 8.1

Let R be the underlying coefficient field. We define CF (L1, L0) = CF ((L1, γ1),
(L0, γ0)) to be a free R-module over the basis [p,w], where p ∈ L0 ∩ L1 is an
admissible intersection point and w is a map from [0,1]2 → M connecting �01
and p̂.

Here R is a ground ring such as Q, C, or R.
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REMARK 8.2

We remark that the set [p,w], where p is the admissible intersection point, is
identified with the set of the critical points of the action functional A defined
on the Novikov covering space of Ω(L0,L1; �01). The group Π(L0, L1) defined in
Section 3.2 acts freely on it so that the quotient space is the set of admissible
intersection points.

We next take a grading λi to (Li, γi) as in Section 3.3. It induces a grading of
[p,w] given by μ([p,w];λ01), which gives the graded structure on CF (L1, L0)

CF (L1, L0) =
⊕

k

CF k(L1, L0;λ01),

where CF k(L1, L0;λ01) = spanR{[p,w] ∈ CF (L1, L0) | μ([p,w];λ01) = k}.

For given B ∈ π2(p, q), we denote by Map(p, q;B) the set of such w’s in
class B.

We summarize the extra structures added in the discussion of Floer homology
for the anchored Lagrangian submanifolds in the following.

(1) We assume that (L0,L1) is a relatively spin pair. We consider a pair
(L0, γ0), (L1, γ1) of anchored Lagrangian submanifolds and the base path �01 =
γ0 ∗ γ1.

(2) We fix a grading λi of γi for i = 0,1, which in turn induce a grading of
�01, λ01 = λ0 ∗ λ1.

(3) We fix an orientation op of Index∂λp for each p ∈ L0 ∩ L1 as in [FO+2].

Under these conditions, orientation of the Floer moduli space M(p, q;B)
is induced. Using the virtual fundamental chain technique (see [FOn], [FO+1,
Appendix A.1]), we can take a system of multisections and obtain a system of
rational numbers n(p, q;B) = #(M(p, q;B)) whenever the virtual dimension of
M(p, q;B) is zero. Finally, we define the Floer “boundary” map ∂ : CF (L1, L0) →
CF (L1, L0), defined in [Fl] and [Oh1], by the sum

(8.1) ∂([p,w]) =
∑

q∈L0∩L1

∑
B∈π2(p,q)

n(p, q;B)[q,w#B].

By Remark 8.2, CF (L1, L0) carries a natural Λ(L0, L1)-module structure and
CF k(L1, L0;λ01) carries a Λ(0)(L0, L1)-module structure, where

Λ(0)(L0, L1) =
{∑

ag[g] ∈ Λ(L0, L1)
∣∣∣ μ([g]) = 0

}
.

We define

(8.2) C(L1, L0) = CF (L1, L0) ⊗Λ(L0,L1) Λnov,

where we use the embedding Λ(L0, L1) → Λnov given in (3.2).
We write the Λnov-module (8.2) also as

C(L1, L0;Λnov).
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DEFINITION 8.3

We define the energy filtration FλCF (L1, L0) of the Floer chain complex CF (L1,

γ1), (L0, γ0)) (here λ ∈ R) such that [p,w] is in FλCF (L1, L0) if and only if
A([p,w]) ≥ λ.

This filtration also induces a filtration on (8.2).

REMARK 8.4

We remark that this filtration not only depends on the homotopy class but also
on γi’s themselves. A different choice of γi’s induces a global uniform shift of
filtration levels.

It is easy to see the following from the definition of ∂ above.

LEMMA 8.1

We have

∂
(
FλCF ((L1, γ1), (L0, γ0)) ⊆ FλCF ((L1, γ1), (L0, γ0))

)
.

According to definition (8.1) of the map ∂, we have the formula for its matrix
coefficients

(8.3) 〈∂∂[p,w], [r,w#B]〉 =
∑

q∈L0∩L1

∑
B=B1#B2∈π2(p,r)

n(p, q;B1)n(q, r;B2)Tω(B),

where B1 ∈ π2(p, q) and B2 ∈ π2(q, r).
To prove that ∂∂ = 0, one needs to prove that 〈∂∂[p,w], [r,w#B]〉 = 0 for

all pairs [p,w], [r,w#B]. On the other hand, it follows from definition that each
summand

n(p, q;B1)n(q, r;B2)Tω(B) = n(p, q;B1)Tω(B1)n(q, r;B2)Tω(B2)

and the coefficient n(p, q;B1)n(q, r;B2) is nothing but the number of broken
trajectories lying in M(p, q;B1)#M(q, r;B2). This number is nonzero in the
general situation in which we work.

To handle the problem of obstruction to ∂ ◦ ∂ = 0 and of bubbling-off discs
in general, a structure of a filtered A∞-algebra (C,m) with nonzero m0-term is
associated to each Lagrangian submanifold L (see [FO+3], [FO+1]).

8.2. A∞ -algebra
In this subsection, we review the notion and construction of a filtered A∞-algebra
associated to a Lagrangian submanifold. To make the construction consistent
with the one in Section 8.1, where Λ(L0, L1) is used for the coefficient ring rather
than the universal Novikov ring, we rewrite them using the smaller Novikov ring
Λ(L) which we define below. Let L be a relatively spin Lagrangian submanifold.
We have a homomorphism

(E,μ) : H2(M,L;Z) → R × Z,
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where E(β) = β ∩ [ω] and where μ is the Maslov index homomorphism. We put
g ∼ g′ for g, g′ ∈ H2(M,L; : Z) if E(g) = E(g′) and μ(g) = μ(g′). We write Π(L)
as the quotient with respect to this equivalence relation. It is a subgroup of R × Z.
We define

Λ(L) =
{∑

cg[g]
∣∣∣ g ∈ Π(L), cg ∈ R,E(g) ≥ 0,

∀E0#{g | cg �= 0,E(g) ≤ E0} < ∞
}

.

We have the natural embedding Λ(L) → Λ0,nov similarly as in (3.2).
Let C be a graded R-module, and let CF = C ⊗̂R Λ(L). From now on we use

the symbol CF for the modules over Λ(L) or Λ(L0,L1) and C for the modules
over the universal Novikov ring.

We denote by CF [1] its suspension defined by CF [1]k = CF k+1. We denote
by deg(x) = |x| the degree of x ∈ C before the shift and by deg′(x) = |x| ′ that
after the degree shift, that is, |x| ′ = |x| − 1. Define the bar complex B(CF [1]) by

Bk(CF [1]) = (CF [1])k⊗, B(CF [1]) =
∞⊕

k=0

Bk(CF [1]).

Here B0(CF [1]) = R by definition. The tensor product is taken over Λ(L). We
provide the degree of elements of B(CF [1]) by the rule

(8.4) |x1 ⊗ · · · ⊗ xk | ′ :=
k∑

i=1

|xi| ′ =
k∑

i=1

|xi| − k,

where | · | ′ is the shifted degree. The ring B(CF [1]) has the structure of a graded
coalgebra.

DEFINITION 8.5

A filtered A∞-algebra over Λ(L) is a sequence of Λ(L) module homomorphisms

mk : Bk(CF [1]) → CF [1], k = 0,1,2, . . .

of degree +1 such that the coderivation d =
∑∞

k=0 m̂k satisfies dd = 0, which is
called the A∞-relation. Here we denote by m̂k : B(CF [1]) → B(CF [1]) the unique
extension of mk as a coderivation on B(CF [1]). A filtered A∞-algebra is an A∞-
algebra with a filtration for which mk are continuous with respect to the induced
non-Archimedean topology.

If we have m1m1 = 0, it defines a complex (CF,m1). We define the m1-cohomology
by

(8.5) H(CF,m1) = Kerm1/ Imm1.

The first two terms of the A∞-relation for a A∞-algebra are given as

m1(m0(1)) = 0,(8.6)

m1m1(x) + (−1)|x|′
m2

(
x,m0(1)

)
+ m2

(
m0(1), x

)
= 0.(8.7)
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In particular, for the case when m0(1) is nonzero, m1 does not necessarily satisfy
the boundary property; that is, m1m1 �= 0 in general.

We now describe the A∞-operators mk in the context of A∞-algebra of
Lagrangian submanifolds. For a given compatible almost complex structure J ,
consider the moduli space of stable maps of genus zero,

Mk+1(β;L) =
{(

w, (z0, z1, . . . , zk)
) ∣∣ ∂w = 0, zi ∈ ∂D2, [w] = β in π2(M,L)

}
/ ∼,

where ∼ is the conformal reparameterization of the disc D2. We require that
z0, . . . , zk respect the counterclockwise cyclic order of S1. (We wrote this moduli
space Mmain

k+1 (β;L) in [FO+1, Section 2.1]. The symbol “main” indicates the
compatibility of z0, . . . , zk with counterclockwise cyclic order. We omit the symbol
in this paper since we always assume it.)

Mk+1(β;L) has a Kuranishi structure, and its dimension is given by

(8.8) n + μ(β) − 3 + (k + 1) = n + μ(β) + k − 2.

Now let [P1, f1], . . . , [Pk, fk] ∈ C∗(L;Q) be k-smooth singular simplices of L. (Here
we denote by C(L;Q) a suitably chosen countably generated cochain complex
of smooth singular chains of L.) We put the cohomological grading degPi =
n − dimPi and consider the fiber product

ev0 : Mk+1(β;L) ×(ev1,...,evk) (P1 × · · · × Pk) → L.

A simple calculation shows that the expected dimension of this chain is given by
n + μ(β) − 2 +

∑k
j=1(dimPj + 1 − n), or equivalently, we have the degree

deg[Mk+1(β;L) ×(ev1,...,evk) (P1 × · · · × Pk), ev0] =
n∑

j=1

(degPj − 1) + 2 − μ(β).

For each given β ∈ π2(M,L) and k = 0, . . . , we define m1,0(P ) = ±∂P and

mk,β(P1, . . . , Pk) = [Mk+1(β;L) ×(ev1,...,evk) (P1 × · · · × Pk), ev0]
(8.9)

∈ C(L;Q).

(More precisely, we regard the right-hand side of (8.9) as a smooth singular chain
by taking the appropriate multivalued perturbation (multisection) and choosing
a simplicial decomposition of its zero set.)

We put

CF (L) = C(L;Q) ⊗̂Q Λ(L).

We define mk : BkCF (L)[1] → BkCF [1] by

mk =
∑

β∈π2(M,L)

mk,β ⊗ [β].

Then it follows that the map mk : BkCF (L)[1] → CF (L)[1] is well defined,
has degree 1, and is continuous with respect to non-Archimedean topology. We
extend mk as a coderivation m̂k : BCF [1] → BCF [1], where BCF (L)[1] is the
completion of the direct sum

⊕∞
k=0 BkCF (L)[1], where BkCF (L)[1] itself is the
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completion of CF (L)[1]⊗k. BCF (L)[1] has a natural filtration defined similarly
as in Definition 8.3. Finally, we take the sum

d̂ =
∞∑

k=0

m̂k : BCF (L)[1] → BCF (L)[1].

We then have the following coboundary property.

THEOREM 8.2

Let L be an arbitrary compact relatively spin Lagrangian submanifold of an arbi-
trary tame symplectic manifold (M,ω). The coderivation d̂ is a continuous map
that satisfies the A∞-relation d̂d̂ = 0, and so (CF (L),m) is a filtered A∞-algebra
over Λ(L).

We put

C(L;Λ0,nov) = CF (L) ⊗̂Λ(L) Λ0,nov,

on which a filtered A∞-structure on C(L;Λ0,nov) (over the ring Λ0,nov) is induced.
This is the filtered A∞-structure given in [FO+1, Theorem A].

In the presence of m0, m̂1m̂1 = 0 no longer holds in general. This leads us
to consider deforming Floer’s original definition by a bounding cochain of the
obstruction cycle arising from bubbling-off discs. One can always deform the given
(filtered) A∞-algebra (CF (L),m) by an element b ∈ CF (L)[1]0 by redefining the
A∞-operators as

mb
k(x1, . . . , xk) = m(eb, x1, e

b, x2, e
b, x3, . . . , xk, eb)

and taking the sum d̂ b =
∑∞

k=0 m̂b
k. This defines a new filtered A∞-algebra in

general. Here we simplify notation by writing

eb = 1 + b + b ⊗ b + · · · + b ⊗ · · · ⊗ b + · · · .

Note that each summand in this infinite sum has degree zero in CF (L)[1] and
converges in the non-Archimedean topology if b has positive valuation, that is,
v(b) > 0 (see Section 3.2 for the definition of v).

PROPOSITION 8.3

For the A∞-algebra (CF (L),mb
k), mb

0 = 0 if and only if b satisfies

(8.10)
∞∑

k=0

mk(b, . . . , b) = 0.

This equation is a version of the Maurer-Cartan equation for the filtered
A∞-algebra.

DEFINITION 8.6

Let (CF (L),m) be a filtered A∞-algebra in general, and let BCF (L)[1] be its
bar complex. An element b ∈ CF (L)[1]0 = CF (L)1 is called a bounding cochain if
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it satisfies (8.10) and v(b) > v(b). We denote by M̃(L;Λ(L)) the set of bounding
cochains.

In general, a given A∞-algebra may or may not have a solution to (8.10). In our
case we define the following.

DEFINITION 8.7

A filtered A∞-algebra (CF (L),m) is called unobstructed over Λ(L) if (8.10) has
a solution b ∈ CF (L)[1]0 = CF (L)1 with v(b) > v(b).

One can define the notion of homotopy equivalence between two bounding
cochains as described in [FO+1, Chapter 4]. We denote by M(L;Λ(L)) the set
of equivalence classes of bounding cochains of L.

REMARK 8.8

In Definition 8.6, we consider the bounding cochain contained in CF (L) ⊂ C(L;
Λ0) only. This is the reason why we write M̃(L;Λ(L)) in place of M̃(L). (The
latter is used in [FO+1].)

8.3. A∞ -bimodule
Once the A∞-algebra is attached to each Lagrangian submanifold L, we then
construct a structure of filtered A∞-bimodules on the module CF (L1, L0) =
CF ((L1, γ1), (L0, γ0)), which was introduced in Section 8.1 as follows. This fil-
tered A∞-bimodule structure is by definition a family of operators

nk1,k0 : Bk1

(
CF (L1)[1]

)
⊗̂Λ(L1) CF

(
(L1, γ1), (L0, γ0)

)
⊗̂Λ(L0) Bk0

(
CF (L′)[1]

)
→ CF
(
(L1, γ1), (L0, γ0)

)
for k0, k1 ≥ 0. Here the left-hand side is defined as follows. It is easy to see
that there are embeddings Λ(L0) → Λ(L0, L1), Λ(L1) → Λ(L0, L1). Therefore a
Λ(L0, L1)-module CF ((L1, γ1), (L0, γ0)) can be regarded both as a Λ(L0)-module
and a Λ(L1)-module. Hence we can take tensor product in the left-hand side
(
⊗̂

Λ(Li)
is the completion of this algebraic tensor product). The left-hand side

then becomes a Λ(L0, L1)-module since the rings involved are all commutative.
We briefly describe the definition of nk1,k0 . A typical element of the tensor

product

Bk1

(
CF (L1)[1]

)
⊗̂Λ(L1) CF

(
(L1, γ1), (L0, γ0)

)
⊗̂Λ(L0) Bk0

(
CF (L0)[1]

)
has the form

P1,1 ⊗ · · · ⊗ P1,k1 ⊗ [p,w] ⊗ P0,1 ⊗ · · · ⊗ P0,k0

with p ∈ L0 ∩ L1 being an admissible intersection point. Then the image nk0,k1

thereof is given by∑
q,B

Tω(B)eμ(B)/2#
(

M(p, q;B;P1,1, . . . , P1,k1 ;P0,0, . . . , P0,k0)
)
[q,B#w].
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Here B denotes homotopy class of Floer trajectories connecting p and q, the
summation is taken over all [q,B] with

dim M(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0) = 0,

and #(M(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0)) is the “number” of elements in
the “zero”-dimensional moduli space M(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0).
Here the moduli space M(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0) is the Floer mod-
uli space M(p, q;B) cut down by intersecting with the given chains P1,i ⊂ L1 and
P0,j ⊂ L0 (see [FO+1, Section 3.7]). An orientation on this moduli space can be
given in [FO+1] and [FO+2].

THEOREM 8.4

Let (L0, L1) be a pair of anchored Lagrangian submanifolds. Then the family
{nk1,k0 } defines a left (CF (L1),m) and right (CF (L0),m) filtered A∞-bimodule
structure on CF (L1, L0).

See [FO+1, Section 3.7] and [FO+2] for the definition of filtered A∞-bimodules.
(In [FO+1] the case of the universal Novikov ring as a coefficient is considered.
It is easy to modify it to our case of a Λ(L0,L1)-coefficient.)

In the case where both L0,L1 are unobstructed, we can perform this deforma-
tion of n using bounding cochains b0 and b1 of CF (L0) and CF (L1), respectively,
in a way similar to mb. Namely, we define δb1,b0 : CF (L1, L0) → CF (L1, L0) by

δb1,b0(x) =
∑
k1,k0

nk1,k0(b
⊗k1
1 ⊗ x ⊗ b⊗k0

0 ) = n̂(eb1 , x, eb0).

We can generalize the story to the case where L0 has clean intersection with L1,
especially to the case L0 = L1. In the case L0 = L1 we have nk1,k0 = mk0+k1+1.
So in this case, we have δb1,b0(x) = m(eb1 , x, eb0).

We define the Floer cohomology of the pair L0 = (L0, γ0, λ0), L1 = (L1, γ1, λ1)
by

HF
(
(L1, b1), (L0, b0)

)
= Ker δb1,b0/ Im δb1,b0 .

This is a module over Λ(L0, L1).

THEOREM 8.5

HF ((L1, b1), (L0, b0)) ⊗Λ(L0,L1)Λnov is invariant under the Hamiltonian isotopies
of L0 and L1 and under the gauge equivalence of bounding cochains b0, b1.

We refer to [FO+1, Section 4.3] for the definition of gauge equivalence and to
[FO+1, Theorem 4.1.5] for the proof of this theorem.

9. Definitions of Seidel’s maps b, c, and h

In this section, we recall the definition of Seidel’s cochain maps b, c, and the
homotopy h and give the definition of the analogues thereof in our general setting.
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They are the maps

b : CF (L,L1) ⊗ CF (τL(L0),L) → CF (τL(L0),L1),

c : CF (τL(L0),L1) → CF (L0,L1)

and the homotopy h : CF (L,L1) ⊗ CF (τL(L0),L) → CF (L0,L1) between the
composition c ◦ b and the zero map.

We generalize these maps to our nonexact case and describe all the necessary
properties of the maps in this section. We consider a quadruple of anchored
Lagrangian submanifolds

L = (L,γ), L0 = (L0, γ0), L1 = (L1, γ1),
(9.1)

τ∗ L =
(
τL(L0), τL(γ0)

)
.

For simplicity of notation in this section, we denote the action functional associ-
ated to the pair (L,γ) and (L′, γ′) just by A L L ′ .

9.1. A simple invariant and its vanishing theorem
Let Φ1(E,π,Q) be the invariant

Φ1(E,π,Q) = (evζ)∗[MJ ] ∈ H∗(Qζ ;Z)

for the Calabi-Yau Lefschetz fibration. The following proposition replaces a sim-
ilar proposition, [Se3, Proposition 2.13], for the present Calabi-Yau Lefschetz
fibration setting.

For each given section class A ∈ πsec
2 (E,Q), we define the moduli space

M(E,Q,J ;A) of J -holomorphic section s : D → E with [s, ∂s] = A and define
an invariant

Φ1(E,π,Q) =
∑

A∈πsec
2 (E,Q)

(evζ)∗
(

MJ(A)
)
TΩ(A) ∈ H∗(Qζ ;Λ0,nov).

We start with the following slight generalization of Proposition 2.2 in the general
context of Lagrangian spheres in general symplectic manifolds.

PROPOSITION 9.1

Let (L, [f ]) be a framed Lagrangian sphere in M . There is a 1-parameter family of
Lefschetz Hamiltonian fibrations (EL

r , πL
r ) → D(r) together with an isomorphism

φL
r : EL

r → M of symplectic manifolds, such that we have the following.

(1) Consider the rescaling map λr : D(r) → D(1) defined by z �→ z/r. Then

(λr)∗EL
1 = EL

r .

(2) If ρL
r is the symplectic monodromy around ∂D(r), then φL

r ◦ ρL ◦ (φL
r )−1

is a Dehn twist along (L, [f ]).

We denote any of these maps by τL, as before.
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Proof
The proof follows from Seidel’s proof of [Se3, Proposition 1.11] stripping all the
things related to the exactness requirement in the proof. In fact, the proof is easier
because we do not have to concern ourselves with the exactness requirement in
the construction. �

We also recall that each fiber EL
z , z �= 0, of the fibration EL contains a dis-

tinguished Lagrangian sphere ΣL
z . We call this fibration a standard Calabi-Yau

Lefschetz fibration. The following is a crucial proposition needed in Seidel’s con-
struction of the long exact sequence in [Se3], whose proof goes through in our
current context with orientation consideration incorporated.

PROPOSITION 9.2

Let L ⊂ M be any CY Lagrangian brane, and let πL : EL → D(r) be the associated
standard Calabi-Yau Lefschetz fibration. Then we have

Φ1(EL, πL,QL) = 0.

Proof
The proof of this proposition follows verbatim that of [Se3, Proposition 2.13]
except for the consideration of orientations. The relevant consideration of orien-
tation of the moduli space M(E,Q,J ;A) is given in [Se4, Section 17i] and so is
omitted. �

9.2. The map b

Let Σ be a compact surface with boundary marked points �ζ = {ζ0, ζ1, ζ2}. We
denote Σ̇ = Σ \ �ζ and ∂Σ̇ =

⋃2
i=0 ∂iΣ̇. We consider the three anchored Lagrangian

submanifolds (L0, γ0), (L,γ), and (L1, γ1). Take the trivial Hamiltonian fibration
π : E = Σ̇ × M → Σ̇ with the 2-form Ω equal to the 2-form pulled back from ω in
M . Equip this with the Lagrangian boundary condition

Q =
(
∂0Σ̇ × τL(L0)

)
∪ (∂1Σ̇ × L) ∪ (∂3Σ̇ × L1).

Q is an exact Lagrangian boundary with κQ = 0. We note that E has the trivial
connection given by K ≡ 0 and hence has zero curvature.

LEMMA 9.3

Suppose that L = (L,γ), L0 = (L0, γ0), L1 = (L1, γ1) are given anchors of the type
(9.1), and suppose that τ∗ L = (τL(L0), τL(γ0)). Let s : Σ̇ → Σ̇ × M be a section
with the given exact Lagrangian boundary condition Q as above. Let [p0,w0] ∈
Crit AτL(L0)L1 , [p,w] ∈ Crit A L L1 , and [p1,w1] ∈ Crit AτL(L0)L. Suppose that the
homotopy class [s, ∂s] is admissible and satisfies

(9.2) [w0] = [s, ∂s] ∗ [w] ∗ [w1] in π2

(
τL(L0),L1; τL(γ0) ∗ γ1

)
.
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Then we have

(9.3)
∫

s∗Ω = AτL(L0)L1([p0,w0]) − A L L1([p,w]) − AτL(L0)L([p1,w1]).

Proof
This immediately follows from Proposition 3.4. �

DEFINITION 9.1

Let L,L′ ⊂ M be a pair of Lagrangian submanifolds. We say that J lies in
J reg(M ;L,L′) if all Floer trajectories associated to J for the pair (L,L′) are
Fredholm regular.

At this point, we fix

J (1) ∈ J reg
(
M ; τL(L0),L

)
,

J (2) ∈ J reg(M ;L,L1),

J (3) ∈ J reg
(
M ; τL(L0),L1

)
.

By choosing a horizontal J ∈ J (E,π, j, J (1), J (2), J (3)), that is, J satisfying
Jx(TEh

x ) = TEh
x for all x ∈ E \ Ecrit with the above trivial fibration E = Σ̇ × M ,

this gives rise to the standard pants product map

(9.4) CF (L, L1) ⊗ CF
(
τL(L0), L

)
→ CF
(
τL(L0), L1

)
in the cochain level. Seidel’s map b in the cochain level is nothing but this pants
product map.

By choosing bounding cochains b0, b1 of L0,L1, respectively, and considering
(τL)∗b0 on τL(L0), we define the deformed m2:

m
�b
2 : CF (L, L1) ⊗ CF

(
τL(L0), L

)
→ CF
(
τL(L0), L1

)
,

where �b = (0, (τL)∗b0, b1) and m
�b
i is defined as in [FO+2, (8.15)]. Here we use m

�b
2

instead of b to be consistent with the notation from [FO+1], [Fu], and [FO+2]
and to highlight the point that Seidel’s map b is nothing but the special case of
the m2-map therefrom.

According to [FO+1], [Fu], and [FO+2], this induces a cochain map up to
the higher homotopy map m

�b
3 and induces a homomorphism in cohomology. For

the reader’s convenience, we summarize the construction of this product map m
�b
k

in the appendix.

9.3. The map c

Let (EL, πL) be the standard fibration over a disc D(1/2) whose monodromy
around ∂D(1/2) is τL, as defined in Section 2, by choosing r small. Let 0 < r < 1/2
be given, and choose a function g with g(t) = t for small t, g(t) ≡ r for t ≥ r,
and g′(t) ≥ 0 everywhere. We consider the map p : D(1/2) → D(1/2) defined by
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p(z) = g(|z|)z/|z|, and consider the pullback fibration

(Ep, πp) = p∗(EL, πL).

This is flat on the annulus D(1/2) \ Int(D(r)).
Now take the surface

Σf = R × [−1,1] \ IntD(1/2) ⊂ R2

with coordinates (s, t), and divide it into two parts Σf,± = Σf ∩ {t ∈ R± } so that

Σf,+ ∩ Σf,− =
((

−∞, − 1
2

]
∪
[1
2
, ∞
))

× {0}.

Consider trivial fibrations

πf,± : Ef,± = Σf,± × M → Σf,±

over the two parts, and equip them with 2-forms Ωf,± the pullback of ω. We
define a fibration (Ef , πf ) over Σf by identifying the fibers Ef,+

(s,0) → Ef,−
(s,0) via

idM for s ≥ 1/2 and via τL for s ≤ −1/2. Because τL is symplectic, this defines
a flat Hamiltonian fibration.

Using the fact that two fibrations Ep and Ef are flat close to the curve
|z| = 1/2, we now paste them along the curve. Denote the resulting fibration over

Σc := Σp ∪ Σf = R × [−1,1]

by (Ec, π). Equip (Ec, π) with the Lagrangian boundary condition

(9.5) Qc =

⎧⎨⎩R × {1} × L1 ⊂ Ef,+,

R × { −1} × τL(L0) ⊂ Ef,−.

This defines an exact Lagrangian boundary with the 1-form κQc = 0. As explained
in [Se3, Section 3.3], (Ec, π) is modeled on (τL(L0),L1) over the positive end of
Σ, and over the negative end, it is modeled on (L0,L1) due to the monodromy
effect around the critical value (0,0) ∈ Σ.

Let j be some complex structure on Σ, standard over the ends. Take some
J (3) ∈ J reg(M,τL(L0),L1) as in Section 9.2, and choose an additional J (5) ∈
J reg(M ;L0,L1). Using a regular J (6) ∈ J (Ec, π,Qc, j, J (3), J (5)), we define a map

c = CΦrel
0 (Ec, π,Qc, J (6)) : CF

(
τL(L0), L1

)
→ CF (L1, L0)

as defined in [Se3, Section 3.3]. However, since we need to establish this morphism
in Z-coefficients, we need to incorporate the study of orientation in its definition.
Furthermore, we also need to involve the bounding cochains since we need to
deform Seidel’s definition just as we do for the Floer coboundary map.

9.3.1. Seidel map c over Z

For each given p ∈ L1 ∩ τL(L0) and q ∈ L1 ∩ L0 and a section class B ∈ π2(Ec,Qc;
p, q), we consider the moduli space Mc(p, q;B) consisting of the J (6)-holomorphic
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sections s : Σc → Ec satisfying the conditions

[s] = B, s(−∞) = p̃, s(∞) = q̃.

Here p̃, q̃ are horizontal sections of (Ec| ± ∞, ∂Ec
± ∞) which are trivialized to

(Ec| − ∞;∂Ec| − ∞) ∼=
(
[−1,1] × M ;

{
{−1} × τL(L0)

}
∪
{

{1} × L1

})
and

(Ec|+∞;∂Ec|+∞) ∼=
(
[−1,1] × M ;

{
{−1} × L1

}
∪
{

{1} × L0

})
over ([0,1], {0,1}) from the definition of the fibration Ec → Σc above.

We need to equip Mc(p, q;B) with an orientation denoted by oc(p, q;B)
that is compatible with the orientations o[p,w] provided at [p,w] defined in The-
orem 7.12. This amounts to saying that we establish the existence of a relative
spin structure on (E, Q) → (Σ, ∂Σ) such that Σ has one incoming end and one
outgoing end of the type (9.5) and satisfies the following requirement.

Let Z± be the space given in (7.29), and consider the bundle pairs

E± = Z± × Cn, λ±,

defined right above (7.29). Then we consider the gluing bundle pair

(E−, λ−)#
(
s∗T vE, (∂s)∗T vQ

)
#(E+, λ+).

This is a bundle pair over a disc. By construction, this bundle pair is homotopic
to the model bundle pair around the critical value (0,0) induced by the model
fibration (EL

r , πL
r ) with model Lagrangian boundary condition QL

r ⊂ EL
r given in

Proposition 9.1.
We denote by o(·) the orientation given in the relevant real determinant

bundle (·). Then the requirement for the choice of

oc(p, q;B) := o
(
det(s∗T vE, (∂s)∗T vQ)

)
is the gluing rule

o(detD∂(EL
r ,πL

r ))
(9.6)

= o(detD∂(E−,λ−))#oc(p, q;B)#o(detD∂(E+,λ+)).

This coherent choice of orientations is already discussed in [Se4, Section 17] in
a more general context of relative spin structure and so is omitted by referring
readers thereto. The outcome then gives rise to the Seidel map

c = CΦrel
0 (Ec, π,Qc, J (6)) : CF

(
τL(L0), L1

)
→ CF (L1, L0)

over Z coefficients and so over arbitrary coefficients. However, this map may not
satisfy the chain property for the same reason that the Floer map δ might not
satisfy the coboundary property, which leads us to consider the deformed version
of c whose explanation is now in order.
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9.3.2. Deformed Seidel map c

Since we use the deformed Floer complex by bounding cochains, we need to
construct the deformed version of the map c. The construction will resemble that
of an A∞-bimodule structure on CF (L1, L0) performed in Section 8.3. Some
details of construction are in order.

We first define a family of operators

ck1,k0 : Bk1

(
CF (L1)[1]

)
⊗̂Λ(L1) CF

(
L1, τL(L0)

)
⊗̂Λ(L0) Bk0

(
CF (L0)[1]

)
→ CF (L1, L0)

for k0, k1 ≥ 0. A typical element of the tensor product

Bk1

(
CF (L1)[1]

)
⊗̂Λ(L1) CF (L1, τL(L0)) ⊗̂Λ(L0) Bk0

(
CF (L0)[1]

)
has the form

P1,1 ⊗ · · · ⊗ P1,k1 ⊗ [p,w] ⊗ P0,1 ⊗ · · · ⊗ P0,k0

with p ∈ τL(L0) ∩ L1 being an admissible intersection point. Then the image
ck0,k1 thereof is given by∑

q,B

Tω(B)eμ(B)/2#
(

Mc(p, q;B;P1,1, . . . , P1,k1 ;P0,0, . . . , P0,k0)
)
[q,B#w].

Here B denotes the section class of J -holomorphic sections connecting p and q,
the summation is taken over all [q,B] with

dim Mc(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0) = 0,

and #(Mc(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0)) is the “number” of elements in
the “zero”-dimensional moduli space Mc(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0).
Here the moduli space Mc(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0) is the moduli
space Mc(p, q;B) of J -holomorphic sections of π : Ec → Σ cut down by inter-
secting with the given chains P1,i ⊂ L1 and P0,j ⊂ L0.

THEOREM 9.4

Let (L0, L1) = ((L0, γ0), (L1, γ1)) be a pair of anchored Lagrangian submanifolds.
Then the family {ck1,k0 } defines a left (CF (L1),m) and right (CF (L0),m) filtered
A∞-bimodule homomorphism from CF (L1, τL(L0)) to CF (L1, L0).

The proof of Theorem 9.4 is similar to that of Theorem 8.4 given in the proof of
[FO+1, Theorem 3.7.21].

When both L0,L1 are unobstructed, we can perform this deformation of c

using bounding cochains b0 and b1 of CF (L0) and CF (L1), respectively, in a way
similar to nb0,b1 . Namely, we define cb1,b0 : CF (L1, τL(L0)) → CF (L1, L0)) by

cb1,b0(x) =
∑
k1,k0

ck1,k0

(
b⊗k1
1 ⊗ x ⊗ b⊗k0

0

)
= ĉ(eb1 , x, eb0).

The following proposition is all we need to add to our context for the construction
of Seidel’s map cb1,b0 in [Se3].
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PROPOSITION 9.5

Let b0, b1 be bounding cochains of L0,L1, respectively. Then c defines a chain
map

cb1,b0 = CΦrel
0 (E,π,Q,J (6)) :

(
CF (τL(L0), L1),m

(τL)∗(b0)
1

)
→
(
CF (L1, L0),mb1

1

)
and hence induces a homomorphism

cb1,b0 : HF
(
τL(L0), (τL)∗b0, (L1, b1)

)
→ HF
(
(L1, b1), (L0, b0)

)
.

Proof
The proof proceeds in the same way as that of Theorem 8.4. The only difference
from the latter is that the moduli space Mc(p, q;B;P1,1, . . . , P1,k1 ;P0,1, . . . , P0,k0)
does not have R-action anymore, and so we consider the moduli space of sections
without considering the quotient. �

9.4. The gluing b#ρc, the composition c ◦ b, and the homotopy h

We denote by (Eb, πb), Σb, and Qb the fibration, surface, and boundary condition
associated to the map b and by (Ec, πc), Σc, and Qc those associated to the
map c constructed in Sections 9.1–9.3. We glue the positive end of Ec and the
negative end of Eb to obtain (Ebc

ρ , πbc
ρ ), Σbc

ρ and Qbc
ρ , for a sufficiently large gluing

parameter ρ in the glued ends. This fibration provides a cochain map

b#ρc : CF (L, L1) ⊗ CF
(
τL(L0), L

)
→ CF (L1, L0).

From now on we denote

b = m
�b
2, c = cb1,b0

for notational simplicity.

LEMMA 9.6

Let (j, J) be such that j is a complex structure on Σbc
ρ which is standard on

its ends, and let J ∈ J (Ebc
ρ , πbc

ρ ,Qbc
ρ , j, J (0), J (2), J (5)). The cochain map b#ρc

coincides with c ◦ b for any ρ ≥ ρ0 with ρ0 sufficiently large.

Proof
We note that the composition c ◦ b is defined by counting the elements of the
fiber product

M(Eb, Qb;�p b;Bb)ev+#ev− M(Ec, Qc;�p c;Bc),

while the map b#ρc is defined by counting those in the moduli space

M(Ebc
ρ , Qbc

ρ ;�p bc
ρ ;Bbc

ρ ),

where Bbc
ρ = Bb#ρB

c is the obvious glued homotopy class. By a gluing theorem
in the Floer complex (see, e.g., [FO+1]), the two moduli spaces are diffeomorphic
to each other, and hence we have the proof. �
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Finally, we can construct a homotopy from b#ρc to the zero map following Sei-
del’s argument from [Se3] verbatim (see [Se3, Figures 9, 12] in particular). We
omit details of the construction.

10. Dichotomy of tiny and big pseudoholomorphic polygons

In this section, we study the decomposition of contributions in the cochain maps
b, c, and the homotopy h arising from pseudoholomorphic polygons of very small
energy and of not small energy. We call the polygons of the first type tiny and
the other big.

For this purpose, we first note that the Dehn twist τ −1
L : M → M acts by

(Li, γi) → (τ −1
L (Li), τ −1

L (γi)) and induces a one-to-one correspondence

τL(L0) ∩ L → L0 ∩ L, x �→ τ −1
L (x).

Since τL|L = id |L, this lifts to a diffeomorphism

Ω̃
(
τL(L0), L

)
→ Ω̃(L0, L), [p,w] �→ [τ −1

L (p), τ −1
L (w)].

This latter diffeomorphism induces a filtration-preserving isomorphism

(τ −1
L )∗ : CF

(
τL(L0), L

)
→ CF (L0, L),

that is, satisfies

AτL(L0),L([p,w]) = A L0,L
(
[τ −1

L (p), τ −1
L (w)]
)
.

By perturbing L0 and L1 if necessary and choosing ε > 0 sufficiently small, we
may assume that

(1) L ∩ L0, L ∩ L1, and L0 ∩ L1 are transverse intersections, and L ∩ L0 ∩
L1 = ∅;

(2) each ι−1(Lk) ⊂ T (r) is a union of fibers; one can write this as

ι−1(Lk) =
⋃

y∈ι−1(L∩Lk)

T (r)y;

(3) R satisfies 0 ≥ 2πR(0) > −ε and is such that τL is δ-wobbly.

The following lemma is a part of [Se3, Lemma 3.2]. For the reader’s conve-
nience, we provide its proof.

LEMMA 10.1

Suppose that L0 ∩ L ∩ L1 = ∅. Then we can choose supp τL so close to L that
L0 ∩ L1 ⊂ M \ im τL and τL(L0), L1 intersect transversally, and there are injective
maps

p :
(
τL(L0) ∩ L

)
× (L ∩ L1) → τL(L0) ∩ L1,(10.1)

q : L0 ∩ L1 → τL(L0) ∩ L1,(10.2)

such that τL(L0) ∩ L1 is the disjoint union of their images.
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Proof
Conditions (1) and (2) right before Lemma 10.1 imply that L0 ∩ L1 ∩ U = ∅. Since
τL is the identity outside U , one has L0 ∩ L1 = (τL(L0) ∩ L1) \ U , so that q can
indeed be defined to be the inclusion. There is a bijective correspondence between
pairs (x̃0, x1) ∈ (τL(L0) ∩ L) × (L ∩ L1) and (y0, y1) ∈ ι−1(L0 ∩ L) × ι−1(L ∩ L1),
given by setting y0 = ι−1(τ −1

L (x̃0)), y1 = ι−1(x1). As a consequence of condition
(3) above,

(10.3) ι−1
(
τL(L0) ∩ L1

)
=
⋃

y0,y1

τ(T (λ)y0) ∩ T (λ)y1 .

It is clear from their definitions that p, q are injective. A point of τL(L0) ∩ L1 falls
into im(q) or im(p) depending on whether it lies inside or outside im(ι); hence
the two images are disjoint and cover τL(L0) ∩ L1. The transversality follows
from the definition of τL for im(p) and from that of L0 ∩ L1 for im(q). �

We consider the triple

L = (L,γ), L0 = (L0, τ
−1
L ◦ γ), L1 = (L1, γ1).

We note that τL(L0) = (τL(L0), γ0) = (τL(L0), γ). To make our discussion non-
trivial, we may assume

(10.4) L ∩ L0 �= ∅, L ∩ L1 �= ∅.

We fix elements x1 ∈ L ∩ L1 and x̃0 ∈ τL(L0) ∩ L and z̃0 = p(x̃0, x1), where p is
the injective map given in Lemma 10.1.

LEMMA 10.2

Suppose that x1 ∈ L ∩ L1 and x̃0 ∈ τL(L0) ∩ L and z̃0 = p(x̃0, x1). Then we have
z̃0 ∈ L1 ∩ τL(L0).

Proof
We first note that there is a canonical homotopy class Bcan = B(x̃0, x1, z̃ ) spanned
by a tiny triangle contained in U = im ι. Choose a path w1 from γ ∗ γ1 and w0

from γ0 ∗ γ. Then it follows that we can choose a path w from γ1 ∗ γ0 defined by
u#w1#w0, where u is the above tiny triangle, that is, any w such that

[w] = Bcan#[w1]#[w0].

This finishes the proof. �

Now we state the following lemma which is a variation of [Se3, Lemma 3.2] in
our context.

PROPOSITION 10.3

Let L0,L1, and L be as in Lemma 10.1, and consider the maps p, q defined
therein. Then we can choose im τL close to L so that τL(L0) ∩ L1 satisfy the
following properties in addition.
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(1) The map q is the inclusion q(x) = x. Moreover, for any z ∈ τL(L0) ∩ L1

and z ∈ L0 ∩ L1 with z �= q(x), one has

A L0L1([x,w]) − A L0L1([z,w′]) /∈ [0; 3ε)

whenever the corresponding Floer moduli space M(x, z; [w#w′]) is nonempty.
(2) Set z̃ = p(x̃0, x1). Then there is a canonical homotopy class Bcan =

B(x̃0, x1, z̃) spanned by a tiny triangle contained in U = im ι. And we have

(10.5) |Ω(Bcan)| < ε.

(3) For any z ∈ τL(L0) ∩ L1 and (x̃0, x1) ∈ (τL(L0) ∩ L) × (L ∩ L1) with
z �= p(x̃0, x1), or for z = x̃ = p(x̃0, x1) with B �= Bcan, we have

(10.6) Ω(B) ≥ C = C(E ;J)

independent of ε > 0 whenever MJ(x̃0, x1, z;B) �= ∅ for some J .
(4) Suppose that there are xk ∈ L ∩ Lk, k = 0,1 whose preimages yk = ι−1(xk)

are antipodes on Sn. Since τ |Sn is the antipodal map, x̃0 = τL(x0) is equal to x1.
(Hence x1 ∈ τL(L0) ∩ L ∩ L1, and these are all such triple intersection points.)
In that case p(x̃0, x1) = x̃0 = x1.

Proof
The proof is a slight modification of that of [Se3, Lemma 3.2]. Since we need
to strip all the exact Lagrangian setting away from Seidel’s proof thereof and
incorporate contributions coming from different choices of homotopy classes B,
we give a complete proof of the proposition.

Now let s(z) = (z,u(z)) be the section of E → Σ̇ in class Bcan satisfying the
Lagrangian boundary condition. By definition of Bcan, we can choose u so that
its image is contained in im ι. Then (10.5) follows from the identity

Ω(Bcan) = π∗ω(Bcan) = ω0(ι−1 ◦ u)

which can be made as small as we want by choosing r small in the definition of
the Dehn twist τL.

We now turn to (3). First, we recall that since E is trivial (and so of zero
curvature), we have

Ω(B) =
1
2

∫
Σ̇

‖(Du)v ‖2
J ,

and hence whenever MJ(x̃0, x1, z;B) �= ∅ for some J , we have Ω(B) ≥ 0. Define

C(E ;J) = inf
u

{
ω(u)
∣∣ u �≡ const, u ∈ MJ(x̃0, x1, z;B),

B �= Bcan in Π(E,Q)
}
.

PROPOSITION 10.4

Let B be an admissible class, and let u ∈ MJ(x̃0, x1, z;B) with μ(B) = 0 such
that

imu ⊂ U.
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Then we have B = Bcan in Π(E,Q). In particular, we have

(10.7) C(E ;J) > 0.

Proof
Since we know that μ(Bcan) = 0, it is enough to prove that ω(B) = ω(Bcan) by
definition of Π(E,Q). For this purpose, we compare the action for the paths whose
image is contained in the Darboux neighborhood U = ι(V ) with ι : (V,ω0) ↪→
(M,ω) and whose end points lie either on L, on the fibers F of the cotangent
bundle T ∗L ∩ V , or in the Dehn twists τL(F ). We recall that the model Dehn
twist τ is a Hamiltonian diffeomorphism that satisfies

τ ∗θT − θT = dKτ

for Kτ = 2π(μR′(μ) − R(μ)).
On the cotangent bundle T ∗T , the action functionals AoT F1 , Aτ(F0)oT

, and
Aτ(F0)F1 are defined by

AoT F1(z) =
∫

z∗θT ,

Aτ(F0)oT
(z) =
∫

z∗θT + Kτ ◦ τ −1
(
z(0)
)
,

Aτ(F0)F1(z) =
∫

z∗θT + Kτ ◦ τ −1
(
z(0)
)
,

for a path z : [0,1] → T ∗L. Here we use the fact that

θT |F ≡ 0 ≡ θT |oT
, θT |τ(F ) = d(Kτ ◦ τ −1|τ(F ))

(see [Oh2, (2.28)] or [Se3, (1.1)]). Since it is easy to realize such B = [u] as the
gluing −[w0]#[w]#[w1] so that all wi, w have their images contained in U , we
can write

ω(B) = AoT F1(p̂0) − Aτ(F0)oT
(p̂ ) − AτL(F0)F1(p̂1) = ω(Bcan).

Here the “hat” denotes the constant path; for example, p̂ is the constant path
p̂(t) ≡ p. This proves B = Bcan in Π(E,Q).

For the proof of (10.7), it follows from the first part of the proof that for any
u ∈ MJ(x̃0, x1, z;B) with B �= Bcan, the image of u must go out of U . Now a
simple application of the Gromov-type compactness theorem implies (10.7). This
finishes the proof. �

This finishes the proof of (3). The statements in (4) are obvious from definition.
�

Now we consider a Darboux neighborhood U = im ι of L such that supp τL ⊂ U

and Lemma 2.1 and Proposition 2.2 hold. We denote by MJ(τL(L0),L,L1) the
moduli space of J -holomorphic sections of the fibration (Eb, πb,Qb), where J

is chosen as before. Then the arguments in [Se3, Section 3.2] give rise to the
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decomposition

(10.8) b = β + (b − β)

that satisfies β of order [0; ε), while (b − β) has order [3ε; ∞). Furthermore, b is
precisely the class induced by the canonical “small” map continued from the
constant map p.

Similar consideration of [Se3, Section 3.3] also gives rise to the decomposition

(10.9) c = γ + (c − γ)

such that γ has order zero while (c − γ) has order [3ε; ∞). We refer to [Se3] for
the detailed proofs of the decomposition results.

Finally, we can construct a homotopy from b#ρc to the zero map following
Seidel’s argument from [Se3]. For this purpose we use Proposition 9.2, which is a
slight generalization of [Se3, Proposition 2.2] in the general context of Lagrangian
spheres in general symplectic manifolds. We omit the details of this construction,
referring readers to [Se3] for the details.

11. Construction of long exact sequence

In this section, we combine all the results obtained in Section 10 to construct the
required long exact sequence. We first recall two basic lemmas that Seidel used
in his construction of long exact sequences for the exact case.

LEMMA 11.1

Let D be an R-graded vector space with a differential dD of order [0; ∞). Suppose
that D has gap [ε; 2ε) for some ε > 0. One can write dD = δ + (dD − δ) with δ of
order [0; ε), satisfying δ2 = 0, and (dD − δ) of order [2ε; ∞). Suppose in addition
that H(D,δ) = 0; then H(D,dD) = 0.

Seidel then applied this lemma to the direct sum

D = C ′ ⊕ C ⊕ C ′ ′

with the differentials given by

dD =

⎛⎝dC′ 0 0
b dC 0
h c dC′ ′

⎞⎠, δ =

⎛⎝0 0 0
β 0 0
0 γ 0

⎞⎠,

where

C ′ = CF (L, L1) ⊗ CF
(
τL(L0), L

)
,

C = CF
(
τL(L0),L1

)
, C ′ ′ = CF (L1, L0),

and the entries of the matrices are given as stated in the lemma below.

LEMMA 11.2 ([Se3, LEMMA 2.32])

Take three R-graded vector spaces C ′,C,C ′ ′, each of them with a differential of
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order (0; ∞). Suppose that we have the differential maps b : C ′ → C, c : C → C ′ ′

and a homotopy h : C ′ → C ′ ′ between c ◦ b and the zero map such that the following
conditions are satisfied for some ε > 0.

(1) C ′,C ′ ′ have gap (0,3ε), and C has gap (0,2ε).
(2) For all r ∈ supp(C ′) and s ∈ supp(C ′ ′), |r − s| ≥ 4ε.
(3) One can write

b = β + (b − β), c = γ + (c − γ)

with β of order [0; ε) and (b − β) of order [2ε; ∞) and with the same properties
for γ and (c − γ). The lower order parts (which do not need to be differential
maps) fit into a short exact sequence of modules

(11.1) 0 → C ′ β→ C
γ→ C ′ ′ → 0.

(4) The map h is of order [0; ∞).

Then the maps on cohomology induced by b, c fit into a long exact sequence

· · · → H(C ′;dC′ ) b∗→ H(C;dC) c∗→ H(C ′ ′;dC′ ′ ) δ→ H(C ′;dC′ ) → · · · .

The proofs of both lemmas rely on an argument involving spectral sequences. For
the exact case, all the complexes involved are finite-dimensional vector spaces
with bounded filtration and gap and so existence of spectral sequences for such
a complex is easy.

On the other hand, for the case of our current interest, the Floer com-
plex as a Q-vector space is infinite-dimensional with unbounded filtration and
without gap on the vector space itself in general. The existence of a spectral
sequence in this case is much more nontrivial (this has been studied by Fukaya,
Oh, Ohta, and Ono in [FO+3], [FO+1]). A crucial algebraic model of such a
spectral sequence is the notion of a differential graded completed free filtered
Λ(0)

0,nov-module, abbreviated as d.g.c.f.z. The upshot of this definition is that the
Λ0,nov-module C(L,L′;Λ0,nov) naturally carries this structure. We summarize
this construction of spectral sequences in Section A.2.

In the meantime, we remark that the proof of exactness of (11.1) is exactly
the same as that of [Se3] based on Lemmas 10.1, 10.2, and on some uniqueness
result on a small pseudoholomorphic triangle. (See Section 3.2 [Se3] for details.)

11.1. CF (L, L ′) versus C(L, L ′;Λ0,nov)
We first recall basic results on the structure of the Floer cochain group CF (L, L ′)
as a module of the Novikov ring Λ(L, L ′). We note that in the current study of
CY Lagrangian branes we can use the Novikov ring

Λ(0)
0,nov

as the coefficient ring, where Λ(0)
0,nov is the degree zero part of Λ0,nov which is a

field. Recall the definition from (4.2).
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Having this in mind, we first recall the basic construction on the spec-
tral sequence of the Λ(0)

0,nov-module C(L,L′;Λ0,nov) from [FO+1, Chapter 6] (or
[FO+3, Appendix]) restricting to the finitely generated case.

Under the given condition on L0,L1 and the given embedding f : Sn →
L ⊂ M , CF (τL(L0), L),CF (L, L1) and CF (L1, L0) are all finitely generated over
Λnov. Here we note that there is a natural injective homomorphism

IL,L ′ : Λ(L, L ′) → Λ0,nov

and so we naturally extend their coefficient rings to Λ0,nov.
The tiny-big decompositions of the maps b and c given in Section 10 imply

that both maps are gapped in the sense of Definitions A.3 and A.5. However, these
vector spaces, as they are, do not quite manifest the structure of d.g.c.f.z. yet.
Because of this, we follow the procedure given in [FO+1, Section 12.4] turning
these into a d.g.c.f.z. For the reader’s convenience, we collect the definition of
d.g.c.f.z. and the construction of spectral sequence given in [FO+1, Appendix].

Let (L0, L1) be a general relatively spin pair of anchored Lagrangian subman-
ifolds of M . We first construct a Λ0,nov-module C(L1, L0;Λ0,nov) which has a fil-
tered A∞-bimodule structure over (C(L0;Λ0,nov),m(0)) and (C(L1;Λ0,nov),m(1)),
where the latter are the filtered A∞-algebras defined in [FO+1]. We consider the
intersection L1 ∩ L0 and the R-filtered set

Î(L0, L1) :=
{
Tλeμ[p,w]

∣∣ p ∈ L0 ∩ L1, [p,w] ∈ Ω̃(L0, L1), λ ∈ R, μ ∈ Z
}
.

This is an R × Z principal bundle over L0 ∩ L1.
We define an equivalence relation ∼ on Î(L0,L1) as follows. We say that

Tλeμ[p,w] ∼ Tλ′
eμ′

[p′,w′]

for Tλeμ[p,w], Tλ′
eμ′

[p′,w′] ∈ Î(L0, L1) if and only if the following conditions are
satisfied:

p = p′,

λ +
∫

w∗ω = λ′ +
∫

(w′)∗ω,

2μ + μ([p,w];λ01) = 2μ′ + μ([p′,w′;λ01]).

Here μ([p,w];λ01) is the Maslov-Morse index. It is easy to see that this relation
is compatible with the conditions of the Γ-equivalence given, and so ∼ defines
an equivalence relation on Î(L0, L1). Furthermore, we define the action level on
E : Î(L0, L1) → R by

E(Tλeμ[p,w]) = λ +
∫

w∗ω

and the associated filtration on the set by setting

Tλeμ[p,w] ∈ Fλ′(
Î(L0, L1)

)
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if

λ +
∫

w∗ω ≥ λ′.

We now define

I(L0, L1) = Î(L0, L1)/ ∼

and somewhat ambiguously denote an element thereof still by Tλeμ/2[p,w] as
long as no danger of confusion arises. The above-mentioned filtration on Î(L0, L1)
obviously induces on the quotient I(L0, L1). We now define

I≥0(L0, L1) :=
{

Tλeμ/2[p,w] ∈ I(L0, L1)
∣∣∣ λ +
∫

w∗ω ≥ 0
}

.

Consider the formal sum

α =
∑

λ,μ,[p,w]

aλ,μ,[p,w]T
λeμ/2[p,w]

for λ ∈ R, μ ∈ Z and [p,w] ∈ Crit A, and define suppα to be

suppα =
{
Tλeμ/2[p,w] ∈ I(L0, L1)

∣∣ aλ,μ,[p,w] �= 0
}
.

DEFINITION 11.1

We define by C(L1, L0;Λ0,nov) the Λ0,nov-module

C(L1, L0;Λ0,nov)

:=
{
α
∣∣E(α) ≥ 0,#

(
suppα ∩ E−1((−∞, λ])

)
< ∞ for all λ ∈ R

}
.

Obviously C(L1, L0;Λ0,nov) has the structure of a Λ0,nov-module. In addition, we
have the following.

PROPOSITION 11.3

C(L1, L0;Λ0,nov) is a d.g.c.f.z.

Given the grading of an element Tλeμ[p,w] 2μ + μ([p,w];λ01), it becomes a
filtered graded free Λ0,nov-module. Following [FO+1, Section 5.1.3], we write

〈p〉 =

{
T − A L0L1 ([p,w])e−μ([p,w];λ01)[p,w] if μ([p,w];λ01) is even,

T − A L0L1 ([p,w])e−(μ([p,w];λ01)−1)/2[p,w] if μ([p,w];λ01) is odd.

Thus we have E(〈p〉) = 0, and deg(〈p〉) is either zero or 1 depending on the parity
of μ([p,w];λ01).

It is easy to see that C(L1, L0;Λ0,nov) is isomorphic to the completion (with
respect to the filtration on Λ0,nov) of the free Λ0,nov-module generated by 〈p〉 for
the intersection points p ∈ L0 ∩ L1. Namely, we have a canonical isomorphism

C(L1, L0;Λ0,nov) ∼=
⊕̂

p∈L0∩L1

Λ0,nov〈p〉

as a (Z2-graded) Λ0,nov-module.
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Recall the definition of the Floer cochain module. By definition, we have an
inclusion

CF ∗(L1, L0) → C∗(L1, L0;Λnov)

defined by

(11.2) [p,w] �→ e(μ([p,w])−μ(〈p〉))/2T ρA�0 ([p,w])〈p〉.

It is compatible with the obvious inclusion IL0,L1 : Λ(L0, L1) → Λnov.
We take the coefficient R = Q and recall that Floer cohomology

HF (L(1), L(0)) = Ker δ
�b/ Im δ

�b, �b = (b1, b0),

is defined as a Λ(L(0), L(1))-module.
We remark that

CF (L1, L0) ∼= Λ(L1, L0)#(L0∩L1),

where #L0 ∩ L1 is finite by the transversality hypothesis. Therefore we have the
isomorphism

C(L1, L0;Λnov) ∼= CF (L1, L0; �01) ⊗Λ(L1,L0) Λnov.

On the other hand, the Novikov ring Λ(L1, L(0)) is a field if the ground ring is
Q. Therefore this leads to the isomorphism

(11.3) HF
(
(L1, b1), (L0, b0);Λnov

)∼= HF (L1, L0) ⊗Λ(L1,L0) Λnov.

Finally, we explain how we combine the above-discussed anchored versions
into a single nonanchored version of Floer cohomology following [FO+1, Sec-
tion 5.1.3].

We first note that the filtered Λ0,nov-module structure of C(L1, L0;Λ0,nov)
depends only on the homotopy class �01. So we form the completed direct sum

C(L1,L0;Λ0,nov) =
⊕̂

[�0]∈π0(Ω(L0,L1))

C(L1,L0; �0;Λ0,nov).

We note that we have the natural inclusion map

C(L1, L0) → C(L1,L0;γ0 ∗ γ1;Λ0,nov) ⊂ C(L1,L0;Λ0,nov)

defined as (11.2). We define the corresponding Floer cohomology by

HF (L1,L0;Λ0,nov) := Ker δ
�b/ Im δ

�b.

Then we have

HF (L1,L0;Λ0,nov) ∼=
⊕

[�0]∈π0(Ω(L0,L1))

HF (L1, L0) ⊗Λ(L1,L0;�0) Λnov

(see [FO+1, Proposition 5.1.17]).

11.2. Wrapping it up
Now combining all the discussions in the previous sections, we are ready to prove
the main theorem, which we now restate here.
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THEOREM 11.4

Let (M,ω) be compact (symplectically) Calabi-Yau. Let L be a Lagrangian sphere
in M together with a preferred diffeomorphism f : S2 → L. Denote by τL = τ(L,[f ])

the Dehn twist associated to (L, [f ]).
Consider any CY Lagrangian branes L0,L1. Then for any pair (b0, b1) of the

Maurer-Cartan-solutions b0 ∈ M(L0;Λ(L0)), b1 ∈ M(L1;Λ(L1)), there is a long
exact sequence of Z-graded Floer cohomologies

−→ HF
(
(τL(L0), (τL)∗(b0)), (L1, b1)

)
−→ HF

(
(L0, b0), (L1, b1)

)
(11.4)

−→ HF
(
(L,0), (L1, b1)

)
⊗ HF
(
(L0, b0), (L1, b1)

)
−→

as a Λnov-module where the Floer cohomologies involved are the deformed Floer
cohomologies constructed in [FO+3] and [FO+1]. We also have the nonanchored
version of the exact sequence.

The same exact sequence still holds for any orientable relatively spin pair (L0,L1)
if they are just unobstructed, whose Maslov classes do not necessarily vanish.

To highlight the main points of the construction, let us first assume that b0 =
b1 = 0 are Maurer-Cartan-solutions. In this case, the Floer cohomology is the
standard one which uses the Floer boundary map δ. We first state the following
lemma, which is a consequence of Corollary A.8 and a variation of Lemma 11.2

LEMMA 11.5

Let D be an [0; ∞)-graded vector space with a differential dD of order [0; ∞),
which is not necessarily finite-dimensional but forms a d.g.c.f.z. in the sense of
Definition A.2. Suppose that one can then write dD = δ +(dD − δ) with δ of order
[0; ε), satisfying δ2 = 0, and (dD − δ) of order [2ε; ∞). Suppose in addition that
H(D,δ) = 0; then H(D,dD) = 0.

Now we apply this lemma to the direct sum

D = C ′ ⊕ C ⊕ C ′ ′

with the differentials given by

dD =

⎛⎝dC′ 0 0
b dC 0
h c dC′ ′

⎞⎠, δ =

⎛⎝0 0 0
β 0 0
0 γ 0

⎞⎠,

where this time we consider the Λ0,nov-modules

C ′ = C(L, L1) ⊗ C
(
τL(L0), L

)
,

C = C
(
τL(L0), L1

)
, C ′ ′ = C(L0, L1),

and the entries of the matrices are given as stated before.
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Now Lemma 10.3 and the tiny-big decomposition results in Section 10 give
rise to a long exact sequence

−→ HF (τL(L0), L1;Λ0,nov) −→ HF (L0, L1;Λ0,nov)
(11.5)

−→ HF (L, L1;Λ0,nov) ⊗ HF (L0, L1;Λ0,nov) −→

for Λ(0)
0,nov-modules. Since we have

HF (L, L ′;Λnov) ∼= HF (L, L ′;Λ0,nov) ⊗Λ0,nov Λnov

from (11.3) and since Λnov is a field, tensoring (11.5) with Λnov produces the
exact sequence (11.4) for the case b0 = b1 = 0.

Now the same reasoning as for the case bi = 0 induces the long exact sequence
(11.4). This finishes the proof of Theorem 11.4.

Appendix

A.1. Index formula for Ez0 \ {x0}
In this section, we prove the index formula (7.27). There is an index formula
stated in the various literature in terms of the “capping surfaces” stated as in
[EGH] and [Bo], which, however, does not fit our need. For this reason, we give
a complete proof of (7.27).

In fact, we consider the following general setup. Consider a symplectic man-
ifold W with a contact-type boundary of the type

∂W ∼= S1(T ∗N)

with negative end for an oriented compact manifold N . We attach the cylinder
R+ × ∂W and also denote by W the completed manifold. We denote (r(x),Θ(x))
for a point x ∈ R+ × S1(T ∗N). Composing this with the diffeomorphism

(s,Θ) �→ (es,Θ), R × ∂W → R+ × ∂W,

we put a translational invariant almost complex structure J on the end.
Next let γ be a Reeb orbit of S1(T ∗N) with period T . We note that the

symplectic vector bundle γ∗T (T ∗N) carries a splitting

γ∗T (T ∗N) = C ⊕ γ∗ξN ,

where ξN is the contact distribution of S1(T ∗N). Furthermore, we fix a Rie-
mannian metric g on N and consider the canonical almost complex structure Jg

on T ∗N . The projection of γ to N is nothing but a geodesic on N with respect
to g. Denote by c = cγ the associated geodesic on N . Since we assume that N is
oriented, we can take a trivialization γ∗T (S1(T ∗N)) which is tangent to the ver-
tical fibers of T (T ∗N). Using this, we can define the Conley-Zehnder index of γ

when γ is nondegenerate, which we denote by μCZ(γ). For the Bott-Morse case,
one uses the generalized Conley-Zehnder index defined by Robbin and Salamon
[RS].

Next, this choice of trivialization of γ∗(T (S1(T ∗N))
)

= γ∗T (∂W )) also allows
one to define a relative Chern number of a map u : Σ̇ → W with the asymptotic
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condition

(A.1) lim
τ →∞

Θ ◦ u(τ, t) = γ(t), lim
τ →∞

s ◦ u(τ, t) = −∞.

Denote by u : ( ̂̇Σ, ∂ ̂̇Σ) → (W,γ) the obvious compactified map.
Then u∗(TW ) is a symplectic vector bundle with a trivialization φγ :

γ∗(T (∂W )) → S1 × Cn−1 constructed above.
This gives rise to the main definition.

DEFINITION A.1

We define the relative Chern number, denoted by c1(u;γ), by

c1(u;γ) = c1(u∗TW ;φγ).

Once we have made the notions of relative Chern number and Conley-Zehnder
index precise, the following index formula can be derived from the formula in
[Bo, Corollary 5.4].

THEOREM A.1

The expected dimension of M(W,J ;γ;A) is given by

−μCZ(γ) + (n − 3) + 2c1(u;γ), [u] = A,

for a nondegenerate geodesic.
For the Morse-Bott case in which Rsim forms a smooth manifold, the expected

dimension of the moduli space M(W,J ;A; 1) consisting of J -holomorphic u’s with
asymptotics

lim
τ →inf

Θ ◦ u(e2π(τ+it)) = γ(t),

where γ is a simple Reeb orbit, is given by

−μCZ(γ) +
dim Rsim

2
+ (n − 3) + 2c1(u;γ),

where μCZ is the generalized Conley-Zehnder index of γ.

A.2. d.g.c.f.z. and spectral sequence
We first start from the following situation. Let V = (Λ(0)

0,nov)
⊕I be a free Λ(0)

0,nov-
module with #(I) finite. We define a filtration on V in the obvious way, which
induces a topology on V . Let V̂ be the completion of V . We call such V̂ a
completed free filtered Λ(0)

0,nov-module generated by energy zero elements or, in

short, c.f.z. If V is finitely generated (as a Λ(0)
0,nov-module) in addition, we say

that it is a finite c.f.z. We define a function, which we call the (action) level,

E : V̂ \ {0} → R≥0

such that

v ∈ FE(v)V, v /∈ FλV if λ > E(v).
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Let V = V/Λ+,(0)
0,novV

∼= RI . We always take an embedding (splitting)

V ⊂ V

as the energy zero part of V so that its composition with the projection V → V

is the identity map.
Let v ∈ V . We put

v =
∑

Tλivi,

where vi ∈ V , λi < λi+1, limi→∞ λi = ∞, and vi �= 0. We call Tλivi the compo-
nents of v, with Tλ1v1 the leading component and v1 the leading coefficient of v.
We denote the leading coefficient v1 of v by σ(v). We also define the leading
component and the leading coefficient of an element of Λ(0)

0,nov in the same way.
Now we consider the case of graded Λ0,nov-modules.

DEFINITION A.2 ([FO+1, DEFINITION 6.3.8])

Let Ĉ be a graded Λ0,nov-module. We assume that Ĉk is a c.f.z. for each k. A dif-
ferential graded c.f.z. (abbreviated as d.g.c.f.z.) is a pair (Ĉ, δ) with a degree 1
operator δ : Ĉ → Ĉ such that

δ ◦ δ = 0, δ(FλĈ) ⊆ FλĈ.

We call the pair a finite d.g.c.f.z. if each Ĉk is a finite c.f.z.

The following proposition is essential for the proof of some convergence properties
of the spectral sequence.

PROPOSITION A.2 ([FO+1, PROPOSITION 6.3.9])

Let W be a finitely generated Λ(0)
0,nov-submodule of Ĉk. Then there exists a con-

stant c depending only on W but independent of λ such that

δ(W ) ∩ FλĈk+1 ⊂ δ(W ∩ Fλ−cĈk).

Now let (Ĉ, δ) be a d.g.c.f.z., and let Ĉk be a completion of Ck. We assume that
Ck is free over Λ(0)

0,nov. We put

C = C/Λ+(0)
0,novC

∼= Ĉ/Λ+(0)
0,novĈ

and let δ be the induced derivation on C. We again embed C ⊆ C ⊆ Ĉ as the
energy zero part. In general C is not a differential graded subalgebra of Ĉ. Let
{ei} be a basis of C (over Λ(0)

0,nov), and let ei be the corresponding basis of C over

R = Λ(0)
0,nov/Λ+(0)

0,nov. We put

δ(ei) =
∑

δ0,ijej

and define δ0 : Ĉ → Ĉ by δ0 = δ ⊗ 1, that is, by

δ0ei =
∑

δ0,ijej .
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DEFINITION A.3

We say that (Ĉ, δ) satisfies the gapped condition if (δ − δ0) has order [λ′ ′, ∞),
that is, if there exists λ′ ′ > 0 such that for any λ we have

δv − δ0v ∈ Fλ+λ′ ′
Ĉ

for all v ∈ FλĈ.

Under the gapped condition, we take a constant λ0 with 0 < λ0 < λ′ ′ and define
a filtration on Ĉ by

FnĈ = Fnλ0Ĉ;

[FO+1] then uses this filtration to define a spectral sequence.

LEMMA A.3 ([FO+1, LEMMA 6.3.20])

Denote

Λ(0)(λ0) = Λ(0)
0,nov/Fλ0Λ(0)

0,nov.

Then there exists a Λ(0)(λ0)-module homomorphism

δp,q
r : Ep,q

r (Ĉ) → Ep+1,q+r−1
r (Ĉ)

such that

(1) δp+1,q+r−1
r ◦ δp,q

r = 0,
(2) Ker(δp,q

r )/ Im(δp−1,q−r+1
r ) ∼= Ep,q

r+1(Ĉ),
(3) e±1 ◦ δp,q

r = δp±2,q
r ◦ e±1.

Of course, the construction of Ep,q
r (Ĉ) is quite standard. One difference from

the standard case is that the filtration used here is not bounded. Namely, we do
not have FnĈ = 0 for large n. Hence the convergence property of our spectral
sequence is far from being trivial in general. However, it is stable from below in
that F 0Ĉ = Ĉ. As a consequence, we have the following.

LEMMA A.4 ([FO+1, LEMMA 6.3.22])

There exists an injection

Ep,q
r+1(Ĉ) → Ep,q

r (Ĉ)

if q − r + 2 ≤ 0.

An immediate consequence of Lemma A.4 is the following convergence result.

PROPOSITION A.5

The projective limit

Ep,q
∞ (Ĉ) := lim

←−
Ep,q

r (Ĉ)

exists.
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Furthermore, from the construction, we have the description of the E2-term of
the associated spectral sequence.

LEMMA A.6 ([FO+1, LEMMA 6.3.24])

We have an isomorphism

E∗,∗
2 (Ĉ) ∼= H(C; δ) ⊗R gr∗(FΛ0,nov)

as gr∗(FΛ0,nov)-modules.

Proof
By definition, we have

E∗,∗
1 (Ĉ) ∼= C ⊗R gr∗(FΛ0,nov).

It follows from the gapped condition δ1 = δ. Hence it finishes the proof. �

DEFINITION A.4

We define F qH(Ĉ, δ) to be the image of H(F qĈ, δ) in H(Ĉ, δ).

To relate the limit Ep,q
∞ of the spectral sequence and F qH(Ĉ, δ), we need some

finiteness assumptions which we now describe. Let (C,δ) and (C ′, δ′) be d.g.c.f.z.’s
satisfying the gap condition. Let ϕ : C → C ′ be a map such that ϕδ = δ′ϕ, and
let ϕ : C → C

′
be the map induced on C = C/Λ+(0)

0,novC and C
′
= C ′/Λ+(0)

0,novC
′,

respectively. The induced map ϕ lifts to ϕ0 = ϕ ⊗ 1 : C → C ′.

DEFINITION A.5 ([FO+1, DEFINITION 6.3.26])

Under the situation above, we say that ϕ : C → C ′ satisfies a gapped condition,
or is a gapped cochain map, if there exists λ′ ′ such that

(ϕ − ϕ0)(FλĈ) ⊂ Fλ+λ′ ′
Ĉ.

Using these definitions, [FO+1] proves the following.

THEOREM A.7 ([FO+1, THEOREM 6.3.28])

If C is finite, then there exists r0 such that

Ep,q
r0

(Ĉ) ∼= Ep,q
r0+1(Ĉ) ∼= · · · ∼= Ep,q

∞ (Ĉ) ∼= F qHp(Ĉ, δ)/F q+1Hp(Ĉ, δ)

as Λ(0)(λ0) = Λ(0)
0,nov/Fλ0Λ(0)

0,nov-modules.

We summarize the above discussion into the following vanishing result which is
crucial in our spectral sequence arguments.

COROLLARY A.8

Let C be a finite d.g.c.f.z. If H(C,δ) = 0, then H(C,δ) = 0.
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A.3. Products
In this subsection, we recall the description of the deformed products m

�b
k from

[FO+2]. We refer to [Fu] and [FO+2] for the relevant proofs of the statements
we make without proofs here.

Let L = (L0,L1, . . . ,Lk) be a chain of compact Lagrangian submanifolds in
(M,ω) that intersect pairwise transversely without triple intersections.

Let �z = (z0k, zk(k−1), . . . , z10) be a set of distinct points on ∂D2 = {z ∈ C |
|z| = 1}. We assume that they respect the counterclockwise cyclic order of ∂D2.
The group PSL(2;R) ∼= Aut(D2) acts on the set in an obvious way. We denote
by Mmain,◦

k+1 the set of PSL(2;R)-orbits of (D2, �z).
In this subsection, we consider only the case k ≥ 2 since the case k = 1 is

already discussed Section A.2. In this case there is no automorphism on the
domain (D2, �z ); that is, PSL(2;R) acts freely on the set of such (D2, �z )’s.

Let pj(j−1) ∈ Lj ∩ Lj−1 (j = 0, . . . , k), be a set of intersection points.
We consider the pair (w;�z), where w : D2 → M is a pseudoholomorphic map

that satisfies the boundary condition

w(zj(j−1)z(j+1)j) ⊂ Lj ,(A.2a)

w(z(j+1)j) = p(j+1)j ∈ Lj ∩ Lj+1.(A.2b)

We denote by M̃ ◦(L, �p ) the set of such ((D2, �z ),w).
We identify two elements ((D2, �z ),w), ((D2, �z ′),w′) if there exists ψ ∈ PSL(2;

R) such that w ◦ ψ = w′ and ψ(z′
j(j−1)) = zj(j−1). Let M ◦(L, �p ) be the set of

equivalence classes. We compactify it by including the configurations with disc
or sphere bubbles attached and denote it by M(L, �p ). Its element is denoted by
((Σ, �z ),w), where Σ is a genus zero bordered Riemann surface with one bound-
ary component, �z are boundary marked points, and w : (Σ, ∂Σ) → (M,L) is a
bordered stable map.

We can decompose M(L, �p ) according to the homotopy class B ∈ π2(L, �p )
of continuous maps satisfying (A.2a), (A.2b) into the union

M(L, �p ) =
⋃

B∈π2(L;�p)

M(L, �p;B).

In the case when we fix an anchor γi to each Li and put E = ((L0, γ0), . . . ,
(Lk, γk)), we consider only admissible classes B and put

M(E , �p ) =
⋃

B∈πad
2 (E;�p)

M(E , �p;B).

THEOREM A.9

Let L = (L0, . . . ,Lk) be a chain of Lagrangian submanifolds, and let B ∈ π2(L;�p ).
Then M(L, �p;B) has an oriented Kuranishi structure (with boundary and cor-
ners). Its (virtual) dimension satisfies

(A.3) dim M(L, �p;B) = μ(L, �p;B) + n + k − 2,

where μ(L, �p;B) is the polygonal Maslov index of B.
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We next take graded anchors (γi, λi) to each Li. We assume that B is admissible
and write B = [w−

01]#[w−
12]# · · · #[w−

k0] as in Definition 3.5. We put w+
(i+1)i(s, t) =

w−
i(i+1)(1 − s, t). We also put w+

k0(s, t) = w+
0k(s,1 − t) ([w+

k0] ∈ π1(�k0;pk0)). We
also put λk0(t) = λ0k(1 − t).

LEMMA A.10 ([FO+2, LEMMA 8.11])

If dim M(L, �p;B) = 0, then we have

(A.4)
(
μ([pk0,w

+
k0];λ0k) − 1

)
= 1 +

k∑
i=1

(
μ([pi(i−1),w

+
i(i−1)];λ(i−1)i) − 1

)
.

Using the case dim M(L, �p;B) = 0, we define the k-linear operator

mk : CF
(
(Lk, γk), (Lk−1, γk−1)

)
⊗ · · · ⊗ CF

(
(L1, γ1), (L0, γ0)

)
→ CF
(
(Lk, γk), (L0, γ0)

)
as follows:

mk([pk(k−1),w
+
k(k−1)], [p(k−1)(k−2),w

+
(k−1)(k−2)], . . . , [p10,w

+
10])

(A.5)
=
∑

#
(

Mk+1(L;�p;B)
)
[pk0,w

+
k0].

Here the sum is over the basis [pk0,w
+
k0] of CF ((Lk, γk), (L0, γ0)), where �p =

(p0k, pk(k−1), . . . , p10), B is as in Definition 3.5, and w+
(i+1)i(s, t) = w−

i(i+1)(1 − s, t).
Formula (A.4) implies that mk above has degree 1.
In general, the operator mk above does not satisfy the A∞-relation for the

same reason as that of the case of boundary operators (see Section 8.1). We need
to use bounding cochains bi of Li to deform mk in the same way as in the case
of A∞-bimodules (see Section 8.3), whose explanation is now in order.

Let m0, . . . ,mk ∈ Z≥0 and Mm0,...,mk
(L, �p;B) be the moduli space obtained

from the set of ((D2, �z), (�z(0), . . . , �z (k)),w)) by taking the quotient by PSL(2,R)-
action and then by taking the stable map compactification as before. Here z(i) =
(z(i)

1 , . . . , z
(i)
ki

) and z
(i)
j ∈ z(i+1)izi(i−1) such that z(i+1)i, z

(i)
1 , . . . , z

(i)
ki

, zi(i−1)

respects the counterclockwise cyclic ordering;(
(D2, �z ), (�z (0), . . . , �z (k)),w

)
�→
(
w(z(0)

1 ), . . . ,w(z(k)
mk

)
)

induces an evaluation map

ev = (ev(0), . . . , ev(k)) : Mm0,...,mk
(L, �p ;B) →

k∏
i=0

Lmi
i .

Let P
(i)
j be smooth singular chains of Li, and put

�P (i) = (P (i)
1 , . . . , P (i)

mi
), ��P = (�P (0), . . . , �P (k)).

We then take the fiber product to obtain

Mm0,...,mk
(L, �p; ��P ;B) = Mm0,...,mk

(L, �p;B) ×ev
��P.
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We use this to define

mk;m0,...,mk
: Bmk

(
CF (Lk)

)
⊗ CF
(
(Lk, γk), (Lk−1, γk−1)

)
⊗ · · · ⊗ CF

(
(L1, γ1), (L0, γ0)

)
⊗ Bm0

(
CF (L0)

)
→ CF
(
(Lk, γk), (L0, γ0)

)
by

mk;m0,...,mk
(�P (k), [pk(k−1),w

+
k(k−1)], . . . , [p10,w

+
10], �P (0))

=
∑

#
(

Mk+1(L;�p; ��P ;B)
)
[pk0,wk0].

Finally, for each given bi ∈ CF (Li)[1]0 (bi ≡ 0 mod Λ+), �b = (b0, . . . , bk), and
xi ∈ CF ((Li, γi), (Li−1, γi−1)), we put

(A.6) m
�b
k(xk, . . . , x1) =

∑
m0,...,mk

mk;m0,...,mk
(bmk

k , xk, b
mk−1
k−1 , . . . , x1, b

m0
0 ).

THEOREM A.11

If bi satisfies the Maurer-Cartan equation (8.10), then m
�b
k in (A.6) satisfies the

A∞-relation

(A.7)
∑

k1,k2,i

(−1)∗m
�b
k1

(
xk, . . . ,m

�b
k2

(xk−i−1, . . . , xk−i−k2), . . . , x1

)
= 0,

where we take the sum over k1 + k2 = k + 1, i = −1, . . . , k − k2. (We write mk in
place of m

�b
k in (A.7).) The sign ∗ is ∗ = i + degxk + · · · + degxk−i.

We summarize the above discussion as follows.

THEOREM A.12

We can associate a filtered A∞-category to a symplectic manifold (M,ω) such
that

(1) its object is (L, b, sp), where L = (L,γ,λ) is a graded anchored Lagrangian
submanifold, [b] ∈ M(CF (L)) is a bounding cochain, and sp is a spin structure
of L;

(2) the set of morphisms is CF ((L1, γ1), (L0, γ0));
(3) m

�b
k are the operations defined in (A.6).

REMARK A.6

Here we spell out the choice of orientations; op of Index∂λp is included. This
choice in fact does not affect the module structure CF ((L1, γ1), (L0, γ0)) up to
isomorphism: if we take an alternative choice o′

p at p, then all the signs appear-
ing in the operations mk that involve [p,w] for some w are reversed. Therefore
[p,w] �→ −[p,w] gives the required isomorphism.

The operations mk are compatible with the filtration. Namely, we have the fol-
lowing.



Seidel’s long exact sequence 763

PROPOSITION A.13

If xi ∈ FλiCF ((Li, γi), (Li−1, γi−1)), then

m
�b
k(xk, . . . , x1) ∈ FλCF

(
(Lk, γk), (L0, γ0)

)
,

where λ =
∑k

i=1 λi.
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