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Introduction.

In the present paper we shall give at first a functiontheoretic
new proof of the well-known Riemann-Roch's theorem for closed
Riemann surfaces. Main ideas lie in the making use of Riemann's
periods relation and the theory of linear spaces, that is, by consider-
ing some vector spaces consisting o f Abelian differentials, linear
functionals over them and dual spaces (vector spaces o f  linear
functionals) we get two converse inequalities, therefore the equali-
ty, which implies our conclusion. From this point of view the
relations between these spaces will be clarified.

In the second paragraph we treat, under the following restric-
tions, the case of non compact Riemann surfaces by the same
method and we obtain an extension of R. Nevanlinna's theorem
(Th. 2. 3) which is valid fo r  square integrable differentials on
Riemann surfaces E OG  o f  finite genus, where OG denotes the class
of Riemann surfaces which do not possess a  Green's function.
Here our restrictions are as follows ;

(i ) The basic Riemann surface (of finite or infinite genus) R
belongs to OHD, i.e. the class of Riemann surfaces admitting no
non-vanishing total harmonic differential which is square integrable
on R.

(ii) The Abelian differentials should be square integrable on R
except the neighborhoods of a finite number of possible singularities.
It is known that the inclusion relation OG O , E,  is proper only if
the genus of R  is infinite".

Finally, as an application of our theorem, a representation of

1 ) A h lfors  and Royden [3] or TOki [15].
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open Riemann surfaces E OHD —  O G  (which are necessarily of infinite
genus) will be given.

§ I. C lassica l Riemann - Roch's theorem.

1. Let R  be a closed Riemann surface of genus p  and 3  be
an arbitrary divisor on R  given by

8  8 ( , )  P r 1 P 2 "  •  P 7 r m  Ê  m i  n n i ,8, Q ) Q 7 1 ( 2 7 1 2 t = t - 1

where P 1 , P
2 ) P r  Q 1 ,  Q 2 )  • . • denote mutually distinct points

on R  and m i  , ••• n1 , •••, n , are non negative integers. W e
denote the total order of by

( 1 )'G  m — n

W e define now four vector spaces in the complex f i e l d  as
follows ;

E  :  The vector space consisting o f Abelian differentials on R
which are multiples of 118(Q ) .

D : T h e  vector space consisting o f Abelian differentials on R
which are multiples of 8 = 8( p ) /8 ( Q )

M : T h e  vector space consisting o f Abelian integrals (of the
second kind) which are multiples of a n d  h a v e  n o
periods along the cycles A i  ( i=1 , •••  , p), where (A i , B i )
(i =1, •-• , p )  are the canonical homology basis of R .  We
normalize" by additive constants such that these integrals
vanish at Q 1 .

S  :  The vector space consising of the single-valued meromorphic
functions on R  which are multiples of 11.3=8 , Q ,18,,,,.

Obviously D E ,  S C M .  L e t  p i  ( i  1 ,  • • •  ,  p )  be normalized
elementary differentials of the first kind and let 'tif(ir  and 431,0 be
normalized elementary differentials of the second resp. third kind,
such that

( 2 ) pi =  81
., (Kronecker), (  p C )  =  0  (i, j 1, •••,p)

A i A i A i

( 1 )

2 )  W e have no  need o f  norm alization (at Q1 )  i f  8  i s  a n  integral d ivisor, i.e .
5 = 5 ( P ) ,  6 ( Q ) - 1 .
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and the in tegra l ,kV,I') is regular except the point P  where it has

the expansion of the form + reg. term (z  is a local parameter

a t P ) ,  and vanishes at Q ," ,  while (1)./=Q  has two logarithmic

singularities P  and Q  with residues —1 (at P )  and ± 1  (a t  Q)"•
I f  it is noticed that these differentials p i (1=1 , • • • , p),
( i t  = 2, • • • , n ,; -=  1 ,  •  •  •  ,  s), (it =1, • • • , ; =1, • •• , r )  and

4),2 1 Q 3 , • • • , 4,Q i o s  are linearly independent each other, and the
differentials of the first kind reduce to identically zero, provided
that they have no period along A i  ( i = 1 ,  • • •  ,  p), we find that

( 3 ) dim E =

dim M

p  -n- 1
p ,  i f  8 is an integral divisor.

mm  + 1, i f  8  is an integral divisor.

In fact, for instance, any p E E  can be expressed as
n ,

( 4 ) E + cA Q ,Q ; ,
(p -  .1 )

I. n11

where (p = a i , q)-= ( E 1 ) , , j  4 + c 11 I z, + reg. term.)dz, at Q, (z„ is
A i 11=2

a uniformizer at Q ,)  ( u = 1 ,  • • •  ,  ) ,  but p should satisfy the residue

relation O. We shall write dim D . B , dim S  = A.
1,=-1

2. W ith any p a ir  o f two elements p  G E  and i2 E M  we
associate the bilinear form

( 5 ) <q), = 2n- i E Res. pf2
1=1 P,

where Res. means the residue at P , .  It is seen immediately that

(5) is a bilinear form over the spaces E  and M , and it does not
be affected by additive constants of the integral f2 , because p E E
is regular at every point 13

1 . For any p  C E  the bilinear form (5)
induces a linear functional

(7, [ in  <q), n >

over the space M .  Moreover it permits us to define a  linear

3 )  For the existence of such differentials see Weyl [1 6 ] , Schiffer-Spencer [14 ].



164 Yukio Kusunoki

functional for each element of the quotient space F =  D ,  indeed,
if E D  for q9„ 992 E E, then, since *  and n  are multiples
of the divisors S ( p ) / 3 ( Q )  resp. 1/8 (p ) ,  th e  differential 4,12 becomes
regular at P i  ( i=1 ,• - •  ,r) , we have therefore

* [n ]  27-ri Res. *f2 = 0 , i.e. P I [ (2 ] =  P2 [n]P

Thus each element g ' of F  is considered a s  a  linear functional
9T/r2] over the space M , which is defined by

9 'E n] P P ]
where q) is any element of E  which belongs to the class 99. The
linear func tiona ls { 91 /2 ]}  corresponding to all elements o f F
constitute a  vector space F *  b y  a  usual rule (a99,*+09 9

2*)[12]
-=  " 971*  [n] + R922* E n i, 991* ,  9'2* E {9' [/2]} (a , 0  are  complex num-
bers). Obviously W I +$9) 2 ) [ E n  a99,[1-2]+ 09% [Q ] ,  g', E F.
Now we shall prove that the mapping F— .F* is one-to-one. To
see this it suffices to prove that if

g1/2] = 0  for a ll /2 E M ,

then we have 99 = 0 ,  i.e. (pE D for any element (7) E 99. Assume
that (7) is not a multiple of 8 = 8 (p) 18(Q ) hence there exists at least
one point P k  w here  it is  not a multiple of  P , e .g .  97=  zm'k
(co +c i z-i- ••-)dz, c o -+0 , 0<m k '<m k ( z  is a local parameter at P k ).
Then if  we take SI = 11pir4 - " ) M ,  it follows that

0 2 7 r i  Ê  Res. (p lir(i 'n'k+i)  = 27ri c o   I   O,
1 =1  P s

which is absurd. Hence 99 E D .  W e have therefore

( 6 ) dim F*  = dim F  dim E—dim D

3. We consider the (algebraic) dual space M * of M , i.e. the
space of linear functionals over M .  Then for every pair of ele-
ments x E M  and y E M * the bilinear form < y, x >  is defined by
y [ x ] .  It is said that two spaces N (C M ) and  N *(C M *) are
mutually orthogonal provided that < y,  x > = 0  f o r  any pair of
y e N * and x E N .  W e call the set of y E N * (resp. x E N ) which
are orthogonal to N(resp. N *) the orthogonal space of N(resp. N*).
Now we shall prove that the spaces F *  F  and S  are  mutually
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orthogonal with respect to the bilinear form (5).
For any pair of two elements cp E E  and f2 E M  w e have by

the well known Riemann's period relation

( 7 ) < P ,  f 2>  =  2 7 r i Ê  Res. pn
i =t

[ B
c l f 2  — c112]-27ri E  Res. f2.
, A, A i B i j = 1  Q

This becomes zero  if 1-2 E S , for the first summation vanishes on
account of the single-valuedness o f s2 and the latter also does,
because (p and 12 are multiples of 1/8( Q )  resp. 8( Q ) /8( p) ,  hence pn
is regular at every Qi . Therefore the space F*, the subspace of
the dual space M * o f M , is contained in the orthogonal space ,S
of S .  Therefore

( 8 ) dim S  dim F* = dim E— dim D

While,

dim S = dim M— dim S •4 )

Thus in any case we have by (1)' and (3)

( 8 )' G +1— A  p— B .

4. To obtain the inverse inequality o f  (8)' we proceed as
before, but as all circumstances are not symmetrical, we shall
state simply again.

Every element n E M  can be considered as a linear functional

n [ P ]  --- < q ) , E E

over the space E. If —112 E s f o r  f2„  f 2, E M  we see
1-2[p] = 0, i.e. n i [p ] =  n , [p ]. Therefore to each element D  of
the quotient space corresponds a linear functional D [T ].
To see that the mapping T  T *  = I .Q [q a  is  the isomorphism it
is sufficient to prove that if

( 9 ) D ['p ] = 0 for a ll q) E E ,

we have f2 E S for any n E D .  First if we take as (p the normalized

4 )  Cf. Bourbaki [6 ] p. 48.
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differentials cp, ( E E) o f the first kind, then we have by (2), (7)
and (9)

d n ,_  0 (i =1, ••• , p)

because II E M  has no A-periods and p i n , a r e  regular at every
point Q1 . This implies that the integral n  is  single-valued on R.
Therefore our relation reduces to

0  =  n [ p] —27.ci Res. (pn for a ll 99 E E
i 1Q 1

Now if  2 (Q ,)± 0  (t + 1), we choose P = 4 Q 1 Q t E E  then w e  have
1-2(Qt)=---1-2 (Q 1)=  0 which is absurd. Consequently we can conclude
as before that ( 2  is  a multiple of 1/8 under suitable choices of
normalized differentials of the second kind. These imply f i  E S.
Finally we find at once that the orthogonal space b o f D contains
T * .  Hence we get

(10) dim M— dim S  dim T =  dim T * < dim D  = dim E— dim D,

i.e.

(10)' G +1— A  < p — B  .

THEOREM 1 (Riemann-Roch)—Let 8  be  a  divisor of  total order
G given on a closed Riemann surface o f  genus p .  Let B (resp. A )
denote the numbers of linearly independent differentials (resp. single-
valued functions) which are m ultiples of  8 (resp.118), then

(11) A = B +(G+1— p) .

The equalities in (8) and (10) imply

THEOREM r—b,T, that is, the orthogonal space of  D
(resp.S ) in the dual space E* of  E (resp.M *) is identical w ith the
quotient space M IS (resp. D ). Equiv alently  w e can say  that tw o
spaces M IS  and El D are  mutually  dual.

5. In  th e  above procedure we have used the differentials
normalized with respect to A-periods, but of course we can use
as usual
(j)  t h e  differentials (7,  A „P  ( i  

= 1
, • •• p )  of the first kind normal-

ized in the real sense such that
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(12) Re ,f (pA i  =  — Re =
Bj Aj

,  R e  cpA  =  R e  cpp,, = 0
Aj Bj

(i, = 1 ,  •  ,

(ii) the normalized differentials AfrP ,  (P.° ( >  1 ) of the second
kind w hose integrals have single-valued real parts and have
singularities at P(z ) such that

(13) AV» =  z - "+ reg. term, .1-fpW = +reg. term,

(iii) the normalized differentials N o , (7) /3 Q of the third kind such
that

{ (-11 z + reg. term)dz a t  P(z) ,
(14) (1)PQ == (1A-  +reg. term)A- a t  Q( )

f Z +reg. term )dz a t  P(z)
t (1/ reg. term) cn- a t  QM ,

and Re .451.Q , R e Y5- po  are single-valued on R except a curve running
from P  to Q.

We consider analogously four vector spaces E', D', M ' and S '
in the real field, but only the space M ' must be taken somewhat
in the different way, i.e. we take as M ' the vector space consisting
of Abelian integrals (of the second kind) which are multiples of
1/8( p) and have single-valued real parts, moreover they vanish at
Q, (if 8 is not an integral divisor). In  th is case if we consider
the bilinear form

(15) <p, (2> = Im  [27ri Ê. Res. 0 -2]

we can proceed as before and get the same conclusion. In the
following paragraph this method will be rather available, for it
will connect easily with the uniqueness theorem on non-compact
surfaces.

§ I I .  Non compact cases.

Now i f  we step from closed Riemann surfaces to open surfaces,
how becomes of the Riemann-Roch's theorem ? An arbitrary open
Riemann surface R  may have the genus o f infinity. Moreover a

5 )  Cf. the next paragraph, especially the proof of Theorem 2.
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single-valued meromorphic function on R  m ay h ave  an  infinite
number of poles and zeros clustering nowhere in R , hence we are
able to give a  divisor consisting of an infinite number of points.
While, on any R  there exists always single-valued meromorphic
functions having exactly prescribed singularities and zeros (Behnke-
Stein [5 ]), therefore the dimension becomes infinity for the space
consisting o f single-valued functions which are multiples of the
divisor with an infinite number of po les. In order to obtain those
which are analogous to the classical formula therefore we shall have
to put some restrictions to basic surface, divisor or differentials.

6. Let R  be an  arbitrary open Riemann surface and G  be
any subregion of R .  We shall write Dirichlet integral o f a func-
tion u  (or differential du) taken over G  as

DG[u] = I grad u1 2 dxdy Gdu A *du

where z =x -I--iy  i s  a  lo c a l uniform izer. In  th e  following we
restrict our differentials to those o f  th e  class i ,  w h ic h  is  a
vector space consisting of Abelian differentials (or integrals) whose
Dirichlet integrals taken over R are finite except the neighborhoods
of possible singularities at a  finite number of points. We shall
denote by D. (i = 1, 2, 3) the subsets of SI which consist of differen-
tials of the i-th  kind respectively. Now le t  {.41 , Bi }  ( i = 1, 2, •-)
be a  canonical homology basis o f R ", i.e. {A, /3,1 (i = 1, 2, •••) is
a  homology basis o n  R  such that the intersection numbers N
satisfy  the conditions N(A„, A„,)=N(B„, B„,)=0, N(A„, B„,)=s;;,
(m, n-= 1, 2, •••).

T he ex istence o f the following fundamental differentials"
which play important roles in the theory of open Riemann surfaces
is known, which will be used in the sequel.

(j) 9 9 B 1  ( i  1 ,  2 ,  -  • •) E  3 ), such  that R e (pA i , R e (p ,  have
no periods along the cycles except Bi  resp. A, along which they
satisfy the same period-conditions as (12), but here i, j =  1, 2, • • • .

(ii) 1/,`,P , ,4-f̀ j r (1) = 1, 2, • ) E T , whose integrals have single-valued
real parts on R and singularities at P where they have the same
expansions as (13).

6) Ahlfors [1].
7) Sario [13] or R . Nevanlinna [12].
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(iii) ( 1 ) p Q  C lip Q  (Pd= Q) E T, such that they have singularities with

the expansions (14) at P  and Q , and Re ..ç çbpo , R + 5 ,, , 2 are single-

valued on R  except a curve running from P  to Q.

7. Hereafter we confine our open Riemann surfaces R  to those
belonging to the class OHD• L e t  W  be a  subregion o f RE OHD
such that each component of the boundary a W  is a Jordan closed
curve and divides R  into two disjoint parts. Suppose = 8 ( p) /8 ( 0 )

((1), (1)') is  the divisor given o n  W . N ow  four vector spaces
E (W ), D (W ), M (W ) and S ( W )  in the real f ie ld  are defined as
follows

E ( W ) : The vector space consisting o f  Abelian differentials
E M with the properties ( i)  q,  are multiples of 1/8 ( Q ) ,

(ii) R e (7,  a re  single-valued on R— W, and (iii) residue

relations E Res. q) =CI are satisfied.
D ( W ) : The vector space consisting o f  Abelian differentials

E E(W ) which are multiples of = 8 ( p) /a ( Q ) .
M ( W ) : The vector space consisting o f Abelian integrals n E J)

which are multiples of 1/8 ( p) and Re f2 are single-valued
on  R .  In  case o f non-integral divisor we normalize
such that 2 (Q 1 ) =O.

S (W ) :  The vector space o f Abelian integrals E M (W ) which
are multiples of 1 /8 = 8 ( 0 /8 ( p) and single-valued on W.

Let {A„ /3, }  (i =1 ,  2, ,  p ( w ) ; p ( W )  denotes the genus of W ) be
a  canonical homology basis o f W  mod a W .  Since RE OH ,  it is
easily seen (c f. § I. sec. 1 )  that the space E (W )  is composed of
normalized elementary differentials 99,4  , .9O . E ( i = 1 ,• • •  ,P (W ) ) ,

,  ,jk127,,l) e  (tt =2, ••• , n, , = 1 ,  •  ,  s )  and do, ( :) , ( 2 „  .-5 (21 (22 •  •  •  f

(11Q 1Q S  -4 )Q l0s E 5)3 and the space M (W ) is composed of constants and

integrals qr̀ p,), ( p =  1 ,  ,  m ,,  p =1 ,  • • •  , r) " .  We shall state

at first the following theorem, which will be proved in sec. 9.

THEOREM 2.— L et R  be an  open Riemann surface E OHD and  W
be the subregion of  R  whose boundary OW consists o f  a finite number
of  Jordan closed curves, each o f  which divides R  into tw o disjoint

8 )  If s  is  n o t  a n  integral divisor, we normalize such that these vanish at Qi ,
hence in  this case M  consists of these integrals only.
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parts . T hen , f o r the  div isor 8=8 (p) 18,0 ) ((1),(1)') given on W  the
orthogonal space o f  D(W)(resp.S(W)) in  the dual space E(W)* of
E(W) (resp.M(W)*) is identical with the quotient space M(W )IS(W )
(resP.E(W)ID(W)), in  other w ords, tw o spaces M (W )IS (W ) and
E(W )ID (W ) are  mutually  d u a l .  Thus, we have the formula

(16) p(W)—B(W)=-- G—A(W)-+-1 ,

where p(W ) i s  the genus o f  W and 2B(W) (resp.2A(W)) denotes
the dim ension of  the space D(W), (resp.S(W)).

For our later purposes we note that the real parts of integrals
of the elementary differentials ((i) (ii) (iii) p. 168) on R E 0„D  respec-
tively identical, except constants, w ith the normalized potentials
u9 ) which possess the same behaviors as (i), (ii), (iii) respectively
and have the following property ; let {R„} be any exhaustion
o f R  and un  be harmonic functions defined on  R„—R, which
vanish on aR„ and are identical with u  on aR„ then lim u,, --= u

.-> c o

uniformly on every compact subset of R—R„ where we suppose
that R, contains the singularities of u.

Now to approach the Riemann-Roch's relation for R we con-
sider an arbitrary divisor

8 8 (p) PIT'? • • •

8( Q )

where hi ,k ; (i =  1, 2, • • • ) are non-negative integers. Let
••• R ,<••• --> -R  be an exhaustion of R such that each component
of the boundary r„---_- =_aR„ is  a  closed analytic curve and divides
R (such an exhaustion always exists). Without loss of generality
we may assume that every 1.'„ does not contain any P„  Q 1 . L e t

ryt ro , ran, pphrn

(17) 871 u (P ) - L  12 L  r „  
8

7Q) Q t1 ( A2Q k s:;"

rnE hi = m„, K n
i=1

be the restriction of 8 to  R„ i .e . 8"-_,8nR n , 87,,, , 8 ( ) r\R„ and
8( ) )  8 ( o r■ R „ .  Then for every subregion R„ and 8" (16) shows

(16)' icn+Pn—B„ -= m„—A„+ 1 . (n 1. 2, • • )
where pn—P(R„), B n = B(R„) and A n = A(R„). Here we note that
it  is  possible to choose the canonical homology basis {A „  A I of

9 )  R. N evanlinna [12] p. 320-333.
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R  such that every section {A „  B ,} (i =  1, ••• , p„) i s  a  (relative)
canonical homology basis on Rn  mod r n »  Next we consider the
the semi-infinite divisor

(18)
8 pli.P2 • • • P r

(3( Q ) Q t ,
7É hi ,  m < 00

and the space S which is defined as follows
S :  The vector space consisting of mermorphic functions Ell())

which are single-valued on R and multiples of 1/ 43=8, 0 /8,p) .
We may suppose that R, already contains the points P 1 , • ••  P r, Q i.

Then it is easily seen that

=  M 2  =  ' • ' Si S2 ••• S „ •••

where M,, =  M(R n ), S _— S ( R ) ,  and that

S s,, .n

L e t c „  b e the dim ension of S„, then 2m  2 > dim M >  0-1 > • • •
>o- ,,> >  0  ,  hence lirn cr„ = 0- exists. S ince all 0-„ are integers,

n , c o

0-,, o -  for a ll n> N  which imply the equalities

S N  S N  +  =  •  •  •  ' =  S  
_ Q 1 1 )

>1= 1

Therefore by Theorem 2 we have

THEOREM 2. P"— Let 8 be a  semi-infinite divisor (18) given on
R EOH D . Then

Kn + p „-1 3 „ =  m — A + 1  for n >  N .

W e f ind that A = A „ (n>  N ) indicates the number of single-valued
functions E D which are m ultiples of  118 and linearly independent
in the complex sense, and that B„ are  integers and lim(Kn -i-pn —B„)

is independent of  the exhaustion of R.
I f  RE OG, for a n y  E I  the residue relation is automatically

satisfied.'" Hence

10) These always belong to D2, because they are single-valued on RE Oirn.
11) Cf. Bourbaki [6 ]  P .  37.
12) Cf. the remark in  sec. 10.
13) R. N evanlinna [12], but if  R E 0 1 1 D — O G , this does not hold in  general, for

example there exists a Green differential on R.
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THEOREM 2. 2— Let 8 be a f inite divisor (1), (1)' given on RE OG •
Then

B „  G — A  + 1  f o r  n >  N ,

where 2B„ denotes the  number o f  dif ferentials q,  E Ss linearly  in-
dependent in the real sense which are m ultiples of  8 and R e q,  are
single-valued on R—R n .

Further let p (genus of Reod be finite, then for large n the
complementary domains R—R„ become of planar character and

(n>  N ), therefore for any q,  E Si R e cp are single-valued on
R — R„") and E E (R )= E„   (n >  N ) .  Thus, we have

THEOREM 2. 3 (R. Nevanlinna) — L et R  b e  an  o pen  Riemann
surface E OG and p, the genus of  R, be finite. T h e n  for the divisor
8 (1),(1)', we have Riemann-Roch's formula

p— B = G — A + 1 ,

where B (resp. A ) i s  the  number o f  dif f erentials EM (resp. single-
valued functions E I)) linearly  independent in  th e  complex sense
which are m ultiples o f  8 (resp. 1/8).

REMARK.—An open Riemann surface R E OG of finite genus can
be imbedded in  a  closed Riemann surface R *  of the same genus,
where the ideal boundary o f  R  appears a s  a  s e t  A ( R * ) of
capacity zero . Hence every element o f  spaces E  or S  becomes
regular even on A  b y  the generalized continuation principle, be-
cause integrals become single-valued, bounded in the neighborhood
of A .  Conversely if  th e  divisor given on R *  has no intersection
with A, every element of E  and S  for R *  belong obviously to E
resp. S for R .  Hence if  we transform a  closed surface to an open
one by rejecting one point which does not appear in  8 , then we
can obtain again the classical Riemann-Roch's theorem from the
above Theorem 2. 3.

8 .  For the proof o f Theorem 2  we prepare two lemmas.

LEM M A 1.—Let R be a Riemann surface E OHD and dw = du + idv
be a  dif f erential E T .  If  the  to tal sum  of  its residues is zero and

14) R. Nevanlinna [11] or next Lemma 1.
15) R. Nevanlinna [11] p. 32.



Contributions to Riemann-Roch's theorem 173

the function u  is single-valued on R — K , then for every  div iding
curve C R — K , we have

where K  denotes a compact subregion containing all the singularities
o f  dw.

Proof. W e m ay assume that C  is  an analytic Jordan closed
curve not bounding a compact region . The other cases are trivial.
Now suppose that our assertion is  no t valid, hence fo r  such a
curve C, d w = f i d v - I - 0 ,  e.g.

c1J c 1

(19) d v >0

Consider a  finite number o f  dividing curves C,, • • • , C „„ which
bound together with C , a compact subregion B K, then , by the
residue relation, we have

"± d w dv .
i=i c i1 = 1 c i

Hence there exists at least a curve, C , say, such that

(20) dv  <0 ,

where the integrations are taken in the positive direction with
resp. to B .  Let G, and G , be non-compact regions on R  whose
relative boundaries on R  consist of C, resp. C , o n ly . G1 nG 2 =y5.
L e t  {G3}„=1 ,2 ,... ( 1 ,  2 )  b e  the exhaustions o f  Gj  a n d  G I be
bounded by analytic curves C. and 1 ) .  Let us choose a constant
k >  0  such that

(21) min u(p)+k  > 0 ,
PE C1

and construct the harmonic functions U „ (n=1, 2, • •• ) on GI such
that

U(p)= = .{ u(p)+k pec l

' 0 ,p  E ,

then the sequence {U,„} i s  monotone increasing and uniformly
bounded ; 0<  U n <  max u ( p ) +k .  Therefore by Harnack's theorem

œ  PE C I

the limit function U, becomes harmonic on G , and the convergence
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is uniform on every compact set of G , .  Moreover this holds on
Gi v C , .  For the functions V„---- - U„—(u+k) vanish on the analytic
curve C„ hence V„ can be harmonically continued across C , by
the reflection principle. The bounded sequence { V„} of increasing
functions therefore tends to  V0 =t1 0 — (u+k) uniformly even on

aU V  a uGi v C , .  Hence the derivatives n+ on  C , converge
aua l ) a al)

uniformly to 0 w h ere  —

a  
denotes th e  differentiation in the

direction of the inner normal of G 7 . We find that Dirichlet integral
DGi [  uo]

0< DGI'[Um] DGTEU
CI

Unz a_um d ç  _  ( u + k ) a u m ds ,
Jc ia v O p

Letting m  o c , successively n---> 00, it follows under above remarks
that

0 < DG i [U 0 ]  <  — L ( 1 4  k) a—a
U: ds <  00.

Now we distinguish two cases ;

( a )  Vo (= U,—(u+k)) 0 (3 )  V o 0 .

Here we shall show that (a) is not the case. Suppose U0 -=--- u+k.
Let con be harmonic measures of G? which vanish on C , and =1
on r7. By Green's formula we have

(u+k) aû'n ds =
ci ay o y

hence for n--> 00

(u+k) (`) ds — f  a  u
0 ds = — 1  ----ds-=— d v . .

av c, ay ciav c,

which is a contradiction. For the right hand side is negative by
(19), while the left hand side is non-negative by (21) and the fact
aw
5 ;  >0  on CI . T herefore the case (3) happens, which implies the

existence of a non-constant harmonic function Vo o n  G , which
-=- 0 on C , and has a  finite Dirichlet integral over G , .  On the
other hand by (20) we have d( —

v) > 0 ,  hence w e also  see the
C2

existence of a non-constant harmonic function Vo ' on G, which =0

is fin ite . In fact, fix an integer n, then we have for m >n

on C , and D G ,E v  < c o .  While, since 4), the existence



Contributions to Riemann-Roch's theorem 175

of such two functions V, and V ,' im plies R  OHD (Bader-Parreau
[4 ] or Mori [10]), which contradicts with our hypothesis, q.e.d.

LEMMA 2.— L et df i =d u i +idv i ( j=  1, 2) be any two differentials
E T, defined on a R iem ann surface R  E OHD. I f  each to tal sum  of
residues o f  d f  i s  z ero and the functions u„ u 2 a re  single-valued
o n  R — K , w here K  denotes a com pact subregion containing the
singularities o f  d f ,  and d f 2 ,  then f o r any dividing curve C R— K
we have

1 m  L f i d f , ] =  0 .

Proof. L e t {R „ } b e  a n  exhaustion o f  th e  domain'" ilf )
bounded by a relative boundary C, such that each component JP:,

(i =1 ,•••  ,t n )  of r n =aR n —c is an analytic curve dividing R .  Since
u „ u ,  are  single-valued on R — K , w e have easily  by Riemann's
first period relation'"

Tm f , d f 2 =  Tin d.f2•rn
Here we shall prove that

lim  Im  f 1 d f 2 =0  .
11-9.o0 r n

By the remark in  sec. 7 (p. 170) we have

tei = U 5 +a i , v3 = V 5 +,8 i (a i ,i3 i  a re  real constants) Ci 1, 2),

where U5  a re  normalized potentials and V 5 the conjugate harmonic
functions of U .  B y  the Lemma 1, we have

t l l

I m  f i d f 2 =  E  V1dU2+U1clV2+a1dV2+,8,d U2
1.„ i=1

•

t„
=  E  V ,d  + U ,d  V, .1=1

A t first f ix  th e  integer n. Since U5 ( j = 1 ,  2 ) a re  normalized
potentials, they a re  respectively the uniform limits o f harmonic
functions UT (m =n±1, n± 2, • • ) which =0 o n  l',„ and = U5 on C.
Since U r are single-valued on G„,i =G",r-NR„.„ we have

ron

=  DG  [U m2 Gm .„ 1 ,  U ]2

17) We suppose this is non compact, for the other case i s  trivial.
18) Cf. Kusunoki [9].
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where each G, ( ) C )  denotes the non compact domain whose re-
lative boundary consists of 1'4 only and the second term is the mixed
Dirichlet integral o f Ur and U2 . Hence for m—> 00

L:, E---  Hm n [U r ,  U2] = U1dV2

On the other hand, by Schwarz's inequality, we have

ur, u,] 2 < [Ur] [ U2 ] G  u r d s r [  u2] •
; 6O P

aure  to uniau, Since  converge on I','„ we have in—> 00a„ a,
( ig y <  Ud VI D G L [U 2 ] .

While
2

DGI,nEUT, U1 ] 2 < [Ur]
<  ,,in un,.*dUrDG J U I ] ,

we have

U,(11

Therefore
9

E  L <  N/DG
, CUI P G :Jud < (DGJui+DG„[U,])/2

i=t
t„

where G„ ,  E G . S in c e  U„ U. E M, the right hand side tends to

0  for n—> 09, i.e. we have

U, d V2 --> 0 .

A s  fo r  17 1 c/L/2 ,  by Riemann's second period relation" ) , w e have

i

d =  — , UT]
r n

which tends to V ,dU 2 for
cluded that

19) Ahlfors [1] or Kusunoki [9].

   

hence for m--> 0 0

<D G: [Ui ]

0 0
 Thus it is analogously con-
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V1 d(12 —> 0 fo r  n 00 , q.e.d.

9. Proof o f Theorem 2. Now we take vector spaces E =
E (W ), D = D (W ), M = M (W ) and S — S (W ) defined before, and
proceed a s  in  § I, w here the scalar product is defined by (15).
W e shall show here only the key points of the proof. B y the
remark in  sec. 7 (p. 169) we have

( 2m
dim M -

1» 2(m + 1) , if  8  is integral.

i 2 (n + p -1 ) ,  p=p(w )
dim E = 2p, if  8  is integral.

Each element of the space F = E ID  is considered as a linear func-
tional over the space M, and the spaces F  and S  are orthogonal
with resp. to (15), because for p e E, 1-2 em  we have

P[n ] =  n [p ] =  Tm [ Ê' ( 5 p dl— 1
A
 p 1 df2)]

f =1 B i A i i B i

-1- 1 M  ±  , E2P - IM (27r i Ê  Res. E2p) ,
;•=1 p ' j= 1 Q .

where l'i =  a W .  The second term =  0  by Lemma 2 , hence

(22) n[rP ] = (R e  l i g (i) 1 m  A , Ca2 R e  L i rP Tm

—27r Re E Res. I1 ' ) .
J = 1Q j

If n E S, it follows easily that  p [c l]  =  0 , hence

dim E— dim D <  dim M— dim S.

To obtain the converse inequality we prove T=M IS-- -= T * ,  i.e.
we should conclude s2 E S from the assumption that SIM  ---- 0 for

E E .  If p  pA i , (p,i a re  chosen we have by (22)

im f c /f2  =  Im  ds2 = 0 .
A i

Therefore c/12, has no period along the cycles (A i , 13; ) (i =1, ••• , fi),
moreover along every boundary cycle r i  by Lemma 1, hence f2
becomes single-valued on W  and our condition reduces to
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0  = I-2 [P ] =  — 27r Re E Res. a p  for a l l  p E E .
j=1Q .

If we choose successively .7)=-K, ,t1r8i,) an d  ci•Qie2 ,  '7) 421(22 ,  • • • , ( P e iQ s ,

then we see that s.2 is  a multiple of 1/8. Therefore f2 E S.
Finally the spaces M  and D  are obviously orthogonal, thus we
have

dim E— dim D >  dim M— dim S ,q . e . d .

10. REMARKS AND APPLICATIONS. In the Theorem 2. 1 we have
indeed A -= 1  (i.e. every function E S reduces to a constant) for the

following cases:
( i )  The case that 8 is  the sim plest integral div isor 8 = P , where

P  is  an arbitrary  point on R (EOH D ) o f genus > 1 .  Then

(23) p „ -B „  =  1  f or n >  N .

(ii) The case th at 8  is any  integral div isor (o f  order m<00)
given on RE OHD—  0 c •  T h e n  w e  have

(24) m  fo r  n >  N .

To prove this, le t  8 = P  be a  divisor given on R e O G . If
df e 1 „  f  E S, it  is  trivial, hence we suppose now that f  E S  has a
simple pole at P .  Then there exists a  sufficiently small neighbor-
hood U  o f  P  which is m apped univalently b y  w = f .  Since
DR _u [ f ]< 0  0 ,  f  is bounded on R—U, hence there is a  subset U'
of U such that the image f (R )  covers f (U ' )  exactly once. This
is  possible only if  f (R )  covers the w-plane at most once, which
is absurd if the genus o f R > 1 .  Next, suppose 8  is any integral
divisor Pr' • • • Pr'', given on RE OHD—  OG. According to Kuramochi's
theorem (cf. [8 ] or Cornea [7 ]), for every compact domain K  on
RE OHD—  OG, we have R—KE OAD (i.e. every single-valued analytic
function w ith finite Dirichlet integral over R — K  reduces to a
constant). Therefore i f  we choose a com pact domain K  such
that it contains the points P„••• ,P r  and  R—K is connected, then
every elem ent o f  S  h as a  finite Dirichlet integral over R—K,
hence it reduces to a constant, q.e.d.

Let the cycles A„, B„ (n=1, 2, • ••) be denoted K,,,_„ K,„ re-
spectively. Here, b y  th e  same notation 93K 1 we understand the
covariants corresponding to previous differentials (pi g . From above
remarks it follows :
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(j) T he relation  (23 ) implies that the matrix

Re P K i ( z )  Re PK,(z) •• • Re PK2
(z)

Tm P K,(z) ......................... T m  PK , (z) ( z  is a local parameter at P)

has rank 2. Therefore ( i 
= 1 ,  2, • • • ) on R E OH ,  nev er have

common zero points.
(ii) Let 8 = P Q  be a  divisor given on R E OH D  —0G , where P(z)

and Q( ) a re  arbitrary two distinct points on R .  Then from (24)
the matrix

 

Re P K ,(z)
Tm P K i (z)
Re POO
Tm P K ,( )

Re (f),, p n (z)

 

Im

  

has rank 4. Hence at least one of the determinants

q' 1(z) Pici(z)

PK i ( ) 'P C  j ( )

is different from ze ro . From this we can conclude that i f  we
denote by x ( p )  ( n  1, 2, • •• ) a  countable number of non-constant
meromorphic functions (quotients of square integrable covariants)

f 3 2 g ( Z '
 n

dsc
PK,(z) K i  aZ 

P P(z) •PK; (z) f a2 glz, ° d s
JKJ  az

a
where —

a z  
denotes a  usual complex derivative and  g  a Green

function of R, there exists a  function x,n such that x„,(P)+x„,(Q)
fo r each p a ir  o f  tw o  points P  and Q  on R .  Thus, an y  open
Riemann surface R E  O „ -0 ,  (necessarily, of infinite genus) can be
mapped univalently into the product space Cx Cx ••• of a  countable
number of complex planes C by the vector-valued function

f—  COP), x 2 (P ) ,  • )

where x (p )  are the above functions on R.

Department of Mathematics,
Faculty of Science,
Kyoto University

i +  j , j =  1, 2,
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