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In §1 of the present paper, we introduce the notion of a virtual
linear system on a non-singular projective surface and we clarify
the theories of infinitely near points, of divisors and of linear
system with preassigned base conditions.

We introduce in §2 the notions of a numerical types and of
non-special points with respect to Cremona transformations. They
play important roles in § 3 in order to prove characterizations and
existence theorems of exceptional curves of the first kind and of
Cremona transformations. In §4, we introduce the notion of an
abnormal curve, and in §5 we give some remarks on superabun-
dance of a complete virtual linear system on a projective plane S.
We add some remarks in §6 on the case where the number of
base points is at most 9.

The recent paper ‘“On rational surfaces, I” in the last volume
of our memoirs is quoted as Part I in the present paper. The
notations and terminology in Part I are preserved in this paper,
except for that the symbol {} for the total transform of a divisor
is changed to (); see § 1. We recall here that an S denotes always
a projective plane. A curve will mean a positive divisor on a
surface. A divisor ¢ on a surface F is identified with a divisor
¢’ on a surface F’ if ¢=3m;c; and ¢’=32 m;c; and if ¢; and ¢} are
irreducible and are identical with each other as point sets (iden-
tification of points is made by natural birational transformations).

1. Virtual linear system.

Let F be a non-singular projective surface and let B be the
family of non-singular projective surfaces which are birational
with F' by natural transformations.
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() A linear combination of curves on F and points over F
with integral coefficients (a point over F means a point which is
an infinitely near point of a point of F) is called a cycle over F.
A cycle is divided into two parts; one is the divisorial part and
the other is the zero-dimensional part. We say that two cycles ¢
and c¢* over F are linearly equivalent to each other if (i) the
divisorial parts of ¢ and ¢* are linearly equivalent to each other
and (ii) the zero-dimensional parts of ¢ and ¢* are identical with
each other.

(») Cycles over F are classified by the linear equivalence
relation. Each linear equivalence class is called a complete virtual
linear system on F. If c¢ is a cycle over F, then the linear equi-
valence class containing ¢ is called the complete virtual linear
system containing ¢ and is denoted by _L(c).

A set L of cycles over F is called a virtual linear system on
F if, for any two members ¢ and ¢’ of L, there are a cycle c* over
F and a linear system L* on F such that (i) ¢—c¢* and ¢’—c* are
in L* and (ii) if ¢” € L* then ¢’ +c*€ L.

An important example of a virtual linear system is a complete
virtual linear system. Another example of a virtual linear system
is a fractional linear system which is defined to be a set L of
cycles over F for which there are a cycle ¢ over F and a linear
system L* on F such that L is the set of cycles ¢+ /* with /* € L*,
We note that a virtual linear system L is characterized by the
property that for any two members of L (or equivalently, for any
finite number of members of L) there is a fractional linear system
contained in L and containing the given members.

Let L be a virtual linear system on F. The set L’ of
divisorial parts of members of L is again a virtual linear system
and is called the divisorial part of L. The zero-dimensional part
of a member of L is called the zero-dimensional part of L.

(i3) Let F’ be a member of B which dominates . Then the
antiregular transform T from F onto F’ defines by obvious manner
the total transforms T(c) (T{c} in Zariski’s notation) of cycles ¢
over F and T(c) become cycles over F’. Thus 7T becomes a map
from the set of cycles over F onto the set of cycles over F’. The
inverse map of T is called the projection from F’ onto F and is
denoted by projg.

The definition of linear equivalence implies that :
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LemMa 1.1. Two cycles ¢ and c* over F are linearly equivalent
to each other if and only if T(c) and T(c*) are linearly equivalent
to each other.

(i) Let F’ be an arbitrary member of B. There is a surface
F” in B which dominates both F and F’. Let T be the trans-
formation from F onto F”. Then the map T*=projm-T is well
defined and is independent of the particular choice of F’”/. This
T*, which is obviously a map from the set of cycles over F onto
the one over F’, is called the transformation from F onto F’ and
is denoted by Tg,pz.

By virtue of Lemma 1.1, we have easily the following result :

Lemma 1.2. If L is a complete virtual linear system, or a
virtual linear system, or a fractional linear system on F, then so is
Tr,r (L) respectively on F’.

(13) Let ¢ and ¢’ be divisors on F. Then the intersection num-
ber (¢, ¢’) of ¢ and ¢’ is well defined. Let P,, ---, P, be points over
F. For cycles ¢+2 n,;P; and ¢’+2 n}P;, we define the intersection
number (c+3%n;P;, ¢’ +ZniP;) to be (c,c)—Znm.. If L and L’
are virtual linear systems on F and if d € L, and d’ € L’, then (d, d)
is independent of the particular choice of d, d’. The intersection
number (d, d’) is called the intersection number of L and L’ or of
d and L’ and is denoted by (L, L’) or (d, L').

If d is either a cycle over F or a virtual linear system on F,
then (d, d) is called the grade of d and is denoted by I(d).

Lemma 1.3. If F'e€B, then (d, d")=(Tr,r/(d), Tp,m/(d")) for any
two cycles d and d’ over F.

The proof is easy be virtue of the following well known, easy
lemma :

LemMA 1.4. If c¢ is a divisor on F and if P is a point on F,
then (dilp (P), dilp (P))=—1 and (dilp (c), dilp (P))=0.

In the notations in Lemma 1.4, we should remark

CoroLLARY. dilp (¢) = dilp [c]+m(P; ¢) dilp (P) (where dilp[c]
denotes the proper transform of c) and therefore (dilp [c], dil p(P))
=m(P; c).

(~) For a given cycle over F, we consider an F' € B such
that Tp,m(c) has no zero-dimensional part. We say that c¢ is
virtually positive (c[>0 in symbol) if Ty, (c) is positive; this is
defined independently of the particular choice of F’ as is easily
seen,
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When L is a virtual linear system, then L' denotes that set
of ¢ in L such that ¢=0. L' is obviously a fractional linear
system, and the divisorial part of L* is a linear system on F.
This last linear system is denoted by L®, and is called the effective
linear system associated with L. The dimension of L® is called the
effective dimension of L and is denoted by effdim L.

LemMma 1.5. If F”€B, then (Tg,p(L))t=Tp, (L"), and on
the other hand, (Tg,p/(L))® and Tgp,p/(L®) coincides with each other
up to fixed components and the zero-dimensional parts. In particular,
we have effdim L=effdim Tr,p/(L).

(&) When P,, -+, P, are mutually distinct points over F, a
curve ¢ on F is said to go through the points P; with virtual
multiplicities at least m; if ¢—2Zm;P,=0. It must be observed
that the above condition does not mean that m(P;; c)>m;. For
instance, when P, is a point on F and when P,, ---, P, are mutually
distinct infinitely near points of P, of the first order, then it holds
that

Lemma 1.6. If m<r—1, then a curve ¢ goes through P, with
virtual multiplicity at least m and the points P,, ---, P, with virtual
multiplicities at least 1 if and only if m(P;; c)>m+1.

The proof is straightforward by virtue of the corollary to
Lemma 1. 4.

Let L be a virtual linear system whose divisorial part and
the zero-dimensional part are L/ and —X m;P; respectively. Then
the above definition justifies to call L® the linear system of curves
in L"” which goes through the points P; with virtual multiplicities
at least m;. As is well known and as is easily seen, the following
inequality holds good : '

LemMma 1.7. effdim L >effdim L” —Zmsom;(m; +1)/ 2.

() If L and L’ are virtual linear systems on F, then the
set M={c+c';ceL, €L’} is contained in a complete virtual
linear system. This complete virtual linear system is called the
complete sum of L and L’ and is denoted by [L+L"]. The smallest
virtual linear system containing M is called the minimal sum of
L and L’ and is denoted by L+L’. It is obvious that if F’€ B,
then Tp(LL+L))=[Tpp(L)+ Tp,r(L)] and Tpp(L+L)=
Tp,p(L)+ Tp, e (L).

(v) We say that a curve on F is wvirtually connected if, for
any curves ¢’ and ¢” such that c=c’+c¢”, the intersection number
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(¢, ¢’) is positive. A virtually connected curve is obviously con-
nected (but, not conversely).

PROPOSITION 1. Let ¢ be a curve on F and let F' be a member
of B which dominates F. Then c is virtually connected if and only
if so is Tp,p/(C).

Proof. The if part is obvious by the definition. Assume that
there are curves ¢’ and ¢’ on F’ such that Ty, (c)=c+c” and
such that (¢, ¢”)<<0. Let the divisorial part and the zero dimen-
sional part of T ,r(¢’) be ¢* and = m;P; respectively. Then we
have T,z (¢"")=(c—c*)—= m;P;. Since ¢’ is a curve, ¢**=c—c*
must be either a curve or zero. 02>(c,c”)=(c*+Zm;P;,
c¥* 3 m;P,)=(c*, ¢**)+ = m?, from which the only if part follows.
Thus Proposition 1 is proved.

A virtual linear system L on F is said to be virtually connected
if for an F’€ B such that Tp,(L) has no zero dimensional part,
(Te(L))T is not empty and at least one member of it is
virtually connected. Proposition 1 above shows that the above
definition does not depend on the particular choice of F’.

An easy example of a connected curve which is not virtually
connected is given as follows: Let ¢ be a connected curve on F
and let P be a point on ¢. On the surface F’=dilp F, the curve
¢’=dilp (c+ P) is the required example.

(¥a) For a given virtually positive cycle ¢ on F, we consider
the set C of Tg,(c) (F’'€B) such that the cycles Tg,(c) are
curves. A minimal member in C (in the sence of domination) is
called a munimal curve of c.

THEOREM 1. Assume that a curve ¢ on F is connected. Then
¢ has at least two minimal curve if and only if a minimal curve
of ¢ is a multiple of a non-singular rational curve of grade zero.

Proof. The if part is obvious. In order to prove the only
if part, we may assume that there is a minimal curve ¢’ of ¢
which is not dominated by ¢ but there is a point P on ¢ such that
dilp (¢) dominates ¢’. Let F’ be a member of B which carries ¢/,
and let Py{, ---, P, be the fundamental points over F’ with respect
to F'; we may renumber them so that diles, ... pr,, is well defined
on F and that ¢—P{[>0 if and only if /<r. Then, with
D=dilpr,, ... pr,>, D(c¢")=dilp (¢). Since ¢’ is a minimal curve, we have
r>1. Set p=dilp (P) and let d'—=m;P{ be D '(p) (d’ being a
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curve on F’). Since p is irreducible, m;=m(P};d’). Since
(2, dilp (¢))=0, we have 0=(d’'—= m,P’, ¢')=(d’, ¢/). Set m=m(P; c).
Then p is contained in dilp (c) exactly m-times and ¢/ —md =0
and furthermore 4’ and ¢’—md’ have no common component.
Therefore 0<(d’, ¢’—md’)= —m(d’, d’), and I(d’)<<0. Since
d'—2ZmP;=D'(p), —1=Id’)—3 m?, and since »>>1, we must have
I(d’)=0,r=1, m,=1. Since I(d’)=0, and since ¢’ is connected, we
have ¢'—md’ =0, ie., ¢/=md’. Since D(d’—P{)=p, which is an
irreducible exceptional curve of the first kind, and since m,=1,
we see that d’ is an irreducible non-singular rational curve of
grade O, and the assertion is proved completely.

(%) Let c—Zm;P; be a cycle over F, where ¢ is a divisor
and the P; are mutually distinct points over F. The arithmetic
genus p,(c) is well defined. p,(c)—= m;(m;—1)/2 is called the
virtual genus of c—= m;P;, and is denoted by vg(c—= m;P;). The
virtual genus of a virtual linear system L is defined to be the
virtual genus of a member of L and is denoted by vg(L).

LemMmA 1.8. If F'€B, then vg(L)=vg(Tp,(L)).

As for the proof, we may assume that F’ dominates F. Then
the proof is easy” by virtue of the following well known formula:

Lemma 1.9. p.lc+d)=p,(c)+p.(d)+(c, d)—1 for any two divi-
sors c and d on F. Consequently, p,(mc)=[m(m—1)/2]-(c,c)+m-p,(c)
—m+1 for any rational integer m.

As for Lemma 1.9, see Zariski [6].

By virtue of Lemma 1.8, Lemma 1.9 can be generalized to
cycles ¢ and d over F with vg instead of p,. Hence

LemMma 1.10. If L and L' are virtual linear system on F, then
vg(L+L)=vg([L+L"))=vg(L)+vg(L')+(L, L")—1.

(%) A virtual linear system L on F is called irreducible if
there is an F’ € B such that Tg,(L) contains an irreducible curve
or equivalently, if there exists a virtually positive member ¢ of

1) The first step is to prove that if ¢ is a divisor on F and if F’ € B dominates
F, then p,(¢)=p.,(Tr>r'(c)), which is proved as follows: Let d be a hypersurface
section of order high enough such that d and c¢+d are linearly equivalent to non-singular
curves d’ and ¢ respectively which do not go through any fundamental points. For
¢ and d, the above is true because the arithmetic genus of a non-singular curve
coincides with the geometric genus of the curve. Since the arithmetic genus is an
invariant of a linear equivalence class, we have p,(c)=p,(c/)—p.(d)—(c,d)+1=
2a(Tr>r(c)) (by Lemma 1.9).
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L such that a minimal curve of c¢ is irreducible. L is said to be
irreducible over F if we can choose such an F’ so that F<F’.

(») Let P, -, P, be points over F' such that D=dile, . r,
is well defined on F and let ¢ be an irreducible curve on F. Set
m; =m(P;;c). Then ¢ =D(c—=Zm;P;) is an irreducible curve.
When L is a virtual linear system on F, then (D(L))® cut out on
¢’ a linear system of divisors of ¢/. This last linear system is
called the trace of L on ¢ with respect to the points P;. It should
be noted that if ¢’ is on another F’ € B, then (T, (L))® cut out
the same trace on ¢'.

() We say that virtual linear system L on F is exceptional
if there is an F’€ B such that a single point is a member of
Tr, (L), or equivalently, if for a F” € B, (Tg, /(L)) consists of
an exceptional curve of the first kind. It is well known that

PropoSITION 2. A virtual linear system L is exceptional if and
only if L is irreducible, vg(L)=0 and I(L)= —1.

2. Numerical types.

We consider complete virtual linear systems on projective planes
S. B denotes from now on the B in §1 in the case where F is
an S.

() Let L be a complete virtual linear system on a projective
plane S and let ¢—3= m;P; be a member of L, where ¢ is a divisor
on S and the P; are mutually distinct points over S. Let the de-
gree of ¢ be d. The L is characterized by d and = m;P;, and L
is denoted by [(d; = m;P;). The effective linear system associated
with L is denoted by L9(d; = m;P;).

[d(d+3)—Zm,(m;+1)]/2 is called the virtual dimension of L
or of L® and is denoted by vdim L or by vdim L®. effdim L—
vdim L is called the superabundance of L or of L® and is denoted
by supabL or by supab L®. Lemma 1.7 implies that if d>>0,
then supab £(d; 3 m;P;)>>0. a

(A) It is obvious that ovg(L(d; Zm;P;)=(d*—3d+2—
Zmim;—1))/2, and therefore we have the following formulas,
where L and L’ are complete virtual linear systems on an S.

Lemma 2.1. (i) vdim L=I(L)—vg(L)+1, (ii) vdim[L+L']=

vdim L+vdim L' +(L, L’), (iii) if L=L(d; = m;P;), then 3d—3 m;
=I(L)—2-vg(L)+2=2-vdim L—I(L).
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(13) Let P,, ---, P, be points over an S such that dilp,, ... p,> is
well defined on the S. Set F=dil,, ... r,,(S). Though every natural
Cremona transformation is the product of quadratic Cremona
transformations, it is not true in general that every F-admissible
Cremona transformation is the product of F-admissible quadratic
Cremona transformations. A Cremona transformation 7 defined
on the S is called a Cremona transformation with centers within
P; if it is the product of F-admissible quadratic Cremona transfor-
mations.

Lemma 2.2, If T is an F-admissible Cremona transformation,
then there are exactly v fundamental points, say P{, ---, P! over
T(S) with respect to F and F=dilps, ... pr,, (T(S)).

Proof. If T is quadratic, then the assertion is obvious, hence
the assertion is proved easily if 7 is a Cremona transformation
with centers within P;. There are points P,,,, ---, P, such that
F'=dilep, ...p(S) is well defined and such that T is a Cremona
transformation with centers within P,, .-+, P,. On the other hand,
since F dominates T(S), F=dileps, ... p,.»(T(S)) with the funda-
mental points P; over T(S) with respect to F. Then F'=
dilepry, o, Py Pyyy o P (T(S)), and therefore Pi, ---, P/, P,,,, -, P,
is the set of fundamental points over T(S) with respect to F".
It follows from the first remark that »’ =7.

These fundamental points Py, -+, P, in Lemma 2.2 are called
the corresponding base points to the P; under T.
(it) We call a vector (d, m,, -+, m,), with »+1 integers d, m;,

a numerical type with r base points; d is called the degree and
the m; are called multiplicities of the numerical type. Two
numerical types (d, m,, ---, m,) and (d’, m{, -+, m;) are said to be
similar to each other if there are mutually distinct points P,, -+, P,
on an S and a Cremona transformation 7 with centers within P;
such that T(.L(d; = m;P;)) is expressed as .L(d; ZmiP;) on T(S),
where P! are the corresponding base points. It should be remark-
ed here the following easy fact:

LemMA 2.3. If T is a quadratic Cremona transformation defined
on an S with centers P,, P,, P,, then T(L(d; ZIm;P;)=2L(d+a;
33 (m; +a)PF +37 m;P;), where a=d—(m,+m,+m,), the P; are mutu-
ally distinct points over the S, and the PY (j=1,2,3) are the
fundamental points over T(S) with respect to S which are numbered
so that if (i, 1, k) is a permutation of (1,2, 3), then P¥ corresponds



On rational surfaces, 11 279

to the line I; which goes through P; and Py i.e., P¥f=T(;—P;—P)).

By virtue of the above lemma, we define an operator q acting
to numerical types with at least three base points, as follows:
a(d, m,, -+, m,)=(d+a, m,+a, m,+a, my+a, m,, ---, m,) where a=
d—m,—m,—m,. Then lemma 2.3 implies that

LEmMMA 2.4. Two numerical types (d, m,, -+, m,) and (d’, m,
e, ml) arve similar to each other if and only if there are permuta-
tions m,, -, w, of multiplicities such that (d', mi, -+, m))=m,qm;_,q
e (d, My, e, M)

(1) Given ordinary points P,, ---, P, on an S are said to be
non-special with respect to Cremona transformations if for any
Cremona transformation 7 with centers within P;, the correspond-
ing base points Pj, ---, P/ to the P; under T are ordinary points
on T(S) such that no three points among the P/ are colinear. In
the contrary case, we say that the P; are special with respect to
Cremona transformations.

Lemma 2.5. If P,, -+, P, are independent generic points of an
S over the prime field, then they are won-special with respect to
Cremona transformations.

Proof. If <2, then the assertion is obvious, and we assume
that »=>3. Let T be the quadratic Cremona transformation with
centers P,, P,, P;, and let P¥, P¥, P¥, be the corresponding base
points to the P,, P,, P, under 7. P,, ---, P, are independent generic
points over the smallest field of definition K of 7. Since P¥, P¥,
Pj¥ are ordinary points which are not colinear and since they are
rational over K, we can choose coordinates of 7(S) so that P¥, P¥,
P¥, P,, -+, P, are independent generic points over the prime field.
Therefore the same is applied to any Cremona transformation with
centers within P;, and we prove the assertion.

PROPOSITION 3. Given mutually distinct ordinary points P,, ---,
P, on an S are special with respect to Cremona transformations if
and only if there is a numerical type (d, m,, ---, m,) which is similar
to (1,1,1,1,0, ---, 0) (with »—3 zeros) and such that L(d ;% m;P;)
is not empty.

The proof is immediate from Lemma 2.6 below and from the
definition.

(~) The following two lemmas are obvious :

LemmA 2.6. Assume that P,, ---, P, are non-special points with
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respect to Cremona transformations on an S. A numerical type
(d, my, -+, m,) is similar to (d', m}, ---, ml) if and only if there is
a Cremona transformations T with centers within P; such that
T(Ld; ZmP))=L(d; ZmiP]) with a suitable numering of the
corresponding base points P;.

LEMMA 2.7. When these numerical types as above are similar
to each other, the following two assertions hold good: (1) If we can
choose P; (non-special) so that L®(d; = m;P;) is not empty, then
either d' >0 or d'=0, m;<<0; (2) if ome can choose P; so that
L(d; Zm;P;) is irveducible, then either d’”>0, m,>0 or d'=0, m)
are zero except for at most one of the m; which is equal to —1.

(&) For a given numerical type (d, m,, --+, m,), the set of all
numerical types which are similar to (d, m,, ---, m,) is denoted
by €(d, m,, -+, m,). Elements of €(1, 1, 1, 0, ---, 0) (with »—2 zeros)
and elements of €(1, 0, -+, 0) (with » zeros) are called pre-excep-

tional types and Cremona types (with » base points) respectively.

I(L(d;ZmP;) and vg(L(d; = m;P;)) do not depend on the
particular choice of the points P; but depend only on the numerical
type (d, m,, -+, m,) and are invariant under Cremona transforma-
tions. These numbers are defined to be the grade and the virtual
genus of the numerical type (d, m,, ---, m,) and are denoted by
Id, m,, -+, m,) and vg(d, m,, ---, m,): Since they are invariants of
the similarity class €(d, m,, -+, m,), and since 3d—3= m;=1(d, m,,
e, m,)—2-vg(d, m,, -+, m,)+2, we have

LEmMMmA 2.8. The grade, virtual genus and 3d—3=m; are in-
variants of €(d, m,, -, m,).

3. Exceptional curves of the first kind.

THEOREM 2a. Assume that P,, ---, P, are points on an S which
are nom-special with respect to Cremona transformations. Then
there is a one-one correspondence between all of pre-exceptional types
(d, my, ---, m,) with r base points and all of irreducible exceptional
curves ¢ of the first kind on dilp,,...p,(S) in such a way that
c€dil p,,...p,, (L(d;Zm;P;)).

Proof. Assume that (d, m,, --+, m,) is a pre-exceptional type.
By Lemma 2.6, there is a Cremona transformation C with centers
within P; such that C(L(d; = m;P;)) is of the form _L(0; —P/) on
C(S), whence c=dilepr,,...p7,, (P1), where the P; are corresponding
base points to the P;. Since the P; are ordinary points on C(S),
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we see that ¢ is an irreducible exceptional curve of the first kind.
Conversely, assume that ¢ is an irreducible exceptional curve of
the first kind on dilp,, ... p,5 (S). Set ¢*=(dilep,,...p,») " (¢), L=_L(c*)
and let (d, m,, --+-, m,) be such that L=_(d; = m;P;). We are to
prove that (d, m,, ---, m,) is a pre-exceptional type by induction
on d. If d=0, then ¢* must be a point and the assertion is ob-
vious. We assume that 4 >0. Since ¢ is irreducible, ¢ is the
proper transform of the divisorial part ¢’ of ¢*, hence m;=m(P; ;')
>0. We may assume that m,>m,>--- >m,. Since I(L)=I(c)=
—1 and since vg(L)=p,(c)=0, we have m,+m,+m, >d by virtue
of Proposition 4 in Part I®. Let T be the quadratic Cremona
transformation with centers P,, P,, P,. Then T(L) on T(S) is of
smaller degree than d, whence, by our induction assumption, we
see that q(d, m,, ---, m,) is a pre-exceptional type, which implies
that (d, m,, ---, m,) is also a pre-exceptional type, and the proof
is completed.

PROPOSITION 4. Assume that, for a given numerical type
t=(d, m,, -+, m,) with r>3, every member of the class &(t) has
positive degree and non-negative multiplicities except for those of
degree zevo. If furthermore vg(t)<1 and if 3d—3 m; >0, then it
holds one of the following six cases: (1) there is a member of €(1)
of degree zero, say (0, n,, -+, n,) such that the sum of any three of
the n; is non-positive ; (2) vg(t)<O0 and (n, n, 0, ---, 0) € €(t) with a
natural number n; (3) vg(t)=0 and (n,n—1,0, ---, 0) € €{) with a
natural number n; (4) vg(t)=0, (2,0, -+, 0 €C€1); (5) vglt)=1,
3,1, -,1,0, -+, 0)€C(t) with at most 9 ones (may have no one);

6) Bn,n, -+, n0, -, 0€CH) with a natural number n and with
exactly 9 n's.

Proof. By virtue of our assumption, we can adapt the last
half of the proof of Theorem 2a, and we yield the result by
Proposition 4 in Part I.

PROPOSITION 5. If L=_[(d; = m;P;) is virtually connected (P;
being mutually distinct points over an S) and if either vdim L>0
or the P; are non-special with respect to Cremona transformations

then (d, m,, -+, m,) satisfies the first assumption in Proposition 4
above.

2) (2i<t<r) in the second line of Proposition 4 in Part I should be (2<{t<7).
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Proof. If vdim L>0, then we may change the P; to inde-
pendent generic points and we may assume that the P; are non-
special points with respect to Cremona transformations, whence
the assertion is obvious by virtue of Lemma 2.7 and by the fact
that if some m;, say m,, is negative, then a curve ¢ in dilp,, ..., (L)
contains (—m,)p with p=dilp,, ... p,, (P,), and (c—(—m,)p, —m, p)=0.

By virtue of Proposition 5, we have the following result as
a particular case of Proposition 4.

THEOREM 3a. Assume that L=_L(d; = m;P;) is virtually con-
nected (P; being mutually distinct points over an S) and that I(L)= —1.
If vg(L)=0, then (d, m,, -+, m,) is a pre-exceptional type®.

ReMARK. Two of the three conditions I(L)=—1, vg(L)=0 and
vdim L=0 imply the remaining by virtue of Lemma 2. 1.

Since the irreducibility of a curve implies the virtual con-
nectedness of the curve, we have the following corollary to
Theorem 3a.

CoroLLARY. If L(d; % m;P;)is exceptional, then (d, m,, -+, m,)
is a pre-exceptional type. .

The above corollary and Theorem 2a imply the following

ProproSITION 6a. If P,, -+, P, are non-special points of an S
with respect to Cremona transformations, then every exceptional curve
of the first kind on dil, ...p,,(S) is irreducible.

3) It seems to the writer that Franchetta [4] is asserting that if a virtually
connected curve ¢ is such that I(¢)=—1 and p,(c)=0, then either ¢ is an exceptional
curve of the first kind or the transform of a curve on a ruled surface. But this
statement is not true. A counter example is given as follows: Let /be a lineon an S
and let P and @ be mutually distinct ordinary points on /. Let P’ and @ be infinitely
near points of P and @ such that they lie on /. (The assumption that P’ and @ lie
on / is not important. But the treatment becomes different in the other cases.) Set
D=dilcp,0,p,¢), ! =D(U—P-Q—P'—Q), p=D(P—P’), ¢=D(Q—-Q), p'=D(P'), ¢'=
D(Q) and ¢=D(I—P'—Q’). Then /, p, p', q, ¢ are irreducible and ¢ is the sum of
them. Let ¢ be a minimal curve of ¢ which is dominated by ¢. If c¢s=c’, then there
is an irreducible exceptional curve e of the first kind on D(S) such that e is a com-
ponent of ¢ and such that cont.(c) is a curve. Exceptional curves of the first kind
among Z, p, g, p’ and ¢’ are only p’ and ¢’. If e=p’, then the contracted point conty(p")
is a double point of conty(c), whence 2p' must be contained in ¢, which is a contra-
diction, and e==p’. Similarly, ed=¢’ and e does not exist, which shows that c¢ itself is
a minimal curve. There is no ruled rational surface which carries ¢ because a rational
ruled surface has at most one irreducible curve of negative grade (Proposition 2 in
Part I). On the other hand, ¢ is obviously virtually connected. That p,(¢)=0 and that
I(c)=—1 are obvious. ¢ is not a transform of any curve on a ruled surface by virtue of
Theorem 1.
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Above treatment can be adapted to the case of Cremona
transformations, and we have:

THEOREM 2b. If P,, -+, P, are non-special points of an S with
respect to Cremona transformations, then there is a one-one corre-
spondence between all of Cremona transformations C with centers
within P; and all of Cremona types (d, m,, ---, m,) with r base points
in such a way that C is defined by the linear system L(d ;% m;P;).

THEOREM 3b. Assume that L=_L(d; = m;P;) is virtually con-
nected and that I(L)=1, vg(L)=0, then (d, m,, ---, m,) is a Cremona
type.

COROLLARY. Let P,, ---, P, be points over an S such that
D=dilp,, ... p, is well defined on the S. Then every D(S)-admissible
Cremona transformation defined on the S is defined by the linear
system L®(d; Zm;P;) with a suitable Cremona type (d, m,, --+, m,).

PROPOSITION 6b. If P,, ---, P, are non-special points on an S
with respect to Cremona transformations, then every dilwp,, ... p,» (S)-
admissible Cremona transformation defined on the S is a Cremona
transformation with centers within P;.

TueoreM 4a. Let P,, ---, P, be points over an S such that
D=dilp,, .. p,, is well defined on the S. If D(S) carries infinitely
many exceptional curves of the first kind, then r=>9. Conversely,
if r>>9 and if the P; are non-special with respect to Cremona
transformations, then D(S) carries infinitely many exceptional curves
of the first kind®.

Proof. Theorem 2a and Proposition 6a show that we have
only to prove that there are infinitely many pre-exceptional types
with 7 base points if and only if »>9. Assume first that »>9,
and let (d, m,, -+, m,) be a pre-exceptional type such that n,<m,
< .--<m,. Since 3d—3 m; is an invariant of the similarity class
by Lemma 2.8, we have 3d—= m;=1, whence m,+m,+m,<d, and
therefore the operator q yields a new member of higher degree
of the class of pre-exceptional types. Hence there are infinitely
many pre-exceptional types with » base points. Assume next that

4) The existence of a surface carrying infinitely many exceptional curves of the
first kind was claimed by Franchetta [3]. But his proof was not complete; he proved
the existence of infinitely many Cremona types with 9 base points, which was already

known (see Coble [2]). The writer was told the existence of such a surface by
K. Kodaira.
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r=8. Then the following table gives all pre-exceptional types up
to permutations of the multiplicities :

d m, m, m, m, mg M, m, M,
1) 0 -1 0 0 0 0 0 0 0
2) 1 1 1 0 0 0 0 0 0
(3) 2 1 1 1 1 1 0 0 0
4) 3 2 1 1 1 1 1 1 0
(5) 4 2 2 2 1 1 1 1 1
(6) 5 2 2 2 2 2 2 1 1
) 6 3 2 2 2 2 2 2 2

For, as is easily seen, the following shows all possible change of
types by the operator q up to permutations :

4)

A

SN
De@e@)e——0) o 6) ()

Therefore, by a stronger reason, we see that if »<U8, then there
are only a finite number of pre-exceptional types with » base points.
Thus we complete the proof.

THEOREM 4b. Let P; and D be as above. If there are infinitely
many D(S)-admissible Cremona transformations defined on the S,
then r>9. Conversely, if r=>9 and if the P; are non-special with
respect to Cremona transformations, then there are infinitely many
Cremona transformations with centers within P;.

Proof. If <9, then D(S) carries only a finite number of
exceptional curves of the first kind by Theorem 4a, hence D(S)
dominates only a finite number of members of B and the first
assertion is proved. The last assertion is proved by a similar way
as in Theorem 4a.

We add here a modification of Proposition 2 in the case of a
projective plane S.

ProOPOSITION 7. Let P,, ---, P, be mutually distinct points over
an S. Then L=_L(d; % m;P;) is exceptional if (and only if) L is
irreducible, 1(L)< 0 and vdim L>0.

Proof. Since L is irreducible, vg(L)>0, whence 0<vdim L
+vg(L)=I(L)+1<0. It follows that vdim L=vg(L)=I(L)+1=0,
hence L is exceptional by Proposition 2.
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4. Abnormal curves.

Let P,, ---, P, be given mutually distinct points over an S.

A curve c is called an abnormal curve with respect to the points
P, if degc/=m(P;; ¢)<1/\/r. From this definition, it follows
that

LEMMA 4.1. If ¢ is an abnormal curve with respect to the P;,
then there exists an irreducible component ¢’ of ¢ which is abnormal
with respect to the P;.

Let G be the set of permutations o of the P; such that some
linear translation of (P,, -+, P,) can be specialized to «(P,, -+, P,)
over the prime field. This G is called the geometric permutation
group of the P;. If G is transitive, we say that the P; are
transitive ; if G is symmetric, we say that the P; are symmetric.
If ¢ is a curve and if o €G, then o(c) denotes a specialization of
a translation of ¢ compatible with (P,, ---, P,)—>o(P,, -+, P,) as
above. (o(c) may not be unique.)

We say that a curve ¢ is uniform with respect to the P; if
all m(P;; c) are equal.

THEOREM 5. If ¢ is a uniform abnormal curve and if ¢’ is an
irreducible abnormal curve with respect to the points P; then ¢’ is a
component of c.

Proof. Let m;=m(P;;c"), m=m(P;;c), d=degc and d’=degc’.
Then d/mr<1/\/7r, d'|Zm;<1//r and therefore dd'< = mm;
and the assertion is proved.

CorOLLARY. If ¢ is an irreducible uniform abnormal curve with
respect to the P;, then c is the unique irreducible abnormal curve,
hence every abnormal curve must contain ¢ as a component.

Assume that the P; are transitive. For a curve ¢, =o(c) is
called a wumniformization of c¢ if o runs over a complete set of
representatives of the geometric permutation group G of the P;
modulo its subgroup H which consists of o' such that m(P;; c¢)=
m(a’(P;); ¢) for all i (G=3 oH).

THEOREM 6a. Assume that c is an irrveducible abnormal curve
with respect to the P; and that, setting d=degc, m;=m(P;; c), for
any permutation o of the i, there exists an irreducible abnormal
curve ¢, of degree d such that m(P;; c,)=m.y. Then, (1) for any
o, C, 1S unique, (2) any irreducible abnormal curve with respect to
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the P; coincides with one of the c, and (3) setting H= {o; m;=mg,,
for all i}, let o, -+, o, be a complete set of representatives of the
symmetric group &, of the {i} modulo H (S,=%cH); then any
uniform abnormal curve with respect to the P; contains 3 c,; as a
component.

Proof. Let ¢’ be any irreducible abnormal curve with respect
to the P;. Then ¢’ must be a component of = ¢,;, which proves
(1) and (2). If k£ is a uniform abnormal curve, then every ¢, must
be a component of %, which proves (3).

THEOREM 6b. Assume that c is an irreducible abnormal curve
with respect to the P; and that the P; are transitive. Then for any
element o of the geometric permutation group G of the P;, o(c) is
unique (and irreducible) and any irreducible abnormal curve coincide
with one of the o(c). Furthermore, uniformization of c¢ is unique.

THEOREM 7. If L=_[(d; % m;P;)is irreducible, if supab L=0
and if d|Zm;< 1//r (hence L® consists of an irreducible abnormal
curve), then, assuming that m,>m,> --- >m,,

Q) r=2, m=m,=1, d=1,
or (2) r=3, m=m,=1, m;=0, d=1,
or (3) r=5 m=m,=m=m,=m;=1, d=2,
or (4) r=6, m=m,=m,=m,=m;=1, m;=0, d=2,
or (B5) r=7, m=2, my=m=m,=ms=m;=m,=1, d=3,
or (6) r=8, m,=3, my=m,=m,=my=my=m,=my,=2, d=6.

Conversely, if the P; are non-special with respect to Cremona
transformations, then each of the above conditions gives an irreduci-
ble abnormal curve.

Observe that these curves are of pre-exceptional type.

Proof. The converse part is obvious by virtue of Theorem 2a.
Assume that L satisfies the conditions. Since supab L=0, even
if the P; are independent generic points, L® consists of an irre-
ducible abnormal curve. Hence we may assume that the P; are
independent generic points. Let ¢ be the unique member of L®
and let o,, --+, o; be elements of the geometric permutation group
G of the P; (which is symmetric) such that = o;(c) is the uni-
formization of ¢, let L;=_L(d—Z; m(P;, o;(c))P;) and let L’ be the
complete sum of L,, -, L,. First of all, L; is exceptional by virtue
of Proposition 7. On the other hand, Theorem 6b (or Theorem 6a)
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shows that effdim L'=0. effdim L'=0 shows that effdim [L;+L;]
=0 for any /-7, hence vdim [ L;+L;]<0. Therefore, Lemma 2.1
implies that (L;, L;)=0 if i-Fj, and the above inequality is really
an equality. Then, by successive application of the same, we see
that vdim L’=0 and supab L'=0. Therefore, denoting by m’ the
multiplicity of the P; on the uniformization of ¢, we have (¢d)*+
3dt—r(m”+m')=0. By our assumption that ¢ is abnormal, we
have td/rm'< 1/\/7, hence td<m'~/r. Therefore rm”+3r-m'—
r(m””+m’) >0, which shows that 3>>+/7. It follows that »<8.
Non-existence of abnormal curves in the case where »=1 or 4 is
obvious. Therefore =2 or 3 or 5 or 6 or 7 or 8. In each of
these cases, the condition described in the theorem gives an irre-
ducible curve by Theorem 2a. Therefore, by virtue of Theorem 6a,
we prove the theorem.

We note here that Proposition in Nagata [5], § 3 implies by
virtue of the above results and Theorem 9 below that if P,, -+, P,
are independent generic points of S over the prime field and if r
is the square of a natural number, then there is no abnormal curve
with respect to the P;.

5. Some remarks on superabundance.

Let P,, -+, P, be mutually distinct points over an S such that
D=dilp,, .. p,, is well defined on the S.

THEOREM 8. Let d* be a given number or infinity. Assume
that if L=_0L(d; Zm;P;) is irreducible and if d is less than d*,
then supab L=0. Then, for an arbitrary L=_L(d; = m;P;) with
d < d* and such that L9(d ; % m;P;) is not empty, the superabundance
of L is given as follows: Let L,, --+, L, be mutually distinct irre-
ducible complete virtual linear systems on S such that (D(L))® is
the minimal sum % e,(D(L;))®. Then supab L=3%,f(f—1)/2, where
f runs over all e; such that L; is exceptional. We have, in the
above case, that (L;, L;)=0 if i==j and that if e;>2 then I(L;) is
either —1 or O accordingly to whether L; is exceptional or not.

Proof. Since supab (L;)=0, we have effdim L;=vdim L;>0.
Hence if (L;, L;) >0 ({==j or i=j and e; >2), then effdim [L;+L;]
—>effdim (L;+L;) by Lemma 2.1, which is a contradiction, whence
the last assertion is true by virtue of Proposition 7. Since (L;, L;)=0,
it follows from Lemma 2.1 that supab (L)=Z2 supab (¢;L;), and we
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may assume that L=e,L,. If ¢,=1, then the assertion is obvious,
and we assume that e¢,>2. If I(L)=0, then the assertion is
proved by Lemma 2.1 and we assume that I(L,)<0. Then L, is
exceptional by Proposition 7, hence supab (e,L,)=supab(¢,L(0; —P,))
=—e¢(—e,+1)/2=e,(e,—1)/2, and the assertion is proved completely.

THEOREM 9. Assume that the points P; are ordinary points.

(1) If r<8, then the condition in Theorem 8 is satisfied for
d*=infinity if and only if the P; are non-special with respect to
Cremona transformations.

(2) If r=9, then the condition in Theorem 8 is satisfied for
d*=infinity if and only if the following two conditions are satisfied :
(i) The P; are non-special with respect to Cremona transformations.
(ii) For any natural number n, the system _L(3n; ZnP;) is of
dimension zero.

Proof. Assume that the condition in Theorem 8 is satisfied
for d*=infinity. Then Proposition 3 shows that the P; are non-
special. Therefore the “only if” part (in each of (1) and (2)) is
proved.

In order to prove the “if” part, we shall use the following
fact, which will be proved later in a more general form :

LemMAa 5.1. If supab [(d; Zm;P;)=0, P; being ordinary points,
if no P; (j=3) is on the line P,P,, and if either (i) a,=a,=0, or
(ii) a,=1, a,=0 or (iii) a,=a,=1, m,+m,<d, then supab L(d+1;
(m1+a1)P1+(m2+a2)P2+2§ m:‘Pi):O-

By virtue of Lemma 2.1, we have the following

COROLLARY. If, besides the conditions in Lemma 5.1, L(d ; Zm;P;)
is irreducible, then L(d+1; (m,+a,)P,+ (m,+a,)P,+23m;P;) is
irreducible except for the cases where d=m,=a,=1 and where
a,=a,=1, m,+m,=d.

Now we consider the if part of Theorem 9. Assume that
L=_1(d; Zm;P;) is irreducible. If there are three multiplicities
of L whose sum is greater than d, then we can reduce the degree
of L by a quadratic Cremona transformation with centers within
P;, or to a system of degree zero; this last case has to be the
case of pre-exceptional type and such case is known. Observing
that the condition (ii) in Theorem 9, (2) is invariant under Cremona
transformations with centers within P;, we see that it is sufficient
to prove the following
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ProprosiTION 8. (1) If »=8 and if the P; are non-special with
respect to Cremona transformations, then any system L= _[(d ; = m;P;),
with d>m,+m,+m,, m,_>m,> - >m, >0, has superabundance
0; L is irreducible except for the case where L=L(d; dP,), d_>1.

(2) Assume that r=9 and that (i) the P; are non-special with
respect to Cremona transformations and that (ii) L,=_L(3n; Z nP;)
is of dimension zero for any natural number n. If d>m,+m,+m,,
m,>m, > - >m, >0, then L=_L(d; Zm;P;) has superabundance
0; L is irreducible except for the cases where L=L, for some n=1
and where L=_L(n; nP,) for some n==1.

Proof of (1). Set L,=_L(3t; ZtP;) for ¢t=0,1, ---. If we see
the irreducibility of L, for £ >0 and that supab L,=0, then, using
L,, we see the assertion easily by virtue of Lemma 5.1 and its
corollary. Therefore we shall prove them by induction on ¢ (for
t>0). Assume that L, is reducible, or rather that .L®@3; = P;)
has a reducible number, then either there exists a conic which
goes through 6 of the P; or there is a line going through 3 of
the P;, which contradicts to the non-speciality of the P;. If
supab L, >0, then there are 7 of the P;, say P,, ---, P, such that
P, is a base point of L'=_.%3; 21 P;), whence L'=L9. Since
L'=|L®1; P+P)+L®2; =1 P,)|, L? has a reducible member,
which is a contradiction as was proved above. Thus the case
where t=1 is proved. We assume now that #>1. vdimL,=
t(t+1)/2>¢t+1 and therefore L3¢ ; (¢+1)P,+ 38 tP;) is not empty.
Since L, does not change its type under Cremona transformations
with centers within P; and since (0, —1,0,0,0,0,0,0,0) is similar
to (—6, —3, —2, —2, —2, —2, —2, —2, —2) by virtue of the table
in the proof of Theorem 4a, there is a Cremona transformation T
with centers within P; such that T(L(3¢; (¢+1)P,+25¢P;)) is of
the form [L, ,+_£(0; —P,)] (of course, the points must be changed
to the corresponding base points under 7°). Since the non-speciality
is preserved by the corresponding base points, we can use the
induction assumption and we see the irreducibility and the vanish-
ing of superabundance of the system T(.L(3t; (#+1)P,+38tP))).
Therefore the same assertions are true for L(3f; (¢ +1)P,+3%tP;)),
whence, by a stronger reason, then hold also for L,, which com-
pletes our proof.

Proof of (2). That supab L=0 is proved by the same way as
in the first part of the proof of (1), because we assumed that
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supab L,=0. For the irreducibility of L, it is sufficient to prove
the irreducibility of L,=[L,—L(0; P,)}. Since L,=[L,+L, ],
we prove the irreducibility by induction on # by virtue of Lemma
2. 1.

The generalization of Lemma 5.1 which we want to prove is

TueoreM 10. Assume that P,, ---, P, are ordinary points. Let
¢ be a curve and let L*=_[(d*; Zm¥P;) be such that d*=degc,
m¥=m(P;;c). Assume that m¥=0 if and only if i>s. If
supab .L(d; = m;P;)=0 and if supab .L{d+d*; =i (m;+m¥)P;)=0,
then supab L(d+d* ; Zi(m;+m¥)P,)=0.

In order to prove Theorem 10, we introduce some notations.
Let & be a ground field over which the P; are rational and let
©=FK[x, y, 2] be the homogeneous coordinate ring of the projective
plane S. Let p; be the homogeneous prime ideal of the point P;
for each 7 and let b(m,, ---, m,) be the intersection of p7*i. When
a is a homogeneous ideal of 9, X(a; d) denotes the Hilbert char-
acteristic function of a. Then it is obvious that if d >0, m; >0,
then supab £(d; % m;P;)=(Zm;(m; +1)/2) —X(p(m,, -, m,); d).
Note that this last equality implies that if d’>>d, then
supab .L(d’ ; = m;P;)<supab .L(d ; = m;P;), hence that if d'>d>0,
0<m}<m;, then supab .L(d’; S m|P;)<supab L(d; = m;P,).

LEMMA 5.2. Set a=p(m,, -, m,, 0, ---,0) and b=p(0, .-, O,
Mgy, -+, m,). Then supab L=supab [(d; 2im;P;))+ subab (L(d;
Sram;P)+X(a+b; d), where L=_L(d; 2imP;) with arbitrary
d>0, m;=>0.

Proof. This follows from the known formula X(anb; d)=
X(a;d)+X(0b;d)—X(a+b;d).

LeEmMMA 5.3. Let a be a homogeneous ideal and let f be a
homogeneous form of degree d* (in a homogeneous polynomial ring).
Assume that o:f=a. Then, for any n>d* and for any homo-
geneous ideal ¢, X(a;n)—X(a;n—d*)=X(a+cf; n)—X(a+ ¢; n—d*).

Proof. X(a;n)—X(a;n—d*)=X(a+(f);n)=X(a+cf+(f);n)=
X(a+cf; n)—X((a+cf): f; n—d*), which proves the assertion.

Now we shall prove Theorem 10. We apply Lemma 5.3 to
the case where ¢=p(m,, -+, mg, 0, ---, 0), a=p(0, ---, 0, mg,,, -+, m,),
f is a homogeneous form of degree d* which defines ¢ (a:f=a
is obvious), and n=d+d*. That supab (L(d; =] m;P;)=0 implies
that (i) supab (L(d ; =5, m;P;))=0 and (ii) X(a+c; d)=0 (by Lemma
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5.2). (i) implies that X(a; d+d*)—X(a; d)=0. Therefore the equa-
lity in Lemma 5.3 implies that X(a+cf ; d+d*)=0. Set b=p(m,+m¥,
co, mg+m¥, 0, .-, 0). Then b contains c¢f and we have X(a+b;
d+d*)=0. Therefore Theorem 10 follows from Lemma 5.2 (apply-
ing it to d+d* instead of d).

It should be remarked here that the following nice results were
given by Castelnuovo [1].

Let ¢ be an irreducible curve of degree d on an S and let
P, .-, P, be mutually distinct points over S.

1) If 0<m;<m(P;;c) for every i, then supab (L(d—3;
2 (m;—1)P;))=0.

(2) If furthermore L= _L(d; Zm,P;) is irreducible, if effdim L >1
and if every point P over S such that m(P;c¢)>>2 is some of the
P;, then the superabundance of _£(d; Zm;P;) coincides with the
index of speciality of the trace of _L(d; = m;P;) on ¢ with respect
to the points P;.

6. Suplementary remarks.

ProposiTIiON 9. Set a,=(1,1,1,1,0,0,0,0,0,0), a,=(2,1,1, 1,
1,1,0,0,0,0), a,=(3,2,1,1,1,1,1,1,1,0) and b(n)=03n, n, n, n,
n, n, n, n, n,n). Set c(n,)=bm)+a; (for n>0, i=1,2,3). Then
9 ordinary points P,, ---, P, are special with respect to Cremona
transformations if and only if there exists a mnon-empty system
L¥(d; = m;P;) such that o(d, m,, -, mg)=c(n, i) with a permutation
o of the m; and with some n and i.

Proof. We shall show first that if we allow # to be negative,
then the set of all c¢(n, ¢) is the class €(a,) up to permutations of
multiplicities. It is obvious that a; (=¢(0, 7)) € €(a,). Furthermore,
it is easy to see that ¢(1, 1) € €(a,). Since b(n) is the unique member
of €(b(n)), we see that all c¢(n, i) are in €(a,) for >0, inductively
on xn. Similarly, we see that c(n, 7)€ &(qa,) even if n is negative.
Now, considering qzc(n, /) (= is a permutation of multiplicity and
q is the operator which corresponds to quadratic Cremona trans-
formation), we see easily that c(#, /) exhaust all elements of €(a,)
up to permutations of multiplicities. Therefore Proposition 3
implies our assertion.

CoroLLARY. If P,, ---, P, are ordinary points, then they are
special with respect to Cremona transformations if and only if one
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of the following conditions holds
(1) There are three points among them which are colinear.
(2) There are six points among them which lie on a conic.
(3) There is a cubic curve which goes through all of them and
has a double point at one of them.

ProposiTiON 10. If P,, -+, P, are ordinary points on an S and
if r<<9, then the P; are non-special with respect to Cremona trans-
Sformations if and only if the surface F=dilp,, .. p, (S) carries no
non-singular rational curve of grade at most —2.

Proof. If the P; are special, then the existence of such a curve
is obvious. Assume, conversely, that the P; are non-special and
that ¢’ is a non-singular rational curve on F such that [{¢/)< —2.
Since the P; are ordinary points, ¢’ is the proper transform of a
curve, say c¢. Set d=degc, m;=m(P;;c), and L=_0(d; = mP;).
Then, by virtue of Cremona transformations with centers within
P;, we may assume that d_>m,+m,+m,, m,_>m,> - >m, >0,
Then = m;<3d, and Proposition 4 in Part I yields a contradiction.

LEMMA 6.1. Let P; be points over an S such that D=dilp,, ... p,
is well defined on the S. Then D(S) carries only a finite number
of nom-singular rvational curve ¢ of grade —2.

Proof. If ¢ is such a curve as above, then ¢ is the unique
member of (L(c))". Now, with the notations as in Proposition 9,
let a;; be the set of 7-a; with permutations = of multiplicities.
Each ¢ corresponds to a unique b(z)+a;; (# may be negative)
so that D '(L(c))=-L(d; Zm;P;) with (d, m,, -, m,)=b(n)+a;;.
Assume that another ¢, say ¢/, corresponds to b(n’)+a;; and that
#w' >n. Then _L(c/) must contain c+(n'—n)-D(c*—= P;) with a
cubic curve ¢* going through all the P;, and (.L(c¢’))" contains at
least two members, which is a contradiction. This means that the
number of all the ¢ does not exceed the number of all the a;
and the assertion is proved.

PrOPOSITION 11. Assume that L®3n; = nP;) is not empty for
a natural number n. If c¢ is an irveducible curve such that
(L, L)+22-vg (L) with L=_L(c—2m(P;; c)P;), then ¢ is a fixed
component of L®3n; = nP;).

Proof. By the equality 3d -2 m;=(L, L)—2-vg(L)+2, we see
that (L, L(3n, % nP;))< 0, which proves our assertion.

CorOLLARY. If r<<9 and if c is an irreducible curve such that

Fil
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(L, L)+2<2-vg(L) with L=_L(c—=m(P;; c)P;), then either c is a
line going through at least 4 of the P; or c is conic going through
at least 7 of the P; or c is a cubic curve going through all the P;
and having one double point at one of the P; and the number r is
equal to 9.

The above corollary and Lemma 6. 1 yield the following result.

ProrositioN 12. If »<9, then dilp,,...p,, (S) carries only a
finite number of irreducible curves ¢’ such that (i) ¢’ is not an ex-
ceptional curve of the first kind and that (ii) the grade of ¢’ is
negative. The existence .of such ¢’ is equivalent to that the P; are
Special with respect to Cremona transformations.
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